1
|
Ozker M, Yu L, Dugan P, Doyle W, Friedman D, Devinsky O, Flinker A. Speech-induced suppression and vocal feedback sensitivity in human cortex. eLife 2024; 13:RP94198. [PMID: 39255194 PMCID: PMC11386952 DOI: 10.7554/elife.94198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Across the animal kingdom, neural responses in the auditory cortex are suppressed during vocalization, and humans are no exception. A common hypothesis is that suppression increases sensitivity to auditory feedback, enabling the detection of vocalization errors. This hypothesis has been previously confirmed in non-human primates, however a direct link between auditory suppression and sensitivity in human speech monitoring remains elusive. To address this issue, we obtained intracranial electroencephalography (iEEG) recordings from 35 neurosurgical participants during speech production. We first characterized the detailed topography of auditory suppression, which varied across superior temporal gyrus (STG). Next, we performed a delayed auditory feedback (DAF) task to determine whether the suppressed sites were also sensitive to auditory feedback alterations. Indeed, overlapping sites showed enhanced responses to feedback, indicating sensitivity. Importantly, there was a strong correlation between the degree of auditory suppression and feedback sensitivity, suggesting suppression might be a key mechanism that underlies speech monitoring. Further, we found that when participants produced speech with simultaneous auditory feedback, posterior STG was selectively activated if participants were engaged in a DAF paradigm, suggesting that increased attentional load can modulate auditory feedback sensitivity.
Collapse
Affiliation(s)
- Muge Ozker
- Neurology Department, New York University, New York, United States
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Leyao Yu
- Neurology Department, New York University, New York, United States
- Biomedical Engineering Department, New York University, New York, United States
| | - Patricia Dugan
- Neurology Department, New York University, New York, United States
| | - Werner Doyle
- Neurosurgery Department, New York University, New York, United States
| | - Daniel Friedman
- Neurology Department, New York University, New York, United States
| | - Orrin Devinsky
- Neurology Department, New York University, New York, United States
| | - Adeen Flinker
- Neurology Department, New York University, New York, United States
- Biomedical Engineering Department, New York University, New York, United States
| |
Collapse
|
2
|
Ozker M, Yu L, Dugan P, Doyle W, Friedman D, Devinsky O, Flinker A. Speech-induced suppression and vocal feedback sensitivity in human cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570736. [PMID: 38370843 PMCID: PMC10871232 DOI: 10.1101/2023.12.08.570736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Across the animal kingdom, neural responses in the auditory cortex are suppressed during vocalization, and humans are no exception. A common hypothesis is that suppression increases sensitivity to auditory feedback, enabling the detection of vocalization errors. This hypothesis has been previously confirmed in non-human primates, however a direct link between auditory suppression and sensitivity in human speech monitoring remains elusive. To address this issue, we obtained intracranial electroencephalography (iEEG) recordings from 35 neurosurgical participants during speech production. We first characterized the detailed topography of auditory suppression, which varied across superior temporal gyrus (STG). Next, we performed a delayed auditory feedback (DAF) task to determine whether the suppressed sites were also sensitive to auditory feedback alterations. Indeed, overlapping sites showed enhanced responses to feedback, indicating sensitivity. Importantly, there was a strong correlation between the degree of auditory suppression and feedback sensitivity, suggesting suppression might be a key mechanism that underlies speech monitoring. Further, we found that when participants produced speech with simultaneous auditory feedback, posterior STG was selectively activated if participants were engaged in a DAF paradigm, suggesting that increased attentional load can modulate auditory feedback sensitivity.
Collapse
Affiliation(s)
- Muge Ozker
- Neurology Department, New York University, New York, 10016, NY, USA
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Leyao Yu
- Neurology Department, New York University, New York, 10016, NY, USA
- Biomedical Engineering Department, New York University, Brooklyn, 11201, NY, USA
| | - Patricia Dugan
- Neurology Department, New York University, New York, 10016, NY, USA
| | - Werner Doyle
- Neurosurgery Department, New York University, New York, 10016, NY, USA
| | - Daniel Friedman
- Neurology Department, New York University, New York, 10016, NY, USA
| | - Orrin Devinsky
- Neurology Department, New York University, New York, 10016, NY, USA
| | - Adeen Flinker
- Neurology Department, New York University, New York, 10016, NY, USA
- Biomedical Engineering Department, New York University, Brooklyn, 11201, NY, USA
| |
Collapse
|
3
|
Tremblay P, Sato M. Movement-related cortical potential and speech-induced suppression during speech production in younger and older adults. BRAIN AND LANGUAGE 2024; 253:105415. [PMID: 38692095 DOI: 10.1016/j.bandl.2024.105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
With age, the speech system undergoes important changes that render speech production more laborious, slower and often less intelligible. And yet, the neural mechanisms that underlie these age-related changes remain unclear. In this EEG study, we examined two important mechanisms in speech motor control: pre-speech movement-related cortical potential (MRCP), which reflects speech motor planning, and speaking-induced suppression (SIS), which indexes auditory predictions of speech motor commands, in 20 healthy young and 20 healthy older adults. Participants undertook a vowel production task which was followed by passive listening of their own recorded vowels. Our results revealed extensive differences in MRCP in older compared to younger adults. Further, while longer latencies were observed in older adults on N1 and P2, in contrast, the SIS was preserved. The observed reduced MRCP appears as a potential explanatory mechanism for the known age-related slowing of speech production, while preserved SIS suggests intact motor-to-auditory integration.
Collapse
Affiliation(s)
- Pascale Tremblay
- Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City G1V 0A6, Canada; CERVO Brain Research Center, Quebec City G1J 2G3, Canada.
| | - Marc Sato
- Laboratoire Parole et Langage, Centre National de la Recherche Scientifique, Aix-Marseille Université, Aix-en-Provence, France
| |
Collapse
|
4
|
Tsunada J, Eliades SJ. Frontal-Auditory Cortical Interactions and Sensory Prediction During Vocal Production in Marmoset Monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577656. [PMID: 38352422 PMCID: PMC10862695 DOI: 10.1101/2024.01.28.577656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The control of speech and vocal production involves the calculation of error between the intended vocal output and the resulting auditory feedback. Consistent with this model, recent evidence has demonstrated that the auditory cortex is suppressed immediately before and during vocal production, yet is still sensitive to differences between vocal output and altered auditory feedback. This suppression has been suggested to be the result of top-down signals containing information about the intended vocal output, potentially originating from motor or other frontal cortical areas. However, whether such frontal areas are the source of suppressive and predictive signaling to the auditory cortex during vocalization is unknown. Here, we simultaneously recorded neural activity from both the auditory and frontal cortices of marmoset monkeys while they produced self-initiated vocalizations. We found increases in neural activity in both brain areas preceding the onset of vocal production, notably changes in both multi-unit activity and local field potential theta-band power. Connectivity analysis using Granger causality demonstrated that frontal cortex sends directed signaling to the auditory cortex during this pre-vocal period. Importantly, this pre-vocal activity predicted both vocalization-induced suppression of the auditory cortex as well as the acoustics of subsequent vocalizations. These results suggest that frontal cortical areas communicate with the auditory cortex preceding vocal production, with frontal-auditory signals that may reflect the transmission of sensory prediction information. This interaction between frontal and auditory cortices may contribute to mechanisms that calculate errors between intended and actual vocal outputs during vocal communication.
Collapse
Affiliation(s)
- Joji Tsunada
- Chinese Institute for Brain Research, Beijing, China
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Steven J. Eliades
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Lavallé L, Brunelin J, Jardri R, Haesebaert F, Mondino M. The neural signature of reality-monitoring: A meta-analysis of functional neuroimaging studies. Hum Brain Mapp 2023; 44:4372-4389. [PMID: 37246722 PMCID: PMC10318245 DOI: 10.1002/hbm.26387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023] Open
Abstract
Distinguishing imagination and thoughts from information we perceived from the environment, a process called reality-monitoring, is important in everyday situations. Although reality monitoring seems to overlap with the concept of self-monitoring, which allows one to distinguish self-generated actions or thoughts from those generated by others, the two concepts remain largely separate cognitive domains and their common brain substrates have received little attention. We investigated the brain regions involved in these two cognitive processes and explored the common brain regions they share. To do this, we conducted two separate coordinate-based meta-analyses of functional magnetic resonance imaging studies assessing the brain regions involved in reality- and self-monitoring. Few brain regions survived threshold-free cluster enhancement family-wise multiple comparison correction (p < .05), likely owing to the small number of studies identified. Using uncorrected statistical thresholds recommended by Signed Differential Mapping with Permutation of Subject Images, the meta-analysis of reality-monitoring studies (k = 9 studies including 172 healthy subjects) revealed clusters in the lobule VI of the cerebellum, the right anterior medial prefrontal cortex and anterior thalamic projections. The meta-analysis of self-monitoring studies (k = 12 studies including 192 healthy subjects) highlighted the involvement of a set of brain regions including the lobule VI of the left cerebellum and fronto-temporo-parietal regions. We showed with a conjunction analysis that the lobule VI of the cerebellum was consistently engaged in both reality- and self-monitoring. The current findings offer new insights into the common brain regions underlying reality-monitoring and self-monitoring, and suggest that the neural signature of the self that may occur during self-production should persist in memories.
