1
|
Lajtos M, Barradas-Chacón LA, Wriessnegger SC. Effects of handedness on brain oscillatory activity during imagery and execution of upper limb movements. Front Psychol 2023; 14:1161613. [PMID: 37384193 PMCID: PMC10293623 DOI: 10.3389/fpsyg.2023.1161613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Abstract
Brain activation during left- and right-hand motor imagery is a popular feature used for brain-computer interfaces. However, most studies so far have only considered right-handed participants in their experiments. This study aimed to investigate how handedness influences brain activation during the processes of imagining and executing simple hand movements. EEG signals were recorded using 32 channels while participants repeatedly squeezed or imagined squeezing a ball using their left, right, or both hands. The data of 14 left-handed and 14 right-handed persons were analyzed with a focus on event-related desynchronization/synchronization patterns (ERD/S). Both handedness groups showed activation over sensorimotor areas; however, the right-handed group tended to display more bilateral patterns than the left-handed group, which is in contrast to earlier research results. Furthermore, a stronger activation during motor imagery than during motor execution could be found in both groups.
Collapse
Affiliation(s)
- Melissa Lajtos
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems (ELIS), Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
2
|
Structure of the Motor Descending Pathways Correlates with the Temporal Kinematics of Hand Movements. BIOLOGY 2022; 11:biology11101482. [PMID: 36290386 PMCID: PMC9598379 DOI: 10.3390/biology11101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Simple Summary How hand motor behavior relates to the microstructure of the underlying subcortical white matter pathways is yet to be fully understood. Here we consider two well-known examples of our everyday motor repertoire, reaching and reach-to-grasp, by looking at their temporal unfolding and at the microstructure of descending projection pathways, conveying motor information from the motor cortices towards the more ventral regions of the nervous system. We combine three-dimensional kinematics, describing the temporal profile of hand movements, with diffusion imaging tractography, exploring the microstructure of specific segments of the projection pathways (internal capsule, corticospinal and hand motor tracts). The results indicate that the level of anisotropy characterizing these white matter tracts can influence the temporal unfolding of reaching and reach-to-grasp movements. Abstract The projection system, a complex organization of ascending and descending white matter pathways, is the principal system for conveying sensory and motor information, connecting frontal and sensorimotor regions with ventral regions of the central nervous system. The corticospinal tract (CST), one of the principal projection pathways, carries distal movement-related information from the cortex to the spinal cord, and whether its microstructure is linked to the kinematics of hand movements is still an open question. The aim of the present study was to explore how microstructure of descending branches of the projection system, namely the hand motor tract (HMT), the corticospinal tract (CST) and its sector within the internal capsule (IC), can relate to the temporal profile of reaching and reach-to-grasp movements. Projection pathways of 31 healthy subjects were virtually dissected by means of diffusion tractography and the kinematics of reaching and reach-to-grasp movements were also analyzed. A positive association between Hindrance Modulated Orientation Anisotropy (HMOA) and kinematics was observed, suggesting that anisotropy of the considered tract can influence the temporal unfolding of motor performance. We highlight, for the first time, that hand kinematics and the visuomotor transformation processes underlying reaching and reach-to-grasp movements relate to the microstructure of specific projection fibers subserving these movements.
Collapse
|
3
|
Sadeghi N, Joghataei MT, Shahbazi A, Tonekaboni SH, Akrami H, Nazari MA. Motor planning is not restricted to only one hemisphere: evidence from ERPs in individuals with hemiplegic cerebral palsy. Exp Brain Res 2022; 240:2311-2326. [PMID: 35876852 DOI: 10.1007/s00221-022-06425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/17/2022] [Indexed: 11/27/2022]
Abstract
The evidence for the hemispheric specialization of motor planning reveals several inconsistencies between the left-lateralized hypothesis and a distributed system across the hemispheres. We compared participants with left hemiplegic cerebral palsy (HCP) to right-handed control subjects in this study's first experiment by inviting them to perform a motor planning task. Participants were required to release the start button, grasp a hexagon, and rotate it according to the instructions. In the second experiment, we compared left-HCP subjects with right-HCP subjects inviting them to perform the same task (we used the data for left-HCP subjects from the first experiment). P2 amplitude, as well as planning time, grasping time, releasing time, and initial grip selection planning patterns, were used as outcome measures in both experiments. The first experiment revealed that controls acted more quickly and chose more effective planning patterns. Also, the P2 amplitude was smaller in left-HCP subjects than in control subjects. No significant group effect was observed in the second experiment for any movement-related measure or P2. At the neural level, however, there was an interaction between 'region' and 'group,' indicating the distinction between the two groups in the right region. The results are discussed in terms of motor planning's hemispheric distribution and individual differences in the HCP group.
Collapse
Affiliation(s)
- Neda Sadeghi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Exp. way, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Exp. way, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Exp. way, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hale Akrami
- Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Exp. way, Tehran, Iran.
| |
Collapse
|
4
|
Crotti M, Koschutnig K, Wriessnegger SC. Handedness impacts the neural correlates of kinesthetic motor imagery and execution: A FMRI study. J Neurosci Res 2022; 100:798-826. [PMID: 34981561 PMCID: PMC9303560 DOI: 10.1002/jnr.25003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 11/10/2022]
Abstract
The human brain functional lateralization has been widely studied over the past decades, and neuroimaging studies have shown how activation of motor areas during hand movement execution (ME) is different according to hand dominance. Nevertheless, there is no research directly investigating the effects of the participant's handedness in a motor imagery (MI) and ME task in both right and left-handed individuals at the cortical and subcortical level. Twenty-six right-handed and 25 left-handed participants were studied using functional magnetic resonance imaging during the imagination and execution of repetitive self-paced movements of squeezing a ball with their dominant, non-dominant, and both hands. Results revealed significant statistical difference (p < 0.05) between groups during both the execution and the imagery task with the dominant, non-dominant, and both hands both at cortical and subcortical level. During ME, left-handers recruited a spread bilateral network, while in right-handers, activity was more lateralized. At the critical level, MI between-group analysis revealed a similar pattern in right and left-handers showing a bilateral activation for the dominant hand. Differentially at the subcortical level, during MI, only right-handers showed the involvement of the posterior cerebellum. No significant activity was found for left-handers. Overall, we showed a partial spatial overlap of neural correlates of MI and ME in motor, premotor, sensory cortices, and cerebellum. Our results highlight differences in the functional organization of motor areas in right and left-handed people, supporting the hypothesis that MI is influenced by the way people habitually perform motor actions.
Collapse
Affiliation(s)
- Monica Crotti
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Karl Koschutnig
- Department of Psychology, MRI Lab Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | | |
Collapse
|
5
|
Di Pietro M, Russo M, Dono F, Carrarini C, Thomas A, Di Stefano V, Telese R, Bonanni L, Sensi SL, Onofrj M, Franciotti R. A Critical Review of Alien Limb-Related Phenomena and Implications for Functional Magnetic Resonance Imaging Studies. Front Neurol 2021; 12:661130. [PMID: 34566830 PMCID: PMC8458742 DOI: 10.3389/fneur.2021.661130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022] Open
Abstract
Consensus criteria on corticobasal degeneration (CBD) include alien limb (AL) phenomena. However, the gist of the behavioral features of AL is still “a matter of debate.” CBD-related AL has so far included the description of involuntary movements, frontal release phenomena (frontal AL), or asomatognosia (posterior or “real” AL). In this context, the most frequent symptoms are language and praxis deficits and cortical sensory misperception. However, asomatognosia requires, by definition, intact perception and cognition. Thus, to make a proper diagnosis of AL in the context of CBD, cognitive and language dysfunctions must be carefully verified and objectively assessed. We reviewed the current literature on AL in CBD and now propose that the generic use of the term AL should be avoided. This catchall AL term should instead be deconstructed. We propose that the term AL is appropriate to describe clinical features associated with specific brain lesions. More discrete sets of regionally bound clinical signs that depend on dysfunctions of specific brain areas need to be assessed and presented when posing the diagnosis. Thus, in our opinion, the AL term should be employed in association with precise descriptions of the accompanying involuntary movements, sensory misperceptions, agnosia-asomatognosia contents, and the presence of utilization behavior. The review also offers an overview of functional magnetic resonance imaging-based studies evaluating AL-related phenomena. In addition, we provide a complementary set of video clips depicting CBD-related involuntary movements that should not mistakenly be interpreted as signs of AL.
Collapse
Affiliation(s)
- Martina Di Pietro
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Vincenzo Di Stefano
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Roberta Telese
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,IRCCS C. Mondino Foundation, Pavia, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti, Italy.,YDA Foundation, Institute of Immune Therapy and Advanced Biological Treatment, Pescara, Italy
| | - Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
6
|
Sadeghi N, Nazari MA, Shahbazi A, Joghataei MT. Motor control times and strategies in left- and right-handed participants: Behavioral evidence for the hemispheric distribution of motor planning. Med J Islam Repub Iran 2021; 35:39. [PMID: 34211941 PMCID: PMC8236089 DOI: 10.47176/mjiri.35.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/02/2022] Open
Abstract
Background: There is conflicting evidence in favor of the hemispheric distribution of motor planning. Some studies supported the left-hemisphere-dominance hypothesis for motor planning and claimed that the left-hemisphere has a crucial function in motor control even in left-handers. The present study aimed to compare the right- and left-handed participants on motor planning ability and to investigate the performance of their dominant hands in a specific action selection task. Also, the effect of task complexity was assessed. Methods: Twenty right-handers and 20 left-handers performed an action selection task. The participants had to grasp a hexagonal knob with their dominant hand and consequently rotated it 60° or 180 ° clockwise or counterclockwise. Depending on our objects, we used mixed factorial ANOVA and the groups were examined in terms of the planning time, grasping time, releasing time and planning pattern for initial grip selection. The SPSS 19 was used for analyzing the data and p≤0.05 was considered as the significant level. Results: No significant differences were observed between the two groups. The movement-related measures revealed a main effect of rotation (p˂0.001). However, a significant interaction between direction × planning pattern × group (p˂0.001) indicated a preferential bias for rotatory movements in the medial direction which is consistent with the "medial over lateral advantage". Conclusion: Both left- and right-handed participants had a similar motor planning ability while performing a planning task with their dominant hands. Because our study was behavioral, it only provided a test of the left-hemisphere hypothesis of motor planning.
