1
|
Homan K, Onodera T, Matsuoka M, Iwasaki N. Glycosphingolipids in Osteoarthritis and Cartilage-Regeneration Therapy: Mechanisms and Therapeutic Prospects Based on a Narrative Review of the Literature. Int J Mol Sci 2024; 25:4890. [PMID: 38732111 PMCID: PMC11084896 DOI: 10.3390/ijms25094890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.
Collapse
Affiliation(s)
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan; (K.H.); (M.M.); (N.I.)
| | | | | |
Collapse
|
2
|
Voelkel-Johnson C. Sphingolipids in embryonic development, cell cycle regulation, and stemness - Implications for polyploidy in tumors. Semin Cancer Biol 2022; 81:206-219. [PMID: 33429049 PMCID: PMC8263803 DOI: 10.1016/j.semcancer.2020.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The aberrant biology of polyploid giant cancer cells (PGCC) includes dysregulation of the cell cycle, induction of stress responses, and dedifferentiation, all of which are likely accompanied by adaptations in biophysical properties and metabolic activity. Sphingolipids are the second largest class of membrane lipids and play important roles in many aspects of cell biology that are potentially relevant to polyploidy. We have recently shown that the function of the sphingolipid enzyme acid ceramidase (ASAH1) is critical for the ability of PGCC to generate progeny by depolyploidization but mechanisms by which sphingolipids contribute to polyploidy and generation of offspring with stem-like properties remain elusive. This review discusses the role of sphingolipids during embryonic development, cell cycle regulation, and stem cells in an effort to highlight parallels to polyploidy.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Russo D, Capolupo L, Loomba JS, Sticco L, D'Angelo G. Glycosphingolipid metabolism in cell fate specification. J Cell Sci 2018; 131:131/24/jcs219204. [PMID: 30559216 DOI: 10.1242/jcs.219204] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are ubiquitous components of eukaryotic plasma membranes that consist of a ceramide backbone linked to a glycan moiety. Both the ceramide and the glycan parts of GSLs display structural variations that result in a remarkable repertoire of diverse compounds. This diversity of GSLs is exploited during embryogenesis, when different GSLs are produced at specific developmental stages and along several differentiation trajectories. Importantly, plasma membrane receptors interact with GSLs to modify their activities. Consequently, two otherwise identical cells can respond differently to the same stimulus owing to their different GSL composition. The metabolic reprograming of GSLs is in fact a necessary part of developmental programs, as its impairment results in developmental failure or tissue-specific defects. Moreover, single-cell variability is emerging as a fundamental player in development: GSL composition displays cell-to-cell variability in syngeneic cell populations owing to the regulatory gene expression circuits involved in microenvironment adaptation and in differentiation. Here, we discuss how GSLs are synthesized and classified and review the role of GSLs in the establishment and maintenance of cell identity. We further highlight the existence of the regulatory circuits that modify GSL pathways and speculate how GSL heterogeneity might contribute to developmental patterning.
Collapse
Affiliation(s)
- Domenico Russo
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy
| | - Laura Capolupo
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy.,Institute of Bioengineering, Laboratory of Lipid Cell Biology, École polytechnique fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Jaipreet Singh Loomba
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy.,Institute of Bioengineering, Laboratory of Lipid Cell Biology, École polytechnique fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Lucia Sticco
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy
| | - Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy .,Institute of Bioengineering, Laboratory of Lipid Cell Biology, École polytechnique fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Kojima H, Suzuki Y, Ito M, Kabayama K. Structural Characterization of Neutral Glycosphingolipids from 3T3-L1 Adipocytes. Lipids 2015; 50:913-7. [PMID: 26017029 PMCID: PMC4541715 DOI: 10.1007/s11745-015-4035-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
In recent years, obesity has been considered a pathological stage of early lifestyle-related diseases, and adipose tissue and adipocyte research has been active. Glycosphingolipids are involved in the pathogenesis of type 2 diabetes induced by insulin resistance, but the details of the glycosphingolipid molecular species composition of adipocytes have yet to be elucidated. We used 3T3-L1 adipocytes and the 1,2-dichloroethane-wash method to remove triacylglycerols, which are abundant in adipocytes, and analyzed the structures of glycosphingolipids, particularly neutral glycosphingolipids, using liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Hisao Kojima
- />College of Life Science, Ritsumeikan University, Shiga, Japan
| | - Yusuke Suzuki
- />College of Science and Technology, Nihon University, Tokyo, Japan
| | - Masahiro Ito
- />College of Life Science, Ritsumeikan University, Shiga, Japan
| | - Kazuya Kabayama
- />Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 Japan
| |
Collapse
|
6
