1
|
Suárez-Pereira I, López-Martín C, Camarena-Delgado C, Llorca-Torralba M, González-Saiz F, Ruiz R, Santiago M, Berrocoso E. Nerve Injury Triggers Time-dependent Activation of the Locus Coeruleus, Influencing Spontaneous Pain-like Behavior in Rats. Anesthesiology 2024; 141:131-150. [PMID: 38602502 DOI: 10.1097/aln.0000000000005006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
BACKGROUND Dynamic changes in neuronal activity and in noradrenergic locus coeruleus (LC) projections have been proposed during the transition from acute to chronic pain. Thus, the authors explored the cellular cFos activity of the LC and its projections in conjunction with spontaneous pain-like behavior in neuropathic rats. METHODS Tyrosine hydroxylase:Cre and wild-type Long-Evans rats, males and females, were subjected to chronic constriction injury (CCI) for 2 (short-term, CCI-ST) or 30 days (long-term, CCI-LT), evaluating cFos and Fluoro-Gold expression in the LC, and its projections to the spinal cord (SC) and rostral anterior cingulate cortex (rACC). These tests were carried out under basal conditions (unstimulated) and after noxious mechanical stimulation. LC activity was evaluated through chemogenetic and pharmacologic approaches, as were its projections, in association with spontaneous pain-like behaviors. RESULTS CCI-ST enhanced basal cFos expression in the LC and in its projection to the SC, which increased further after noxious stimulation. Similar basal activation was found in the neurons projecting to the rACC, although this was not modified by stimulation. Strong basal cFos expression was found in CCI-LT, specifically in the projection to the rACC, which was again not modified by stimulation. No cFos expression was found in the CCI-LT LCipsilateral (ipsi)/contralateral (contra)→SC. Chemogenetics showed that CCI-ST is associated with greater spontaneous pain-like behavior when the LCipsi is blocked, or by selectively blocking the LCipsi→SC projection. Activation of the LCipsi or LCipsi/contra→SC dampened pain-like behavior. Moreover, Designer Receptor Exclusively Activated by Designer Drugs (DREADDs)-mediated inactivation of the CCI-ST LCipsi→rACC or CCI-LT LCipsi/contra→rACC pathway, or intra-rACC antagonism of α-adrenoreceptors, also dampens pain-like behavior. CONCLUSIONS In the short term, activation of the LC after CCI attenuates spontaneous pain-like behaviors via projections to the SC while increasing nociception via projections to the rACC. In the long term, only the projections from the LC to the rACC contribute to modulate pain-like behaviors in this model. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, Faculty of Medicine, University of Cádiz, Cádiz, Spain; Biomedical Research and Innovation Institute of Cádiz (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - Carolina López-Martín
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, Faculty of Medicine, University of Cádiz, Cádiz, Spain; Biomedical Research and Innovation Institute of Cádiz (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - Carmen Camarena-Delgado
- Biomedical Research and Innovation Institute of Cádiz (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain; IRCCS Humanitas Research Hospital, Milan, Italy; Institute of Neuroscience (IN-CNR), National Research Council of Italy, Milan, Italy
| | - Meritxell Llorca-Torralba
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Cell Biology and Histology, University of Cádiz, Cádiz, Spain
| | - Francisco González-Saiz
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain; Department of Neuroscience, Faculty of Medicine, University of Cádiz, Cádiz, Spain; Community Mental Health Unit of Villamartin, University Hospital of Jerez de la Frontera, Cádiz, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Institute of Biomedicine of Sevilla (IBiS) - University Hospital Virgen del Rocío/CSIC/University of Sevilla, Sevilla, Spain
| | - Martiniano Santiago
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Institute of Biomedicine of Sevilla (IBiS) - University Hospital Virgen del Rocío/CSIC/University of Sevilla, Sevilla, Spain
| | - Esther Berrocoso
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, Faculty of Medicine, University of Cádiz, Cádiz, Spain; Biomedical Research and Innovation Institute of Cádiz (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain
| |
Collapse
|
2
|
Drummond PD. Anticipating noxious stimulation rather than afferent nociceptive input may evoke pupil asymmetry. Auton Neurosci 2024; 253:103179. [PMID: 38677128 DOI: 10.1016/j.autneu.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Unilateral nociceptive stimulation is associated with subtle signs of pupil asymmetry that may reflect lateralized activity in the locus coeruleus. To explore drivers of this pupil asymmetry, electrical stimuli, delivered alone or 200 ms before or after an acoustic startle stimulus, were administered to one ankle under four experimental conditions: with or without a 1.6 s anticipatory period, or while the forearm ipsilateral or contralateral to the electrical stimulus was heated tonically to induce moderate pain (15 healthy participants in each condition). Pupil diameter was measured at the start of each trial, at stimulus delivery, and each second for 5 s after stimulus delivery. At the start of the first trial, the pupil ipsilateral to the side on which electric shocks were later delivered was larger than the contralateral pupil. Both pupils dilated robustly during the anticipatory period and dilated further during single- and dual-stimulus trials. However, pupil asymmetry persisted throughout the experiment. Tonically-applied forearm heat-pain modulated the pupillary response to phasic electrical stimuli, with a slight trend for dilatation to be greater contralateral to the forearm being heated. Together, these findings suggest that focusing anxiously on the expected site of noxious stimulation was associated with dilatation of the ipsilateral pupil whereas phasic nociceptive stimuli and psychological arousal triggered bilateral pupillary dilatation. It was concluded that preparatory cognitive activity rather than phasic afferent nociceptive input is associated with pupillary signs of lateralized activity in the locus coeruleus.
Collapse
Affiliation(s)
- Peter D Drummond
- School of Psychology and Centre for Healthy Ageing, College of Health and Education, Murdoch University, 90 South Street, Murdoch WA 6150, Australia.
| |
Collapse
|
3
|
Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022; 91:786-797. [PMID: 35164940 DOI: 10.1016/j.biopsych.2021.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain.
