1
|
Aloufi FA, Halawani RF. Differential AMF-mediated biochemical responses in sorghum and oat plants under environmental impacts of neodymium nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109348. [PMID: 39616802 DOI: 10.1016/j.plaphy.2024.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025]
Abstract
This study investigates the impact of neodymium (Nd) nanoparticle (NdNP) toxicity on the physiological and biochemical responses of sorghum (Sorghum bicolor) and oat (Avena sativa) plants and evaluates the potential mitigating effects of arbuscular mycorrhizal fungi (AMF). Sorghum and oat plants were grown under controlled conditions with and without AMF inoculation, and subjected to NdNPs (500 mg Nd kg-1 soil). Results revealed that Nd nanoparticles significantly reduced biomass in both species, with a 50% decrease in sorghum and a 59% decrease in oats. However, AMF treatment ameliorated these effects, increasing biomass by 69% in oats under Nd nanoparticles toxicity compared to untreated contaminated plants. Soluble sugar metabolism was notably affected; AMF treatment led to significant increases in fructose and sucrose contents in both sorghum (+31% and +23%, respectively) and oat (+25% and +37%, respectively) plants under NdNPs toxicity. Improved sugar metabolism via enhanced activities of sucrose phosphate synthase (+29-54%) and invertase (+39-54%) enzymes resulted in higher proline (+21-81%) and polyamines (+49-52%) levels in AMF-treated plants under NdNPs toxicity, along with alterations in the biosynthesis pathways of amino acids and fatty acids, resulting in better osmoprotection and stress tolerance. Moreover, citrate (+29-55%) and oxalate (+177-312%) levels increased in both plants in response to NdNPs toxicity, which was accompanied by a positive response of isobutyric acid to AMF treatment in stressed plants, which potentially might serve as mechanisms for plants to mitigate NdNPs toxicity. These findings suggest that AMF can significantly mitigate Nd-induced damage and improve plant resilience through enhanced metabolic adjustments, highlighting a potential strategy for managing rare earth element (REE) nanoparticle toxicity in agricultural soils.
Collapse
Affiliation(s)
- Fahed A Aloufi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Riyadh F Halawani
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Mai H, Qin T, Wei H, Yu Z, Pang G, Liang Z, Ni J, Yang H, Tang H, Xiao L, Liu H, Liu T. Overexpression of OsACL5 triggers environmentally-dependent leaf rolling and reduces grain size in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:833-847. [PMID: 37965680 PMCID: PMC10955489 DOI: 10.1111/pbi.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Major polyamines include putrescine, spermidine, spermine and thermospermine, which play vital roles in growth and adaptation against environmental changes in plants. Thermospermine (T-Spm) is synthetised by ACL5. The function of ACL5 in rice is still unknown. In this study, we used a reverse genetic strategy to investigate the biological function of OsACL5. We generated several knockout mutants by pYLCRISPR/Cas9 system and overexpressing (OE) lines of OsACL5. Interestingly, the OE plants exhibited environmentally-dependent leaf rolling, smaller grains, lighter 1000-grain weight and reduction in yield per plot. The area of metaxylem vessels of roots and leaves of OE plants were significantly smaller than those of WT, which possibly caused reduction in leaf water potential, resulting in leaf rolling with rise in the environmental temperature and light intensity and decrease in humidity. Additionally, the T-Spm contents were markedly increased by over ninefold whereas the ethylene evolution was reduced in OE plants, suggesting that T-Spm signalling pathway interacts with ethylene pathway to regulate multiple agronomic characters. Moreover, the osacl5 exhibited an increase in grain length, 1000-grain weight, and yield per plot. OsACL5 may affect grain size via mediating the expression of OsDEP1, OsGS3 and OsGW2. Furthermore, haplotypes analysis indicated that OsACL5 plays a conserved function on regulating T-Spm levels during the domestication of rice. Our data demonstrated that identification of OsACL5 provides a theoretical basis for understanding the physiological mechanism of T-Spm which may play roles in triggering environmentally dependent leaf rolling; OsACL5 will be an important gene resource for molecular breeding for higher yield.
Collapse
Affiliation(s)
- Huafu Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Tian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Huan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Gang Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhiman Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Jiansheng Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Haiying Tang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Lisi Xiao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
3
|
Halawani RF, AbdElgawad H, Aloufi FA, Balkhyour MA, Zrig A, Hassan AH. Synergistic effect of carbon nanoparticles with mild salinity for improving chemical composition and antioxidant activities of radish sprouts. FRONTIERS IN PLANT SCIENCE 2023; 14:1158031. [PMID: 37324721 PMCID: PMC10264676 DOI: 10.3389/fpls.2023.1158031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023]
Abstract
The demand for healthy foods with high functional value has progressively increased. Carbon nanoparticles (CNPs) have a promising application in agriculture including the enhancement of plant growth. However, there are few studies on the interactive effects of CNPs and mild salinity on radish seed sprouting. To this end, the effect of radish seed priming with 80mM CNPs on biomass, anthocyanin, proline and polyamine metabolism, and antioxidant defense system under mild salinity growth condition (25 mM NaCl). The results indicated that seed nanopriming with CNPs along with mild salinity stress enhanced radish seed sprouting and its antioxidant capacity. Priming boosted the antioxidant capacity by increasing antioxidant metabolites such as (polyphenols, flavonoids, polyamines, anthocyanin, and proline). To understand the bases of these increases, precursors and key biosynthetic enzymes of anthocyanin [phenylalanine, cinnamic acid, coumaric acid, naringenin, phenylalanine ammonia lyase, chalcone synthase (CHS), cinnamate-4-hydroxylase (C4H) and 4-coumarate: CoA ligase (4CL)], proline [pyrroline-5-carboxylate synthase (P5CS), proline dehydrogenase (PRODH), Sucrose, Sucrose P synthase, invertase) and polyamines [putrescine, spermine, spermidine, total polyamines, arginine decarboxylase, orinthnine decarboxylase, S-adenosyl-L-methionine decarboxylase, spermidine synthase, spermine synthase] were analyzed. In conclusion, seed priming with CNPs has the potential to further stimulate mild salinity-induced bioactive compound accumulation in radish sprouts.
