1
|
Naseh M, Vatanparast J, Baniasadi M, Hamidi GA. Alterations in nitric oxide synthase-expressing neurons in the forebrain regions of rats after developmental exposure to organophosphates. Neurotoxicol Teratol 2013; 37:23-32. [PMID: 23416429 DOI: 10.1016/j.ntt.2013.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/26/2013] [Accepted: 02/02/2013] [Indexed: 12/15/2022]
Abstract
Several mechanisms have been addressed as contributors to the long lasting behavioral deficits after developmental exposure to organophosphate (OP) compounds. Here, the effects of developmental exposure to two common OP insecticides, chlorpyrifos (CPF) and diazinon (DZN), on nitric oxide synthase (NOS)-expressing neurons in the rat forebrain are reported. A daily dose of 1mg/kg of either CPF or DZN was administered to rats during gestational days 15-18 or postnatal days (PND) 1-4. We then assessed NADPH-diaphorase and neuronal NOS (nNOS) immunohistochemistry in forebrain sections on different postnatal days. Prenatal exposure to CPF and DZN induced a transient reduction of NADPH-d(+)/nNOS-immunoreactive (IR) neurons in most cortical regions on PND 4 but exceptionally increased them in the entorhinal/piriform cortex. On PND 15, NADPH-d(+)/nNOS-IR neurons showed morphological abnormalities within entorhinal/piriform cortex of the rats that gestationally exposed to CPF. Postnatal exposure to CPF and DZN did not induce widespread effects on the number of NADPH-d(+)/nNOS-IR neurons on PNDs 7 and 15 but significantly reduced them in most cortical regions and hippocampal subfields on PND 60. The OPs affected NADPH-d(+)/nNOS-IR neurons in a sex independent manner and apparently spared them in the striatum. While the NADPH-d reactivity of microvessels was normally diminished by age, OP treated rats evidently preserved the NADPH-d reactivity of microvessels in the cerebral cortex and hippocampus. The effects of OPs on NADPH-d(+)/nNOS-IR neurons may contribute to the long-lasting behavioral outcomes and expand the neurotransmitter system that need to be considered in OP neurotoxicity evaluations.
Collapse
Affiliation(s)
- Maryam Naseh
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|
2
|
Sánchez-Islas E, León-Olea M. Nitric oxide synthase inhibition during synaptic maturation decreases synapsin I immunoreactivity in rat brain. Nitric Oxide 2005; 10:141-9. [PMID: 15158693 DOI: 10.1016/j.niox.2004.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 03/31/2004] [Indexed: 11/26/2022]
Abstract
During the development of the brain, nitric oxide and synapsins, the latter being phosphoproteins associated to presynaptic membrane vesicles, are abundant in presynaptic terminals and play important and similar roles in neurotransmitter release, morphogenesis, synaptogenesis, and synaptic plasticity. These mechanisms are fundamental for neuronal development and plasticity and constitute important factors for the formation of neuroanatomical structures. Neural nitric oxide synthase (nNOS), synapsin I, and nNOS adapter protein (CAPON) constitute a ternary complex necessary for specific NO and synapsin functions at a presynaptic level. It is not known whether NO absence may affect the presence and/or activity of synapsins during brain development. To understand the role of NO in synaptogenesis, we studied the effects of NOS inhibition on synapsin I expression at a postnatal stage. Rat pups were treated with a competitive NOS antagonist, N-nitro-L-arginine methyl ester, from postnatal days 3 to 23. Control pups received exclusively an equivalent volume of saline solution. Histochemical and immunochemical techniques for NADPH-d and synapsin I, respectively, were carried out. NOS inhibition elicited a significant reduction in synapsin I immunoreactive density and NADPH-d activity in the brain in the analyzed areas-prefrontal cortex, hippocampus, and dorsal thalamus. These data show that the alterations originated by NO and synapsin deficiencies produce a diminution in synaptic density. Thus, functions that depend on the formation of synaptic connections such as learning and memory could be affected by NO deficiency.