Collapse
Affiliation(s)
- Layla Lavallé
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Jérôme Brunelin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Renaud Jardri
- Université de Lille, INSERM U‐1172, Lille Neurosciences & Cognition, Plasticity & Subjectivity TeamLilleFrance
| | - Frédéric Haesebaert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Marine Mondino
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| |
Collapse
|
6
|
Kral A, Sharma A. Crossmodal plasticity in hearing loss. Trends Neurosci 2023; 46:377-393. [PMID: 36990952 PMCID: PMC10121905 DOI: 10.1016/j.tins.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Crossmodal plasticity is a textbook example of the ability of the brain to reorganize based on use. We review evidence from the auditory system showing that such reorganization has significant limits, is dependent on pre-existing circuitry and top-down interactions, and that extensive reorganization is often absent. We argue that the evidence does not support the hypothesis that crossmodal reorganization is responsible for closing critical periods in deafness, and crossmodal plasticity instead represents a neuronal process that is dynamically adaptable. We evaluate the evidence for crossmodal changes in both developmental and adult-onset deafness, which start as early as mild-moderate hearing loss and show reversibility when hearing is restored. Finally, crossmodal plasticity does not appear to affect the neuronal preconditions for successful hearing restoration. Given its dynamic and versatile nature, we describe how this plasticity can be exploited for improving clinical outcomes after neurosensory restoration.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, Otolaryngology Clinics, Hannover Medical School, Hannover, Germany; Australian Hearing Hub, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anu Sharma
- Department of Speech Language and Hearing Science, Center for Neuroscience, Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
7
|
Terband H, van Brenk F. Modeling Responses to Auditory Feedback Perturbations in Adults, Children, and Children With Complex Speech Sound Disorders: Evidence for Impaired Auditory Self-Monitoring? JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:1563-1587. [PMID: 37071803 DOI: 10.1044/2023_jslhr-22-00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
PURPOSE Previous studies have found that typically developing (TD) children were able to compensate and adapt to auditory feedback perturbations to a similar or larger degree compared to young adults, while children with speech sound disorder (SSD) were found to produce predominantly following responses. However, large individual differences lie underneath the group-level results. This study investigates possible mechanisms in responses to formant shifts by modeling parameters of feedback and feedforward control of speech production based on behavioral data. METHOD SimpleDIVA was used to model an existing dataset of compensation/adaptation behavior to auditory feedback perturbations collected from three groups of Dutch speakers: 50 young adults, twenty-three 4- to 8-year-old children with TD speech, and seven 4- to 8-year-old children with SSD. Between-groups and individual within-group differences in model outcome measures representing auditory and somatosensory feedback control gain and feedforward learning rate were assessed. RESULTS Notable between-groups and within-group variation was found for all outcome measures. Data modeled for individual speakers yielded model fits with varying reliability. Auditory feedback control gain was negative in children with SSD and positive in both other groups. Somatosensory feedback control gain was negative for both groups of children and marginally negative for adults. Feedforward learning rate measures were highest in the children with TD speech followed by children with SSD, compared to adults. CONCLUSIONS The SimpleDIVA model was able to account for responses to the perturbation of auditory feedback other than corrective, as negative auditory feedback control gains were associated with following responses to vowel shifts. These preliminary findings are suggestive of impaired auditory self-monitoring in children with complex SSD. Possible mechanisms underlying the nature of following responses are discussed.
Collapse
Affiliation(s)
- Hayo Terband
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City
| | - Frits van Brenk
- Faculty of Humanities, Department of Languages, Literature and Communication & Institute for Language Sciences, Utrecht University, the Netherlands
- Department of Communicative Disorders and Sciences, University at Buffalo, NY
| |
Collapse
|
8
|
Dynamic auditory contributions to error detection revealed in the discrimination of Same and Different syllable pairs. Neuropsychologia 2022; 176:108388. [PMID: 36183800 DOI: 10.1016/j.neuropsychologia.2022.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
During speech production auditory regions operate in concert with the anterior dorsal stream to facilitate online error detection. As the dorsal stream also is known to activate in speech perception, the purpose of the current study was to probe the role of auditory regions in error detection during auditory discrimination tasks as stimuli are encoded and maintained in working memory. A priori assumptions are that sensory mismatch (i.e., error) occurs during the discrimination of Different (mismatched) but not Same (matched) syllable pairs. Independent component analysis was applied to raw EEG data recorded from 42 participants to identify bilateral auditory alpha rhythms, which were decomposed across time and frequency to reveal robust patterns of event related synchronization (ERS; inhibition) and desynchronization (ERD; processing) over the time course of discrimination events. Results were characterized by bilateral peri-stimulus alpha ERD transitioning to alpha ERS in the late trial epoch, with ERD interpreted as evidence of working memory encoding via Analysis by Synthesis and ERS considered evidence of speech-induced-suppression arising during covert articulatory rehearsal to facilitate working memory maintenance. The transition from ERD to ERS occurred later in the left hemisphere in Different trials than in Same trials, with ERD and ERS temporally overlapping during the early post-stimulus window. Results were interpreted to suggest that the sensory mismatch (i.e., error) arising from the comparison of the first and second syllable elicits further processing in the left hemisphere to support working memory encoding and maintenance. Results are consistent with auditory contributions to error detection during both encoding and maintenance stages of working memory, with encoding stage error detection associated with stimulus concordance and maintenance stage error detection associated with task-specific retention demands.
Collapse
|
9
|
Yagyu K, Toyomaki A, Hashimoto N, Shiraishi H, Kusumi I, Murohashi H. Approach to impaired corollary discharge in patients with schizophrenia: An analysis of self-induced somatosensory evoked potentials and fields. Front Psychol 2022; 13:904995. [PMID: 36059767 PMCID: PMC9428598 DOI: 10.3389/fpsyg.2022.904995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Difficulty in distinguishing between self-generated actions and those generated by others is a core feature of schizophrenia. This is thought to be underpinned by the failure of corollary discharge. However, few studies have investigated these events using somatosensory evoked potentials (SEPs) and somatosensory evoked magnetic fields (SEFs). Methods The study included 15 right-handed patients with schizophrenia and 16 healthy controls. SEP and SEF were elicited by electrical stimuli to the left median nerve at intervals of 1–3 s. In the external condition, stimuli were externally induced by a machine. In the self-condition, stimuli were induced by tapping the participants’ own right index finger. Peak amplitude at C4’ in SEP and root mean square in 10 channels on the right primary somatosensory area in SEF were analyzed. Results Although there was a significant main effect of condition at N20m, and a significant main effect of condition and group at P30m, no significant interactions of condition and group were found in either N20m or P30m. The post-hoc Wilcoxon signed-rank test revealed that the peak value of P30m in the external condition was significantly higher than that in the self-condition in the healthy control group only. In addition, there was a significant positive correlation between the peak value of P30m in the self-condition and a positive symptom score. Conclusion In the current study, we did not find abnormalities of corollary discharge in primary sensory areas in patients with schizophrenia. Further investigations with more cases may reveal the possibility of corollary discharge disturbance in the primary sensory cortex.
Collapse
Affiliation(s)
- Kazuyori Yagyu
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Hokkaidō, Japan
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Hokkaidō, Japan
| | - Atsuhito Toyomaki
- Department of Psychiatry, Hokkaido University, Graduate School of Medicine, Sapporo, Hokkaidō, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University, Graduate School of Medicine, Sapporo, Hokkaidō, Japan
- *Correspondence: Naoki Hashimoto,
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Hokkaidō, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University, Graduate School of Medicine, Sapporo, Hokkaidō, Japan
| | - Harumitsu Murohashi
- Department of Human Development Sciences, Hokkaido University, Graduate School of Education, Sapporo, Hokkaidō, Japan
| |
Collapse
|
10
|
Sato M. Motor and visual influences on auditory neural processing during speaking and listening. Cortex 2022; 152:21-35. [DOI: 10.1016/j.cortex.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/02/2022] [Accepted: 03/15/2022] [Indexed: 11/03/2022]
|
11
|
Johnson JF, Belyk M, Schwartze M, Pinheiro AP, Kotz SA. Expectancy changes the self-monitoring of voice identity. Eur J Neurosci 2021; 53:2681-2695. [PMID: 33638190 PMCID: PMC8252045 DOI: 10.1111/ejn.15162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/18/2021] [Accepted: 02/20/2021] [Indexed: 12/02/2022]
Abstract
Self‐voice attribution can become difficult when voice characteristics are ambiguous, but functional magnetic resonance imaging (fMRI) investigations of such ambiguity are sparse. We utilized voice‐morphing (self‐other) to manipulate (un‐)certainty in self‐voice attribution in a button‐press paradigm. This allowed investigating how levels of self‐voice certainty alter brain activation in brain regions monitoring voice identity and unexpected changes in voice playback quality. FMRI results confirmed a self‐voice suppression effect in the right anterior superior temporal gyrus (aSTG) when self‐voice attribution was unambiguous. Although the right inferior frontal gyrus (IFG) was more active during a self‐generated compared to a passively heard voice, the putative role of this region in detecting unexpected self‐voice changes during the action was demonstrated only when hearing the voice of another speaker and not when attribution was uncertain. Further research on the link between right aSTG and IFG is required and may establish a threshold monitoring voice identity in action. The current results have implications for a better understanding of the altered experience of self‐voice feedback in auditory verbal hallucinations.