|
Ishibashi Y, Hirabayashi Y. AMP-activated Protein Kinase Suppresses Biosynthesis of Glucosylceramide by Reducing Intracellular Sugar Nucleotides. J Biol Chem 2015; 290:18245-18260. [PMID: 26048992 DOI: 10.1074/jbc.m115.658948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 12/25/2022] Open
Abstract
The membrane glycolipid glucosylceramide (GlcCer) plays a critical role in cellular homeostasis. Its intracellular levels are thought to be tightly regulated. How cells regulate GlcCer levels remains to be clarified. AMP-activated protein kinase (AMPK), which is a crucial cellular energy sensor, regulates glucose and lipid metabolism to maintain energy homeostasis. Here, we investigated whether AMPK affects GlcCer metabolism. AMPK activators (5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside and metformin) decreased intracellular GlcCer levels and synthase activity in mouse fibroblasts. AMPK inhibitors or AMPK siRNA reversed these effects, suggesting that GlcCer synthesis is negatively regulated by an AMPK-dependent mechanism. Although AMPK did not affect the phosphorylation or expression of GlcCer synthase, the amount of UDP-glucose, an activated form of glucose required for GlcCer synthesis, decreased under AMPK-activating conditions. Importantly, the UDP-glucose pyrophosphatase Nudt14, which degrades UDP-glucose, generating UMP and glucose 1-phosphate, was phosphorylated and activated by AMPK. On the other hand, suppression of Nudt14 by siRNA had little effect on UDP-glucose levels, indicating that mammalian cells have an alternative UDP-glucose pyrophosphatase that mainly contributes to the reduction of UDP-glucose under AMPK-activating conditions. Because AMPK activators are capable of reducing GlcCer levels in cells from Gaucher disease patients, our findings suggest that reducing GlcCer through AMPK activation may lead to a new strategy for treating diseases caused by abnormal accumulation of GlcCer.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
7
|
GM1 Ganglioside: Past Studies and Future Potential. Mol Neurobiol 2015; 53:1824-1842. [DOI: 10.1007/s12035-015-9136-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
|
8
|
Allende ML, Proia RL. Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J 2014; 31:613-22. [PMID: 25351657 PMCID: PMC4245496 DOI: 10.1007/s10719-014-9563-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022]
Abstract
Glycosphingolipids (GSLs) are a group of plasma-membrane lipids notable for their extremely diverse glycan head groups. The metabolic pathways for GSLs, including the identity of the biosynthetic enzymes needed for synthesis of their glycans, are now well understood. Many of their cellular functions, which include plasma-membrane organization, regulation of cell signaling, endocytosis, and serving as binding sites for pathogens and endogenous receptors, have also been established. However, an understanding of their functions in vivo had been lagging. Studies employing genetic manipulations of the GSL synthesis pathways in mice have been used to systematically reduce the large numbers and complexity of GSL glycan structures, allowing the in vivo functions of GSLs to be revealed from analysis of the resulting phenotypes. Findings from these studies have produced a clearer picture of the role of GSLs in mammalian physiology, which is the topic of this review.
Collapse
Affiliation(s)
- Maria Laura Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9D-06; 10 Center DR MSC 1821, Bethesda, MD, 20892-1821, USA
| | | |
Collapse
|
9
|
Sasazawa F, Onodera T, Yamashita T, Seito N, Tsukuda Y, Fujitani N, Shinohara Y, Iwasaki N. Depletion of gangliosides enhances cartilage degradation in mice. Osteoarthritis Cartilage 2014; 22:313-22. [PMID: 24333297 DOI: 10.1016/j.joca.2013.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/21/2013] [Accepted: 11/30/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Glycosphingolipids (GSLs) are ubiquitous membrane components that play a functional role in maintaining chondrocyte homeostasis. We investigated the potential role of gangliosides, one of the major components of GSLs, in osteoarthritis (OA) pathogenesis. DESIGN Both age-associated and instability-induced OA models were generated using GM3 synthase knockout (GM3S(-/-)) mice. A cartilage degradation model and transiently GM3S-transfected chondrocytes were analyzed to evaluate the function of gangliosides in OA development. The amount of each series of GSLs in chondrocytes after IL-1α stimulation was profiled using mass spectrometry (MS). RESULTS OA changes in GM3S(-/-) mice were dramatically enhanced with aging compared to those in wild-type (WT) mice. GM3S(-/-) mice showed more severe instability-induced pathologic OA in vivo. Ganglioside deficiency also led to the induction of matrix metalloproteinase (MMP)-13 and ADAMTS-5 secretion and chondrocyte apoptosis in vitro. In contrast, transient GM3S transfection of chondrocytes suppressed MMP-13 and ADAMTS-5 expression after interleukin (IL)-1α stimulation. GSL profiling revealed the presence of abundant gangliosides in chondrocytes after IL-1α stimulation. CONCLUSION Gangliosides play a critical role in OA pathogenesis by regulating the expression of MMP-13 and ADAMTS-5 and chondrocyte apoptosis. Based on the obtained results, we propose that gangliosides are potential target molecules for the development of novel OA treatments.