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Res 2019; 1709:1-15. [DOI: 10.1016/j.brainres.2018.08.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/22/2022]
|
5
|
Lopes PSS, Campos ACP, Fonoff ET, Britto LRG, Pagano RL. Motor cortex and pain control: exploring the descending relay analgesic pathways and spinal nociceptive neurons in healthy conscious rats. Behav Brain Funct 2019; 15:5. [PMID: 30909927 PMCID: PMC6432755 DOI: 10.1186/s12993-019-0156-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
Motor cortex stimulation (MCS) is an effective therapy for refractory neuropathic pain. MCS increases the nociceptive threshold in healthy rats via endogenous opioids, inhibiting thalamic nuclei and activating the periaqueductal gray. It remains unclear how the motor cortex induces top-down modulation of pain in the absence of persistent pain. Here, we investigated the main nuclei involved in the descending analgesic pathways and the spinal nociceptive neurons in rats that underwent one session of MCS and were evaluated with the paw pressure nociceptive test. The pattern of neuronal activation in the dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), locus coeruleus (LC), and dorsal horn of the spinal cord (DHSC) was assessed by immunoreactivity (IR) for Egr-1 (a marker of activated neuronal nuclei). IR for serotonin (5HT) in the DRN and NRM, tyrosine hydroxylase (TH) in the LC, and substance P (SP) and enkephalin (ENK) in the DHSC was also evaluated. MCS increased the nociceptive threshold of the animals; this increase was accompanied by activation of the NRM, while DRN activation was unchanged. However, cortical stimulation induced an increase in 5HT-IR in both serotonergic nuclei. MCS did not change the activation pattern or TH-IR in the LC, and it inhibited neuronal activation in the DHSC without altering SP or ENK-IR. Taken together, our results suggest that MCS induces the activation of serotonergic nuclei as well as the inhibition of spinal neurons, and such effects may contribute to the elevation of the nociceptive threshold in healthy rats. These results allow a better understanding of the circuitry involved in the antinociceptive top-down effect induced by MCS under basal conditions, reinforcing the role of primary motor cortex in pain control.
Collapse
Affiliation(s)
- Patrícia Sanae Souza Lopes
- Laboratory of Neuroscience, Hospital Sírio Libanês, São Paulo, SP, 01308-060, Brazil.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Erich Talamoni Fonoff
- Laboratory of Neuroscience, Hospital Sírio Libanês, São Paulo, SP, 01308-060, Brazil.,Department of Neurology, School of Medicine, University of São Paulo, São Paulo, SP, 01060-970, Brazil
| | - Luiz Roberto Giorgetti Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Rosana Lima Pagano
- Laboratory of Neuroscience, Hospital Sírio Libanês, São Paulo, SP, 01308-060, Brazil.
| |
Collapse
|
6
|
Painful stimulation of a sensitized site in the forearm inhibits ipsilateral trigeminal nociceptive blink reflexes. Exp Brain Res 2018; 236:2097-2105. [PMID: 29754196 DOI: 10.1007/s00221-018-5255-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/06/2018] [Indexed: 10/16/2022]
Abstract
Exposure to moderate levels of ultraviolet B radiation (UVB) is painless but nevertheless induces an inflammatory response that sensitizes primary afferent nociceptors. Subsequently, heating the UVB-treated site can sensitize spinal nociceptors. We used a repeated-measures design to determine whether heating the UVB-treated site also triggers ipsilateral inhibitory controls. Specifically, a 2-cm diameter site on the forearm of 20 participants was exposed to UVB at twice the minimum erythema dose. 48 h later mechanical and thermal sensitivity had increased at the UVB-treated site, indicating primary hyperalgesia. In addition, sensitivity to blunt pressure had increased in the ipsilateral forehead, implying activation of an ipsilateral supra-spinal pro-nociceptive mechanism. Despite this, the area under the curve of the ipsilateral nociceptive blink reflex decreased when the UVB-treated site was heated to induce moderate pain. Together, these findings suggest that the UVB treatment sensitized primary nociceptive afferents and generated an ipsilateral supra-spinal pro-nociceptive mechanism. In addition, sensitization to heat induced by the UVB treatment strengthened an ipsilateral anti-nociceptive process elicited by heat-pain. Infrequent but enduring discharge of sensitized primary nociceptive afferents, driven by inflammation after UVB exposure, might initiate a lateralized supra-spinal pro-nociceptive influence that heightens awareness of impending harm on the sensitized side of the body. In addition, a lateralized anti-nociceptive response triggered by an intense barrage of nociceptive signals may help to differentiate stronger from weaker sources of pain.
Collapse
|
7
|
Brainstem Pain-Control Circuitry Connectivity in Chronic Neuropathic Pain. J Neurosci 2017; 38:465-473. [PMID: 29175957 DOI: 10.1523/jneurosci.1647-17.2017] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/23/2017] [Accepted: 11/12/2017] [Indexed: 11/21/2022] Open
Abstract
Preclinical investigations have suggested that altered functioning of brainstem pain-modulation circuits may be crucial for the maintenance of some chronic pain conditions. While some human psychophysical studies show that patients with chronic pain display altered pain-modulation efficacy, it remains unknown whether brainstem pain-modulation circuits are altered in individuals with chronic pain. The aim of the present investigation was to determine whether, in humans, chronic pain following nerve injury is associated with altered ongoing functioning of the brainstem descending modulation systems. Using resting-state functional magnetic resonance imaging, we found that male and female patients with chronic neuropathic orofacial pain show increased functional connectivity between the rostral ventromedial medulla (RVM) and other brainstem pain-modulatory regions, including the ventrolateral periaqueductal gray (vlPAG) and locus ceruleus (LC). We also identified an increase in RVM functional connectivity with the region that receives orofacial nociceptor afferents, the spinal trigeminal nucleus. In addition, the vlPAG and LC displayed increased functional connectivity strengths with higher brain regions, including the hippocampus, nucleus accumbens, and anterior cingulate cortex, in individuals with chronic pain. These data reveal that chronic pain is associated with altered ongoing functioning within the endogenous pain-modulation network. These changes may underlie enhanced descending facilitation of processing at the primary synapse, resulting in increased nociceptive transmission to higher brain centers. Further, our findings show that higher brain regions interact with the brainstem modulation system differently in chronic pain, possibly reflecting top-down engagement of the circuitry alongside altered reward processing in pain conditions.SIGNIFICANCE STATEMENT Experimental animal models and human psychophysical studies suggest that altered functioning of brainstem pain-modulation systems contributes to the maintenance of chronic pain. However, the function of this circuitry has not yet been explored in humans with chronic pain. In this study, we report that individuals with orofacial neuropathic pain show altered functional connectivity between regions within the brainstem pain-modulation network. We suggest that these changes reflect largely central mechanisms that feed back onto the primary nociceptive synapse and enhance the transfer of noxious information to higher brain regions, thus contributing to the constant perception of pain. Identifying the mechanisms responsible for the maintenance of neuropathic pain is imperative for the development of more efficacious therapies.