Collapse
Affiliation(s)
- Joseph F Johnson
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| | - Michel Belyk
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| | - Ana P Pinheiro
- Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands.,Department of Neuropsychology, Max Planck Institute for Human and Cognitive Sciences, Leipzig, Germany
| |
Collapse
|
12
|
Klarendić M, Gorišek VR, Granda G, Avsenik J, Zgonc V, Kojović M. Auditory agnosia with anosognosia. Cortex 2021; 137:255-270. [PMID: 33647851 DOI: 10.1016/j.cortex.2020.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/17/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
A 66-year-old right-handed female medical doctor suffered two consecutive cardioembolic strokes, initially affecting the right frontal lobe and the right insula, followed by a lesion in the left temporal lobe. The patient presented with distinctive phenomenology of general auditory agnosia with anosognosia for the deficit. She did not understand verbal requests and her answers to oral questions were fluent but unrelated to the topic. However, she was able to correctly answer written questions, name objects, and fluently describe their purpose, which is characteristic for verbal auditory agnosia. She was also unable to recognise environmental sounds or to recognise and repeat any melody. These inabilities represent environmental sound agnosia and amusia, respectively. Surprisingly, she was not aware of the problem, not asking any questions regarding her symptoms, and avoiding discussing her inability to understand spoken language, which is indicative of anosognosia. The deficits in our patient followed a distinct pattern of recovery. The verbal auditory agnosia was the first to resolve, followed by environmental sound agnosia. Amusia persisted the longest. The patient was clinically assessed from the first day of symptom onset and the evolution of symptoms was video documented. We give a detailed account of the patient's behaviour and provide results of audiological and neuropsychological evaluations. We discuss the anatomy of auditory agnosia and anosognosia relevant to the case. This case study may serve to better understand auditory agnosia in clinical settings. It is important to distinguish auditory agnosia from Wernicke's aphasia, because use of written language may enable normal communication.
Collapse
Affiliation(s)
- Maja Klarendić
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Veronika R Gorišek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gal Granda
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Avsenik
- Department of Neuroradiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vid Zgonc
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Are self-caused distractors easier to ignore? Experiments with the flanker task. Atten Percept Psychophys 2020; 83:853-865. [PMID: 33155125 DOI: 10.3758/s13414-020-02170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 11/08/2022]
Abstract
Four experiments are reported that investigate the relationship between action-outcome learning and the ability to ignore distractors. Each participant performed 600 acquisition trials, followed by 200 test trials. In the acquisition phase, participants were presented with a fixed action-outcome contingency (e.g., Key #1 ➔ green distractors), while that contingency was reversed in the test phase. In Experiments 1-3, a distractor feature depended on the participants' action. In Experiment 1, actions determined the color of the distractors; in Experiment 2, they determined the target-distractor distance; in Experiment 3, they determined target-distractor compatibility. Results suggest that with the relatively simple features (color and distance), exposure to action-outcome contingencies changed distractor cost, whereas with the complex or relational feature (target-distractor compatibility), exposure to the contingencies did not affect distractor cost. In Experiment 4, the same pattern of results was found (effect of contingency learning on distractor cost) with perceptual sequence learning, using visual cues ("X" vs. "O") instead of actions. Thus, although the mechanism of associative learning may not be unique to actions, such learning plays a role in the allocation of attention to task-irrelevant events.
Collapse
|
14
|
McGuffin BJ, Liss JM, Daliri A. The Orofacial Somatosensory System Is Modulated During Speech Planning and Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:2637-2648. [PMID: 32697611 PMCID: PMC7872732 DOI: 10.1044/2020_jslhr-19-00318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Purpose In our previous studies, we showed that the brain modulates the auditory system, and the modulation starts during speech planning. However, it remained unknown whether the brain uses similar mechanisms to modulate the orofacial somatosensory system. Here, we developed a novel behavioral paradigm to (a) examine whether the somatosensory system is modulated during speech planning and (b) determine the somatosensory modulation's time course during planning and production. Method Participants (N = 20) completed two experiments in which we applied electrical current stimulation to the lower lip to induce somatosensory sensation. In the first experiment, we used a staircase method (one-up, four-down) to determine each participant's perceptual threshold at rest (i.e., the stimulus that the participant detected on 85% of trials). In the second experiment, we estimated each participant's detection ratio of electrical stimuli (with a magnitude equivalent of their perceptual threshold) delivered at various time points before speaking and during a control condition (silent reading). Results We found that the overall detection ratio in the silent reading condition remained unchanged relative to the detection ratio at rest. Approximately 536 ms before speech onset, the detection ratio in the speaking condition was similar to that in the silent reading condition; however, the detection ratio in the speaking condition gradually started to decrease and reached its lowest level at 58 ms before speech onset. Conclusions Overall, we provided compelling behavioral evidence that, as the speech motor system prepares speech movements, it also modulates the orofacial somatosensory system in a temporally specific manner.
Collapse
Affiliation(s)
| | - Julie M. Liss
- College of Health Solutions, Arizona State University, Tempe
| | - Ayoub Daliri
- College of Health Solutions, Arizona State University, Tempe
| |
Collapse
|
15
|
Neocortical activity tracks the hierarchical linguistic structures of self-produced speech during reading aloud. Neuroimage 2020; 216:116788. [DOI: 10.1016/j.neuroimage.2020.116788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/19/2020] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
|
16
|
Bahners BH, Florin E, Rohrhuber J, Krause H, Hirschmann J, van de Vijver R, Schnitzler A, Butz M. Deep Brain Stimulation Does Not Modulate Auditory-Motor Integration of Speech in Parkinson's Disease. Front Neurol 2020; 11:655. [PMID: 32754112 PMCID: PMC7366847 DOI: 10.3389/fneur.2020.00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
Deep brain stimulation (DBS) has significant effects on motor symptoms in Parkinson's disease (PD), but existing studies on the effect of DBS on speech are rather inconclusive. It is assumed that deficits in auditory-motor integration strongly contribute to Parkinsonian speech pathology. The aim of the present study was to assess whether subthalamic DBS can modulate these deficits. Twenty PD patients (15 male, 5 female; 62.4 ± 6.7 years) with subthalamic DBS were exposed to pitch-shifted acoustic feedback during vowel vocalization and subsequent listening. Voice and brain activity were measured ON and OFF stimulation using magnetoencephalography (MEG). Vocal responses and auditory evoked responses time locked to the onset of pitch-shifted feedback were examined. A positive correlation between vocal response magnitude and pitch variability was observed for both, stimulation ON and OFF (ON: r = 0.722, p < 0.001, OFF: r = 0.746, p < 0.001). However, no differences of vocal responses to pitch-shifted feedback between the stimulation conditions were found [t(19) = −0.245, p = 0.809, d = −0.055]. P200m amplitudes of event related fields (ERF) of left and right auditory cortex (AC) and superior temporal gyrus (STG) were significantly larger during listening [left AC P200m: F(1, 19) = 10.241, p = 0.005, f = 0.734; right STG P200m: F(1, 19) = 8.393, p = 0.009, f = 0.664]. Subthalamic DBS appears to have no substantial effect on vocal compensations, although it has been suggested that auditory-motor integration deficits contribute to higher vocal response magnitudes in pitch perturbation experiments with PD patients. Thus, DBS seems to be limited in modulating auditory-motor integration of speech in PD.