Collapse
Affiliation(s)
- Riyadh F. Halawani
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Fahed A. Aloufi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mansour A. Balkhyour
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahlem Zrig
- Higher Institute of Preparatory Studies in Biology and Geology, University of Carthage, Tunis, Tunisia
- Laboratory of Engineering Processes and Industrial Systems, Chemical Engineering Department, National School of Engineers of Gabes, University of Gabes, Gabès, Tunisia
| | - Abdelrahim H.A. Hassan
- School of Biotechnology, Nile University, Giza, Egypt
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Kim S, Chang JH. Structural Analysis of Spermidine Synthase from Kluyveromyces lactis. Molecules 2023; 28:molecules28083446. [PMID: 37110680 PMCID: PMC10146546 DOI: 10.3390/molecules28083446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Spermidine is a polyamine molecule that performs various cellular functions, such as DNA and RNA stabilization, autophagy modulation, and eIF5A formation, and is generated from putrescine by aminopropyltransferase spermidine synthase (SpdS). During synthesis, the aminopropyl moiety is donated from decarboxylated S-adenosylmethionine to form putrescine, with 5'-deoxy-5'-methylthioadenosine being produced as a byproduct. Although the molecular mechanism of SpdS function has been well-established, its structure-based evolutionary relationships remain to be fully understood. Moreover, only a few structural studies have been conducted on SpdS from fungal species. Here, we determined the crystal structure of an apo-form of SpdS from Kluyveromyces lactis (KlSpdS) at 1.9 Å resolution. Structural comparison with its homologs revealed a conformational change in the α6 helix linked to the gate-keeping loop, with approximately 40° outward rotation. This change caused the catalytic residue Asp170 to move outward, possibly due to the absence of a ligand in the active site. These findings improve our understanding of the structural diversity of SpdS and provide a missing link that expands our knowledge of the structural features of SpdS in fungal species.
Collapse
Affiliation(s)
- Seongjin Kim
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Science Education Research Institute, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Shabbaj II, Madany MMY, Balkhyour MA, Tammar A, AbdElgawad H. CO 2 Enrichment Differentially Upregulated Sugar, Proline, and Polyamine Metabolism in Young and Old Leaves of Wheat and Sorghum to Mitigate Indium Oxide Nanoparticles Toxicity. FRONTIERS IN PLANT SCIENCE 2022; 13:843771. [PMID: 35592559 PMCID: PMC9112856 DOI: 10.3389/fpls.2022.843771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination with indium oxide nanoparticles (In2O3-NPs) is a challenge for plant growth and productivity. Despite In2O3-NPs toxicity, their effects on plant growth and metabolism are largely unknown, particularly under future climate CO2 (eCO2). Therefore, the In2O3-NPs toxicity and stress mitigating impact of eCO2 in the young and old leaves of C3 (wheat) and C4 (sorghum) plants were investigated. Overall, In2O3-NPs significantly retard the biomass and photosynthetic machinery of all tested crops, particularly the young leaves of C3 plants. Consequently, In2O3-NPs altered C and N metabolism in C3 and C4 plants. On the other hand, eCO2 contrarily alleviated the hazardous effects of In2O3-NPs on growth and photosynthesis, especially in the young leaves of C4 plants. Increased photosynthesis consequently enhanced the soluble sugars' accumulation and metabolism (e.g., sucrose P synthase, cytosolic, and vacuolar invertase) in all stressed plants, but to a greater extent in C4 young leaves. High sugar availability also induced TCA organic and fatty acids' accumulation. This also provided a route for amino acids and polyamines biosynthesis, where a clear increase in proline biosynthetic enzymes [e.g., pyrroline-5-carboxylate synthetase (P5CS), ornithine aminotransferase (OAT), Pyrroline-5-carboxylate reductase (P5CR), pyrroline-5-carboxylate dehydrogenase (P5CDH), and proline dehydrogenase (PRODH)] and polyamine metabolic enzymes (e.g., spermine and spermidine synthases, ornithine decarboxylase, and adenosyl methionine decarboxylase) were mainly recorded in C4 young leaves. The observed increases in these metabolites involved in osmo- and redox-regulation to reduce In2O3-NPs induced oxidative damage. Overall, our study, for the first time, shed light on how eCO2 differentially mitigated In2O3-NPs stress in old and young leaves of different species groups under the threat of In2O3-NPs contamination.
Collapse
Affiliation(s)
- Ibrahim I. Shabbaj
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud M. Y. Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
- Department of Biology, College of Science, Taibah University, Medina, Saudi Arabia
| | - Mansour A. Balkhyour
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdurazag Tammar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Zenkner FF, Margis-Pinheiro M, Cagliari A. Nicotine Biosynthesis inNicotiana: A Metabolic Overview. ACTA ACUST UNITED AC 2019. [DOI: 10.3381/18-063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alkaloids are important compounds found in Nicotiana plants, essential in plant defense against herbivores. The main alkaloid of Nicotiana tabacum, nicotine, is produced in roots and translocated to the leaves. Nicotine is formed by a pyrrolidine and a pyridine ring in a process involving several enzymes. The pyridine ring of nicotine is derived from nicotinic acid, whereas the pyrrolidine ring originates from polyamine putrescine metabolism. After synthesis in root cortical cells, a set of transporters is known to transport nicotine upward to the aerial part and store it in leaf vacuoles. Moreover, nicotine can be metabolized in leaves, giving rise to nornicotine through the N-demethylation process. Some Nicotiana wild species produce acyltransferase enzymes, which allow the plant to make N-acyl-nornicotine, an alkaloid with more potent insecticidal properties than nicotine. However, although we can find a wealth of information about the alkaloid production in Nicotiana spp., our understanding about nicotine biosynthesis, transport, and metabolism is still incomplete. This review will summarize these pathways on the basis on recent literature, as well as highlighting questions that need further investigation.