Collapse
|
8
|
Vo L, Hood S, Drummond PD. Involvement of Opioid Receptors and α2-Adrenoceptors in Inhibitory Pain Modulation Processes: A Double-Blind Placebo-Controlled Crossover Study. THE JOURNAL OF PAIN 2016; 17:1164-1173. [DOI: 10.1016/j.jpain.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022]
|
9
|
Taylor BK, Westlund KN. The noradrenergic locus coeruleus as a chronic pain generator. J Neurosci Res 2016; 95:1336-1346. [PMID: 27685982 DOI: 10.1002/jnr.23956] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
Central noradrenergic centers such as the locus coeruleus (LC) are traditionally viewed as pain inhibitory; however, complex interactions among brainstem pathways and their receptors modulate both inhibition and facilitation of pain. In addition to the well-described role of descending pontospinal pathways that inhibit spinal nociceptive transmission, an emerging body of research now indicates that noradrenergic neurons in the LC and their terminals in the dorsal reticular nucleus (DRt), medial prefrontal cortex (mPFC), spinal dorsal horn, and spinal trigeminal nucleus caudalis participate in the development and maintenance of allodynia and hyperalgesia after nerve injury. With time after injury, we argue that the balance of LC function shifts from pain inhibition to pain facilitation. Thus, the pain-inhibitory actions of antidepressant drugs achieved with elevated noradrenaline concentrations in the dorsal horn may be countered or even superseded by simultaneous activation of supraspinal facilitating systems dependent on α1 -adrenoreceptors in the DRt and mPFC as well as α2 -adrenoreceptors in the LC. Indeed, these opposing actions may account in part for the limited treatment efficacy of tricyclic antidepressants and noradrenaline reuptake inhibitors such as duloxetine for the treatment of chronic pain. We propose that the traditional view of the LC as a pain-inhibitory structure be modified to account for its capacity as a pain facilitator. Future studies are needed to determine the neurobiology of ascending and descending pathways and the pharmacology of receptors underlying LC-mediated pain inhibition and facilitation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Karin N Westlund
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| |
Collapse
|
10
|
West S, Bannister K, Dickenson A, Bennett D. Circuitry and plasticity of the dorsal horn – Toward a better understanding of neuropathic pain. Neuroscience 2015; 300:254-75. [DOI: 10.1016/j.neuroscience.2015.05.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 11/24/2022]
|
11
|
Vo L, Drummond PD. Involvement of α2-adrenoceptors in inhibitory and facilitatory pain modulation processes. Eur J Pain 2015; 20:386-98. [PMID: 26032281 DOI: 10.1002/ejp.736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND In healthy humans, high-frequency electrical stimulation (HFS) of the forearm not only produces hyperalgesia at the site of stimulation but also reduces sensitivity to pressure-pain on the ipsilateral side of the forehead. In addition, HFS augments the ipsilateral trigeminal nociceptive blink reflex and intensifies the ipsilateral component of conditioned pain modulation. The aim of this study was to determine whether α2-adrenoceptors mediate these ipsilateral nociceptive influences. METHODS The α2-adrenoceptor antagonist yohimbine was administered to 22 participants in a double-blind, placebo-controlled crossover study. In each session, thermal and mechanical sensitivity in the forearms and forehead was assessed before and after HFS. In addition, the combined effect of HFS and yohimbine on the nociceptive blink reflex and on conditioned pain modulation was explored. In this paradigm, the conditioning stimulus was cold pain in the ipsilateral or contralateral temple, and the test stimulus was electrically evoked pain in the forearm. RESULTS Blood pressure and electrodermal activity increased for several hours after yohimbine administration, consistent with blockade of central α2-adrenoceptors. Yohimbine not only augmented the nociceptive blink reflex ipsilateral to HFS but also intensified the inhibitory influence of ipsilateral temple cooling on electrically evoked pain at the HFS-treated site in the forearm. Yohimbine had no consistent effect on primary or secondary hyperalgesia in the forearm or on pressure-pain in the ipsilateral forehead. CONCLUSIONS These findings imply involvement of α2-adrenoceptors both in ipsilateral antinociceptive and pronociceptive pain modulation processes. However, a mechanism not involving α2-adrenoceptors appears to mediate analgesia in the ipsilateral forehead after HFS.
Collapse
Affiliation(s)
- L Vo
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, WA, Australia
| | - P D Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, WA, Australia
| |
Collapse
|
12
|
Knudsen LF, Drummond PD. Optokinetic stimulation increases limb pain and forehead hyperalgesia in complex regional pain syndrome. Eur J Pain 2014; 19:781-8. [PMID: 25319543 DOI: 10.1002/ejp.602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ambiguous visual stimuli increase limb pain in patients with complex regional pain syndrome (CRPS), possibly due to afferent sensory feedback conflicts. Conflicting sensory stimuli can also generate unpleasant sensations in healthy people such as during motion sickness. We wanted to investigate the mechanisms underlying the link between sensory conflicts and pain in CRPS using optokinetic stimulation (OKS) - a method known to induce motion sickness. METHODS Twenty-one CRPS patients underwent OKS and rated symptoms of motion sickness. Patients also rated limb pain and pain-related distress before, during and after OKS. In addition, pressure-pain and sharpness sensations were investigated on both sides of the forehead and in the affected and contralateral limb before and after OKS. RESULTS Limb pain and forehead hyperalgesia to pressure increased in parallel in response to OKS. In a subgroup of nauseated patients who withdrew early from OKS, hyperalgesia to pressure in the ipsilateral forehead persisted longer than in the remaining participants. Sharpness sensations remained constant at all sites. CONCLUSIONS Sensory conflicts may facilitate pain in CRPS by activating the mechanisms of general facilitation of nociception and, during more severe sensory conflicts, also a facilitatory mechanism that operates mainly ipsilateral to the affected limb.