Collapse
Affiliation(s)
- Neda Sadeghi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Chettouf S, Rueda-Delgado LM, de Vries R, Ritter P, Daffertshofer A. Are unimanual movements bilateral? Neurosci Biobehav Rev 2020; 113:39-50. [DOI: 10.1016/j.neubiorev.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022]
|
8
|
Vavla M, Arrigoni F, Nordio A, De Luca A, Pizzighello S, Petacchi E, Paparella G, D'Angelo MG, Brighina E, Russo E, Fantin M, Colombo P, Martinuzzi A. Functional and Structural Brain Damage in Friedreich's Ataxia. Front Neurol 2018; 9:747. [PMID: 30237783 PMCID: PMC6135889 DOI: 10.3389/fneur.2018.00747] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a rare hereditary neurodegenerative disorder caused by a GAA repeat expansion in the FXN gene. There is still no cure or quantitative biomarkers reliaby correlating with the progression rate and disease severity. Investigation of functional and structural alterations characterizing white (WM) and gray matter (GM) in FRDA are needed prerequisite to monitor progression and response to treatment. Here we report the results of a multimodal cross-sectional MRI study of FRDA including Voxel-Based Morphometry (VBM), diffusion-tensor imaging (DTI), functional MRI (fMRI), and a correlation analysis with clinical severity scores. Twenty-one early-onset FRDA patients and 18 age-matched healthy controls (HCs) were imaged at 3T. All patients underwent a complete cognitive and clinical assessment with ataxia scales. VBM analysis showed GM volume reduction in FRDA compared to HCs bilaterally in lobules V, VI, VIII (L>R), as well as in the crus of cerebellum, posterior lobe of the vermis, in the flocculi and in the left tonsil. Voxel-wise DTI analysis showed a diffuse fractional anisotropy reduction and mean, radial, axial (AD) diffusivity increase in both infratentorial and supratentorial WM. ROI-based analysis confirmed the results showing differences of the same DTI metrics in cortico-spinal-tracts, forceps major, corpus callosum, posterior thalamic radiations, cerebellar penduncles. Additionally, we observed increased AD in superior (SCP) and middle cerebellar peduncles. The WM findings correlated with age at onset (AAO), short-allelle GAA, and disease severity. The intragroup analysis of fMRI data from right-handed 14 FRDA and 15 HCs showed similar findings in both groups, including activation in M1, insula and superior cerebellar hemisphere (lobules V-VIII). Significant differences emerged only during the non-dominant hand movement, with HCs showing a stronger activation in the left superior cerebellar hemisphere compared to FRDA. Significant correlations were found between AAO and the fMRI activation in cerebellar anterior and posterior lobes, insula and temporal lobe. Our multimodal neuroimaging protocol suggests that MRI is a useful tool to document the extension of the neurological impairment in FRDA.
Collapse
Affiliation(s)
- Marinela Vavla
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS "Eugenio Medea", Conegliano, Italy
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Italy
| | - Andrea Nordio
- Neuroimaging Lab, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Italy.,Department of Information Engineering, University of Padova, Padova, Italy
| | - Alberto De Luca
- Neuroimaging Lab, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Italy
| | - Silvia Pizzighello
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS "Eugenio Medea", Conegliano, Italy
| | - Elisa Petacchi
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS "Eugenio Medea", Conegliano, Italy
| | - Gabriella Paparella
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS "Eugenio Medea", Conegliano, Italy
| | - Maria Grazia D'Angelo
- NeuroMuscular Unit, Department of NeuroRehabilitation, IRCCS "Eugenio Medea", Bosisio Parini, Italy
| | - Erika Brighina
- NeuroMuscular Unit, Department of NeuroRehabilitation, IRCCS "Eugenio Medea", Bosisio Parini, Italy
| | - Emanuela Russo
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS "Eugenio Medea", Conegliano, Italy
| | - Marianna Fantin
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS "Eugenio Medea", Conegliano, Italy
| | - Paola Colombo
- Neuroimaging Lab, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Italy
| | - Andrea Martinuzzi
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS "Eugenio Medea", Conegliano, Italy
| |
Collapse
|
9
|
Prieto A, Mayas J, Ballesteros S. Alpha and beta band correlates of haptic perceptual grouping: Results from an orientation detection task. PLoS One 2018; 13:e0201194. [PMID: 30024961 PMCID: PMC6053228 DOI: 10.1371/journal.pone.0201194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
Behavioral and neurophysiological findings in vision suggest that perceptual grouping is not a unitary process and that different grouping principles have different processing requirements and neural correlates. The present study aims to examine whether the same occurs in the haptic modality using two grouping principles widely studied in vision, spatial proximity and texture similarity. We analyzed behavioral responses (accuracy and response times) and conducted an independent component analysis of brain oscillations in alpha and beta bands for haptic stimuli grouped by spatial proximity and texture similarity, using a speeded orientation detection task performed on a novel haptic device (MonHap). Behavioral results showed faster response times for patterns grouped by spatial proximity relative to texture similarity. Independent component clustering analysis revealed the activation of a bilateral network of sensorimotor and parietal areas while performing the task. We conclude that, as occurs in visual perception, grouping the elements of the haptic scene by means of their spatial proximity is faster than forming the same objects by means of texture similarity. In addition, haptic grouping seems to involve the activation of a network of widely distributed bilateral sensorimotor and parietal areas as reflected by the consistent event-related desynchronization found in alpha and beta bands.
Collapse
Affiliation(s)
- Antonio Prieto
- Studies on Aging and Neurodegenerative Diseases Research Group, Departamento de Psicología Básica II, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, España
- * E-mail:
| | - Julia Mayas
- Studies on Aging and Neurodegenerative Diseases Research Group, Departamento de Psicología Básica II, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, España
| | - Soledad Ballesteros
- Studies on Aging and Neurodegenerative Diseases Research Group, Departamento de Psicología Básica II, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, España
| |
Collapse
|
10
|
Begliomini C, Sartori L, Di Bono MG, Budisavljević S, Castiello U. The Neural Correlates of Grasping in Left-Handers: When Handedness Does Not Matter. Front Neurosci 2018; 12:192. [PMID: 29666567 PMCID: PMC5891894 DOI: 10.3389/fnins.2018.00192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Neurophysiological studies showed that in macaques, grasp-related visuomotor transformations are supported by a circuit involving the anterior part of the intraparietal sulcus, the ventral and the dorsal region of the premotor area. In humans, a similar grasp-related circuit has been revealed by means of neuroimaging techniques. However, the majority of "human" studies considered movements performed by right-handers only, leaving open the question of whether the dynamics underlying motor control during grasping is simply reversed in left-handers with respect to right-handers or not. To address this question, a group of left-handed participants has been scanned with functional magnetic resonance imaging while performing a precision grasping task with the left or the right hand. Dynamic causal modeling was used to assess how brain regions of the two hemispheres contribute to grasping execution and whether the intra- and inter-hemispheric connectivity is modulated by the choice of the performing hand. Results showed enhanced inter-hemispheric connectivity between anterior intraparietal and dorsal premotor cortices during grasping execution with the left dominant hand (LDH) (e.g., right hemisphere) compared to the right (e.g., left hemisphere). These findings suggest that that the left hand, although dominant and theoretically more skilled in left handers, might need additional resources in terms of the visuomotor control and on-line monitoring to accomplish a precision grasping movement. The results are discussed in light of theories on the modulation of parieto-frontal networks during the execution of prehensile movements, providing novel evidence supporting the hypothesis of a handedness-independent specialization of the left hemisphere in visuomotor control.
Collapse
Affiliation(s)
- Chiara Begliomini
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy.,Padua Neuroscience Center, Padua, Italy
| | - Luisa Sartori
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy.,Padua Neuroscience Center, Padua, Italy
| | - Maria G Di Bono
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy
| | | | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
11
|
Effects of Robot-Assisted Training for the Unaffected Arm in Patients with Hemiparetic Cerebral Palsy: A Proof-of-Concept Pilot Study. Behav Neurol 2017; 2017:8349242. [PMID: 28744066 PMCID: PMC5518504 DOI: 10.1155/2017/8349242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/26/2017] [Accepted: 05/29/2017] [Indexed: 12/01/2022] Open
Abstract
On a voluntary basis, 10 adolescents with hemiparesis due to cerebral palsy and 11 neurologically healthy control subjects participated in this proof-of-concept pilot study. The aim was to examine the effects of robot-assisted training for the unaffected arm in patients with hemiparetic cerebral palsy. Baseline comparison between the unaffected arm of the hemiparetic patients with cerebral palsy and the dominant arm of healthy control subjects showed significant differences on the Jebsen-Taylor Hand Function test and action planning ability tests. Within-group comparison after ten 30-minute sessions (five days a week for two consecutive weeks) of robot-assisted training for the unaffected arm showed significant improvements in patients with cerebral palsy on the Jebsen-Taylor Hand Function test (performed at both hands) and action planning ability test (evaluated at the unaffected arm). Our findings are in line with previous evidences of action planning deficits at the unaffected arm in patients with hemiparetic cerebral palsy and support the hypothesis that robot-assisted training for the unaffected arm may be useful to improve manual dexterity and action planning in patients with hemiparesis due to cerebral palsy.