Collapse
Affiliation(s)
- Fernanda Fleig Zenkner
- Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15053, Porto Alegre, RS CEP 91501-970, Brazil
- JTI Processadora de Tabaco do Brasil LTDA, Santa Cruz do Sul, RS, Brazil
| | - Márcia Margis-Pinheiro
- Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15053, Porto Alegre, RS CEP 91501-970, Brazil
| | - Alexandro Cagliari
- Universidade Estadual do Rio Grande do Sul (UERGS), Santa Cruz do Sul, RS, Brazil
| |
Collapse
|
7
|
Pothipongsa A, Jantaro S, Salminen TA, Incharoensakdi A. Molecular characterization and homology modeling of spermidine synthase from Synechococcus sp. PCC 7942. World J Microbiol Biotechnol 2017; 33:72. [PMID: 28299555 DOI: 10.1007/s11274-017-2242-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
Spermidine synthase (Spds) catalyzes the formation of spermidine by transferring the aminopropyl group from decarboxylated S-adenosylmethionine (dcSAM) to putrescine. The Synechococcus spds gene encoding Spds was expressed in Escherichia coli. The purified recombinant enzyme had a molecular mass of 33 kDa and showed optimal activity at pH 7.5, 37 °C. The enzyme had higher affinity for dcSAM (K m, 20 µM) than for putrescine (K m, 111 µM) and was highly specific towards the diamine putrescine with no activity observed towards longer chain diamines. The three-dimensional structural model for Synechococcus Spds revealed that most of the ligand binding residues in Spds from Synechococcus sp. PCC 7942 are identical to those of human and parasite Spds. Based on the model, the highly conserved acidic residues, Asp89, Asp159 and Asp162, are involved in the binding of substrates putrescine and dcSAM and Pro166 seems to confer substrate specificity towards putrescine.
Collapse
Affiliation(s)
- Apiradee Pothipongsa
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Huang Y, Lin C, He F, Li Z, Guan Y, Hu Q, Hu J. Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H 2O 2 and relevant gene expression. BMC PLANT BIOLOGY 2017; 17:1. [PMID: 28049439 PMCID: PMC5209872 DOI: 10.1186/s12870-016-0951-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/13/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND The low seed vigor and poor field emergence are main factors that restricting the extension of sweet corn in China. Spermidine (Spd) plays an important role in plant growth and development, but little is known about the effect of Spd on sweet corn seed germination. Therefore the effect of exogenous Spd on seed germination and physiological and biochemical changes during seed imbibition of Xiantian No.5 were investigated in this study. RESULTS Spd soaking treatment not only improved seed germination percentage but also significantly enhanced seed vigor which was indicated by higher germination index, vigor index, shoot heights and dry weights of shoot and root compared with the control; while exogenous CHA, the biosynthesis inhibitor of Spd, significantly inhibited seed germination and declined seed vigor. Spd application significantly increased endogenous Spd, gibberellins and ethylene contents and simultaneously reduced ABA concentration in embryos during seed imbibition. In addition, the effects of exogenous Spd on H2O2 and MDA productions were also analyzed. Enhanced H2O2 concentration was observed in Spd-treated seed embryo, while no significant difference of MDA level in seed embryo was observed between Spd treatment and control. However, the lower H2O2 and significantly higher MDA contents than control were detected in CHA-treated seed embryos. CONCLUSIONS The results suggested that Spd contributing to fast seed germination and high seed vigor of sweet corn might be closely related with the metabolism of hormones including gibberellins, ABA and ethylene, and with the increase of H2O2 in the radical produced partly from Spd oxidation. In addition, Spd might play an important role in cell membrane integrity maintaining.
Collapse
Affiliation(s)
- Yutao Huang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Cheng Lin
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Fei He
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Zhan Li
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Yajing Guan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Qijuan Hu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Jin Hu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| |
Collapse
|
9
|
Sánchez-Rodríguez E, Romero L, Ruiz JM. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. JOURNAL OF PLANT PHYSIOLOGY 2016; 190:72-8. [PMID: 26687637 DOI: 10.1016/j.jplph.2015.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 05/22/2023]
Abstract
Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance.
Collapse
Affiliation(s)
- E Sánchez-Rodríguez
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain.
| | - L Romero
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| | - J M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
10
|
Sudhakar C, Veeranagamallaiah G, Nareshkumar A, Sudhakarbabu O, Sivakumar M, Pandurangaiah M, Kiranmai K, Lokesh U. Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance. PLANT CELL REPORTS 2015; 34:141-56. [PMID: 25348337 DOI: 10.1007/s00299-014-1695-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Polyamines can regulate the expression of antioxidant enzymes and impart plants tolerance to abiotic stresses. A comparative analysis of polyamines, their biosynthetic enzymes at kinetic and at transcriptional level, and their role in regulating the induction of antioxidant defense enzymes under salt stress condition in two foxtail millet (Setaria italica L.) cultivars, namely Prasad, a salt-tolerant, and Lepakshi, a salt-sensitive cultivar was conducted. Salt stress resulted in elevation of free polyamines due to increase in the activity of spermidine synthase and S-adenosyl methionine decarboxylase enzymes in cultivar Prasad compared to cultivar Lepakshi under different levels of NaCl stress. These enzyme activities were further confirmed at the transcript level via qRT-PCR analysis. The cultivar Prasad showed a greater decrease in diamine oxidase and polyamine oxidase activity, which results in the accumulation of polyamine pools over cultivar Lepakshi. Generation of free radicals, such as O 2 (·-) and H2O2, was also analyzed quantitatively. A significant increase in O 2 (·-) and H2O2 in the cultivar Lepakshi compared with cultivar Prasad was recorded in overall pool sizes. Further, histochemical staining showed lesser accumulation of O 2 (·-) and of H2O2 in the leaves of cultivar Prasad than cultivar Lepakshi. Our results also suggest the ability of polyamine oxidation in regulating the induction of antioxidative defense enzymes, which involve in the elimination of toxic levels of O 2 (·-) and H2O2, such as Mn-superoxide dismutase, catalase and ascorbate peroxidase. The contribution of polyamines in modulating antioxidative defense mechanism in NaCl stress tolerance is discussed.