Collapse
Affiliation(s)
- L F Knudsen
- School of Psychology and Exercise Science, Murdoch University, Perth, Australia; Danish Pain Research Center, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
13
|
Drake RAR, Hulse RP, Lumb BM, Donaldson LF. The degree of acute descending control of spinal nociception in an area of primary hyperalgesia is dependent on the peripheral domain of afferent input. J Physiol 2014; 592:3611-24. [PMID: 24879873 PMCID: PMC4229351 DOI: 10.1113/jphysiol.2013.266494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Descending controls of spinal nociceptive processing play a critical role in the development of inflammatory hyperalgesia. Acute peripheral nociceptor sensitization drives spinal sensitization and activates spino–supraspinal–spinal loops leading to descending inhibitory and facilitatory controls of spinal neuronal activity that further modify the extent and degree of the pain state. The afferent inputs from hairy and glabrous skin are distinct with respect to both the profile of primary afferent classes and the degree of their peripheral sensitization. It is not known whether these differences in afferent input differentially engage descending control systems to different extents or in different ways. Injection of complete Freund's adjuvant resulted in inflammation and swelling of hairy hind foot skin in rats, a transient thermal hyperalgesia lasting <2 h, and longlasting primary mechanical hyperalgesia (≥7 days). Much longer lasting thermal hyperalgesia was apparent in glabrous skin (1 h to >72 h). In hairy skin, transient hyperalgesia was associated with sensitization of withdrawal reflexes to thermal activation of either A- or C-nociceptors. The transience of the hyperalgesia was attributable to a rapidly engaged descending inhibitory noradrenergic mechanism, which affected withdrawal responses to both A- and C-nociceptor activation and this could be reversed by intrathecal administration of yohimbine (α-2-adrenoceptor antagonist). In glabrous skin, yohimbine had no effect on an equivalent thermal inflammatory hyperalgesia. We conclude that acute inflammation and peripheral nociceptor sensitization in hind foot hairy skin, but not glabrous skin, rapidly activates a descending inhibitory noradrenergic system. This may result from differences in the engagement of descending control systems following sensitization of different primary afferent classes that innervate glabrous and hairy skin.
Collapse
Affiliation(s)
- Robert A R Drake
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Richard P Hulse
- Cancer Biology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Bridget M Lumb
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Lucy F Donaldson
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Vo L, Drummond PD. Coexistence of ipsilateral pain-inhibitory and facilitatory processes after high-frequency electrical stimulation. Eur J Pain 2013; 18:376-85. [PMID: 23868187 DOI: 10.1002/j.1532-2149.2013.00370.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND High-frequency electrical stimulation (HFS) of the human forearm evokes analgesia to blunt pressure in the ipsilateral forehead, consistent with descending ipsilateral inhibitory pain modulation. The aim of the current study was to further delineate pain modulation processes evoked by HFS by examining sensory changes in the arm and forehead; investigating the effects of HFS on nociceptive blink reflexes elicited by supraorbital electrical stimulation; and assessing effects of counter-irritation (electrically evoked pain at the HFS-conditioned site in the forearm) on nociceptive blink reflexes before and after HFS. METHODS Before and after HFS conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the conditioned site in the forearm and on each side of the forehead. Nociceptive blink reflexes were also assessed before and after HFS with and without counter-irritation of the forearm. RESULTS HFS triggered secondary hyperalgesia in the forearm (a sign of central sensitization) and analgesia to blunt pressure in the ipsilateral forehead. Under most conditions, both HFS conditioning and counter-irritation of the forearm suppressed electrically evoked pain in the forehead, and the amplitude of the blink reflex to supraorbital stimuli decreased. Importantly, however, in the absence of forearm counter-irritation, HFS conditioning facilitated ipsilateral blink reflex amplitude to supraorbital stimuli delivered ipsilateral to the HFS-conditioned site. CONCLUSIONS These findings suggest that HFS concurrently triggers hemilateral inhibitory and facilitatory influences on nociceptive processing over and above more general effects of counter-irritation. The inhibitory influence may help limit the spread of sensitization in central nociceptive pathways.
Collapse
Affiliation(s)
- L Vo
- Centre for Research on Chronic Pain and Inflammatory Diseases, School of Psychology and Exercise Science, Murdoch University, Perth, WA, Australia
| | | |
Collapse
|
15
|
Drummond PD. A possible role of the locus coeruleus in complex regional pain syndrome. Front Integr Neurosci 2012; 6:104. [PMID: 23162445 PMCID: PMC3492846 DOI: 10.3389/fnint.2012.00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 10/23/2012] [Indexed: 12/27/2022] Open
Abstract
Heightened sensitivity to painful stimulation commonly spreads from the affected limb to the ipsilateral forehead in patients with complex regional pain syndrome (CRPS). In addition, acoustic startle evokes greater auditory discomfort and increases in limb pain when presented on the affected than unaffected side. In contrast, limb pain ordinarily evokes analgesia in the ipsilateral forehead of healthy participants, and acoustic startle suppresses limb pain. Together, these findings suggest that hemilateral and generalized pain control mechanisms are disrupted in CRPS, and that multisensory integrative processes are compromised. Failure to inhibit nociceptive input from the CRPS-affected limb could sensitize spinal and supraspinal neurons that receive convergent nociceptive and auditory information from hemilateral body sites. Somatosensory, auditory, and emotional inputs may then aggravate pain by feeding into this sensitized nociceptive network. In particular, a disturbance in hemilateral pain processing that involves the locus coeruleus could exacerbate the symptoms of CRPS in some patients.