Collapse
Affiliation(s)
- Bahne H Bahners
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Rohrhuber
- Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruben van de Vijver
- Institute of Linguistics and Information Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Toyomura A, Miyashiro D, Kuriki S, Sowman PF. Speech-Induced Suppression for Delayed Auditory Feedback in Adults Who Do and Do Not Stutter. Front Hum Neurosci 2020; 14:150. [PMID: 32390816 PMCID: PMC7193705 DOI: 10.3389/fnhum.2020.00150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Speech-induced suppression is the normal, relative amplitude reduction of the auditory evoked potential for self-, compared to externally-generated, auditory stimulation. It remains controversial as to whether adults who stutter exhibit expected auditory modulation during speech; some studies have reported a significant difference between stuttering and fluent groups in speech-induced suppression during speech movement planning, while others have not. We compared auditory evoked potentials (N1 component) for auditory feedback arising from one’s own voice (Speaking condition) with passive listening to a recording of one’s own voice (Listening condition) in 24 normally-fluent speakers and 16 adults who stutter under various delayed auditory feedback (DAF) time conditions (100 ms, 200 ms, 500 ms, and 1,000 ms). We presented the participant’s own voice with a delay, immediately after presenting it without a delay. Our working hypothesis was that the shorter the delay time, the more likely the delayed sound is perceived as self-generated. Therefore, shorter delay time conditions are proposed to result in relatively enhanced suppression of the auditory system. Results showed that in fluent speakers, the shorter the delay time, the more the auditory evoked potential in the Speaking condition tended to be suppressed. In the Listening condition, there was a larger evoked potential with shorter delay times. As a result, speech-induced suppression was only significant at the short delay time conditions of 100 and 200 ms. Adults who stutter did not show the opposing changes in the Speaking and Listening conditions seen in the fluent group. Although the evoked potential in the Listening condition tended to decrease as the delay time increased, that in the Speaking condition did not show a distinct trend, and there was a significant suppression only at 200 ms delay. For the 200 ms delay condition, speakers with more severe stuttering showed significantly greater speech-induced suppression than those with less severe stuttering. This preliminary study suggests our methods for investigating evoked potentials by presenting own voice with a delay may provide a clue as to the nature of auditory modulation in stuttering.
Collapse
Affiliation(s)
- Akira Toyomura
- Graduate School of Health Sciences, Gunma University, Maebashi, Japan
| | - Daiki Miyashiro
- Faculty of Medicine, School of Health Sciences, Gunma University, Maebashi, Japan.,Gunma University Hospital, Maebashi, Japan
| | - Shinya Kuriki
- Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Paul F Sowman
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia.,Perception and Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
18
|
Dissociation of Unit Activity and Gamma Oscillations during Vocalization in Primate Auditory Cortex. J Neurosci 2020; 40:4158-4171. [PMID: 32295815 DOI: 10.1523/jneurosci.2749-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
Vocal production is a sensory-motor process in which auditory self-monitoring is used to ensure accurate communication. During vocal production, the auditory cortex of both humans and animals is suppressed, a phenomenon that plays an important role in self-monitoring and vocal motor control. However, the underlying neural mechanisms of this vocalization-induced suppression are unknown. γ-band oscillations (>25 Hz) have been implicated a variety of cortical functions and are thought to arise from activity of local inhibitory interneurons, but have not been studied during vocal production. We therefore examined γ-band activity in the auditory cortex of vocalizing marmoset monkeys, of either sex, and found that γ responses increased during vocal production. This increase in γ contrasts with simultaneously recorded suppression of single-unit and multiunit responses. Recorded vocal γ oscillations exhibited two separable components: a vocalization-specific nonsynchronized ("induced") response correlating with vocal suppression, and a synchronized ("evoked") response that was also present during passive sound playback. These results provide evidence for the role of cortical γ oscillations during inhibitory processing. Furthermore, the two distinct components of the γ response suggest possible mechanisms for vocalization-induced suppression, and may correspond to the sensory-motor integration of top-down and bottom-up inputs to the auditory cortex during vocal production.SIGNIFICANCE STATEMENT Vocal communication is important to both humans and animals. In order to ensure accurate information transmission, we must monitor our own vocal output. Surprisingly, spiking activity in the auditory cortex is suppressed during vocal production yet maintains sensitivity to the sound of our own voice ("feedback"). The mechanisms of this vocalization-induced suppression are unknown. Here we show that auditory cortical γ oscillations, which reflect interneuron activity, are actually increased during vocal production, the opposite response of that seen in spiking units. We discuss these results with proposed functions of γ activity during inhibitory sensory processing and coordination of different brain regions, suggesting a role in sensory-motor integration.
Collapse
|
19
|
Woolnough O, Forseth KJ, Rollo PS, Tandon N. Uncovering the functional anatomy of the human insula during speech. eLife 2019; 8:53086. [PMID: 31852580 PMCID: PMC6941893 DOI: 10.7554/elife.53086] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
The contribution of insular cortex to speech production remains unclear and controversial given diverse findings from functional neuroimaging and lesional data. To create a precise spatiotemporal map of insular activity, we performed a series of experiments: single-word articulations of varying complexity, non-speech orofacial movements and speech listening, in a cohort of 27 patients implanted with penetrating intracranial electrodes. The posterior insula was robustly active bilaterally, but after the onset of articulation, during listening to speech and during production of non-speech mouth movements. Preceding articulation there was very sparse activity, localized primarily to the frontal operculum rather than the insula. Posterior insular was active coincident with superior temporal gyrus but was more active for self-generated speech than external speech, the opposite of the superior temporal gyrus. These findings support the conclusion that the insula does not serve pre-articulatory preparatory roles.
Collapse
Affiliation(s)
- Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, United States.,Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, United States
| | - Kiefer James Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, United States.,Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, United States
| | - Patrick Sarahan Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, United States.,Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, United States
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, United States.,Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, United States.,Memorial Hermann Hospital, Texas Medical Center, Houston, United States
| |
Collapse
|
20
|
Knolle F, Schwartze M, Schröger E, Kotz SA. Auditory Predictions and Prediction Errors in Response to Self-Initiated Vowels. Front Neurosci 2019; 13:1146. [PMID: 31708737 PMCID: PMC6823252 DOI: 10.3389/fnins.2019.01146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that speech production is accomplished by an internal forward model, reducing processing activity directed to self-produced speech in the auditory cortex. The current study uses an established N1-suppression paradigm comparing self- and externally initiated natural speech sounds to answer two questions: (1) Are forward predictions generated to process complex speech sounds, such as vowels, initiated via a button press? (2) Are prediction errors regarding self-initiated deviant vowels reflected in the corresponding ERP components? Results confirm an N1-suppression in response to self-initiated speech sounds. Furthermore, our results suggest that predictions leading to the N1-suppression effect are specific, as self-initiated deviant vowels do not elicit an N1-suppression effect. Rather, self-initiated deviant vowels elicit an enhanced N2b and P3a compared to externally generated deviants, externally generated standard, or self-initiated standards, again confirming prediction specificity. Results show that prediction errors are salient in self-initiated auditory speech sounds, which may lead to more efficient error correction in speech production.
Collapse
Affiliation(s)
- Franziska Knolle
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.,Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
| | - Erich Schröger
- Institute of Psychology, Leipzig University, Leipzig, Germany
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands.,Department of Neuropsychology, Max Planck Institute of Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
21
|
Max L, Daliri A. Limited Pre-Speech Auditory Modulation in Individuals Who Stutter: Data and Hypotheses. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3071-3084. [PMID: 31465711 PMCID: PMC6813031 DOI: 10.1044/2019_jslhr-s-csmc7-18-0358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Purpose We review and interpret our recent series of studies investigating motor-to-auditory influences during speech movement planning in fluent speakers and speakers who stutter. In those studies, we recorded auditory evoked potentials in response to probe tones presented immediately prior to speaking or at the equivalent time in no-speaking control conditions. As a measure of pre-speech auditory modulation (PSAM), we calculated changes in auditory evoked potential amplitude in the speaking conditions relative to the no-speaking conditions. Whereas adults who do not stutter consistently showed PSAM, this phenomenon was greatly reduced or absent in adults who stutter. The same between-group difference was observed in conditions where participants expected to hear their prerecorded speech played back without actively producing it, suggesting that the speakers who stutter use inefficient forward modeling processes rather than inefficient motor command generation processes. Compared with fluent participants, adults who stutter showed both less PSAM and less auditory-motor adaptation when producing speech while exposed to formant-shifted auditory feedback. Across individual participants, however, PSAM and auditory-motor adaptation did not correlate in the typically fluent group, and they were negatively correlated in the stuttering group. Interestingly, speaking with a consistent 100-ms delay added to the auditory feedback signal-normalized PSAM in speakers who stutter, and there no longer was a between-group difference in this condition. Conclusions Combining our own data with human and animal neurophysiological evidence from other laboratories, we interpret the overall findings as suggesting that (a) speech movement planning modulates auditory processing in a manner that may optimize its tuning characteristics for monitoring feedback during speech production and, (b) in conditions with typical auditory feedback, adults who stutter do not appropriately modulate the auditory system prior to speech onset. Lack of modulation of speakers who stutter may lead to maladaptive feedback-driven movement corrections that manifest themselves as repetitive movements or postural fixations.