Collapse
Affiliation(s)
- Eduardo Sánchez-Islas
- Laboratorio de Histología y Microscopía Electrónica. Subdirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente. Av. México-Xochimilco 1001. Col. San Lorenzo Huipulco, Mexico D F C P 14370, Mexico
| | | |
Collapse
|
3
|
Freire MAM, Gomes-Leal W, Carvalho WA, Guimarães JS, Franca JG, Picanço-Diniz CW, Pereira A. A morphometric study of the progressive changes on NADPH diaphorase activity in the developing rat's barrel field. Neurosci Res 2004; 50:55-66. [PMID: 15288499 DOI: 10.1016/j.neures.2004.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 05/27/2004] [Indexed: 11/25/2022]
Abstract
The distribution of NADPH diaphorase (NADPH-d)/nitric oxide synthase (NOS) neurons was evaluated during the postnatal development of the primary somatosensory cortex (SI) of the rat. Both cell counts and area measurements of barrel fields were carried out throughout cortical maturation. In addition, NADPH-d and cytochrome oxidase (CO) activities were also compared in both coronal and tangential sections of rat SI between postnatal days (P) 10 and 90. Throughout this period, the neuropil distributions of both enzymes presented a remarkable similarity and have not changed noticeably. Their distribution pattern show the PMBSF as a two-compartmented structure, displaying a highly reactive region (barrel hollows) flanked by less reactive regions (barrel septa). The number of NADPH-d neurons increased significantly in the barrel fields between P10 and P23, with peak at P23. The dendritic arborization of NADPH-d neurons became more elaborated during barrel development. In all ages evaluated, the number of NADPH-d cells was always higher in septa than in the barrel hollows. Both high neuropil reactivity and differential distribution of NADPH-d neurons during SI development suggest a role for nitric oxide throughout barrel field maturation.
Collapse
Affiliation(s)
- Marco Aurélio M Freire
- Laboratory of Functional Neuroanatomy, Department of Morphology, Federal University of Pará, 66075-900 Belém, PA, Brazil
| | | | | | | | | | | | | |
Collapse
|
4
|
Ovtscharoff W, Bozhilova-Pastirova A, Christova T. Postnatal development of neurons expressing NADPH-diaphorase and parvalbumin in the parietal cortex of male and female rats. Acta Histochem 2002; 104:23-8. [PMID: 11993847 DOI: 10.1078/0065-1281-00634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of the enzyme nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) and the calcium-binding protein parvalbumin was studied in the parietal cortex of male and female rats during postnatal development at 20, 60 and 90 days of age. First, localization of the activity of NADPH-d was combined with the immunohistochemical localization of parvalbumin to facilitate recognition of morphological details and distribution patterns of these two types of cortical neurons. Double staining of neurons for parvalbumin and NADPH-d was never found. Second, it was found that NADPH-d is a simple and proper marker for quantitative studies. Morphometric analysis revealed sexual dimorphism in the density of NADPH-d-positive neurons in 20 days-old prepubertal rats. Females showed higher amounts of NADPH-d-positive neurons than males. No sex-dependent differences were detected in 60 days-old pubertal and 90 days-old postpubertal rats. The present results suggest that sex differences in the number of NADPH-d-positive neurons in the rat parietal cortex may be related to epigenetic effects of gonadal hormones in the early prepubertal period of postnatal development.
Collapse
|
5
|
Franca JG, Volchan E, Jain N, Catania KC, Oliveira RL, Hess FF, Jablonka M, Rocha-Miranda CE, Kaas JH. Distribution of NADPH-diaphorase cells in visual and somatosensory cortex in four mammalian species. Brain Res 2000; 864:163-75. [PMID: 10802023 DOI: 10.1016/s0006-8993(00)02058-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distribution of the well-labeled nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) Type I neurons was evaluated in the isocortex of four mammalian species: the Didelphis opossum, the Monodelphis opossum, the rat and the marmoset. In Didelphis opossum, laminar distribution was examined in tangential and non-tangential sections. The density increases from superficial to deep layers of the gray matter. In rats' tangential sections, infragranular and supragranular layers have higher density than layer IV. Cell density measurements in the visual and the somatosensory cortices were compared in tangential sections from flattened hemispheres of the four species. Somatosensory areas were identified histochemically in rat (barrel fields) and marmoset (S1 and S2/PV). In the opossums, areas S1 and S2/PV were identified by multiunit recording. Except in the rat, primary visual cortex (V1) was labeled histochemically by NADPHd and/or cytochrome oxidase. In the four species, cell density in somatosensory cortex was significantly higher than in visual cortex. Taken together these results demonstrate that NADPHd Type I neurons are not homogeneously distributed in the isocortex of these mammals. In conclusion, the tangential distribution of Type I neurons in the sensory areas examined, but not its laminar distribution, was similar in the four species. Given that rats, marmosets and opossums are distantly related species, and that the latter are considered to have more 'generalized' brains, it is conceivable that this pattern of tangential distribution of Type I neurons is a general feature of mammalian isocortex.