Collapse
|
16
|
Tsuruoka M, Tamaki J, Maeda M, Hayashi B, Inoue T. Biological implications of coeruleospinal inhibition of nociceptive processing in the spinal cord. Front Integr Neurosci 2012; 6:87. [PMID: 23060762 PMCID: PMC3460321 DOI: 10.3389/fnint.2012.00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/12/2012] [Indexed: 11/13/2022] Open
Abstract
The coeruleospinal inhibitory pathway (CSIP), the descending pathway from the nucleus locus coeruleus (LC) and the nucleus subcoeruleus (SC), is one of the centrifugal pain control systems. This review answers two questions regarding the role coeruleospinal inhibition plays in the mammalian brain. First is related to an abnormal pain state, such as inflammation. Peripheral inflammation activated the CSIP, and activation of this pathway resulted in a decrease in the extent of the development of inflammatory hyperalgesia. During inflammation, the responses of the dorsal horn neurons to graded heat stimuli in the LC/SC-lesioned rats did not produce a further increase with the increase of stimulus intensity in the higher range temperatures. These results suggest that the function of CSIP is to maintain the accuracy of intensity coding in the dorsal horn because the plateauing of the heat-evoked response in the LC/SC-lesioned rats during inflammation is due to a response saturation that results from the lack of coeruleospinal inhibition. The second concerns attention and vigilance. During freezing behavior induced by air-puff stimulation, nociceptive signals were inhibited by the CSIP. The result implies that the CSIP suppresses pain system to extract other sensory information that is essential for circumstantial judgment.
Collapse
Affiliation(s)
- Masayoshi Tsuruoka
- Department of Physiology, Showa University School of Dentistry Tokyo, Japan
| | | | | | | | | |
Collapse
|
17
|
Vo L, Drummond PD. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation. Eur J Pain 2012; 17:357-68. [PMID: 22893547 DOI: 10.1002/j.1532-2149.2012.00208.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. METHODS Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. RESULTS UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. CONCLUSIONS HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread.
Collapse
Affiliation(s)
- L Vo
- School of Psychology, Murdoch University, Perth, WA, Australia
| | | |
Collapse
|
18
|
Drummond PD, Chung C. Immersing the foot in painfully-cold water evokes ipsilateral extracranial vasodilatation. Auton Neurosci 2011; 166:89-92. [PMID: 21889422 DOI: 10.1016/j.autneu.2011.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 04/15/2011] [Accepted: 08/08/2011] [Indexed: 11/18/2022]
Abstract
Temporal pulse amplitude was recorded bilaterally in 56 participants before, during and after three ice-water immersions of the foot. Half of the participants were told that prolonged exposure to freezing temperatures could cause frostbite. Increases in pulse amplitude were greater in the ipsilateral than contralateral temple during and after the three foot-immersions. Although pulse amplitude decreased after threatening instructions and repeated immersion of the foot, the vasodilator response persisted during all three immersions. These findings suggest that nociceptive stimulation of the foot evokes an ipsilateral supra-spinal extracranial vasodilator response, possibly as part of a broader defense response.
Collapse
Affiliation(s)
- Peter D Drummond
- School of Psychology, Murdoch University, Perth, Western Australia, Australia.
| | | |
Collapse
|
19
|
A possible synaptic configuration underlying coeruleospinal inhibition of visceral nociceptive transmission in the rat. Neurol Sci 2011; 33:463-8. [PMID: 21845475 DOI: 10.1007/s10072-011-0739-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
A synaptic arrangement underlying descending inhibition from the locus coeruleus/subcoeruleus (LC/SC) on visceral nociceptive transmission in the spinal cord was investigated in the anesthetized rat. Extracellular recordings were made from the L(6)-S(2) segmental level using a carbon filament glass microelectrode (4-6 MΩ). Colorectal distention (CRD) was produced by inflating a balloon inside the descending colon and rectum. All neurons tested responded to both CRD and to cutaneous pinch (a force of 613 g/mm(2)), indicating that nociceptive signals from visceral organs and nociceptive signals from the cutaneous receptive field converge on a single neuron. These neurons were divided into two groups based on their response to CRD: short latency-abrupt and short latency-sustained neurons. Electrical stimulation of the LC/SC (30 or 50 μA, 100 Hz, 0.1 ms pulses) inhibited both CRD-evoked and cutaneous pinch-evoked responses in short latency-abrupt and short latency-sustained neurons. When graded CRD (20, 40, 60, and 80 mmHg) was delivered, LC/SC stimulation produced a reduction in slope of the linear CRD intensity-response magnitude curve without a change in the response threshold in both short latency-abrupt (n = 42) and short latency-sustained neurons (n = 11). This result suggests that coeruleospinal inhibition of visceral nociceptive transmission is due to a synaptic configuration in which inhibitory and excitatory terminals are in close spatial proximity, including presynaptic inhibition.
Collapse
|
20
|
Tsuruoka M, Tamaki J, Maeda M, Hayashi B, Inoue T. The nucleus locus coeruleus/subcoeruleus contributes to antinociception during freezing behavior following the air-puff startle in rats. Brain Res 2011; 1393:52-61. [PMID: 21529786 DOI: 10.1016/j.brainres.2011.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/31/2011] [Accepted: 04/03/2011] [Indexed: 10/18/2022]
Abstract
An air puff elicits a startle response in mammals. Following the startle response, rats react with a defensive-like, immobile posture (DIP) of approximately 2-5s in length. We have previously reported that air-puff stimulation (APS) activates the nucleus locus coeruleus/subcoeruleus (LC/SC) so that the DIP is induced. The LC/SC is one of the structures that plays an important role in endogenous pain control. Our particular interest is whether APS induces nociceptive modulation. Rats were tested for behavioral nociception with heating of the tail. Rats whisked their tail following heating and then bit the heat source when the tail could not escape heating by tail flick. The tail flick latency (TFL) and the bite latency (BL) were measured as an indicator of nociception. Compressed house air (14.4 psi in strength, 0.1s in duration) was presented for APS. Two weeks before the experiment, the rats received bilateral injections of 6 μg of the neurotoxin 6-hydroxydopamine to specifically lesion noradrenaline-containing neurons of the LC/SC. APS produced prolongation of the TFL and the BL. In both the TFL and the BL, APS-induced prolongation was not observed in rats with the LC/SC lesions. When BLs were plotted against DIP periods, the BL was almost constant regardless of the change in the DIP period. These results suggest that (1) APS produces nociceptive modulation, (2) the LC/SC is involved in APS-induced nociceptive modulation, and (3) two APS-induced events, the DIP and nociceptive modulation, are a parallel phenomenon.