Collapse
|
12
|
Scott M, Taylor S, Chesterton P, Vogt S, Eaves DL. Motor imagery during action observation increases eccentric hamstring force: an acute non-physical intervention. Disabil Rehabil 2017; 40:1443-1451. [DOI: 10.1080/09638288.2017.1300333] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew Scott
- Department of Psychology, Sport and Exercise, Teesside University, Middlesbrough, United Kingdom
| | - Stephen Taylor
- Department of Psychology, Sport and Exercise, Teesside University, Middlesbrough, United Kingdom
| | - Paul Chesterton
- Department of Psychology, Sport and Exercise, Teesside University, Middlesbrough, United Kingdom
| | - Stefan Vogt
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Daniel Lloyd Eaves
- Department of Psychology, Sport and Exercise, Teesside University, Middlesbrough, United Kingdom
| |
Collapse
|
13
|
Błacha R, Jastrzębska AD. Accuracy of Force Repeatability in Relation to its Value and the Subjects’ Sex. HUMAN MOVEMENT 2017. [DOI: 10.1515/humo-2017-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe purpose of the study was to determine the influence of force value and sex on force generation repeatability.The total of 17 female and 24 male students performed 3 maximal voluntary contractions for maximal force (FThe force generation repeatability rose with the increase of triggered force in both sexes; between force target 49 N vs. 98 N and 147 N (The influence of force value and a minor influence of sex on accuracy in generated forces might suggest that the control of muscle force by the central nervous system is similar in both sexes and the sex differences in muscle force generations are rather of muscle mass and structure.
Collapse
|
14
|
Yokoyama O, Nakayama Y, Hoshi E. Area- and band-specific representations of hand movements by local field potentials in caudal cingulate motor area and supplementary motor area of monkeys. J Neurophysiol 2016; 115:1556-76. [PMID: 26792884 DOI: 10.1152/jn.00882.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/19/2016] [Indexed: 11/22/2022] Open
Abstract
The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study examined the neural mechanisms underlying these roles by investigating local field potentials (LFPs) from these areas while monkeys pressed buttons with either their left or right hand. During hand movement, power increases in the high-gamma (80-120 Hz) and theta (3-8 Hz) bands and a power decrease in the beta (12-30 Hz) band were observed in both the CMAc and SMA. High-gamma and beta activity in the SMA predominantly represented contralateral hand movements, whereas activity in the CMAc preferentially represented movement of either hand. Theta activity in both brain regions most frequently reflected movement of either hand, but a contralateral hand bias was more evident in the SMA than in the CMAc. An analysis of the relationships of the laterality representations between the high-gamma and theta bands at each recording site revealed that, irrespective of the hand preference for the theta band, the high-gamma band in the SMA preferentially represented contralateral hand movement, whereas the high-gamma band in the CMAc represented movement of either hand. These findings suggest that the input-output relationships for ipsilateral and contralateral hand movements in the CMAc and SMA differ in terms of their functionality. The CMAc may transform the input signals representing general aspects of movement into commands to perform movements with either hand, whereas the SMA may transform the input signals into commands to perform movement with the contralateral hand.
Collapse
Affiliation(s)
- Osamu Yokoyama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Yoshihisa Nakayama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| |
Collapse
|
15
|
Nakayama Y, Yokoyama O, Hoshi E. Distinct neuronal organizations of the caudal cingulate motor area and supplementary motor area in monkeys for ipsilateral and contralateral hand movements. J Neurophysiol 2015; 113:2845-58. [PMID: 25717163 DOI: 10.1152/jn.00854.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/23/2015] [Indexed: 11/22/2022] Open
Abstract
The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study aimed to characterize the functional organization of these regions during movement by investigating laterality representations in the CMAc and SMA of monkeys via an examination of neuronal activity during a button press movement with either the right or left hand. Three types of movement-related neuronal activity were observed: 1) with only the contralateral hand, 2) with only the ipsilateral hand, and 3) with either hand. Neurons in the CMAc represented contralateral and ipsilateral hand movements to the same degree, whereas neuronal representations in the SMA were biased toward contralateral hand movement. Furthermore, recording neuronal activities using a linear-array multicontact electrode with 24 contacts spaced 150 μm apart allowed us to analyze the spatial distribution of neurons exhibiting particular hand preferences at the submillimeter scale. The CMAc and SMA displayed distinct microarchitectural organizations. The contralateral, ipsilateral, and bilateral CMAc neurons were distributed homogeneously, whereas SMA neurons exhibiting identical hand preferences tended to cluster. These findings indicate that the CMAc, which is functionally organized in a less structured manner than the SMA is, controls contralateral and ipsilateral hand movements in a counterbalanced fashion, whereas the SMA, which is more structured, preferentially controls contralateral hand movements.
Collapse
Affiliation(s)
- Yoshihisa Nakayama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; and
| | - Osamu Yokoyama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| |
Collapse
|
16
|
Begliomini C, Sartori L, Miotto D, Stramare R, Motta R, Castiello U. Exploring manual asymmetries during grasping: a dynamic causal modeling approach. Front Psychol 2015; 6:167. [PMID: 25759677 PMCID: PMC4338815 DOI: 10.3389/fpsyg.2015.00167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/02/2015] [Indexed: 11/13/2022] Open
Abstract
Recording of neural activity during grasping actions in macaques showed that grasp-related sensorimotor transformations are accomplished in a circuit constituted by the anterior part of the intraparietal sulcus (AIP), the ventral (F5) and the dorsal (F2) region of the premotor area. In humans, neuroimaging studies have revealed the existence of a similar circuit, involving the putative homolog of macaque areas AIP, F5, and F2. These studies have mainly considered grasping movements performed with the right dominant hand and only a few studies have measured brain activity associated with a movement performed with the left non-dominant hand. As a consequence of this gap, how the brain controls for grasping movement performed with the dominant and the non-dominant hand still represents an open question. A functional magnetic resonance imaging (fMRI) experiment has been conducted, and effective connectivity (dynamic causal modeling, DCM) was used to assess how connectivity among grasping-related areas is modulated by hand (i.e., left and right) during the execution of grasping movements toward a small object requiring precision grasping. Results underlined boosted inter-hemispheric couplings between dorsal premotor cortices during the execution of movements performed with the left rather than the right dominant hand. More specifically, they suggest that the dorsal premotor cortices may play a fundamental role in monitoring the configuration of fingers when grasping movements are performed by either the right and the left hand. This role becomes particularly evident when the hand less-skilled (i.e., the left hand) to perform such action is utilized. The results are discussed in light of recent theories put forward to explain how parieto-frontal connectivity is modulated by the execution of prehensile movements.
Collapse
Affiliation(s)
- Chiara Begliomini
- Department of General Psychology and Center for Cognitive Neuroscience, University of Padova Padova, Italy
| | - Luisa Sartori
- Department of General Psychology and Center for Cognitive Neuroscience, University of Padova Padova, Italy
| | - Diego Miotto
- Department of Medicine, University of Padova Padova, Italy
| | | | | | - Umberto Castiello
- Department of General Psychology and Center for Cognitive Neuroscience, University of Padova Padova, Italy
| |
Collapse
|
17
|
A functional magnetic resonance imaging study on the effect of acupuncture at GB34 (Yanglingquan) on motor-related network in hemiplegic patients. Brain Res 2015; 1601:64-72. [PMID: 25601007 DOI: 10.1016/j.brainres.2015.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/20/2014] [Accepted: 01/02/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Functional disability of stroke patients, especially limb motor function, seriously impacts the quality of life. Although acupuncture at GB34 (Yang-ling-quan) has been shown to be effective on the recovery of motor function, the underlying mechanism has not been well explored. OBJECTIVE To explore the central mechanisms of immediate effect of acupuncture at GB34 on motor-related network of stroke patients with hemiplegia. METHODS A repeated measures ANOVA method was employed to investigate the effect of acupuncture at GB34 on functional connectivity of motor-related network. Six stroke patients with left hemiplegia were recruited. A left hand motor task fMRI experiment was performed before and right after acupuncture. Sham point acupuncture was taken as control. The most significant fMRI signal changes during motor task in the right precentral gyrus were identified, which was selected as a seed point for connectivity analysis. Then the functional connectivity of this seed point was compared between verum and sham point acupuncture. RESULTS Compared to sham, acupuncture at GB34 showed positive interaction effect at right temporal pole, left lingual gyrus, and left cerebellum. While negative interaction effect mainly occurred at contralateral motor cortex and ipsilateral motor cortex of lower limb. CONCLUSIONS Acupuncture at GB34 may increase motor-cognition connectivity meanwhile decrease compensation of unaffected motor cortex and homolateral synkinesis, which can definitely promote the rehabilitation of hemiplegia and spasm.