Collapse
Affiliation(s)
- Chinta Sudhakar
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, 515 003, India,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Montesinos-Pereira D, Barrameda-Medina Y, Romero L, Ruiz JM, Sánchez-Rodríguez E. Genotype differences in the metabolism of proline and polyamines under moderate drought in tomato plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:1050-7. [PMID: 24750452 DOI: 10.1111/plb.12178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/07/2014] [Indexed: 05/25/2023]
Abstract
Water stress is one of the most important factors limiting the growth and productivity of crops. The implication of compatible osmolytes such as proline and polyamines in osmotic adjustment has been widely described in numerous plants species under stress conditions. In the present study, we investigated the response of five cherry tomato cultivars (Solanum lycopersicum L.) subjected to moderate water stress in order to shed light on the involvement of proline and polyamine metabolism in the mechanisms of tolerance to moderate water stress. Our results indicate that the most water stress-resistant cultivar (Zarina) had increased degradation of proline associated with increased polyamine synthesis, with a higher concentration of spermidine and spermine under stress conditions. In contrast, Josefina, the cultivar most sensitive to water stress, showed a proline accumulation associated with increased synthesis after being subjected to stress. In turn, in this cultivar, no rise in polyamine synthesis was detected. Therefore, all the data appear to indicate that polyamine metabolism is more involved in the tolerance response to moderate water stress.
Collapse
Affiliation(s)
- D Montesinos-Pereira
- Department of Plant Physiology, Faculty of Science, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
12
|
Lee MJ, Yang YT, Lin V, Huang H. Site-directed mutations of the gatekeeping loop region affect the activity of Escherichia coli spermidine synthase. Mol Biotechnol 2012; 54:572-80. [PMID: 23001854 DOI: 10.1007/s12033-012-9599-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spermidine synthase catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM), and plays a crucial role in cell proliferation and differentiation. The gatekeeping loop identified in the structure of spermidine synthase was predicted to contain residues important for substrate binding, but its correlation with enzyme catalysis has not been fully understood. In this study, recombinant Escherichia coli spermidine synthase (EcSPDS) was produced and its enzyme kinetics was characterized. Site-directed mutants of EcSPDS were obtained to demonstrate the importance of the amino acid residues in the gatekeeping loop. Substitution of Asp158 and Asp161 with alanine completely abolished EcSPDS activity, suggesting that these residues are absolutely required for substrate interaction. Reduction in enzyme activity was observed in the C159A, T160A, and P165Q variants, indicating that hydrophobic interactions contributed by Cys159, Thr160, and Pro165 are important for enzyme catalysis as well. On the other hand, replacement of Pro162 and Ile163 had no influence on EcSDPS activity. These results indicate that residues in the gatekeeping loop of spermidine synthase are indispensable for the catalytic reaction of EcSPDS. To the best of our knowledge, this is the first functional study on the gatekeeping loop of EcSPDS by site-directed mutagenesis.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | | | | | | |
Collapse
|
13
|
Profiling the aminopropyltransferases in plants: their structure, expression and manipulation. Amino Acids 2011; 42:813-30. [PMID: 21861167 DOI: 10.1007/s00726-011-0998-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022]
Abstract
Polyamines are organic polycations that are involved in a wide range of cellular activities related to growth, development, and stress response in plants. Higher polyamines spermidine and spermine are synthesized in plants and animals by a class of enzymes called aminopropyltransferases that transfer aminopropyl moieties (derived from decarboxylated S-adenosylmethionine) to putrescine and spermidine to produce spermidine and spermine, respectively. The higher polyamines show a much tighter homeostatic regulation of their metabolism than the diamine putrescine in most plants; therefore, the aminopropyltransferases are of high significance. We present here a comprehensive summary of the current literature on plant aminopropyltransferases including their distribution, biochemical properties, genomic organization, pattern of expression during development, and their responses to abiotic stresses, and manipulation of their cellular activity through chemical inhibitors, mutations, and genetic engineering. This minireview complements several recent reviews on the overall biosynthetic pathway of polyamines and their physiological roles in plants and animals. It is concluded that (1) plants often have two copies of the common aminopropyltransferase genes which exhibit redundancy of function, (2) their genomic organization is highly conserved, (3) direct enzyme activity data on biochemical properties of these enzymes are scant, (4) often there is a poor correlation among transcripts, enzyme activity and cellular contents of the respective polyamine, and (5) transgenic work mostly confirms the tight regulation of cellular contents of spermidine and spermine. An understanding of expression and regulation of aminopropyltransferases at the metabolic level will help us in effective use of genetic engineering approaches for the improvement in nutritional value and stress responses of plants.
Collapse
|
14
|
Biastoff S, Brandt W, Dräger B. Putrescine N-methyltransferase--the start for alkaloids. PHYTOCHEMISTRY 2009; 70:1708-18. [PMID: 19651420 DOI: 10.1016/j.phytochem.2009.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/08/2009] [Accepted: 06/12/2009] [Indexed: 05/08/2023]
Abstract
Putrescine N-methyltransferase (PMT) catalyses S-adenosylmethionine (SAM) dependent methylation of the diamine putrescine. The product N-methylputrescine is the first specific metabolite on the route to nicotine, tropane, and nortropane alkaloids. PMT cDNA sequences were cloned from tobacco species and other Solanaceae, also from nortropane-forming Convolvulaceae and enzyme proteins were synthesised in Escherichia coli. PMT activity was measured by HPLC separation of polyamine derivatives and by an enzyme-coupled colorimetric assay using S-adenosylhomocysteine. PMT cDNA sequences resemble those of plant spermidine synthases (putrescine aminopropyltransferases) and display little similarity to other plant methyltransferases. PMT is likely to have evolved from the ubiquitous enzyme spermidine synthase. PMT and spermidine synthase proteins share the same overall protein structure; they bind the same substrate putrescine and similar co-substrates, SAM and decarboxylated S-adenosylmethionine. The active sites of both proteins, however, were shaped differentially in the course of evolution. Phylogenetic analysis of both enzyme groups from plants revealed a deep bifurcation and confirmed an early descent of PMT from spermidine synthase in the course of angiosperm development.