Collapse
Affiliation(s)
- Masayoshi Tsuruoka
- Department of Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | |
Collapse
|
21
|
Tsuruoka M, Wang D, Tamaki J, Inoue T. Descending influence from the nucleus locus coeruleus/subcoeruleus on visceral nociceptive transmission in the rat spinal cord. Neuroscience 2009; 165:1019-24. [PMID: 19958815 DOI: 10.1016/j.neuroscience.2009.11.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/16/2009] [Accepted: 11/23/2009] [Indexed: 11/28/2022]
Abstract
Visceral nociceptive signals are the subject of descending modulation from the locus coeruleus/subcoeruleus (LC/SC). We have recently found dorsal horn neurons whose visceral nociceptive responses are not inhibited by the descending LC/SC system (LC/SC-unaffected neurons) in the rat. The aim of the present study was to estimate a possible role of LC/SC-unaffected neurons for pain processing and pain-related responses. We focused on the fact that nociceptive signals from a visceral organ produce not only visceral pain but also visceromotor reflexes (muscular defense). Different effects of LC/SC stimulation can be expected between visceral pain and visceromotor reflexes. To accomplish our objective, the descending colon was electrically stimulated, and both the evoked discharge (ED) in the ventral posterolateral (VPL) nucleus of the thalamus and the electromyogram (EMG) of the abdominal muscle were simultaneously recorded under halothane anesthesia. The ED recorded from the VPL was completely inhibited with the increase of LC/SC stimulus intensity, while the EMG of the abdominal muscle still remained even after the ED disappeared. This result suggests that the minimum visceromotor reflex responses are maintained by the presence of LC/SC-unaffected neurons, which play the important role of protecting the visceral organs. Considering a role of muscular defense, the presence of the LC/SC-unaffected neurons may be advantageous for the individual under an abnormal pain state, such as inflammation.
Collapse
Affiliation(s)
- M Tsuruoka
- Department of Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
22
|
Pinto-Ribeiro F, Moreira V, Pêgo JM, Leão P, Almeida A, Sousa N. Antinociception induced by chronic glucocorticoid treatment is correlated to local modulation of spinal neurotransmitter content. Mol Pain 2009; 5:41. [PMID: 19630968 PMCID: PMC2727498 DOI: 10.1186/1744-8069-5-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/24/2009] [Indexed: 12/26/2022] Open
Abstract
Background While acute effects of stress on pain are well described, those produced by chronic stress are still a matter of dispute. Previously we demonstrated that chronic unpredictable stress results in antinociception in the tail-flick test, an effect that is mediated by increased levels of corticosteroids. In the present study, we evaluated nociception in rats after chronic treatment with corticosterone (CORT) and dexamethasone (DEX) in order to discriminate the role of each type of corticosteroid receptors in antinociception. Results Both experimental groups exhibited a pronounced antinociceptive effect after three weeks of treatment when compared to controls (CONT); however, at four weeks the pain threshold in CORT-treated animals returned to basal levels whereas in DEX-treated rats antinociception was maintained. In order to assess if these differences are associated with altered expression of neuropeptides involved in nociceptive transmission we evaluated the density of substance P (SP), calcitonin gene-related peptide (CGRP), somatostatin (SS) and B2-γ-aminobutiric acid receptors (GABAB2) expression in the spinal dorsal horn using light density measurements and stereological techniques. After three weeks of treatment the expression of CGRP in the superficial dorsal horn was significantly decreased in both CORT and DEX groups, while GABAB2 was significantly increased; the levels of SP for both experimental groups remained unchanged at this point. At 4 weeks, CGRP and SP are reduced in DEX-treated animals and GABAB2 unchanged, but all changes were restored to CONT levels in CORT-treated animals. The expression of SS remained unaltered throughout the experimental period. Conclusion These data indicate that corticosteroids modulate nociception since chronic corticosteroid treatment alters the expression of neuropeptides involved in nociceptive transmission at the spinal cord level. As previously observed in some supraspinal areas, the exclusive GR activation resulted in more profound and sustained behavioural and neurochemical changes, than the one observed with a mixed ligand of corticosteroid receptors. These results might be of relevance for the pharmacological management of certain types of chronic pain, in which corticosteroids are used as adjuvant analgesics.
Collapse
Affiliation(s)
- Filipa Pinto-Ribeiro
- Life and Health Science Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
23
|
Brightwell JJ, Taylor BK. Noradrenergic neurons in the locus coeruleus contribute to neuropathic pain. Neuroscience 2009; 160:174-85. [PMID: 19223010 DOI: 10.1016/j.neuroscience.2009.02.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/20/2009] [Accepted: 02/04/2009] [Indexed: 12/17/2022]
Abstract
Current theories of neuropathic hypersensitivity include an imbalance of supraspinal inhibition and facilitation. Our overall hypothesis is that the locus coeruleus (LC), classically interpreted as a source of pain inhibition, may paradoxically result in facilitation after tibial and common peroneal nerve transection (spared sural nerve injury--SNI). We first tested the hypothesis that non-noxious tactile hind paw stimulation of the spared sural innervation territory increases neuronal activity in the LC in male rats. We observed a bilateral increase in the stimulus-evoked expression of transcription factors Fos and phosphorylated CREB (pCREB) in LC after SNI but not sham surgery; these markers of neuronal activity correlated with the intensity of tactile allodynia. We next tested the hypothesis that noradrenergic neurons contribute to the development of neuropathic pain. To selectively destroy these neurons, we delivered antidopamine-beta-hydroxylase saporin (anti-DbetaH-saporin) into the i.c.v. space 2 weeks before SNI. We found that anti-DbetaH-saporin, but not an IgG-saporin control, reduced behavioral signs of tactile allodynia, mechanical hyperalgesia, and cold allodynia from 3 to 28 days. after SNI. Our final experiment tested the hypothesis that the LC contributes to the maintenance of neuropathic pain. We performed SNI, waited 2 weeks for maximal allodynia and hyperalgesia to develop, and then administered the local anesthetic lidocaine (4%) directly into the LC parenchyma. Lidocaine reduced all behavioral signs of neuropathic pain in a reversible manner, suggesting that the LC contributes to pain facilitation. We conclude that, in addition to its well-known inhibition of acute and inflammatory pain, the LC facilitates the development and maintenance of neuropathic pain in the SNI model. Further studies are needed to determine the facilitatory pathways emanating from the LC.