Collapse
|
18
|
Kirkpatrick EV, Pearse JE, Eyre JA, Basu AP. Motor planning ability is not related to lesion side or functional manual ability in children with hemiplegic cerebral palsy. Exp Brain Res 2013; 231:239-47. [PMID: 23995565 DOI: 10.1007/s00221-013-3687-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Optimal task performance requires anticipatory planning to select the most appropriate movement strategy. There is conflicting evidence for hemispheric specialisation of motor planning, with some suggesting left hemisphere dominance, claiming that children with right hemiplegic cerebral palsy (HCP) are therefore disproportionally affected. An alternative view is that there is a positive relationship between functional ability (rather than side of lesion) and motor planning skill. We aimed to compare children with right and left HCP on motor planning ability and to explore its relationship with functional manual ability. Participants were 76 children with HCP (40 left HCP; 30 female), aged 4-15 years (Mean 9.09, SD 2.94). Motor planning was assessed using a measure of end-state comfort, which involved turning a hexagonal handle 180° without readjusting grasp. This is difficult, or in some cases impossible, to achieve unless an appropriate initial grasp is adopted. Children completed 24 turns (12 clockwise), which were video recorded for offline scoring. Functional manual ability was assessed with the ABILHAND-Kids questionnaire, completed by parents. Contrary to the existing literature, no differences were observed between right and left HCP. However, a significant interaction between direction of turn and side of hemiplegia indicated a preferential bias for turns in the medial direction, consistent with the "medial over lateral advantage". There was no relationship between functional ability and motor planning. Therefore, motor planning may not be a priority for therapeutic intervention to improve functional ability in HCP.
Collapse
Affiliation(s)
- E V Kirkpatrick
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
19
|
Barutchu A, Freestone DR, Innes-Brown H, Crewther DP, Crewther SG. Evidence for enhanced multisensory facilitation with stimulus relevance: an electrophysiological investigation. PLoS One 2013; 8:e52978. [PMID: 23372652 PMCID: PMC3553102 DOI: 10.1371/journal.pone.0052978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/22/2012] [Indexed: 12/02/2022] Open
Abstract
Currently debate exists relating to the interplay between multisensory processes and bottom-up and top-down influences. However, few studies have looked at neural responses to newly paired audiovisual stimuli that differ in their prescribed relevance. For such newly associated audiovisual stimuli, optimal facilitation of motor actions was observed only when both components of the audiovisual stimuli were targets. Relevant auditory stimuli were found to significantly increase the amplitudes of the event-related potentials at the occipital pole during the first 100 ms post-stimulus onset, though this early integration was not predictive of multisensory facilitation. Activity related to multisensory behavioral facilitation was observed approximately 166 ms post-stimulus, at left central and occipital sites. Furthermore, optimal multisensory facilitation was found to be associated with a latency shift of induced oscillations in the beta range (14–30 Hz) at right hemisphere parietal scalp regions. These findings demonstrate the importance of stimulus relevance to multisensory processing by providing the first evidence that the neural processes underlying multisensory integration are modulated by the relevance of the stimuli being combined. We also provide evidence that such facilitation may be mediated by changes in neural synchronization in occipital and centro-parietal neural populations at early and late stages of neural processing that coincided with stimulus selection, and the preparation and initiation of motor action.
Collapse
Affiliation(s)
- Ayla Barutchu
- School of Psychological Sciences, La Trobe University, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
20
|
Li Y, Booth JR, Peng D, Zang Y, Li J, Yan C, Ding G. Altered intra- and inter-regional synchronization of superior temporal cortex in deaf people. ACTA ACUST UNITED AC 2012; 23:1988-96. [PMID: 22767633 DOI: 10.1093/cercor/bhs185] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Functional organization of the brain can be fundamentally altered by auditory deprivation. Previous studies found that the superior temporal cortex in deaf people is reorganized to process non-auditory stimuli, as revealed by the extrinsic task-induced brain activities. However, it is unknown how the intrinsic activities of this region are impacted by deafness. This study explored this issue using resting-state functional magnetic resonance imaging. We examined 60 congenitally deaf (CD) individuals, 39 acquired deaf (AD) individuals, and 38 hearing controls (HC), and focused on the effect of deafness on the intra- and inter-regional synchronization of different parts of superior temporal sulcus (STS). We found that intra-regional synchronization or regional homogeneity (ReHo) of the middle STS (mSTS) was decreased in AD compared with HC or CD, while the CD had preserved ReHo in mSTS. Greater connectivity was observed between mSTS and posterior STS in CD and HC than in AD, while both CD and AD had weaker connectivity of mSTS with the anterior STS (aSTS) compared with HC. Moreover, the connectivity of mSTS-aSTS in CD and AD was associated with their language skills. These findings confirmed our hypothesis that the intrinsic function of different parts of STS is distinctly impacted by deafness.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
van Wijk BCM, Willemse RB, Peter Vandertop W, Daffertshofer A. Slowing of M1 oscillations in brain tumor patients in resting state and during movement. Clin Neurophysiol 2012; 123:2212-9. [PMID: 22608483 DOI: 10.1016/j.clinph.2012.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Brain tumors may severely disrupt the structure and function of the brain. While abnormal low-frequency activity can be found around tumor borders, disrupted structural connectivity may also impinge on neural activity in distant brain regions and other frequency bands. We investigated how glioma in patients with normal motor functioning affects activity in primary motor areas (M1). METHODS Using magnetoencephalography in 12 patients with unilateral glioma located around the central sulcus, we studied activity in bilateral M1s in resting state and during movement with focus on motor-related mu (8-12Hz) and beta rhythms (15-30Hz). Principal component analysis served to test for differences in spectral content. RESULTS A shift was found towards lower frequencies for M1 in the tumor hemisphere compared to M1 in the healthy hemisphere, caused by an increase in mu and decrease in beta power. This pattern was observed both in resting state and during movement. CONCLUSIONS This 'slowing' of brain oscillations in M1 resembles findings in patients with monohemispheric stroke and Parkinson's disease. A loss of intra-cortical connectivity may account for these findings, possibly supplemented by tumor-induced changes in neurotransmitter systems. SIGNIFICANCE Motor functioning may be unaffected by a spectral shift of mu and beta oscillations.
Collapse
|
22
|
van Wijk BCM, Beek PJ, Daffertshofer A. Differential modulations of ipsilateral and contralateral beta (de)synchronization during unimanual force production. Eur J Neurosci 2012; 36:2088-97. [PMID: 22583034 DOI: 10.1111/j.1460-9568.2012.08122.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unilateral movement is usually accompanied by ipsilateral activity in the primary motor cortex (M1). It is still largely unclear whether this activity reflects interhemispheric 'cross-talk' of contralateral M1 that facilitates movement, or results from processes that inhibit motor output. We investigated the role of beta power in ipsilateral M1 during unimanual force production. Significant ipsilateral beta desynchronization occurred during continuous dynamic but not during static force production. Moreover, event-related time-frequency analysis revealed bilateral desynchronization patterns, whereas post-movement synchronization was confined to the contralateral hemisphere. Our findings indicate that ipsilateral activation is not merely the result of interhemispheric cross-talk but involves additional processes. Given observations of differential blood oxygen level-dependent responses in ipsilateral and contralateral M1, and the correlation between beta desynchronization and the firing rate of pyramidal tract neurons in contralateral M1 during movement, we speculate that beta desynchronization in contra- and ipsilateral M1 arises from distinct neural activation patterns.
Collapse
Affiliation(s)
- B C M van Wijk
- Research Institute MOVE, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
23
|
Adamo DE, Scotland S, Martin BJ. Asymmetry in grasp force matching and sense of effort. Exp Brain Res 2012; 217:273-85. [PMID: 22218499 DOI: 10.1007/s00221-011-2991-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
While asymmetries in upper limb force matching have been observed, the mechanisms underlying asymmetry in the sense of effort have not been conceptualized. The aim of this study was to investigate asymmetries in the perception and reproduction of grasp force. Forty-two young adults, 22 right-handed (RH) and 20 left-handed (LH), were, respectively, divided into three groups according to differences between their right and left-hand strength (left stronger than right, right stronger than left and right & left equivalent). A reference force, representing 20% of the maximal voluntary contraction (MVC) produced by the right or left hand, was matched with same hand (Ipsilateral Remembered--IR) or opposite (Contralateral Remembered--CR) hand. The matching relative error was 92% (for RH) and 46% (for LH) greater in the CR than IR condition. Asymmetries in matching were significant for RH participants only in the CR condition and were dependent on right/left differences in hand strength as shown by the constant error (CE). For this RH population, right-hand overshoot of the left-hand reference and left-hand undershoot of the right-hand reference were significant when the right hand was stronger than the left. Asymmetry remained significant when CE was normalized (%MVC). Asymmetry was reduced when the strength of each hand was equivalent or when the left hand was stronger than the right. These findings suggest that effort perception is asymmetric in RH but not in LH individuals. The hand x strength interaction indicates that asymmetry in force matching is a consequence of both a difference in the respective cortical representations and motor components, which confer a different "gain" (input-output relationship) to each system. The similarity with position sense asymmetry suggests that the gain concept may be generalized to describe some functional/performance differences between the two hand/hemisphere systems. The more symmetrical performance of the LH than RH group underlines that context specific influence of handedness, hemisphere dominance and hemispheric interactions modulate performance symmetries/asymmetries.