Collapse
Affiliation(s)
- Ludo Max
- Department of Speech and Hearing Sciences, University of Washington, Seattle
- Haskins Laboratories, New Haven, CT
| | - Ayoub Daliri
- College of Health Solutions, Arizona State University, Tempe, AZ
| |
Collapse
|
22
|
Parrell B, Houde J. Modeling the Role of Sensory Feedback in Speech Motor Control and Learning. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:2963-2985. [PMID: 31465712 PMCID: PMC6813034 DOI: 10.1044/2019_jslhr-s-csmc7-18-0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/08/2018] [Accepted: 02/22/2019] [Indexed: 05/14/2023]
Abstract
Purpose While the speech motor system is sensitive to feedback perturbations, sensory feedback does not seem to be critical to speech motor production. How the speech motor system is able to be so flexible in its use of sensory feedback remains an open question. Method We draw on evidence from a variety of disciplines to summarize current understanding of the sensory systems' role in speech motor control, including both online control and motor learning. We focus particularly on computational models of speech motor control that incorporate sensory feedback, as these models provide clear encapsulations of different theories of sensory systems' function in speech production. These computational models include the well-established directions into velocities of articulators model and computational models that we have been developing in our labs based on the domain-general theory of state feedback control (feedback aware control of tasks in speech model). Results After establishing the architecture of the models, we show that both the directions into velocities of articulators and state feedback control/feedback aware control of tasks models can replicate key behaviors related to sensory feedback in the speech motor system. Although the models agree on many points, the underlying architecture of the 2 models differs in a few key ways, leading to different predictions in certain areas. We cover key disagreements between the models to show the limits of our current understanding and point toward areas where future experimental studies can resolve these questions. Conclusions Understanding the role of sensory information in the speech motor system is critical to understanding speech motor production and sensorimotor learning in healthy speakers as well as in disordered populations. Computational models, with their concrete implementations and testable predictions, are an important tool to understand this process. Comparison of different models can highlight areas of agreement and disagreement in the field and point toward future experiments to resolve important outstanding questions about the speech motor control system.
Collapse
Affiliation(s)
- Benjamin Parrell
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison
| | - John Houde
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco
| |
Collapse
|
23
|
Whitford TJ. Speaking-Induced Suppression of the Auditory Cortex in Humans and Its Relevance to Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:791-804. [PMID: 31399393 DOI: 10.1016/j.bpsc.2019.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
Speaking-induced suppression (SIS) is the phenomenon that the sounds one generates by overt speech elicit a smaller neurophysiological response in the auditory cortex than comparable sounds that are externally generated. SIS is a specific example of the more general phenomenon of self-suppression. SIS has been well established in nonhuman animals and is believed to involve the action of corollary discharges. This review summarizes, first, the evidence for SIS in heathy human participants, where it has been most commonly assessed with electroencephalography and/or magnetoencephalography using an experimental paradigm known as "Talk-Listen"; and second, the growing number of Talk-Listen studies that have reported subnormal levels of SIS in patients with schizophrenia. This result is theoretically significant, as it provides a plausible explanation for some of the most distinctive and characteristic symptoms of schizophrenia, namely the first-rank symptoms. In particular, while the failure to suppress the neural consequences of self-generated movements (such as those associated with overt speech) provides a prima facie explanation for delusions of control, the failure to suppress the neural consequences of self-generated inner speech provides a plausible explanation for certain classes of auditory-verbal hallucinations, such as audible thoughts. While the empirical evidence for a relationship between SIS and the first-rank symptoms is currently limited, I predict that future studies with more sensitive experimental designs will confirm its existence. Establishing the existence of a causal, mechanistic relationship would represent a major step forward in our understanding of schizophrenia, which is a necessary precursor to the development of novel treatments.
Collapse
Affiliation(s)
- Thomas J Whitford
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
24
|
Sato M, Shiller DM. Auditory prediction during speaking and listening. BRAIN AND LANGUAGE 2018; 187:92-103. [PMID: 29402437 PMCID: PMC6072625 DOI: 10.1016/j.bandl.2018.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 12/12/2017] [Accepted: 01/20/2018] [Indexed: 05/16/2023]
Abstract
In the present EEG study, the role of auditory prediction in speech was explored through the comparison of auditory cortical responses during active speaking and passive listening to the same acoustic speech signals. Two manipulations of sensory prediction accuracy were used during the speaking task: (1) a real-time change in vowel F1 feedback (reducing prediction accuracy relative to unaltered feedback) and (2) presenting a stable auditory target rather than a visual cue to speak (enhancing auditory prediction accuracy during baseline productions, and potentially enhancing the perturbing effect of altered feedback). While subjects compensated for the F1 manipulation, no difference between the auditory-cue and visual-cue conditions were found. Under visually-cued conditions, reduced N1/P2 amplitude was observed during speaking vs. listening, reflecting a motor-to-sensory prediction. In addition, a significant correlation was observed between the magnitude of behavioral compensatory F1 response and the magnitude of this speaking induced suppression (SIS) for P2 during the altered auditory feedback phase, where a stronger compensatory decrease in F1 was associated with a stronger the SIS effect. Finally, under the auditory-cued condition, an auditory repetition-suppression effect was observed in N1/P2 amplitude during the listening task but not active speaking, suggesting that auditory predictive processes during speaking and passive listening are functionally distinct.
Collapse
Affiliation(s)
- Marc Sato
- Laboratoire Parole et Langage, Aix-Marseille Université & CNRS, Aix-en-Provence, France; Brain and Language Research Institute, Aix-en-Provence, France
| | - Douglas M Shiller
- School of Speech-Language Pathology and Audiology, Université de Montréal, Canada; Sainte-Justine Hospital Research Centre, Montreal, Canada; Centre for Research on Brain, Language and Music, Montreal, Canada.
| |
Collapse
|
25
|
Saltuklaroglu T, Bowers A, Harkrider AW, Casenhiser D, Reilly KJ, Jenson DE, Thornton D. EEG mu rhythms: Rich sources of sensorimotor information in speech processing. BRAIN AND LANGUAGE 2018; 187:41-61. [PMID: 30509381 DOI: 10.1016/j.bandl.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/27/2017] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Tim Saltuklaroglu
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA.
| | - Andrew Bowers
- University of Arkansas, Epley Center for Health Professions, 606 N. Razorback Road, Fayetteville, AR 72701, USA
| | - Ashley W Harkrider
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Devin Casenhiser
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Kevin J Reilly
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - David E Jenson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Spokane, WA 99210-1495, USA
| | - David Thornton
- Department of Hearing, Speech, and Language Sciences, Gallaudet University, 800 Florida Avenue NE, Washington, DC 20002, USA
| |
Collapse
|
26
|
Jenson D, Reilly KJ, Harkrider AW, Thornton D, Saltuklaroglu T. Trait related sensorimotor deficits in people who stutter: An EEG investigation of μ rhythm dynamics during spontaneous fluency. Neuroimage Clin 2018; 19:690-702. [PMID: 29872634 PMCID: PMC5986168 DOI: 10.1016/j.nicl.2018.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 01/09/2023]
Abstract
Stuttering is associated with compromised sensorimotor control (i.e., internal modeling) across the dorsal stream and oscillations of EEG mu (μ) rhythms have been proposed as reliable indices of anterior dorsal stream processing. The purpose of this study was to compare μ rhythm oscillatory activity between (PWS) and matched typically fluent speakers (TFS) during spontaneously fluent overt and covert speech production tasks. Independent component analysis identified bilateral μ components from 24/27 PWS and matched TFS that localized over premotor cortex. Time-frequency analysis of the left hemisphere μ clusters demonstrated significantly reduced μ-α and μ-β ERD (pCLUSTER < 0.05) in PWS across the time course of overt and covert speech production, while no group differences were found in the right hemisphere in any condition. Results were interpreted through the framework of State Feedback Control. They suggest that weak forward modeling and evaluation of sensory feedback across the time course of speech production characterizes the trait related sensorimotor impairment in PWS. This weakness is proposed to represent an underlying sensorimotor instability that may predispose the speech of PWS to breakdown.
Collapse
Affiliation(s)
- David Jenson
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States.
| | - Kevin J Reilly
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - David Thornton
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| |
Collapse
|
27
|
Predictive joint-action model: A hierarchical predictive approach to human cooperation. Psychon Bull Rev 2017; 25:1751-1769. [DOI: 10.3758/s13423-017-1393-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Neural evidence for predictive coding in auditory cortex during speech production. Psychon Bull Rev 2017; 25:423-430. [DOI: 10.3758/s13423-017-1284-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Komeilipoor N, Cesari P, Daffertshofer A. Involvement of superior temporal areas in audiovisual and audiomotor speech integration. Neuroscience 2017; 343:276-283. [PMID: 27019129 DOI: 10.1016/j.neuroscience.2016.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 11/25/2022]
Abstract
Perception of speech sounds is affected by observing facial motion. Incongruence between speech sounds and watching somebody articulating may influence the perception of auditory syllable, referred to as the McGurk effect. We tested the degree to which silent articulation of a syllable also affects speech perception and searched for its neural correlates. Listeners were instructed to identify the auditory syllables /pa/ and /ta/ while silently articulating congruent/incongruent syllables or observing videos of a speaker's face articulating them. As a baseline, we included an auditory-only condition without competing visual or sensorimotor input. As expected, perception of sounds degraded when incongruent syllables were observed, and also when they were silently articulated, albeit to a lesser extent. This degrading was accompanied by significant amplitude modulations in the beta frequency band in right superior temporal areas. In these areas, the event-related beta activity during congruent conditions was phase-locked to responses evoked during the auditory-only condition. We conclude that proper temporal alignment of different input streams in right superior temporal areas is mandatory for both audiovisual and audiomotor speech integration.