Collapse
Affiliation(s)
- J G Franca
- Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, CCS-Bl. 6, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yermolaieva O, Brot N, Weissbach H, Heinemann SH, Hoshi T. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling. Proc Natl Acad Sci U S A 2000; 97:448-53. [PMID: 10618438 PMCID: PMC26683 DOI: 10.1073/pnas.97.1.448] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/1999] [Indexed: 01/27/2023] Open
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca(2+) signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca(2+) signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.
Collapse
Affiliation(s)
- O Yermolaieva
- Department of Physiology, University of Iowa, Bowen Science Building, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
7
|
Black MD, Selk DE, Hitchcock JM, Wettstein JG, Sorensen SM. On the effect of neonatal nitric oxide synthase inhibition in rats: a potential neurodevelopmental model of schizophrenia. Neuropharmacology 1999; 38:1299-306. [PMID: 10471083 DOI: 10.1016/s0028-3908(99)00041-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NADPH-d (nicotinamide-adenine dinucleotide phosphate-diaphorase) neurons are thought to migrate improperly during development in the brains of schizophrenic patients. This enzyme is a nitric oxide synthase (NOS). Nitric oxide (NO) is known to affect neurodevelopmental processes in the CNS. Therefore, we hypothesized that interference of NO generation during development may produce some aspects of schizophrenia symptomatology in a rat model. In these experiments, neonatal rats were challenged with a NOS inhibitor (L-nitroarginine 1-100 mg/kg s.c.) daily on post-natal days 3-5. L-Nitroarginine (L-NoArg) treated male rats developed a hypersensitivity to amphetamine in adulthood versus vehicle treated controls, whereas female rats did not. However, L-NoArg treated female rats developed a hypersensitivity to phencyclidine (PCP) at juvenile and adult ages versus vehicle treated controls, whereas male animals did not. L-NoArg treated male rats also had deficits in pre-pulse inhibition of startle whereas adult female rats did not. The results are discussed in terms of a new neurodevelopmental model of schizophrenia and male/female differences inherent in this disease.
Collapse
Affiliation(s)
- M D Black
- Hoechst Marion Roussel, In vivo CNS, Bridgewater, NJ 08807, USA.
| | | | | | | | | |
Collapse
|
8
|
Soto-Moyano R, Fernandez V, Sanhueza M, Belmar J, Kusch C, Perez H, Ruiz S, Hernandez A. Effects of mild protein prenatal malnutrition and subsequent postnatal nutritional rehabilitation on noradrenaline release and neuronal density in the rat occipital cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:51-8. [PMID: 10446346 DOI: 10.1016/s0165-3806(99)00074-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is evidence that severe malnutrition started during gestation and continued through lactation affects adversely the morphologic development of the neocortex leading to increased neuronal cell packing density and decreased dendritic branching. Nevertheless, the effect of purely mild protein prenatal malnutrition on neocortical development remains rather unexplored. This study evaluates the effects of mild protein prenatal malnutrition (8% casein diet, calorically compensated by carbohydrates) and subsequent postnatal nutritional rehabilitation (25% casein diet) on: (i) the potassium-induced release of [(3)H]-noradrenaline (NA) in occipital cortex slices obtained from 1- and 22-day-old pups; and (ii) the packing density of neurons in lateral, dorso-lateral and dorsal regions of the occipital cortex of 22-day-old pups by using the optical dissector method. The experiments were performed in rats normally fed during gestation and lactation (G(+)L(+)), malnourished during gestation but rehabilitated during lactation (G(-)L(+)) and malnourished during gestation and lactation (G(-)L(-)). At day 1 of age, no significant differences in body and brain weights were observed between prenatally well-nourished and malnourished pups. Nevertheless, at this early age, pups born from mothers submitted to the 8% casein diet had significantly higher cortical net percent NA release than pups born from mothers receiving the 25% casein diet. At weaning (22 days of age) G(-)L(+) rats had, compared to the G(+)L(+) group, similar body weight, brain weight and [(3)H]-NA release values, but significantly higher neuron density scores in the lateral region of the occipital cortex. In contrast, at 22 days of age, G(-)L(-) rats exhibited, compared to G(+)L(+) animals, significant deficits in body and brain weights as well as significant increases in cortical net percent NA release together with enhanced packing density of neurons in the lateral, dorso-lateral and dorsal regions of the occipital cortex. Moreover, in G(-)L(-) animals was not found the laterodorsal histogenetic gradient of neuronal cell packing density observed in G(+)L(+)rats. Results suggest that mild prenatal malnutrition per se is able to induce deleterious effects on cortical neuronal density, in spite of nutritional rehabilitation during lactation, through a mechanism involving central NA hyperactivity during gestation. Prosecution of malnutrition after birth magnifies both neurochemical and morphometric disorders.