Collapse
Affiliation(s)
- Diane E Adamo
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
24
|
Intrasurgical mapping of complex motor function in the superior frontal gyrus. Neuroscience 2011; 179:131-42. [PMID: 21277357 DOI: 10.1016/j.neuroscience.2011.01.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/21/2011] [Accepted: 01/23/2011] [Indexed: 11/22/2022]
Abstract
A lesion to the superior frontal gyrus (SFG) has been associated with long-lasting deficits in complex motor functions. The aim of this study was to analyze the functional role of the SFG by means of electrical cortical stimulation. Direct intraoperative electrical stimulation was used in a group of 21 subjects with lesions within or close to the SFG while they performed three motor tasks that require high skills or bimanual synergy. The results were compared to functional magnetic resonance imaging (fMRI). Ninety-four of the 98 (94.9%) labels identified were located on the convexity surface of the SFG and only four (4.1%) labels were located on the middle surface of the SFG. Areas of blockage of the three tasks were identified in six of the 12 (50%) hemispheres with lesions that had infiltrated the SFG, compared to all 10 of the 10 hemispheres (100%) with lesions that spared the SFG. The difference between these two proportions was statistically significant (P=0.015). fMRI activation was mainly located on the medial aspect of the SFG. We show that the convexity surface of the SFG has an important role in bilateral control of complex movements and in bimanual coordination. The infiltration of the posterior part of the SFG by a lesion disturbs some of the complex hand motor functions, which may be assumed by the contralesional homologous area. Finally, the current study emphasizes the discrepancies between fMRI and intraoperative electrical stimulation maps in complex hand motor function.
Collapse
|
25
|
Eye–hand coordination of symmetric bimanual reaching tasks: temporal aspects. Exp Brain Res 2010; 203:391-405. [DOI: 10.1007/s00221-010-2241-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
|
26
|
Response preparation with static and moving hands: differential effects of unimanual and bimanual movements. Hum Mov Sci 2010; 29:187-99. [PMID: 20304515 DOI: 10.1016/j.humov.2010.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 02/02/2010] [Accepted: 02/05/2010] [Indexed: 11/21/2022]
Abstract
This study investigated the effects of uni- and bimanual hand movements on the efficiency of within- and between-hands response preparation in a spatial cuing task. Predictions were derived from the Grouping Model of finger preparation, inspired by insights from neurophysiology (i.e., the concepts of transcollosal facilitation and cognitive overruling of basic neural coordination patterns). Sixteen participants performed the finger cuing task with one, two, or no hand(s) moving. Reaction time results revealed that unimanual and bimanual hand movements had similar effects on within-hand preparation but differential effects on between-hands preparation. This finding demonstrates a strong dissociation between within- and across-hands finger preparation, suggesting distinct underlying mechanisms as hypothesized by the Grouping Model.
Collapse
|
27
|
Horenstein C, Lowe MJ, Koenig KA, Phillips MD. Comparison of unilateral and bilateral complex finger tapping-related activation in premotor and primary motor cortex. Hum Brain Mapp 2009; 30:1397-412. [PMID: 18537112 DOI: 10.1002/hbm.20610] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sixteen healthy right-handed subjects performed a complex finger-tapping task that broadly activates the motor and premotor regions, including primary motor (M1), ventral premotor (PMv), and dorsal premotor (PMd) cortex. This task was performed with the right hand only, left hand only and both hands simultaneously. Behavioral performance and the possibility of mirror movements were controlled through the use of MRI-compatible gloves to monitor finger movements. Using spatially normalized ROIs from the Human Motor Area Template (HMAT), comparisons were made of the spatial extent and location of activation in the left and right motor regions between all three tasks. During unilateral right and left hand tapping, ipsilateral precentral gyrus activation occurred in all subjects, mainly in the PMv and PMd. Ipsilateral M1 activation was less consistent and shifted anteriorly within M1, towards the border of M1 and premotor cortex. Regions of ipsilateral activation were also activated during contralateral and bilateral tasks. Overall, 83%/70%/58% of the ipsilaterally activated voxels in M1/PMd/PMv were also activated during contralateral and bilateral tapping. The mean percent signal change of spatially overlapping activated voxels was similar in PMv and PMd between all three tasks. However, the mean percent signal change of spatially overlapping M1 activation was significantly less during ipsilateral tapping compared with contra- or bilateral tapping. Results suggest that the ipsilateral fMRI activation in unilateral motor tasks may not be inhibitory in nature, but rather may reflect part of a bilateral network involved in the planning and/or execution of tapping in the ipsilateral hand.
Collapse
|
28
|
Borroni P, Montagna M, Cerri G, Baldissera F. Bilateral motor resonance evoked by observation of a one-hand movement: role of the primary motor cortex. Eur J Neurosci 2009; 28:1427-35. [PMID: 18973569 DOI: 10.1111/j.1460-9568.2008.06458.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In humans, observation of movement performed by others evokes a subliminal motor resonant response, probably mediated by the mirror neurone system, which reproduces the motor commands needed to execute the observed movement with good spatial and temporal fidelity. Motor properties of the resonant response were here investigated with the ultimate goal of understanding the principles operating in the transformation from observation to internal reproduction of movement. Motor resonance was measured as the modulation of excitability of spinal motoneurones, evoked by the observation of a cyclic flexion-extension of one hand. The first two experiments showed that the observation of a one-hand movement always evoked a bimanual resonant response independent of which hand was observed and that these bilateral responses were consistently phase-linked. H-reflexes simultaneously recorded in right and left flexor carpi radialis muscles were always modulated 'in-phase' with each other. The goal of the third experiment was to define the role of primary motor cortex in the bilateral resonant response. Bilateral H-reflexes were recorded during a temporary inactivation induced by transcranial magnetic stimulation over the left cortical hand motor area of observers. The finding that such cortical depression abolished the H-reflex modulation of only the right flexor carpi radialis motoneurones, leaving it unchanged on the left side, suggested that both primary motor areas were activated by the premotor cortex and transmit the resonant activation through crossed corticospinal pathways. The data provide further evidence that the subliminal activation of motor pathways induced by movement observation is organized according to general rules shared with the control of voluntary movement.
Collapse
Affiliation(s)
- Paola Borroni
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Milano, Via A.di Rudinì 8, 20142 Milano, Italy.
| | | | | | | |
Collapse
|
29
|
Sharma M, Gaona C, Roland J, Anderson N, Freudenberg Z, Leuthardt EC. Ipsilateral directional encoding of joystick movements in human cortex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:5502-5505. [PMID: 19965051 PMCID: PMC2929701 DOI: 10.1109/iembs.2009.5334559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The majority of Brain Computer Interfaces have relied on signals related to primary motor cortex and the operation of the contralateral limb. Recently, the physiology associated with same-sided (ipsilateral) motor movements has been found to have a unique cortical physiology. This study sets out to assess whether more complex motor movements can be discerned utilizing ipsilateral cortical signals. In this study, three invasively monitored human subjects were recorded while performing a center out joystick task with the hand ipsilateral to the hemispheric subdural grid array. It was found that directional tuning was present in ipsilateral cortex. This information was encoded in both distinct anatomic populations and spectral distributions. These findings support the notion that ipsilateral signals may provide added information for BCI operation in the future.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wisneski KJ, Anderson N, Schalk G, Smyth M, Moran D, Leuthardt EC. Unique cortical physiology associated with ipsilateral hand movements and neuroprosthetic implications. Stroke 2008; 39:3351-9. [PMID: 18927456 DOI: 10.1161/strokeaha.108.518175] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Brain computer interfaces (BCIs) offer little direct benefit to patients with hemispheric stroke because current platforms rely on signals derived from the contralateral motor cortex (the same region injured by the stroke). For BCIs to assist hemiparetic patients, the implant must use unaffected cortex ipsilateral to the affected limb. This requires the identification of distinct electrophysiological features from the motor cortex associated with ipsilateral hand movements. METHODS In this study we studied 6 patients undergoing temporary placement of intracranial electrode arrays. Electrocorticographic (ECoG) signals were recorded while the subjects engaged in specific ipsilateral or contralateral hand motor tasks. Spectral changes were identified with regards to frequency, location, and timing. RESULTS Ipsilateral hand movements were associated with electrophysiological changes that occur in lower frequency spectra, at distinct anatomic locations, and earlier than changes associated with contralateral hand movements. In a subset of 3 patients, features specific to ipsilateral and contralateral hand movements were used to control a cursor on a screen in real time. In ipsilateral derived control this was optimal with lower frequency spectra. CONCLUSIONS There are distinctive cortical electrophysiological features associated with ipsilateral movements which can be used for device control. These findings have implications for patients with hemispheric stroke because they offer a potential methodology for which a single hemisphere can be used to enhance the function of a stroke induced hemiparesis.
Collapse
Affiliation(s)
- Kimberly J Wisneski
- Department of Biomedical Engineering, Washington University in St Louis, MO, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Asymmetries in upper limb position sense have been explained in the context of a left limb advantage derived from differences in hemispheric specialization in the processing of kinesthetic information. However, it is not clearly understood how the comparison of perceptual information associated with passive limb displacement and the corresponding matching movement resulting from the execution of a motor command contributes to these differences. In the present study, upper limb position sense was investigated in 12 right-hand-dominant young adults performing wrist position matching tasks which varied in terms of interhemispheric transfer, memory retrieval and whether the reference position was provided by the same or opposite limb. Right and left hand absolute matching errors were similar when the reference and matching positions were produced by the same hand but were 36% greater when matching the reference position with the opposite hand. When examining the constant errors generated from matching movements made with the same hand that provided the reference, the right and left hand matching errors (approximately 3 degrees) were similar. However, when matching with the opposite limb, a large overshoot (P < 0.05) characterized the error when the right hand matched the left hand reference while a large undershoot (P < 0.05) characterized the error when the left hand matched the right hand reference. The overshoot and undershoot were of similar magnitude (approximately 4 degrees). Although asymmetries in the central processing of proprioceptive information such as interhemispheric transfer may exist, the present study suggests that asymmetries in position sense predominantly result from a difference in the "gain of the respective proprioceptive sensory-motor loops". This new hypothesis is strongly supported by a dual-linear model representing the right and left hand sensory-motor systems as well as morphological and physiological data.