Collapse
Affiliation(s)
- Stefan Biastoff
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | | |
Collapse
|
15
|
Biochemical and structural characterization of 5′-methylthioadenosine nucleosidases from Arabidopsis thaliana. Biochem Biophys Res Commun 2009; 381:619-24. [DOI: 10.1016/j.bbrc.2009.02.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/20/2009] [Indexed: 11/18/2022]
|
16
|
Cochrane JC, Strobel SA. Riboswitch effectors as protein enzyme cofactors. RNA (NEW YORK, N.Y.) 2008; 14:993-1002. [PMID: 18430893 PMCID: PMC2390802 DOI: 10.1261/rna.908408] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The recently identified glmS ribozyme revealed that RNA enzymes, like protein enzymes, are capable of using small molecules as catalytic cofactors to promote chemical reactions. Flavin mononucleotide (FMN), S-adenosyl methionine (SAM), adenosyl cobalamin (AdoCbl), and thiamine pyrophosphate (TPP) are known ligands for RNA riboswitches in the control of gene expression, but are also catalytically powerful and ubiquitous cofactors in protein enzymes. If RNA, instead of just binding these molecules, could harness the chemical potential of the cofactor, it would significantly expand the enzymatic repertoire of ribozymes. Here we review the chemistry of AdoCbl, SAM, FMN, and TPP in protein enzymology and speculate on how these cofactors might have been used by ribozymes in the prebiotic RNA World or may still find application in modern biology.
Collapse
Affiliation(s)
- Jesse C Cochrane
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
17
|
Dufe VT, Qiu W, Müller IB, Hui R, Walter RD, Al-Karadaghi S. Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and AdoDATO. J Mol Biol 2007; 373:167-77. [PMID: 17822713 DOI: 10.1016/j.jmb.2007.07.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/11/2007] [Accepted: 07/21/2007] [Indexed: 10/23/2022]
Abstract
Plasmodium falciparum is the causative agent of the most severe type of malaria, a life-threatening disease affecting the lives of over three billion people. Factors like widespread resistance against available drugs and absence of an effective vaccine are seriously compounding control of the malaria parasite. Thus, there is an urgent need for the identification and validation of new drug targets. The enzymes of the polyamine biosynthesis pathway have been suggested as possible targets for the treatment of malaria. One of these enzymes is spermidine synthase (SPDS, putrescine aminopropyltransferase), which catalyzes the transfer of an aminopropyl moiety from decarboxylated S-adenosylmethionine (dcAdoMet) to putrescine, leading to the formation of spermidine and 5'-methylthioadenosine. Here we present the three-dimensional structure of P. falciparum spermidine synthase (pfSPDS) in apo form, in complex with dcAdoMet and two inhibitors, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and trans-4-methylcyclohexylamine (4MCHA). The results show that binding of dcAdoMet to pfSPDS stabilizes the conformation of the flexible gatekeeper loop of the enzyme and affects the conformation of the active-site amino acid residues, preparing the protein for binding of the second substrate. The complexes of AdoDATO and 4MCHA with pfSPDS reveal the mode of interactions of these compounds with the enzyme. While AdoDATO essentially fills the entire active-site pocket, 4MCHA only occupies part of it, which suggests that simple modifications of this compound may yield more potent inhibitors of pfSPDS.
Collapse
Affiliation(s)
- Veronica Tamu Dufe
- Department of Molecular Biophysics, Center for Molecular Protein Science, Lund University, S-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Teuber M, Azemi ME, Namjoyan F, Meier AC, Wodak A, Brandt W, Dräger B. Putrescine N-methyltransferases--a structure-function analysis. PLANT MOLECULAR BIOLOGY 2007; 63:787-801. [PMID: 17221359 DOI: 10.1007/s11103-006-9126-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/14/2006] [Indexed: 05/10/2023]
Abstract
Putrescine N-methyltransferase (PMT) is a key enzyme of plant secondary metabolism at the start of the specific biosynthesis of nicotine, of tropane alkaloids, and of calystegines that are glycosidase inhibitors with nortropane structure. PMT is assumed to have developed from spermidine synthases (SPDS) participating in ubiquitous polyamine metabolism. In this study decisive differences between both enzyme families are elucidated. PMT sequences were known from four Solanaceae genera only, therefore additional eight PMT cDNA sequences were cloned from five Solanaceae and a Convolvulaceae. The encoded polypeptides displayed between 76% and 97% identity and typical amino acids different from plant spermidine synthase protein sequences. Heterologous expression of all enzymes proved catalytic activity exclusively as PMT and K (cat) values between 0.16 s(-1) and 0.39 s(-1). The active site of PMT was initially inferred from a protein structure of spermidine synthase obtained by protein crystallisation. Those amino acids of the active site that were continuously different between PMTs and SPDS were mutated in one of the PMT sequences with the idea of changing PMT activity into spermidine synthase. Mutagenesis of active site residues unexpectedly resulted in a complete loss of catalytic activity. A protein model of PMT was based on the crystal structure of SPDS and suggests that overall protein folds are comparable. The respective cosubstrates S-adenosylmethionine and decarboxylated S-adenosylmethionine, however, appear to bind differentially to the active sites of both enzymes, and the substrate putrescine adopts a different position.