Collapse
Affiliation(s)
- F Sasazawa
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - T Onodera
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - T Yamashita
- Laboratory of Biochemistry, Azabu University, Graduate School of Veterinary Medicine, Sagamihara, Japan.
| | - N Seito
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Y Tsukuda
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - N Fujitani
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Y Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - N Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
10
|
Ishibashi Y, Kohyama-Koganeya A, Hirabayashi Y. New insights on glucosylated lipids: metabolism and functions. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1475-85. [PMID: 23770033 DOI: 10.1016/j.bbalip.2013.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
Abstract
Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | |
Collapse
|
11
|
Seito N, Yamashita T, Tsukuda Y, Matsui Y, Urita A, Onodera T, Mizutani T, Haga H, Fujitani N, Shinohara Y, Minami A, Iwasaki N. Interruption of glycosphingolipid synthesis enhances osteoarthritis development in mice. ACTA ACUST UNITED AC 2012; 64:2579-88. [PMID: 22391889 DOI: 10.1002/art.34463] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Glycosphingolipids (GSLs) are ubiquitous membrane components that modulate transmembrane signaling and mediate cell-to-cell and cell-to-matrix interactions. GSL expression is decreased in the articular cartilage of humans with osteoarthritis (OA). This study was undertaken to determine the functional role of GSLs in cartilage metabolism related to OA pathogenesis in mice. METHODS We generated mice with knockout of the chondrocyte-specific Ugcg gene, which encodes an initial enzyme of major GSL synthesis, using the Cre/loxP system (Col2-Ugcg(-/-) mice). In vivo OA and in vitro cartilage degradation models were used to evaluate the effect of GSLs on the cartilage degradation process. RESULTS Although Col2-Ugcg(-/-) mice developed and grew normally, OA changes in these mice were dramatically enhanced with aging, through the overexpression of matrix metalloproteinase 13 and chondrocyte apoptosis, compared to their wild-type (WT) littermates. Col2-Ugcg(-/-) mice showed more severe instability-induced pathologic OA in vivo and interleukin-1α (IL-1α)-induced cartilage degradation in vitro. IL-1α stimulation of chondrocytes from WT mice significantly increased Ugcg messenger RNA expression and up-regulated GSL metabolism. CONCLUSION Our results indicate that GSL deficiency in mouse chondrocytes enhances the development of OA. However, this deficiency does not affect the development and organization of cartilage tissue in mice at a young age. These findings indicate that GSLs maintain cartilage molecular metabolism and prevent disease progression, although GSLs are not essential for chondrogenesis of progenitor and stem cells and cartilage development in young mice. GSL metabolism in the cartilage is a potential target for developing a novel treatment for OA.
Collapse
|
12
|
Abstract
The combination of carbohydrate and lipid generates unusual molecules in which the two distinctive halves of the glycoconjugate influence the function of each other. Membrane glycolipids can act as primary receptors for carbohydrate binding proteins to mediate transmembrane signaling despite restriction to the outer bilayer leaflet. The extensive heterogeneity of the lipid moiety plays a significant, but still largely unknown, role in glycosphingolipid function. Potential interplay between glycolipids and their fatty acid isoforms, together with their preferential interaction with cholesterol, generates a complex mechanism for the regulation of their function in cellular physiology.