Collapse
|
32
|
Vitali P, Minati L, D'Incerti L, Maccagnano E, Mavilio N, Capello D, Dylgjeri S, Rodriguez G, Franceschetti S, Spreafico R, Villani F. Functional MRI in Malformations of Cortical Development: Activation of Dysplastic Tissue and Functional Reorganization. J Neuroimaging 2008; 18:296-305. [DOI: 10.1111/j.1552-6569.2007.00164.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Schwarcz A, Auer T, Janszky J, Doczi T, Merboldt KD, Frahm J. TTC post-processing is beneficial for functional MRI at low magnetic field: a comparative study at 1 T and 3 T. Eur Radiol 2008; 18:2594-600. [PMID: 18523777 DOI: 10.1007/s00330-008-1046-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
This study aimed to broaden the diagnostic possibilities of low-field MRI systems (i) by examining the feasibility of functional MRI of human brain activation at 1 T, and (ii) by assessing its reliability in comparison with acquisitions at 3 T. Eight subjects were studied at 1 T and 3T using standard echo-planar-imaging sequences at 3-mm isotropic spatial resolution. Paradigms included silent word generation, sequential finger-to-thumb opposition, and passive finger movements. Image post-processing was carried out either with statistical parametric mapping (SPM5, single-subject and group analysis) or with a two-threshold correlation (TTC, single-subject analysis only) analysis. Single-subject analysis with SPM5 resulted in 3-5 times more activated pixels at 3 T than at 1 T in the examined Broca and sensorimotor regions. By comparison, the TTC single-subject analysis yielded the same amount of activated pixels at 3 T and 1 T. Moreover, this number was identical to that obtained with SPM at 3 T. The group analysis with SPM5 resulted in very similar numbers of activated pixels at both field strengths. The present findings suggest that a field strength of 1 T combined with adequate post-processing allows for reliable functional MRI studies of human brain activation. High-field advantages are therefore best invested in higher spatial resolution.
Collapse
Affiliation(s)
- Attila Schwarcz
- Department of Neurosurgery, University of Pécs, Pécs, Hungary.
| | | | | | | | | | | |
Collapse
|
34
|
Houweling S, Daffertshofer A, van Dijk BW, Beek PJ. Neural changes induced by learning a challenging perceptual-motor task. Neuroimage 2008; 41:1395-407. [PMID: 18485745 DOI: 10.1016/j.neuroimage.2008.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 03/05/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022] Open
Abstract
We studied the neural changes accompanying the learning of a perceptual-motor task involving polyrhythmic bimanual force production. Motor learning was characterized by an increase in stability of performance. To assess after-effects in the corresponding neural network, magnetoencophalographic and electromyographic signals were recorded and analyzed in terms of (event-related) amplitude changes and synchronization patterns. The topology of the network was first identified using a beamformer analysis, which revealed differential effects of activation in cortical areas and cerebellar hemispheres. We found event-related (de-)synchronization of beta-activity in bilateral cortical motor areas and alpha-modulations in the cerebellum. The alpha-modulation increased after learning and, simultaneously, the bilateral M1 coupling increased around the movement frequency reflecting improved motor timing. Furthermore, the inter-hemispheric gamma-synchronization between primary motor areas decreased, which may reflect a reduced attentional demand after learning.
Collapse
Affiliation(s)
- S Houweling
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Ferretti A, Babiloni C, Arienzo D, Del Gratta C, Rossini PM, Tartaro A, Romani GL. Cortical brain responses during passive nonpainful median nerve stimulation at low frequencies (0.5-4 Hz): an fMRI study. Hum Brain Mapp 2007; 28:645-53. [PMID: 17094120 PMCID: PMC6871404 DOI: 10.1002/hbm.20292] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous findings have shown that the human somatosensory cortical systems that are activated by passive nonpainful electrical stimulation include the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII), and bilateral insula. The present study tested the hypothesis that these areas have different sensitivities to stimulation frequency in the condition of passive stimulation. Functional MRI (fMRI) was recorded in 24 normal volunteers during nonpainful electrical median nerve stimulations at 0.5, 1, 2, and 4 Hz repetition rates in separate recording blocks in pseudorandom order. Results of the blood oxygen level-dependent (BOLD) effect showed that the contralateral SI, the bilateral SII, and the bilateral insula were active during these stimulations. As a major finding, only the contralateral SI increased its activation with the increase of the stimulus frequency at the mentioned range. The fact that nonpainful median-nerve electrical stimuli at 4 Hz induces a larger BOLD response is of interest both for basic research and clinical applications in subjects unable to perform cognitive tasks in the fMRI scanner.
Collapse
Affiliation(s)
- Antonio Ferretti
- ITAB-Institute for Advanced Biomedical Technologies, Foundation Università Gabriele D'Annunzio, Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Auer T, Schwarcz A, Doczi T, Merboldt KD, Frahm J. A novel group analysis for functional MRI of the human brain based on a two-threshold correlation (TTC) method. J Neurosci Methods 2007; 167:335-9. [PMID: 17913237 DOI: 10.1016/j.jneumeth.2007.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 08/01/2007] [Accepted: 08/19/2007] [Indexed: 11/19/2022]
Abstract
This work presents a new group analysis for functional MRI of human brain activation. The two-threshold correlation (TTC) method determines two statistical thresholds by estimating the noise distribution underlying the summed histogram of correlation coefficients (CC) from all sections and subjects. The probabilistic CC thresholds (p<0.0001 for the identification of highly significant activation centers and p<0.05 for limiting the iterative addition of directly neighboring voxels to these centers) are applied to the group CC maps for each section. These maps may be reconstructed by taking the maximum (MAX) or mean (MEAN) CC value of all subjects for a particular voxel. Experimental analyses involved functional echo-planar imaging of sequential finger-to-thumb opposition and silent word generation at 3T (eight subjects). Preprocessing included motion correction, spatial filtering, and normalization to MNI space. While the results for the TTC MAX approach were very similar to those obtained for a standard SPM analysis, the TTC MEAN approach turned out to be more conservative emphasizing voxels that are activated in most rather than in only a few subjects. The new method is simple, fast, and robust by linking two thresholds in a physiologically meaningful manner.
Collapse
Affiliation(s)
- Tibor Auer
- Department of Neurosurgery, University of Pécs, H-7624 Pécs, Hungary
| | | | | | | | | |
Collapse
|
37
|
Banerjee A, Jirsa VK. How do neural connectivity and time delays influence bimanual coordination? BIOLOGICAL CYBERNETICS 2007; 96:265-78. [PMID: 17082953 DOI: 10.1007/s00422-006-0114-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 09/28/2006] [Indexed: 05/12/2023]
Abstract
Multilevel crosstalk as a neural basis for motor control has been widely discussed in the literature. Since no natural process is instantaneous, any crosstalk model should incorporate time delays, which are known to induce temporal coupling between functional elements and stabilize or destabilize a particular mode of coordination. In this article, we systematically study the dynamics of rhythmic bimanual coordination under the influence of varying connection topology as realized by callosal fibers, cortico-thalamic projections, and crossing peripheral fibers. Such connectivity contributes to various degrees of neural crosstalk between the effectors which we continuously parameterize in a mathematical model. We identify the stability regimes of bimanual coordination as a function of the degree of neural crosstalk, movement amplitude and the time delays involved due to signal processing. Prominent examples include explanations of the decreased stability of the antiphase mode of coordination in split brain patients and the role of coupling in mediating bimanual coordination.
Collapse
Affiliation(s)
- Arpan Banerjee
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
38
|
Jirsch JD, Bernasconi N, Villani F, Vitali P, Avanzini G, Bernasconi A. Sensorimotor organization in double cortex syndrome. Hum Brain Mapp 2006; 27:535-43. [PMID: 16124015 PMCID: PMC6871446 DOI: 10.1002/hbm.20197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Subcortical band heterotopia is a diffuse malformation of cortical development related to pharmacologically intractable epilepsy. On magnetic resonance imaging (MRI), patients with "double cortex" syndrome (DCS) present with a band of heterotopic gray matter separated from the overlying cortex by a layer of white matter. The function and connectivity of the subcortical heterotopic band in humans is only partially understood. We studied six DCS patients with bilateral subcortical band heterotopias and six healthy controls using functional MRI (fMRI). In controls, simple motor task elicited contralateral activation of the primary motor cortex (M1) and ipsilateral activation of the cerebellum and left supplementary motor area (SMA). All DCS patients showed task-related contralateral activation of both M1 and the underlying heterotopic band. Ipsilateral motor activation was seen in 4/6 DCS patients. Furthermore, there were additional activations of nonprimary normotopic cortical areas. The sensory stimulus resulted in activation of the contralateral primary sensory cortex (SI) and the thalamus in all healthy subjects. The left sensory task also induced a contralateral activation of the insular cortex. Sensory activation of the contralateral SI was seen in all DCS patients and secondary somatosensory areas in 5/6. The heterotopic band beneath SI became activated in 3/6 DCS patients. Activations were also seen in subcortical structures for both paradigms. In DCS, motor and sensory tasks induce an activation of the subcortical heterotopic band. The recruitment of bilateral primary areas and higher-order association normotopic cortices indicates the need for a widespread network to perform simple tasks.