Collapse
Affiliation(s)
- Michael Teuber
- Institute of Pharmacy, Faculty of Science I, Martin-Luther University Halle-Wittenberg, Halle, Saale, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Lu PK, Tsai JY, Chien HY, Huang H, Chu CH, Sun YJ. Crystal structure of Helicobacter pylori spermidine synthase: A Rossmann-like fold with a distinct active site. Proteins 2007; 67:743-54. [PMID: 17357156 DOI: 10.1002/prot.21315] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermidine synthase (putrescine aminopropyltransferase, PAPT) catalyzes the transfer of the aminopropyl group from decarboxylated S-adenosylmethionine to putrescine during spermidine biosynthesis. Helicobacter pylori PAPT (HpPAPT) has a low sequence identity with other PAPTs and lacks the signature sequence found in other PAPTs. The crystal structure of HpPAPT, determined by multiwavelength anomalous dispersion, revealed an N-terminal beta-stranded domain and a C-terminal Rossmann-like domain. Structural comparison with other PAPTs showed that HpPAPT has a unique binding pocket between two domains, numerous non-conserved residues, a less acidic electrostatic surface potential, and a large buried space within the structure. HpPAPT lacks the gatekeeping loop that facilitates substrate binding in other PAPTs. PAPTs are essential for bacterial cell viability; thus, HpPAPT may be a potential antimicrobial drug target for H. pylori owing to its characteristic PAPT sequence and distinct conformation.
Collapse
Affiliation(s)
- Po Kai Lu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Park EY, Oh SI, Nam MJ, Shin JS, Kim KN, Song HK. Crystal structure of 5′-methylthioadenosine nucleosidase from Arabidopsis thaliana at 1.5-Å resolution. Proteins 2006; 65:519-23. [PMID: 16909418 DOI: 10.1002/prot.21120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eun Young Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP. Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 2006; 32:265-75. [PMID: 16738798 DOI: 10.1007/s00726-006-0343-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 01/23/2006] [Indexed: 11/26/2022]
Abstract
The effect of different doses of cadmium and copper was studied in relation to growth and polyamine (Pas) metabolism in shoots of sunflower plants. Cadmium accumulated to higher levels than copper and shoot length was reduced by 0.5 and 1 mM Cd, but only by 1 mM Cu. At 1 mM of Cd or Cu, Put content increased 270% and 160% with Cd2+ and Cu2+, respectively. Spermidine (Spd) was modified only by 1 mM Cd, while spermine (Spm) declined after seeds germinated, increasing thereafter but only with 1 mM Cd or Cu (273% over the controls for Cd and 230% for Cu at day 16). Both ADC and ODC activities were increased by 1 mM Cd, whereas 1 mM Cu enhanced ADC activity, but reduced ODC activity at every concentration used. The role of Pas as markers of Cd or Cu toxicity is discussed.
Collapse
Affiliation(s)
- M D Groppa
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
22
|
Lee MJ, Huang CY, Sun YJ, Huang H. Cloning and characterization of spermidine synthase and its implication in polyamine biosynthesis in Helicobacter pylori strain 26695. Protein Expr Purif 2005; 43:140-8. [PMID: 16009566 DOI: 10.1016/j.pep.2005.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 04/22/2005] [Accepted: 04/24/2005] [Indexed: 11/24/2022]
Abstract
The HP0832 (speE) gene of Helicobacter pylori strain 26695 codes for a putative spermidine synthase, which belongs to the polyamine biosynthetic pathway. Spermidine synthase catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM), which serves as an aminopropyl donor. The deduced amino acid sequence of the HP0832 gene shares less than 20% sequence identity with most spermidine synthases from mammalian cells, plants and other bacteria. In this study, the HP0832 open reading frame (786 bp) was cloned into the pQE30 vector and overexpressed in Escherichia coli strain SG13009. The resulting N-terminally 6xHis-tagged HP0832 protein (31.9 kDa) was purified by Ni-NTA affinity chromatography at a yield of 15 mg/L of bacteria culture. Spermidine synthase activity of the recombinant protein was confirmed by the appearance of spermidine after incubating the enzyme with putrescine and dcSAM. Substrate specificity studies have shown that spermidine could not replace putrescine as the aminopropyl acceptor. Endogenous spermidine synthase of H. pylori was detected with an antiserum raised against the recombinant HP0832 protein. H. pylori strain 26695 contains putrescine and spermidine at a molar ratio of 1:3, but no detectable spermine or norspermidine was observed, suggesting that the spermidine biosynthetic pathway may provide the main polyamines in H. pylori strain 26695.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
23
|
Haider N, Eschbach ML, Dias SDS, Gilberger TW, Walter RD, Lüersen K. The spermidine synthase of the malaria parasite Plasmodium falciparum: Molecular and biochemical characterisation of the polyamine synthesis enzyme. Mol Biochem Parasitol 2005; 142:224-36. [PMID: 15913804 DOI: 10.1016/j.molbiopara.2005.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/24/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
The gene encoding spermidine synthase was cloned from the human malaria parasite Plasmodium falciparum. Northern and Western blot analyses revealed a stage specific expression during the erythrocytic schizogony with the maximal amount of transcript and protein in mature trophozoites. Immunofluorescence assays (IFAs) suggest a cytoplasmatic localisation of the spermidine synthase in P. falciparum. The spermidine synthase polypeptide of 321 amino acids has a molecular mass of 36.6kDa and contains an N-terminal extension of unknown function that, similarly, is also found in certain plants but not in animal or bacterial orthologues. Omitting the first 29 amino acids, a truncated form of P. falciparum spermidine synthase has been recombinantly expressed in Escherichia coli. The enzyme catalyses the transfer of an aminopropyl group from decarboxylated S-adenosylmethionine (dcAdoMet) onto putrescine with Km values of 35 and 52microM, respectively. In contrast to mammalian spermidine synthases, spermidine can replace to some extent putrescine as the aminopropyl acceptor. Hence, P. falciparum spermidine synthase has the capacity to catalyse the formation of spermine that is found in small amounts in the erythrocytic stages of the parasite. Among the spermidine synthase inhibitors tested against P. falciparum spermidine synthase, trans-4-methylcyclohexylamine (4MCHA) was found to be most potent with a Ki value of 0.18microM. In contrast to the situation in mammals, where inhibition of spermidine synthase has no or only little effect on cell proliferation, 4MCHA was an efficient inhibitor of P. falciparum cell growth in vitro with an IC50 of 35microM, indicating that P. falciparum spermidine synthase represents a putative drug target.