Collapse
Affiliation(s)
- Clifford A Lingwood
- Research Institute, Hospital for Sick Children, Molecular Structure and Function, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
13
|
Kohyama-Koganeya A, Nabetani T, Miura M, Hirabayashi Y. Glucosylceramide synthase in the fat body controls energy metabolism in Drosophila. J Lipid Res 2011; 52:1392-9. [PMID: 21550991 DOI: 10.1194/jlr.m014266] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucosylceramide synthase (GlcT-1) catalyzes the synthesis of glucosylceramide (GlcCer), the core structure of major glycosphingolipids (GSLs). Obesity is a metabolic disorder caused by an imbalance between energy uptake and expenditure, resulting in excess stored body fat. Recent studies have shown that GSL levels are increased in obese rodents and that pharmacologically reducing GSL levels by inhibiting GlcCer synthesis improves adipocyte function. However, the molecular mechanism underlying these processes is still not clearly understood. Using Drosophila as a model animal, we report that GlcT-1 expression in the fat body, which is equivalent to mammalian adipose tissue, regulates energy metabolism. Overexpression of GlcT-1 increases stored nutrition (triacylglycerol and carbohydrate) levels. Conversely, reduced expression of GlcT-1 in the fat body causes a reduction of fat storage. This regulation occurs, at least in part, through the activation of p38-ATF2 signaling. Furthermore, we found that GlcCer is the sole GSL of the fat body, indicating that regulation of GlcCer synthesis by GlcT-1 in the fat body is responsible for regulating energy homeostasis. Both GlcT-1 and p38-ATF2 signaling are evolutionarily conserved, leading us to propose an evolutionary perspective in which GlcT-1 appears to be one of the key factors that control fat metabolism.
Collapse
Affiliation(s)
- Ayako Kohyama-Koganeya
- Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
14
|
Lingwood CA, Manis A, Mahfoud R, Khan F, Binnington B, Mylvaganam M. New aspects of the regulation of glycosphingolipid receptor function. Chem Phys Lipids 2010; 163:27-35. [DOI: 10.1016/j.chemphyslip.2009.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 12/19/2022]
|
15
|
Yamashita T. Biological function of glycosphingolipids—mouse early stage development and neuronal function—. TRENDS GLYCOSCI GLYC 2009. [DOI: 10.4052/tigg.21.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tadashi Yamashita
- Frontier Research Center for Post-genome Science and Technology, Hokkaido University
| |
Collapse
|
16
|
Biellmann F, Hülsmeier AJ, Zhou D, Cinelli P, Hennet T. The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo. BMC DEVELOPMENTAL BIOLOGY 2008; 8:109. [PMID: 19014510 PMCID: PMC2596124 DOI: 10.1186/1471-213x-8-109] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 11/12/2008] [Indexed: 12/17/2022]
Abstract
Background Glycosphingolipids (GSL) are integral components of mammalian cell membranes that are involved in cell adhesion and cell signaling processes. GSL are subdivided into structural series, like ganglio-, lacto/neolacto-, globo- and isoglo-series, which are defined by distinct trisaccharide cores. The β1,3 N-acetylglucosaminyltransferase-V (B3gnt5) enzyme catalyzes the formation of the Lc3 structure, which is the core of lactoseries derived GSL. Results The biological significance of the glycoconjugates produced by the B3gnt5 enzyme was investigated by inactivating the B3gnt5 gene in the mouse germline. The disruption of the B3gnt5 protein-coding region in mouse embryonic stem cells resulted in reduced Lc3-synthase activity, supporting its specific contribution to lactoseries derived GSL synthesis. Breeding of heterozygous mutant mice failed to produce any viable progeny homozygous for the B3gnt5-null allele. The genotypic examination of embryos from heterozygous crosses showed that the disruption of the B3gnt5 gene leads to pre-implantation lethality. This finding was compatible with the expression pattern of the B3gnt5 gene in the pre-implantation embryo as shown by in situ hybridization. The analysis of GSL profiles in embryonic stem cells heterozygous for the B3gnt5-null allele confirmed the reduced levels of lactoseries derived GSL levels and of other GSL species. Conclusion The disruption of the B3gnt5 gene in mice affected the expression of lactoseries derived GLS and possibly of protein-bound β3GlcNAc-linked glycans, thereby demonstrating an essential contribution of these glycoconjugates in early embryonic development, and supporting the importance of these glycoconjugates in cell differentiation and adhesion processes.