Collapse
Affiliation(s)
- N Komeilipoor
- MOVE Research Institute Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081BT Amsterdam, The Netherlands; Department of Neurological, Biomedical and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - P Cesari
- Department of Neurological, Biomedical and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - A Daffertshofer
- MOVE Research Institute Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081BT Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Markiewicz CJ, Bohland JW. Mapping the cortical representation of speech sounds in a syllable repetition task. Neuroimage 2016; 141:174-190. [DOI: 10.1016/j.neuroimage.2016.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 11/17/2022] Open
|
31
|
Nourski KV, Steinschneider M, Rhone AE. Electrocorticographic Activation within Human Auditory Cortex during Dialog-Based Language and Cognitive Testing. Front Hum Neurosci 2016; 10:202. [PMID: 27199720 PMCID: PMC4854871 DOI: 10.3389/fnhum.2016.00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022] Open
Abstract
Current models of cortical speech and language processing include multiple regions within the temporal lobe of both hemispheres. Human communication, by necessity, involves complex interactions between regions subserving speech and language processing with those involved in more general cognitive functions. To assess these interactions, we utilized an ecologically salient conversation-based approach. This approach mandates that we first clarify activity patterns at the earliest stages of cortical speech processing. Therefore, we examined high gamma (70–150 Hz) responses within the electrocorticogram (ECoG) recorded simultaneously from Heschl’s gyrus (HG) and lateral surface of the superior temporal gyrus (STG). Subjects were neurosurgical patients undergoing evaluation for treatment of medically intractable epilepsy. They performed an expanded version of the Mini-mental state examination (MMSE), which included additional spelling, naming, and memory-based tasks. ECoG was recorded from HG and the STG using multicontact depth and subdural electrode arrays, respectively. Differences in high gamma activity during listening to the interviewer and the subject’s self-generated verbal responses were quantified for each recording site and across sites within HG and STG. The expanded MMSE produced widespread activation in auditory cortex of both hemispheres. No significant difference was found between activity during listening to the interviewer’s questions and the subject’s answers in posteromedial HG (auditory core cortex). A different pattern was observed throughout anterolateral HG and posterior and middle portions of lateral STG (non-core auditory cortical areas), where activity was significantly greater during listening compared to speaking. No systematic task-specific differences in the degree of suppression during speaking relative to listening were found in posterior and middle STG. Individual sites could, however, exhibit task-related variability in the degree of suppression during speaking compared to listening. The current study demonstrates that ECoG recordings can be acquired in time-efficient dialog-based paradigms, permitting examination of language and cognition in an ecologically salient manner. The results obtained from auditory cortex serve as a foundation for future studies addressing patterns of activity beyond auditory cortex that subserve human communication.
Collapse
Affiliation(s)
- Kirill V Nourski
- Human Brain Research Laboratory, Department of Neurosurgery, The University of Iowa, Iowa City IA, USA
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| | - Ariane E Rhone
- Human Brain Research Laboratory, Department of Neurosurgery, The University of Iowa, Iowa City IA, USA
| |
Collapse
|
32
|
Martin AE. Language Processing as Cue Integration: Grounding the Psychology of Language in Perception and Neurophysiology. Front Psychol 2016; 7:120. [PMID: 26909051 PMCID: PMC4754405 DOI: 10.3389/fpsyg.2016.00120] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/22/2016] [Indexed: 12/25/2022] Open
Abstract
I argue that cue integration, a psychophysiological mechanism from vision and multisensory perception, offers a computational linking hypothesis between psycholinguistic theory and neurobiological models of language. I propose that this mechanism, which incorporates probabilistic estimates of a cue's reliability, might function in language processing from the perception of a phoneme to the comprehension of a phrase structure. I briefly consider the implications of the cue integration hypothesis for an integrated theory of language that includes acquisition, production, dialogue and bilingualism, while grounding the hypothesis in canonical neural computation.
Collapse
Affiliation(s)
- Andrea E. Martin
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of EdinburghEdinburgh, UK
| |
Collapse
|
33
|
Gauvin HS, De Baene W, Brass M, Hartsuiker RJ. Conflict monitoring in speech processing: An fMRI study of error detection in speech production and perception. Neuroimage 2015; 126:96-105. [PMID: 26608243 DOI: 10.1016/j.neuroimage.2015.11.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 11/16/2022] Open
Abstract
To minimize the number of errors in speech, and thereby facilitate communication, speech is monitored before articulation. It is, however, unclear at which level during speech production monitoring takes place, and what mechanisms are used to detect and correct errors. The present study investigated whether internal verbal monitoring takes place through the speech perception system, as proposed by perception-based theories of speech monitoring, or whether mechanisms independent of perception are applied, as proposed by production-based theories of speech monitoring. With the use of fMRI during a tongue twister task we observed that error detection in internal speech during noise-masked overt speech production and error detection in speech perception both recruit the same neural network, which includes pre-supplementary motor area (pre-SMA), dorsal anterior cingulate cortex (dACC), anterior insula (AI), and inferior frontal gyrus (IFG). Although production and perception recruit similar areas, as proposed by perception-based accounts, we did not find activation in superior temporal areas (which are typically associated with speech perception) during internal speech monitoring in speech production as hypothesized by these accounts. On the contrary, results are highly compatible with a domain general approach to speech monitoring, by which internal speech monitoring takes place through detection of conflict between response options, which is subsequently resolved by a domain general executive center (e.g., the ACC).
Collapse
Affiliation(s)
- Hanna S Gauvin
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium.
| | - Wouter De Baene
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium; Department of Cognitive Neuropsychology, Tilburg University, 5000 LE Tilburg, The Netherlands
| | - Marcel Brass
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| | - Robert J Hartsuiker
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| |
Collapse
|
34
|
Abstract
This paper considers communication in terms of inference about the behaviour of others (and our own behaviour). It is based on the premise that our sensations are largely generated by other agents like ourselves. This means, we are trying to infer how our sensations are caused by others, while they are trying to infer our behaviour: for example, in the dialogue between two speakers. We suggest that the infinite regress induced by modelling another agent - who is modelling you - can be finessed if you both possess the same model. In other words, the sensations caused by others and oneself are generated by the same process. This leads to a view of communication based upon a narrative that is shared by agents who are exchanging sensory signals. Crucially, this narrative transcends agency - and simply involves intermittently attending to and attenuating sensory input. Attending to sensations enables the shared narrative to predict the sensations generated by another (i.e. to listen), while attenuating sensory input enables one to articulate the narrative (i.e. to speak). This produces a reciprocal exchange of sensory signals that, formally, induces a generalised synchrony between internal (neuronal) brain states generating predictions in both agents. We develop the arguments behind this perspective, using an active (Bayesian) inference framework and offer some simulations (of birdsong) as proof of principle.
Collapse
Affiliation(s)
- Karl Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, United Kingdom.
| | - Christopher Frith
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, United Kingdom
| |
Collapse
|
35
|
The effects of stimulus complexity on the preattentive processing of self-generated and nonself voices: An ERP study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 16:106-23. [PMID: 26415897 DOI: 10.3758/s13415-015-0376-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to differentiate one's own voice from the voice of somebody else plays a critical role in successful verbal self-monitoring processes and in communication. However, most of the existing studies have only focused on the sensory correlates of self-generated voice processing, whereas the effects of attentional demands and stimulus complexity on self-generated voice processing remain largely unknown. In this study, we investigated the effects of stimulus complexity on the preattentive processing of self and nonself voice stimuli. Event-related potentials (ERPs) were recorded from 17 healthy males who watched a silent movie while ignoring prerecorded self-generated (SGV) and nonself (NSV) voice stimuli, consisting of a vocalization (vocalization category condition: VCC) or of a disyllabic word (word category condition: WCC). All voice stimuli were presented as standard and deviant events in four distinct oddball sequences. The mismatch negativity (MMN) ERP component peaked earlier for NSV than for SGV stimuli. Moreover, when compared with SGV stimuli, the P3a amplitude was increased for NSV stimuli in the VCC only, whereas in the WCC no significant differences were found between the two voice types. These findings suggest differences in the time course of automatic detection of a change in voice identity. In addition, they suggest that stimulus complexity modulates the magnitude of the orienting response to SGV and NSV stimuli, extending previous findings on self-voice processing.