Collapse
Affiliation(s)
- J J Brightwell
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | | |
Collapse
|
24
|
Imbe H, Okamoto K, Donishi T, Kawai S, Enoki K, Senba E, Kimura A. Activation of ERK in the locus coeruleus following acute noxious stimulation. Brain Res 2009; 1263:50-7. [PMID: 19368817 DOI: 10.1016/j.brainres.2009.01.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/30/2008] [Accepted: 01/26/2009] [Indexed: 11/28/2022]
Abstract
In the present study, the activation of extracellular signal-regulated kinase (ERK) in the locus coeruleus (LC) following injection of formalin or complete Freund's adjuvant (CFA) into the rat hindpaw was examined in order to clarify the mechanisms underlying the dynamic changes in the descending pain modulatory system after acute noxious stimulation or chronic inflammation. In naive rats there were few phospho-extracellular signal-regulated kinase-immunoreactive (p-ERK-IR) neurons in the LC. Formalin-, CFA- and saline-injections induced an increase in p-ERK-IR in the LC. The number of p-ERK-IR neurons in the LC in the formalin group was significantly higher than those in all other groups from 5 min to 1 h after the injection (p<0.05). CFA injection induced only a transient significant increase in the number of p-ERK-IR neurons and there was no significant difference in the number of p-ERK-IR neurons between the CFA and saline groups. At 5 min after formalin injection, almost all p-ERK-IR neurons in the LC were tyrosine hydroxylase (TH) -positive. These findings suggest that activation of ERK in the LC is induced by acute noxious stimulation, such as formalin injection, but not by CFA-induced chronic inflammation. The activation of ERK in the LC may be involved in the plasticity of the descending pain modulatory systems following acute noxious stimulation.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Wakayama City, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Knudsen L, Drummond PD. Cold-induced limb pain decreases sensitivity to pressure-pain sensations in the ipsilateral forehead. Eur J Pain 2009; 13:1023-9. [PMID: 19171493 DOI: 10.1016/j.ejpain.2008.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/28/2008] [Accepted: 12/14/2008] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effect of unilateral limb pain on sensitivity to pain on each side of the forehead. In the first experiment, pressure-pain thresholds and sharpness sensations were assessed on each side of the forehead in 45 healthy volunteers before and after a 10 degrees C cold pressor of the hand and in 18 controls who were not subjected to the cold pressor. In a second experiment, forehead sensitivity was assessed in 32 healthy volunteers before and after a 2 degrees C cold pressor. The assessments were repeated without the cold pressor, and before and after six successive 4 degrees C cold pressor tests. The 10 degrees C cold pressor did not influence forehead sensitivity, whereas the 2 degrees C cold pressor and the 4 degrees C cold pressor tests resulted in bilateral analgesia to sharpness and pressure. The analgesia to pressure was greater in the ipsilateral forehead. Stress-induced analgesia and diffuse noxious inhibitory controls may have contributed to the analgesia to pressure-pain and sharpness sensations bilaterally after the most painful cold pressor tests. The locus coeruleus inhibits ipsilateral nociceptive activity in dorsal horn neurons during limb inflammation, and thus may have mediated the ipsilateral component of analgesia. Pain-evoked changes in forehead sensitivity differed for sharpness and pressure, possibly due to separate thalamic or cortical representations of cutaneous and deep tissue sensibility. These findings suggest that several mechanisms act concurrently to influence pain sensitivity at sites distant from a primary site of painful stimulation.
Collapse
Affiliation(s)
- Lone Knudsen
- School of Psychology, Murdoch University, South Street, Perth, Murdoch, WA 6150, Australia.
| | | |
Collapse
|
26
|
Yoon SY, Kwon YB, Kim HW, Roh DH, Seo HS, Han HJ, Lee HJ, Beitz AJ, Hwang SW, Lee JH. Peripheral bee venom's anti-inflammatory effect involves activation of the coeruleospinal pathway and sympathetic preganglionic neurons. Neurosci Res 2007; 59:51-9. [PMID: 17588699 DOI: 10.1016/j.neures.2007.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/18/2007] [Accepted: 05/25/2007] [Indexed: 01/26/2023]
Abstract
There are several reports indicating that the locus coeruleus (LC) is capable of altering immune responses. Moreover, it is well established that the LC is the major source of descending noradrenergic system. Recently we have demonstrated that subcutaneous bee venom (BV) injection dramatically suppressed peripheral inflammation through activation of sympathetic preganglionic neurons (SPNs) leading to release of adreno-medullary catecholamines. Importantly, this 'BV-induced anti-inflammatory effect' (BVAI) is also associated with an increase of the activity of LC. Based on these data, present study examined whether BV-induced LC activation increased the activity of SPNs and this pathway played a role in BVAI using a zymosan-induced inflammatory air pouch model in mice. Unilateral BV injection into left hind limb produced anti-inflammation and specifically increased Fos expression in SPNs of the T7-T11 (which mainly project to adrenal medulla), but not those of the T1-T6 or T12-L2 spinal cord. 6-Hydroxydopamine-induced unilateral lesion of the contralateral, but not ipsilateral (to the BV injection site) LC significantly blocked BVAI and BV-induced Fos expression in SPNs. Additionally, intrathecal administration of idazoxan (alpha2-adrenoceptor antagonist), blocked BVAI. These results indicate that BV-induced activation of the contralateral LC-descending noradrenergic pathway increased the activity of SPNs that project to the adrenal medulla and this pathway is necessary for BVAI.