Collapse
Affiliation(s)
- Jeffrey D. Jirsch
- Montreal Neurological Institute and Hospital, Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, Department of Neurology, McGill University, Montreal, Quebec, Canada
| | | | - Paolo Vitali
- National Neurologic Institute Carlo Besta, Milan, Italy
| | | | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, Department of Neurology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE. Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 2006; 31:1453-74. [PMID: 16571375 PMCID: PMC2034289 DOI: 10.1016/j.neuroimage.2006.02.004] [Citation(s) in RCA: 533] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 01/31/2006] [Accepted: 02/03/2006] [Indexed: 11/24/2022] Open
Abstract
The mesial premotor cortex (pre-supplementary motor area and supplementary motor area proper), lateral premotor cortex (dorsal premotor cortex and ventral premotor cortex), and primary sensorimotor cortex (primary motor cortex and primary somatosensory cortex) have been identified as key cortical areas for sensorimotor function. However, the three-dimensional (3-D) anatomic boundaries between these regions remain unclear. In order to clarify the locations and boundaries for these six sensorimotor regions, we surveyed 126 articles describing pre-supplementary motor area, supplementary motor area proper, dorsal premotor cortex, ventral premotor cortex, primary motor cortex, and primary somatosensory cortex. Using strict inclusion criteria, we recorded the reported normalized stereotaxic coordinates (Talairach and Tournoux or MNI) from each experiment. We then computed the probability distributions describing the likelihood of activation, and characterized the shape, extent, and area of each sensorimotor region in 3-D. Additionally, we evaluated the nature of the overlap between the six sensorimotor regions. Using the findings from this meta-analysis, along with suggestions and guidelines of previous researchers, we developed the Human Motor Area Template (HMAT) that can be used for ROI analysis. HMAT is available through e-mail from the corresponding author.
Collapse
Affiliation(s)
- Mary A Mayka
- Department of Movement Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
40
|
Koeneke S, Lutz K, Herwig U, Ziemann U, Jäncke L. Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability. Exp Brain Res 2006; 174:199-209. [PMID: 16604315 DOI: 10.1007/s00221-006-0440-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
There is evidence of a strong capacity for functional and structural reorganization in the human motor system. However, past research has focused mainly on complex movement sequences over rather short training durations. In this study we investigated changes in corticospinal excitability associated with longer training of elementary, maximum-speed tapping movements. All participating subjects were consistent right-handers and were trained using either the right (experiment 1) or the left thumb (experiment 2). Transcranial magnetic stimulation was applied to obtain motor evoked potentials (MEPs) from the abductor pollicis brevis (APB) muscle of the right and the left hand before and after training. As a result of training, a significant increase was observed in tapping speed accompanied by increased MEPs, recorded from the trained APB muscle, following contralateral M1 stimulation. In the case of subdominant-hand training we additionally demonstrate increased MEP amplitudes evoked at the right APB (untrained hand) in the first training week. Enhanced corticospinal excitability associated with practice of elementary movements may constitute a necessary precursor for inducing plastic changes within the motor system. The involvement of the ipsilateral left M1 likely reflects the predominant role of the left M1 in the general control (modification) of simple motor parameters in right-handed subjects.
Collapse
Affiliation(s)
- S Koeneke
- Division Neuropsychology, Institute of Psychology, University of Zurich, Treichlerstrasse 10, 8032, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
41
|
Mostofsky SH, Rimrodt SL, Schafer JGB, Boyce A, Goldberg MC, Pekar JJ, Denckla MB. Atypical motor and sensory cortex activation in attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study of simple sequential finger tapping. Biol Psychiatry 2006; 59:48-56. [PMID: 16139806 DOI: 10.1016/j.biopsych.2005.06.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 05/12/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) has been shown to be associated with anomalous motor development, including excessive overflow movements. The neurological basis of these deficits has not been established. Functional magnetic resonance imaging (fMRI) was used to determine whether differences in brain activation during sequential finger tapping are present in children with ADHD compared with typically developing control subjects. METHODS Twenty-two right-handed children between 8 and 12 years old, 11 with ADHD and 11 typically developing control subjects closely matched for age and gender, performed self-paced sequential finger tapping during fMRI acquisition. RESULTS There were no significant between-group differences in speed of sequential finger tapping. The between-group whole-brain comparison showed greater magnitude of activation for control subjects than children with ADHD in the right superior parietal lobe during both right-handed and left-handed finger tapping. The region-of-interest analysis within Brodmann Area 4 revealed that children with ADHD showed a significantly smaller extent of fMRI activation in the primary motor cortex contralateral to the finger-sequencing hand. CONCLUSIONS Despite similar speed of sequential finger tapping, children with ADHD showed decreased contralateral motor cortex and right parietal cortex activation during both right-handed finger sequencing (RHFS) and left-handed finger sequencing (LHFS). The fMRI findings suggest that children with ADHD have anomalous development of cortical systems necessary for execution of patterned movements.
Collapse
|
42
|
Di Russo F, Pitzalis S, Aprile T, Spinelli D. Effect of Practice on Brain Activity: An Investigation in Top-Level Rifle Shooters. Med Sci Sports Exerc 2005; 37:1586-93. [PMID: 16177612 DOI: 10.1249/01.mss.0000177458.71676.0d] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The study investigated the effect of motor experience on the brain activity associated with self-paced movement of the left and right index fingers. METHOD Movement-related cortical potentials (MRCP) are indices of cortical activation related to movement preparation and execution. MRCP were recorded in two groups of subjects: high-level rifle shooters and control subjects without any shooting experience. All subjects were right-handed. Four MRCP components were considered: Bereitschaftspotential (BP), negative slope (NS'), motor potential (MP), and reafferent positivity (RAP). The BP and NS' components, which emerged before movement onset, were associated with preparation for voluntary movements. RESULTS Differences between groups were found in the amplitude and latency of these components for right finger flexion (but not for left finger flexion). BP and NS' latencies were longer for shooters than for controls; amplitudes were smaller. In contrast, no difference was found between groups for MP and RAP amplitude or latency. Source analysis, based on a realistic model of the brain, showed with high reliability (97/% of variance explained) that the BP (time window: -1500 400 ms), NS' (-400 50 ms), MP (0 +100 ms) and RAP (+100 +200 ms) components were generated in the supplementary motor area, premotor area, primary motor area, and somatosensory area, respectively. No difference was found between groups regarding the localization of generators of all components. CONCLUSION Results are discussed in terms of neural economy of motor preparation due to the specific practice involved in shooting.
Collapse
Affiliation(s)
- Francesco Di Russo
- Department of Education in Sport and Human Movement, University for Human Movement, Rome, Italy.
| | | | | | | |
Collapse
|
43
|
Daffertshofer A, Peper CLE, Beek PJ. Stabilization of bimanual coordination due to active interhemispheric inhibition: a dynamical account. BIOLOGICAL CYBERNETICS 2005; 92:101-109. [PMID: 15685391 DOI: 10.1007/s00422-004-0539-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 12/01/2004] [Indexed: 05/24/2023]
Abstract
Based on recent brain-imaging data and congruent theoretical insights, a dynamical model is derived to account for the patterns of brain activity observed during stable performance of bimanual multifrequency patterns, as well as during behavioral instabilities in the form of phase transitions between such patterns. The model incorporates four dynamical processes, defined over both motor and premotor cortices, which are coupled through inhibitory and excitatory inter- and intrahemispheric connections. In particular, the model underscores the crucial role of interhemispheric inhibition in reducing the interference between disparate frequencies during stable performance, as well as the failure of this reduction during behavioral transitions. As an aside, the model also accounts for in- and antiphase preferences during isofrequency movements. The viability of the proposed model is illustrated by magnetoencephalographic signals that were recorded from an experienced subject performing a polyrhythmic tapping task that was designed to induce transitions between multifrequency patterns. Consistent with the models dynamics, contra- and ipsilateral cortical areas of activation were frequency- and phase-locked, while their activation strength changed markedly in the vicinity of transitions in coordination.
Collapse
Affiliation(s)
- A Daffertshofer
- Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
44
|
Ferretti A, Del Gratta C, Babiloni C, Caulo M, Arienzo D, Tartaro A, Rossini PM, Romani GL. Functional topography of the secondary somatosensory cortex for nonpainful and painful stimulation of median and tibial nerve: an fMRI study. Neuroimage 2004; 23:1217-25. [PMID: 15528121 DOI: 10.1016/j.neuroimage.2004.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 07/28/2004] [Accepted: 08/03/2004] [Indexed: 11/21/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) was used to study the cortical activity of the bilateral secondary somatosensory cortex (SII) during nonpainful (motor threshold) and painful electrical stimulation of median and tibial nerves. fMRI recordings were performed in eight normal young adults. The aim was at evaluating the working hypothesis of a spatial segregation of nonpainful and painful populations not only in the "hand" representation of SII [Ferretti, A., Babiloni, C., Del Gratta, C., Caulo, M., Tartaro, A., Bonomo, L., Rossini, P.M., Romani, G.L., 2003. Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study. NeuroImage 20, 1625-1638.] but also in its "foot" representation. Results showed that, in both "hand" and "foot" representations of bilateral SII, the activity elicited by the painful stimulation was localized more posteriorly with respect to that elicited by the nonpainful stimulation. A fine spatial analysis of the SII responses revealed a clear somatotopic organization in the bilateral SII subregion especially reactive to the nonpainful stimuli (i.e., segregation of the hand and foot representations). In contrast, it was not possible to disentangle the "hand" and "foot" representations of SII for painful stimuli. These results extended to the SII "foot" representation previous evidence of a spatial segregation in the SII "hand" representation of subregions for the painful and nonpainful stimuli. Furthermore, they suggest that noxious information is not somatotopically represented in human bilateral SII, at least as inferred from fMRI data at 1.5 T.