Collapse
Affiliation(s)
- Nashya Haider
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Torrigiani P, Scaramagli S, Ziosi V, Mayer M, Biondi S. Expression of an antisense Datura stramonium S-adenosylmethionine decarboxylase cDNA in tobacco: changes in enzyme activity, putrescine-spermidine ratio, rhizogenic potential, and response to methyl jasmonate. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:559-71. [PMID: 15940873 DOI: 10.1016/j.jplph.2004.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
S-adenosylmethionine decarboxylase activity (SAMDC; EC 4.1.1.21) leads to spermidine and spermine synthesis through specific synthases which use putrescine, spermidine and decarboxylated S-adenosylmethionine as substrates. In order to better understand the regulation of polyamine (PA), namely spermidine and spermine, biosynthesis, a SAMDC cDNA of Datura stramonium was introduced in tobacco (Nicotiana tabacum L. cv. Xanthi) in antisense orientation under the CaMV 35S promoter, by means of Agrobacterium tumefaciens and leaf disc transformation. The effect of the genetic manipulation on PA metabolism, ethylene production and plant morphology was analysed in primary transformants (R0), and in the transgenic progeny (second generation, R1) of self-fertilised primary transformants, relative to empty vector-transformed (pBin19) and wild-type (WT) controls. All were maintained in vitro by micropropagation. Primary transformants, which were confirmed by Southern and northern analyses, efficiently transcribed the antisense SAMDC gene, but SAMDC activity and PA titres did not change. By contrast, in most transgenic R1 shoots, SAMDC activity was remarkably lower than in controls, and the putrescine-to-spermidine ratio was altered, mainly due to increased putrescine, even though putrescine oxidising activity (diamine oxidase, EC 1.4.3.6) did not change relative to controls. Despite the reduction in SAMDC activity, the production of ethylene, which shares with PAs the common precursor SAM, was not influenced by the foreign gene. Some plants were transferred to pots and acclimatised in a growth chamber. In these in vivo-grown second generation transgenic plants, at the vegetative stage, SAMDC activity was scarcely reduced, and PA titres did not change. Finally, the rhizogenic potential of in vitro-cultured leaf explants excised from antisense plants was significantly diminished as compared with WT ones, and the response to methyl jasmonate, a stress-mimicking compound, in terms of PA conjugation, was higher and differentially affected in transgenic leaf discs relative to WT ones. The effects of SAMDC manipulation are discussed in relation to plant generation, culture conditions and response to stress.
Collapse
Affiliation(s)
- Patrizia Torrigiani
- Dipartimento di Biologia e.s., University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | | | | | | | | |
Collapse
|
25
|
Paschalidis KA, Roubelakis-Angelakis KA. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. PLANT PHYSIOLOGY 2005; 138:142-52. [PMID: 15849310 PMCID: PMC1104170 DOI: 10.1104/pp.104.055483] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/31/2004] [Accepted: 01/23/2005] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) titers and biosynthesis follow a basipetal decrease along the tobacco (Nicotiana tabacum) plant axis, and they also correlate negatively with cell size. On the contrary, the titers of arginine (Arg), ornithine (Orn), and arginase activity increase with age. The free (soluble)/total-PA ratios gradually increase basipetally, but the soluble conjugated decrease, with spermidine (Spd) mainly to determine these changes. The shoot apical meristems are the main site of Spd and spermine biosynthesis, and the hypogeous tissues synthesize mostly putrescine (Put). High and low Spd syntheses are correlated with cell division and expansion, respectively. Put biosynthetic pathways are differently regulated in hyper- and hypogeous tobacco tissues: Only Arg decarboxylase is responsible for Put synthesis in old hypergeous vascular tissues, whereas, in hypogeous tissues, arginase-catalyzed Orn produces Put via Orn decarboxylase. Furthermore, Orn decarboxylase expression coincides with early cell divisions in marginal sectors of the lamina, and Spd synthase strongly correlates with later cell divisions in the vascular regions. This detailed spatial and temporal profile of the free, soluble-conjugated, and insoluble-conjugated fractions of Put, Spd, and spermine in nearly all tobacco plant organs and the profile of enzymes of PA biosynthesis at the transcript, protein, and specific activity levels, along with the endogenous concentrations of the precursor amino acids Arg and Orn, offer new insight for further understanding the physiological role(s) of PAs. The results are discussed in the light of age dependence, cell division/expansion, differentiation, phytohormone gradients, senescence, and sink-source relationships.
Collapse
|
26
|
Franceschetti M, Fornalé S, Tassonia A, Zuccherelli K, Mayer MJ, Bagni N. Effects of spermidine synthase overexpression on polyamine biosynthetic pathway in tobacco plants. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:989-1001. [PMID: 15499902 DOI: 10.1016/j.jplph.2004.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transgenic tobacco plants overexpressing the Datura stramonium spermidine synthase (EC 2.5.1.16) cDNA were produced in order to understand the role of this gene in the polyamine metabolism and in particular in affecting spermidine endogenous levels. All the analysed transgenic clones displayed a high Level of overexpression of the exogenous cDNA with respect to the endogenous spermidine synthase. No relationship was detected between the mRNA expression level of S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50), which did not change between the negative segregant control and the transgenic plants, and spermidine synthase, suggesting the existence of an independent regulatory mechanism for transcription of the two genes. The determination of enzyme activities indicated an increased spermidine synthase and S-adenosylmethionine decarboxylase activity, with the last being mainly recovered in the particulate fraction. ODC (ODC, EC 4.1.1.17) was the most active enzyme and its activity was equally distributed between the soluble and the particulate fraction, while ADC (ADC, EC 4.1.1.19) activity in the transgenic plants did not particularly change with respect to the controls. In comparison to the controls, the transformed plants displayed an increased spermidine to putrescine ratio in the majority of the clones assayed, white the total polyamine content remained almost unchanged. These findings suggest a high capacity of the transformed plants to tightly regulate polyamine endogenous levels and provide evidence that spermidine synthase is not a limiting step in the biosynthesis of polyamines.