Collapse
|
36
|
Tian X, Poeppel D. Dynamics of self-monitoring and error detection in speech production: evidence from mental imagery and MEG. J Cogn Neurosci 2015; 27:352-64. [PMID: 25061925 DOI: 10.1162/jocn_a_00692] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A critical subroutine of self-monitoring during speech production is to detect any deviance between expected and actual auditory feedback. Here we investigated the associated neural dynamics using MEG recording in mental-imagery-of-speech paradigms. Participants covertly articulated the vowel /a/; their own (individually recorded) speech was played back, with parametric manipulation using four levels of pitch shift, crossed with four levels of onset delay. A nonmonotonic function was observed in early auditory responses when the onset delay was shorter than 100 msec: Suppression was observed for normal playback, but enhancement for pitch-shifted playback; however, the magnitude of enhancement decreased at the largest level of pitch shift that was out of pitch range for normal conversion, as suggested in two behavioral experiments. No difference was observed among different types of playback when the onset delay was longer than 100 msec. These results suggest that the prediction suppresses the response to normal feedback, which mediates source monitoring. When auditory feedback does not match the prediction, an "error term" is generated, which underlies deviance detection. We argue that, based on the observed nonmonotonic function, a frequency window (addressing spectral difference) and a time window (constraining temporal difference) jointly regulate the comparison between prediction and feedback in speech.
Collapse
|
37
|
Friston KJ, Frith CD. Active inference, communication and hermeneutics. Cortex 2015; 68:129-43. [PMID: 25957007 PMCID: PMC4502445 DOI: 10.1016/j.cortex.2015.03.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/06/2014] [Accepted: 03/27/2015] [Indexed: 11/16/2022]
Abstract
Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others--during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions--both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then--in principle--they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa.
Collapse
Affiliation(s)
- Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, United Kingdom.
| | - Christopher D Frith
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, United Kingdom
| |
Collapse
|
38
|
Houde JF, Chang EF. The cortical computations underlying feedback control in vocal production. Curr Opin Neurobiol 2015; 33:174-81. [PMID: 25989242 DOI: 10.1016/j.conb.2015.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/14/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022]
Abstract
Recent neurophysiological studies of speaking are beginning to elucidate the neural mechanisms underlying auditory feedback processing during vocalizations. Here we review how research findings impact our state feedback control (SFC) model of speech motor control. We will discuss the evidence for cortical computations that compare incoming feedback with predictions derived from motor efference copy. We will also review observations from auditory feedback perturbation studies that demonstrate clear evidence for a state estimate correction process, which drives compensatory motor behavioral responses. While there is compelling support for cortical computations in the SFC model, there are still several outstanding questions that await resolution by future neural investigations.
Collapse
Affiliation(s)
- John F Houde
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, United States.
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, United States.
| |
Collapse
|
39
|
Schröger E, Marzecová A, SanMiguel I. Attention and prediction in human audition: a lesson from cognitive psychophysiology. Eur J Neurosci 2015; 41:641-64. [PMID: 25728182 PMCID: PMC4402002 DOI: 10.1111/ejn.12816] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
Attention is a hypothetical mechanism in the service of perception that facilitates the processing of relevant information and inhibits the processing of irrelevant information. Prediction is a hypothetical mechanism in the service of perception that considers prior information when interpreting the sensorial input. Although both (attention and prediction) aid perception, they are rarely considered together. Auditory attention typically yields enhanced brain activity, whereas auditory prediction often results in attenuated brain responses. However, when strongly predicted sounds are omitted, brain responses to silence resemble those elicited by sounds. Studies jointly investigating attention and prediction revealed that these different mechanisms may interact, e.g. attention may magnify the processing differences between predicted and unpredicted sounds. Following the predictive coding theory, we suggest that prediction relates to predictions sent down from predictive models housed in higher levels of the processing hierarchy to lower levels and attention refers to gain modulation of the prediction error signal sent up to the higher level. As predictions encode contents and confidence in the sensory data, and as gain can be modulated by the intention of the listener and by the predictability of the input, various possibilities for interactions between attention and prediction can be unfolded. From this perspective, the traditional distinction between bottom-up/exogenous and top-down/endogenous driven attention can be revisited and the classic concepts of attentional gain and attentional trace can be integrated.
Collapse
Affiliation(s)
- Erich Schröger
- Institute for Psychology, BioCog - Cognitive and Biological Psychology, University of LeipzigNeumarkt 9-19, D-04109, Leipzig, Germany
| | - Anna Marzecová
- Institute for Psychology, BioCog - Cognitive and Biological Psychology, University of LeipzigNeumarkt 9-19, D-04109, Leipzig, Germany
| | - Iria SanMiguel
- Institute for Psychology, BioCog - Cognitive and Biological Psychology, University of LeipzigNeumarkt 9-19, D-04109, Leipzig, Germany
| |
Collapse
|
40
|
Guenther FH, Hickok G. Role of the auditory system in speech production. HANDBOOK OF CLINICAL NEUROLOGY 2015; 129:161-75. [DOI: 10.1016/b978-0-444-62630-1.00009-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Daikoku T, Yatomi Y, Yumoto M. Statistical learning of music- and language-like sequences and tolerance for spectral shifts. Neurobiol Learn Mem 2014; 118:8-19. [PMID: 25451311 DOI: 10.1016/j.nlm.2014.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 09/25/2014] [Accepted: 11/02/2014] [Indexed: 11/18/2022]
Abstract
In our previous study (Daikoku, Yatomi, & Yumoto, 2014), we demonstrated that the N1m response could be a marker for the statistical learning process of pitch sequence, in which each tone was ordered by a Markov stochastic model. The aim of the present study was to investigate how the statistical learning of music- and language-like auditory sequences is reflected in the N1m responses based on the assumption that both language and music share domain generality. By using vowel sounds generated by a formant synthesizer, we devised music- and language-like auditory sequences in which higher-ordered transitional rules were embedded according to a Markov stochastic model by controlling fundamental (F0) and/or formant frequencies (F1-F2). In each sequence, F0 and/or F1-F2 were spectrally shifted in the last one-third of the tone sequence. Neuromagnetic responses to the tone sequences were recorded from 14 right-handed normal volunteers. In the music- and language-like sequences with pitch change, the N1m responses to the tones that appeared with higher transitional probability were significantly decreased compared with the responses to the tones that appeared with lower transitional probability within the first two-thirds of each sequence. Moreover, the amplitude difference was even retained within the last one-third of the sequence after the spectral shifts. However, in the language-like sequence without pitch change, no significant difference could be detected. The pitch change may facilitate the statistical learning in language and music. Statistically acquired knowledge may be appropriated to process altered auditory sequences with spectral shifts. The relative processing of spectral sequences may be a domain-general auditory mechanism that is innate to humans.
Collapse
Affiliation(s)
- Tatsuya Daikoku
- Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
42
|
Coupled neural systems underlie the production and comprehension of naturalistic narrative speech. Proc Natl Acad Sci U S A 2014; 111:E4687-96. [PMID: 25267658 DOI: 10.1073/pnas.1323812111] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuroimaging studies of language have typically focused on either production or comprehension of single speech utterances such as syllables, words, or sentences. In this study we used a new approach to functional MRI acquisition and analysis to characterize the neural responses during production and comprehension of complex real-life speech. First, using a time-warp based intrasubject correlation method, we identified all areas that are reliably activated in the brains of speakers telling a 15-min-long narrative. Next, we identified areas that are reliably activated in the brains of listeners as they comprehended that same narrative. This allowed us to identify networks of brain regions specific to production and comprehension, as well as those that are shared between the two processes. The results indicate that production of a real-life narrative is not localized to the left hemisphere but recruits an extensive bilateral network, which overlaps extensively with the comprehension system. Moreover, by directly comparing the neural activity time courses during production and comprehension of the same narrative we were able to identify not only the spatial overlap of activity but also areas in which the neural activity is coupled across the speaker's and listener's brains during production and comprehension of the same narrative. We demonstrate widespread bilateral coupling between production- and comprehension-related processing within both linguistic and nonlinguistic areas, exposing the surprising extent of shared processes across the two systems.
Collapse
|
43
|
Swiney L, Sousa P. A new comparator account of auditory verbal hallucinations: how motor prediction can plausibly contribute to the sense of agency for inner speech. Front Hum Neurosci 2014; 8:675. [PMID: 25221502 PMCID: PMC4147390 DOI: 10.3389/fnhum.2014.00675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/13/2014] [Indexed: 01/12/2023] Open
Abstract
The comparator account holds that processes of motor prediction contribute to the sense of agency by attenuating incoming sensory information and that disruptions to this process contribute to misattributions of agency in schizophrenia. Over the last 25 years this simple and powerful model has gained widespread support not only as it relates to bodily actions but also as an account of misattributions of agency for inner speech, potentially explaining the etiology of auditory verbal hallucination (AVH). In this paper we provide a detailed analysis of the traditional comparator account for inner speech, pointing out serious problems with the specification of inner speech on which it is based and highlighting inconsistencies in the interpretation of the electrophysiological evidence commonly cited in its favor. In light of these analyses we propose a new comparator account of misattributed inner speech. The new account follows leading models of motor imagery in proposing that inner speech is not attenuated by motor prediction, but rather derived directly from it. We describe how failures of motor prediction would therefore directly affect the phenomenology of inner speech and trigger a mismatch in the comparison between motor prediction and motor intention, contributing to abnormal feelings of agency. We argue that the new account fits with the emerging phenomenological evidence that AVHs are both distinct from ordinary inner speech and heterogeneous. Finally, we explore the possibility that the new comparator account may extend to explain disruptions across a range of imagistic modalities, and outline avenues for future research.