Collapse
Affiliation(s)
- Seo-Yeon Yoon
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwang-ju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
DeBerry J, Ness TJ, Robbins MT, Randich A. Inflammation-induced enhancement of the visceromotor reflex to urinary bladder distention: modulation by endogenous opioids and the effects of early-in-life experience with bladder inflammation. THE JOURNAL OF PAIN 2007; 8:914-23. [PMID: 17704007 PMCID: PMC4012257 DOI: 10.1016/j.jpain.2007.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/07/2007] [Accepted: 06/15/2007] [Indexed: 11/17/2022]
Abstract
UNLABELLED Abdominal electromyographic (EMG) responses to noxious intensities of urinary bladder distention (UBD) are significantly enhanced 24 hours after zymosan-induced bladder inflammation in adult female rats. This inflammation-induced hypersensitivity is concomitantly inhibited by endogenous opioids because intraperitoneal (i.p.) naloxone administration before testing significantly increases EMG response magnitude to UBD. This inhibitory mechanism is not tonically active because naloxone does not alter EMG response magnitude to UBD in rats without inflammation. At the dose tested, naloxone does not affect bladder compliance in rats with or without inflammation. The effects of i.p. naloxone probably result from blockade of a spinal mechanism because intrathecal naloxone also significantly enhances EMG responses to UBD in rats with inflammation. Rats exposed to bladder inflammation from P90-P92 before reinflammation at P120 show similar hypersensitivity and concomitant opioid inhibition, with response magnitudes being no different from that produced by inflammation at P120 alone. In contrast, rats exposed to bladder inflammation from P14-P16 before reinflammation at P120 show markedly enhanced hypersensitivity and no evidence of concomitant opioid inhibition. These data indicate that bladder inflammation in adult rats induces bladder hypersensitivity that is inhibited by an endogenous opioidergic mechanism. This mechanism can be disrupted by neonatal bladder inflammation. PERSPECTIVE The present study observed that bladder hypersensitivity resulting from acute bladder inflammation is suppressed by an opioid-inhibitory mechanism. Experiencing bladder inflammation during the neonatal period can impair the expression of this opioid inhibitory mechanism in adulthood. This suggests that bladder insults during development may permanently alter visceral sensory systems and may represent 1 cause of painful bladder disorders.
Collapse
Affiliation(s)
- Jennifer DeBerry
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA.
| | | | | | | |
Collapse
|
28
|
Viisanen H, Pertovaara A. Influence of peripheral nerve injury on response properties of locus coeruleus neurons and coeruleospinal antinociception in the rat. Neuroscience 2007; 146:1785-94. [PMID: 17445989 DOI: 10.1016/j.neuroscience.2007.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 02/26/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Noradrenergic locus coeruleus (LC) is involved in pain regulation. We studied whether response properties of LC neurons or coeruleospinal antinociception are changed 10-14 days following development of experimental neuropathy. Experiments were performed in spinal nerve-ligated, sham-operated and unoperated male rats under sodium pentobarbital anesthesia. Recordings of LC neurons indicated that responses evoked by noxious somatic stimulation were enhanced in nerve-injured animals, while the effects of nerve injury on spontaneous activity or the response to noxious visceral stimulation were not significant. Microinjection of glutamate into the central nucleus of the amygdala produced a dose-related inhibition of the discharge rate of LC neurons in nerve-injured animals but no significant effect on discharge rates in control groups. Assessment of the heat-induced hind limb withdrawal latency indicated that spinal antinociception induced by electrical stimulation of the LC was significantly weaker in nerve-injured than control animals. The results indicate that peripheral neuropathy induces bidirectional changes in coeruleospinal inhibition of pain. Increased responses of LC neurons to noxious somatic stimulation are likely to promote feedback inhibition of neuropathic hypersensitivity, while the enhanced inhibition of the LC from the amygdala is likely to suppress noradrenergic pain inhibition and promote neuropathic pain. It is proposed that the decreased spinal antinociception induced by direct stimulation of the LC may be explained by pronociceptive changes in the non-noradrenergic systems previously described in peripheral neuropathy. Furthermore, we propose the hypothesis that emotions processed by the amygdala enhance pain due to increased inhibition of the LC in peripheral neuropathy.
Collapse
Affiliation(s)
- H Viisanen
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, POB 63, University of Helsinki, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
29
|
Tsuruoka M, Maeda M, Inoue T. Persistent hindpaw inflammation produces coeruleospinal antinociception in the non-inflamed forepaw of rats. Neurosci Lett 2004; 367:66-70. [PMID: 15308299 DOI: 10.1016/j.neulet.2004.05.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 05/24/2004] [Accepted: 05/25/2004] [Indexed: 11/23/2022]
Abstract
In a rat model of unilateral hindpaw inflammation, it is unclear whether the coeruleospinal modulation system is active at spinal segments distant from the inflamed plantar region, such as the cervical segments. To clarify this query, in the present study we measured paw withdrawal latency (PWL) to thermal stimuli on four paws (both forepaws and both hindpaws) following induction of inflammation and compared PWLs between rats with bilateral lesions of the locus coeruleus/subcoeruleus (LC/SC) and rats with sham operation. Unilateral hindpaw inflammation was produced by a subcutaneous injection of carrageenan (2 mg in 0.15 ml saline). Prior to carrageenan injection, in all four paws, PWLs did not differ between the LC/SC-lesioned and the sham-operated rats. Four hours after carrageenan injection, PWLs in the inflamed left hindpaw decreased significantly in both the LC/SC-lesioned and the sham-operated rats. The decreased PWLs of the LC/SC-lesioned group were significantly shorter than those of the sham-operated group. These phenomena which were observed in the inflamed left hindpaw were also observed in the non-inflamed left forepaws. In the right forepaws and the right hindpaws, no significant change in PWL was observed between before and 4 h after injection in both the sham-operated and the LC/SC-lesioned rats. These results suggest that unilateral hindpaw inflammation activates the coeruleospinal modulation system and that this modulation system is active not only at the lumbar segments but also at the cervical level where spinal segments are distant from the inflamed plantar region.
Collapse
Affiliation(s)
- Masayoshi Tsuruoka
- Department of Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | |
Collapse
|