Collapse
Affiliation(s)
- Franziska Biellmann
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
17
|
Sabourdy F, Kedjouar B, Sorli SC, Colié S, Milhas D, Salma Y, Levade T. Functions of sphingolipid metabolism in mammals--lessons from genetic defects. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:145-83. [PMID: 18294974 DOI: 10.1016/j.bbalip.2008.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 01/23/2023]
Abstract
Much is known about the pathways that control the biosynthesis, transport and degradation of sphingolipids. During the last two decades, considerable progress has been made regarding the roles this complex group of lipids play in maintaining membrane integrity and modulating responses to numerous signals. Further novel insights have been provided by the analysis of newly discovered genetic diseases in humans as well as in animal models harboring mutations in the genes whose products control sphingolipid metabolism and action. Through the description of the phenotypic consequences of genetic defects resulting in the loss of activity of the many proteins that synthesize, transport, bind, or degrade sphingolipids, this review summarizes the (patho)physiological functions of these lipids.
Collapse
|
18
|
Mattocks M, Bagovich M, De Rosa M, Bond S, Binnington B, Rasaiah VI, Medin J, Lingwood C. Treatment of neutral glycosphingolipid lysosomal storage diseases via inhibition of the ABC drug transporter, MDR1. FEBS J 2006; 273:2064-75. [PMID: 16724420 DOI: 10.1111/j.1742-4658.2006.05223.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have shown that the ABC transporter, multiple drug resistance protein 1 (MDR1, P-glycoprotein) translocates glucosyl ceramide from the cytosolic to the luminal Golgi surface for neutral, but not acidic, glycosphingolipid (GSL) synthesis. Here we show that the MDR1 inhibitor, cyclosporin A (CsA) can deplete Gaucher lymphoid cell lines of accumulated glucosyl ceramide and Fabry cell lines of globotriaosyl ceramide (Gb3), by preventing de novo synthesis. In the Fabry mouse model, Gb3 is increased in the heart, liver, spleen, brain and kidney. The lack of renal glomerular Gb3 is retained, but the number of verotoxin 1 (VT1)-staining renal tubules, and VT1 tubular targeting in vivo, is markedly increased in Fabry mice. Adult Fabry mice were treated with alpha-galactosidase (enzyme-replacement therapy, ERT) to eliminate serum Gb3 and lower Gb3 levels in some tissues. Serum Gb3 was monitored using a VT1 ELISA during a post-ERT recovery phase +/- biweekly intra peritoneal CsA. After 9 weeks, tissue Gb3 content and localization were determined using VT1/TLC overlay and histochemistry. Serum Gb3 recovered to lower levels after CsA treatment. Gb3 was undetected in wild-type liver, and the levels of Gb3 (but not gangliosides) in Fabry mouse liver were significantly depleted by CsA treatment. VT1 liver histochemistry showed Gb3 accumulated in Kupffer cells, endothelial cell subsets within the central and portal vein and within the portal triad. Hepatic venule endothelial and Kupffer cell VT1 staining was considerably reduced by in vivo CsA treatment. We conclude that MDR1 inhibition warrants consideration as a novel adjunct treatment for neutral GSL storage diseases.
Collapse
Affiliation(s)
- Michael Mattocks
- Research Institute, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yamashita T, Allende ML, Kalkofen DN, Werth N, Sandhoff K, Proia RL. Conditional LoxP-flanked glucosylceramide synthase allele controlling glycosphingolipid synthesis. Genesis 2006; 43:175-80. [PMID: 16283624 DOI: 10.1002/gene.20167] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycosphingolipids are organizational building blocks of plasma membranes that participate in key cellular functions, such as signaling and cell-to-cell interactions. Glucosylceramide synthase--encoded by the Ugcg gene--controls the first committed step in the major pathway of glycosphingolipid synthesis. Global disruption of the Ugcg gene in mice is lethal during gastrulation. We have now established a Ugcg allele flanked by loxP sites (floxed). When cre recombinase was expressed in the nervous system under control of the nestin promoter, the floxed gene underwent recombination, resulting in a substantial reduction of Ugcg expression and of glycosphingolipid ganglio-series levels. The mice deficient in Ugcg expression in the nervous system show a striking loss of Purkinje cells and abnormal neurologic behavior. The floxed Ugcg allele will facilitate analysis of the function of glycosphingolipids in development, physiology, and in diseases such as diabetes and cancer.
Collapse
Affiliation(s)
- Tadashi Yamashita
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|