Collapse
Affiliation(s)
- Lauren Swiney
- School of Anthropology, Institute of Cognitive and Evolutionary Anthropology, University of OxfordOxford, UK
| | - Paulo Sousa
- Department of History and Anthropology, Institute of Cognition and Culture, Queen’s University BelfastBelfast, UK
| |
Collapse
|
44
|
Okazaki S, Mori K, Okada M. Principal component analysis reveals differential attentional modulation of the vocal response to pitch perturbation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:334-340. [PMID: 24993217 DOI: 10.1121/1.4881921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The auditory-vocal system modifies voice fundamental frequency (F0) with auditory feedback. The responses to F0 changes in auditory feedback are known to depend on the task. The hypothesis explored in this study is that the task dependency is the result of multiple components of the F0 responses differently modulated with different tasks. Attention to audition was manipulated by task condition by the instruction to ignore or to count the number of the F0 shifts heard during vocalization. A synthetic voice with pitch shifts was used as auditory pseudo-feedback. The upward and downward shifts evoked very similar vocal F0 response patterns with polarity reversal. Attention to the auditory feedback caused a reduction in the grand-average response amplitude. By decomposing the F0 responses with principal component analysis (PCA), three principal components (PCs) with different peak latencies were found to have contributions above the criterion of 5%, totaling to 74%. All three PCs contributed to a compensatory response under the "ignore" condition. The slowest PC changed its polarity and the intermediate PC was reduced to almost zero under the "count" condition. Thus, the task-dependency of the F0 response to auditory feedback can be described in terms of different sensitivities of components to attention.
Collapse
Affiliation(s)
- Shuntaro Okazaki
- Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama, 359-8555, Japan
| | - Koichi Mori
- Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama, 359-8555, Japan
| | - Minae Okada
- Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama, 359-8555, Japan
| |
Collapse
|
45
|
Emmorey K, McCullough S, Mehta S, Grabowski TJ. How sensory-motor systems impact the neural organization for language: direct contrasts between spoken and signed language. Front Psychol 2014; 5:484. [PMID: 24904497 PMCID: PMC4033845 DOI: 10.3389/fpsyg.2014.00484] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/03/2014] [Indexed: 11/24/2022] Open
Abstract
To investigate the impact of sensory-motor systems on the neural organization for language, we conducted an H215O-PET study of sign and spoken word production (picture-naming) and an fMRI study of sign and audio-visual spoken language comprehension (detection of a semantically anomalous sentence) with hearing bilinguals who are native users of American Sign Language (ASL) and English. Directly contrasting speech and sign production revealed greater activation in bilateral parietal cortex for signing, while speaking resulted in greater activation in bilateral superior temporal cortex (STC) and right frontal cortex, likely reflecting auditory feedback control. Surprisingly, the language production contrast revealed a relative increase in activation in bilateral occipital cortex for speaking. We speculate that greater activation in visual cortex for speaking may actually reflect cortical attenuation when signing, which functions to distinguish self-produced from externally generated visual input. Directly contrasting speech and sign comprehension revealed greater activation in bilateral STC for speech and greater activation in bilateral occipital-temporal cortex for sign. Sign comprehension, like sign production, engaged bilateral parietal cortex to a greater extent than spoken language. We hypothesize that posterior parietal activation in part reflects processing related to spatial classifier constructions in ASL and that anterior parietal activation may reflect covert imitation that functions as a predictive model during sign comprehension. The conjunction analysis for comprehension revealed that both speech and sign bilaterally engaged the inferior frontal gyrus (with more extensive activation on the left) and the superior temporal sulcus, suggesting an invariant bilateral perisylvian language system. We conclude that surface level differences between sign and spoken languages should not be dismissed and are critical for understanding the neurobiology of language.
Collapse
Affiliation(s)
- Karen Emmorey
- Laboratory for Language and Cognitive Neuroscience, School of Speech, Language, and Hearing Sciences, San Diego State University San Diego, CA, USA
| | - Stephen McCullough
- Laboratory for Language and Cognitive Neuroscience, School of Speech, Language, and Hearing Sciences, San Diego State University San Diego, CA, USA
| | - Sonya Mehta
- Department of Psychology, University of Washington Seattle, WA, USA ; Department of Radiology, University of Washington Seattle, WA, USA
| | | |
Collapse
|
46
|
Bauer PR, Vansteensel MJ, Bleichner MG, Hermes D, Ferrier CH, Aarnoutse EJ, Ramsey NF. Mismatch Between Electrocortical Stimulation and Electrocorticography Frequency Mapping of Language. Brain Stimul 2013; 6:524-31. [DOI: 10.1016/j.brs.2013.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/06/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022] Open
|
47
|
Chan AM, Dykstra AR, Jayaram V, Leonard MK, Travis KE, Gygi B, Baker JM, Eskandar E, Hochberg LR, Halgren E, Cash SS. Speech-specific tuning of neurons in human superior temporal gyrus. ACTA ACUST UNITED AC 2013; 24:2679-93. [PMID: 23680841 DOI: 10.1093/cercor/bht127] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
How the brain extracts words from auditory signals is an unanswered question. We recorded approximately 150 single and multi-units from the left anterior superior temporal gyrus of a patient during multiple auditory experiments. Against low background activity, 45% of units robustly fired to particular spoken words with little or no response to pure tones, noise-vocoded speech, or environmental sounds. Many units were tuned to complex but specific sets of phonemes, which were influenced by local context but invariant to speaker, and suppressed during self-produced speech. The firing of several units to specific visual letters was correlated with their response to the corresponding auditory phonemes, providing the first direct neural evidence for phonological recoding during reading. Maximal decoding of individual phonemes and words identities was attained using firing rates from approximately 5 neurons within 200 ms after word onset. Thus, neurons in human superior temporal gyrus use sparse spatially organized population encoding of complex acoustic-phonetic features to help recognize auditory and visual words.
Collapse
Affiliation(s)
- Alexander M Chan
- Medical Engineering and Medical Physics, Department of Neurology
| | - Andrew R Dykstra
- Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA, Department of Neurology
| | - Vinay Jayaram
- Department of Neuroscience, Harvard University, Cambridge, MA, USA
| | | | | | - Brian Gygi
- National Institute for Health Research, Nottingham Hearing Biomedical Research Unit, Nottingham, UK and
| | - Janet M Baker
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Emad Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Eric Halgren
- Multimodal Imaging Laboratory, Department of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
48
|
Silent articulation modulates auditory and audiovisual speech perception. Exp Brain Res 2013; 227:275-88. [DOI: 10.1007/s00221-013-3510-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
49
|
Greenlee JDW, Behroozmand R, Larson CR, Jackson AW, Chen F, Hansen DR, Oya H, Kawasaki H, Howard MA. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex. PLoS One 2013; 8:e60783. [PMID: 23577157 PMCID: PMC3620048 DOI: 10.1371/journal.pone.0060783] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/02/2013] [Indexed: 11/29/2022] Open
Abstract
The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70-150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.
Collapse
Affiliation(s)
- Jeremy D W Greenlee
- Human Brain Research Lab, Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tian X, Poeppel D. The effect of imagination on stimulation: the functional specificity of efference copies in speech processing. J Cogn Neurosci 2013; 25:1020-36. [PMID: 23469885 DOI: 10.1162/jocn_a_00381] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The computational role of efference copies is widely appreciated in action and perception research, but their properties for speech processing remain murky. We tested the functional specificity of auditory efference copies using magnetoencephalography recordings in an unconventional pairing: We used a classical cognitive manipulation (mental imagery--to elicit internal simulation and estimation) with a well-established experimental paradigm (one shot repetition--to assess neuronal specificity). Participants performed tasks that differentially implicated internal prediction of sensory consequences (overt speaking, imagined speaking, and imagined hearing) and their modulatory effects on the perception of an auditory (syllable) probe were assessed. Remarkably, the neural responses to overt syllable probes vary systematically, both in terms of directionality (suppression, enhancement) and temporal dynamics (early, late), as a function of the preceding covert mental imagery adaptor. We show, in the context of a dual-pathway model, that internal simulation shapes perception in a context-dependent manner.
Collapse
Affiliation(s)
- Xing Tian
- New York University, New York, NY, USA.
| | | |
Collapse
|