Collapse
Affiliation(s)
- R Soto-Moyano
- Institute of Nutrition and Food Technology (INTA), University of Chile, P.O. Box 138-11, Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Judas M, Sestan N, Kostović I. Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals. Microsc Res Tech 1999; 45:401-19. [PMID: 10402267 DOI: 10.1002/(sici)1097-0029(19990615)45:6<401::aid-jemt7>3.0.co;2-q] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A subpopulation of cerebral cortical neurons constitutively express nitric oxide synthase (NOS) and, upon demand, produce a novel messenger molecule nitric oxide (NO) with a variety of proposed roles in the developing, adult, and diseased brain. With respect to the intensity of their histochemical (NADPH-diaphorase histochemistry) and immunocytochemical (nNOS and eNOS immunocytochemistry) staining, these nitrinergic neurons are generally divided in type I and type II cells. Type I cells are usually large, intensely stained interneurons, scattered throughout all cortical layers; they frequently co-express GABA, neuropeptide Y, and somatostatin, but rarely contain calcium-binding proteins. Type II cells are small and lightly to moderately stained, about 20-fold more numerous than type I cells, located exclusively in supragranular layers, and found almost exclusively in the primate and human brain. In the developing cerebral cortex, nitrinergic neurons are among the earliest differentiating neurons, mostly because the dominant population of prenatal nitrinergic neurons are specific fetal subplate and Cajal-Retzius cells, which are the earliest generated neurons of the cortical anlage. However, at least in the human brain, a subpopulation of principal (pyramidal) cortical neurons transiently express NOS proteins in a regionally specific manner. In fact, transient overexpression of NOS-activity is a well-documented phenomenon in the developing mammalian cerebral cortex, suggesting that nitric oxide plays a significant role in the establishment and refinement of the cortical synaptic circuitry. Nitrinergic neurons are also present in human fetal basal forebrain and basal ganglia from 15 weeks of gestation onwards, thus being among the first chemically differentiated neurons within these brain regions. Finally, a subpopulation of human dorsal pallidal neurons transiently express NADPH-diaphorase activity during midgestation.
Collapse
Affiliation(s)
- M Judas
- Section of Neuroanatomy and Neuroembryology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3b, 10000 Zagreb, Republic of Croatia.
| | | | | |
Collapse
|
10
|
Fernández V, Bravo H, Sanhueza M, Inzunza O. NADPH-d positive neurons in the developing somatosensory cortex of the rat: effects of early and late environmental enrichment. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 107:299-307. [PMID: 9593955 DOI: 10.1016/s0165-3806(98)00037-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of environmental enrichment upon the topographic arrangement of NADPH diaphorase-positive neurons (NADPH-d+ neurons) was studied in the somatosensory cortex of 56 Sprague-Dawley albino rats during early stages of development (18th, 24th, 30th and 60th postnatal days). This diaphorase is easily demonstrable, providing a convenient marker for quantitative studies. Environmental enrichment diminished the number of NADPH-d+ neurons and exerted its maximal influence during lactation, a time of exceptional cortical susceptibility. This implies that the magnitude of such effects on the density of NADPH-d+ neurons is age-dependent. Furthermore, it was found that the experience-dependent cortical changes persisted after a subsequent period without environmental stimulation. The effects of early environmental enrichment did not occur uniformly throughout the cerebral hemispheres but, instead, such effects were maximal in the latero-ventral sector of the cerebral cortex where a dramatic reduction in the number of NADPH-d+ neurons was observed. Particularly striking was the existence of a latero-medial sequence of NADPH-d+ neurons in the infragranular layer and a reversed distribution of labeled cells, in the supragranular layer. Both ontogenetic sequences of NADPH-d+ neurons remained unchanged during postnatal development in controls and enriched subjects (18th-60th postnatal days).
Collapse
Affiliation(s)
- V Fernández
- Physiology and Biophysics Program, Biomedical Sciences Institute, School of Medicine, University of Chile, Santiago, Chile.
| | | | | | | |
Collapse
|