Collapse
Affiliation(s)
- Marina Franceschetti
- Department of Biology e.s. and Interdepartmental Centre of Biotechnology, University of Bologna, Via Irnerio 42, Bologna 40126, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of Spermidine Synthase Enhances Tolerance to Multiple Environmental Stresses and Up-Regulates the Expression of Various Stress-Regulated Genes in Transgenic Arabidopsis thaliana. ACTA ACUST UNITED AC 2004; 45:712-22. [PMID: 15215506 DOI: 10.1093/pcp/pch083] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Polyamines play pivotal roles in plant defense to environmental stresses. However, stress tolerance of genetically engineered plants for polyamine biosynthesis has been little examined so far. We cloned spermidine synthase cDNA from Cucurbita ficifolia and the gene was introduced to Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in the transgenic plants. As compared with the wild-type plants, the T2 and T3 transgenic plants exhibited a significant increase in spermidine synthase activity and spermidine content in leaves together with enhanced tolerance to various stresses including chilling, freezing, salinity, hyperosmosis, drought, and paraquat toxicity. During exposure to chilling stress (5 degrees C), the transgenics displayed a remarkable increase in arginine decarboxylase activity and conjugated spermidine contents in leaves compared to the wild type. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenics than in the wild type under chilling stress. These genes included those for stress-responsive transcription factors such as DREB and stress-protective proteins like rd29A. These results strongly suggest an important role for spermidine as a signaling regulator in stress signaling pathways, leading to build-up of stress tolerance mechanisms in plants under stress conditions.
Collapse
|
28
|
Zhang Z, Honda C, Kita M, Hu C, Nakayama M, Moriguchi T. Structure and expression of spermidine synthase genes in apple: two cDNAs are spatially and developmentally regulated through alternative splicing. Mol Genet Genomics 2003; 268:799-807. [PMID: 12655406 DOI: 10.1007/s00438-002-0802-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Accepted: 12/06/2002] [Indexed: 11/30/2022]
Abstract
Three cDNAs (MdSPDS1, 2a and 2b) encoding spermidine synthase (SPDS), a key enzyme in the polyamine biosynthesis, have been cloned from apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. The deduced amino acid sequences of their protein products share 76-83% identity with SPDSs of other higher plants. A comparison of the sequences of the three cDNAs and of the two corresponding genomic DNA fragments (SPDS1 and SPDS2) indicated that MdSPDS1 was transcribed from the SPDS1 sequence, whereas MdSPDS2a and MdSPDS2b were both derived from SPDS2 by alternative splicing. To learn more about the physiological roles of MdSPDS1, MdSPDS2a and MdSPDS2b, Northern analyses were carried out, together with measurements of polyamine content. Levels of both MdSPDS1 and MdSPD2a were higher in young leaves than in mature leaves and shoots. In fruits, mRNA levels were nearly as high as in young leaves and remained high during fruit development. By RT-PCR, MdSPDS2b transcripts were detected in mature leaves and shoots, but not in young leaves and fruits. These results indicate that MdSPDS2a and MdSPDS2b are differentially regulated in a tissue- and developmentally specific manner. The content of free polyamines in mesocarp tissues was measured at five stages of fruit development. At all stages, spermidine (Spd) was the predominant form of polyamine. The level of Spd was high at the early growth stage and declined to about 90% during later developmental stages. The possible regulation of SPDS expression during apple fruit development is discussed.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Base Sequence
- Biogenic Polyamines/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genome, Plant
- Malus/enzymology
- Malus/genetics
- Malus/growth & development
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Plant/genetics
- Sequence Homology, Amino Acid
- Spermidine Synthase/genetics
- Tissue Distribution
Collapse
Affiliation(s)
- Z Zhang
- National Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Lee GT, Kim WJ, Cho YD. Polyamine synthesis in plants. Purification and properties of amidinotransferase from soybean (Glycine max) axes. PHYTOCHEMISTRY 2002; 61:781-9. [PMID: 12453570 DOI: 10.1016/s0031-9422(02)00401-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three-day-old soybean (Glycine max) seedlings were exposed to 0.4 M sorbitol solution for 4 h to induce amidinotransferase activity, with the corresponding enzyme being purified to homogeneity by chromatographic separation on DEAE-Sephacel, Sephacryl S-300 and L-arginine Sepharose 4B. The purified enzyme used L-arginine and L-glycine as the major donor/acceptor of the amidino group, respectively, with formation of guanidinoacetic acid and ornithine products being confirmed by ESI-MS. The enzyme is a tetrameric protein having a molecular mass of 240,000 Da, whose thiol group is needed for enzymatic activity. The K(M)s for arginine and glycine were 3.8 and 0.89 mM, respectively, with optimal temperature and pH being 37 degrees C and 9.5, respectively. The soybean amidinotransferase could be indirectly involved in nitrogen metabolism, as suggested by the observation that arginine:glycine amidinotransferase in soybean axes is indirectly involved in putrescine biosynthesis and displays feedback control at high levels of an endogenous regulator, putrescine.
Collapse
Affiliation(s)
- Geun Taek Lee
- Department of Biochemistry, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul, South Korea
| | | | | |
Collapse
|