Collapse
Affiliation(s)
- Antonio Ferretti
- Department of Clinical Sciences and Bio-imaging, University of Chieti, Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Huang MX, Harrington DL, Paulson KM, Weisend MP, Lee RR. Temporal dynamics of ipsilateral and contralateral motor activity during voluntary finger movement. Hum Brain Mapp 2004; 23:26-39. [PMID: 15281139 PMCID: PMC6872033 DOI: 10.1002/hbm.20038] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of motor activity ipsilateral to movement remains a matter of debate, due in part to discrepancies among studies in the localization of this activity, when observed, and uncertainty about its time course. The present study used magnetoencephalography (MEG) to investigate the spatial localization and temporal dynamics of contralateral and ipsilateral motor activity during the preparation of unilateral finger movements. Eight right-handed normal subjects carried out self-paced finger-lifting movements with either their dominant or nondominant hand during MEG recordings. The Multi-Start Spatial Temporal multi-dipole method was used to analyze MEG responses recorded during the movement preparation and early execution stage (-800 msec to +30 msec) of movement. Three sources were localized consistently, including a source in the contralateral primary motor area (M1) and in the supplementary motor area (SMA). A third source ipsilateral to movement was located significantly anterior, inferior, and lateral to M1, in the premotor area (PMA) (Brodmann area [BA] 6). Peak latency of the SMA and the ipsilateral PMA sources significantly preceded the peak latency of the contralateral M1 source by 60 msec and 52 msec, respectively. Peak dipole strengths of both the SMA and ipsilateral PMA sources were significantly weaker than was the contralateral M1 source, but did not differ from each other. Altogether, the results indicated that the ipsilateral motor activity was associated with premotor function, rather than activity in M1. The time courses of activation in SMA and ipsilateral PMA were consistent with their purported roles in planning movements.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Center for Functional Brain Imaging, New Mexico VA Health Care System, Albuquerque, New Mexico 87108, USA.
| | | | | | | | | |
Collapse
|
46
|
Rogers BP, Carew JD, Meyerand ME. Hemispheric asymmetry in supplementary motor area connectivity during unilateral finger movements. Neuroimage 2004; 22:855-9. [PMID: 15193615 DOI: 10.1016/j.neuroimage.2004.02.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/22/2004] [Accepted: 02/18/2004] [Indexed: 11/30/2022] Open
Abstract
Studies of unilateral finger movement in right-handed subjects have shown asymmetrical patterns of activation in primary motor cortex. Some studies have measured a similar asymmetry in the supplementary motor area (SMA), but others have not. To shed more light on the symmetry of function in the SMA, we used path analysis of functional MRI data to investigate effective connectivity during a unilateral finger movement task. We observed a slight asymmetry in task activation: left SMA was equally active during movement of either hand, while right SMA was more active for left-hand movement, suggesting a dominant role of left SMA. In addition, we tested for a corresponding asymmetry in the influence of SMA on sensorimotor cortex (SMC) using a path model based on the well-established principle that SMA is involved in motor control and SMC in execution. We observed that the influence of left SMA on left SMC increased during right-hand movement, and the influence of left SMA on right SMC increased during left-hand movement. However, there was no significant hand-dependent change in the influences of the right SMA. This asymmetry in connectivity implies that left SMA does play a dominant role in unilateral movements of either hand in right handers. The experiment also provides a basis for further studies of motor system connectivity in healthy or patient populations.
Collapse
Affiliation(s)
- Baxter P Rogers
- Department of Medical Physics, Medical School, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
47
|
Sabaté M, González B, Rodríguez M. Brain lateralization of motor imagery: motor planning asymmetry as a cause of movement lateralization. Neuropsychologia 2004; 42:1041-9. [PMID: 15093143 DOI: 10.1016/j.neuropsychologia.2003.12.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
Movement asymmetry in humans and animals is often considered as being induced by the brain lateralization of the motor system. In the present work, the hemispheric asymmetry for motor planning as a cause of behavioral lateralization was examined. This study was carried out on normal volunteers and patients suffering unilateral brain damage caused by a stroke. Motor planning was evaluated by using the motor imagery of hand movement, a mental representation of a motor pattern that includes its internal simulation but not its real execution. The present study shows marked similarities between virtual movement executed during motor imagery and real movements. Thus, performance time showed a high correlation between real and virtual movements in the following conditions: (1) during dominant and non-dominant hand movements; (2) in simple and complex motor tasks; (3) in young control subjects; (4) in stroke patients; and (5) control subjects aged-matched to stroke patients. Brain strokes increased the performance time in both real and virtual movements. Left-brain strokes decreased the velocity of the real movements in both hands, whereas right-brain strokes mainly disturbed movements in the left hand. A similar effect was observed for virtual movements, suggesting a left-brain dominance for motor planning in humans. However, two-handed movement tasks suggest a complex interaction during motor planning, an interaction that facilitates motor performance during mirror movements and delays motor execution during non-mirror movements.
Collapse
Affiliation(s)
- Magdalena Sabaté
- Rehabilitation Service, Department of Physical Medicine and Pharmacology, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands, Spain.
| | | | | |
Collapse
|
48
|
Haaland KY, Elsinger CL, Mayer AR, Durgerian S, Rao SM. Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. J Cogn Neurosci 2004; 16:621-36. [PMID: 15165352 DOI: 10.1162/089892904323057344] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Studies in brain damaged patients conclude that the left hemisphere is dominant for controlling heterogeneous sequences performed by either hand, presumably due to the cognitive resources involved in planning complex sequential movements. To determine if this lateralized effect is due to asymmetries in primary sensorimotor or association cortex, whole-brain functional magnetic resonance imaging was used to measure differences in volume of activation while healthy right-handed subjects performed repetitive (simple) or heterogeneous (complex) finger sequences using the right or left hand. Advanced planning, as evidenced by reaction time to the first key press, was greater for the complex than simple sequences and for the left than right hand. In addition to the expected greater contralateral activation in the sensorimotor cortex (SMC), greater left hemisphere activation was observed for left, relative to right, hand movements in the ipsilateral left superior parietal area and for complex, relative to simple, sequences in the left premotor and parietal cortex, left thalamus, and bilateral cerebellum. No such volumetric asymmetries were observed in the SMC. Whereas the overall MR signal intensity was greater in the left than right SMC, the extent of this asymmetry did not vary with hand or complexity level. In contrast, signal intensity in the parietal and premotor cortex was greater in the left than right hemisphere and for the complex than simple sequences. Signal intensity in the caudal anterior cerebellum was greater bilaterally for the complex than simple sequences. These findings suggest that activity in the SMC is associated with execution requirements shared by the simple and complex sequences independent of their differential cognitive requirements. In contrast, consistent with data in brain damaged patients, the left dorsal premotor and parietal areas are engaged when advanced planning is required to perform complex motor sequences that require selection of different effectors and abstract organization of the sequence, regardless of the performing hand.
Collapse
Affiliation(s)
- Kathleen Y Haaland
- New Mexico Veterans Affairs Health Care System and University of New Mexico, USA
| | | | | | | | | |
Collapse
|
49
|
Ferretti A, Babiloni C, Gratta CD, Caulo M, Tartaro A, Bonomo L, Rossini PM, Romani GL. Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study. Neuroimage 2003; 20:1625-38. [PMID: 14642473 DOI: 10.1016/j.neuroimage.2003.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The regional activity of the contralateral primary (SI) and the bilateral secondary (SII) somatosensory areas during median nerve stimulations at five intensity levels (ranging from nonpainful motor threshold to moderate pain) was studied by means of functional magnetic resonance imaging (fMRI). The aim was to characterize the functional topography of SII compared to SI as a function of the stimulus intensity. Results showed that the galvanic stimulation of the median nerve activated the contralateral SI at all stimulus intensities. When considered as a single region, SII was more strongly activated in the contralateral than in the ipsilateral hemisphere. When a finer spatial analysis of the SII responses was performed, the activity for the painful stimulation was localized more posteriorly compared to that for the nonpainful stimulation. This is the first report on such a SII segregation for transient galvanic stimulations. The activity (relative signal intensity) of this posterior area increased with the increase of the stimulus intensity. These results suggest a spatial segregation of the neural populations that process signals conveyed by dorsal column-medial lemniscus (nonpainful signals) and neospinothalamic (painful signals) pathways. Further fMRI experiments should evaluate the functional properties of these two SII subregions during tasks involving sensorimotor integration, learning, and memory demands.
Collapse
Affiliation(s)
- Antonio Ferretti
- Department of Clinical Sciences and Bio-imaging, University of Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Vandermeeren Y, Sébire G, Grandin CB, Thonnard JL, Schlögel X, De Volder AG. Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study. Neuroimage 2003; 20:289-301. [PMID: 14527589 DOI: 10.1016/s1053-8119(03)00262-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using functional magnetic resonance imaging, the brain activation related to unilateral sequential finger-to-thumb opposition was studied in six children with a right congenital hemiplegia of cortical origin. They were compared to six age-matched controls. In the control group, movements with either hand asymmetrically activated the sensorimotor cortex and premotor areas in both cerebral hemispheres with a typical contralateral predominance. By contrast, paretic finger movements activated both hemispheres in the hemiplegic patients, with a strong ipsilateral predominance favoring the undamaged hemisphere. The activation induced by nonparetic finger movements was restricted to the contralateral undamaged hemisphere. Furthermore, the level of activation in the undamaged cortex was partly related to residual finger dexterity, according to covariance analysis. These activation patterns indicate an adaptive reorganization of the cortical motor networks in this group of patients, with a prominent involvement of the undamaged hemisphere in the control of finger movements with either hand.
Collapse
Affiliation(s)
- Yves Vandermeeren
- Laboratory of Neurophysiology, Louvain School of Medicine, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|