1
|
Huser AJ, Nugraha HK, Hariharan AR, Ziegler SE, Feldman DS. Peroneal Nerve Decompression in Patients with Multiple Hereditary Exostoses: Indications, Complications, and Recurrence. J Bone Joint Surg Am 2024; 106:1277-1285. [PMID: 38662808 PMCID: PMC11593978 DOI: 10.2106/jbjs.23.01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND To our knowledge, there have been no studies examining peroneal nerve decompression and proximal fibular osteochondroma excision exclusively in patients with multiple hereditary exostoses (MHE). The purpose of this study was to evaluate the indications, complications, and recurrence associated with nerve decompression and proximal fibular osteochondroma excision in patients with MHE. METHODS The records on patients with MHE undergoing peroneal nerve decompression from 2009 to 2023 were retrospectively reviewed. Indications, clinical status, surgical technique, recurrence, and complications were recorded and were analyzed using the Fisher exact test, logistic regression, and the Kaplan-Meier method. RESULTS There were 126 limbs identified in patients with MHE who underwent peroneal nerve decompression. The most common indications were pain over the proximal fibula, tibialis anterior and/or extensor hallucis longus weakness, and dysesthesias and/or neuropathic pain. Seven cases experienced postoperative foot drop as a complication of the decompression and osteochondroma excision. Logistic regression found significant relationships between complications and excision of anterior osteochondromas (odds ratio [OR], 5.21; p = 0.0062), proximal fibular excision (OR, 14.73; p = 0.0051), and previous decompression (OR, 5.77; p = 0.0124). The recurrence rate was 13.8%, and all recurrences occurred in patients who were skeletally immature at the index procedure. The probability of skeletally immature patients not experiencing recurrence was 88% at 3 years postoperatively and 73% at 6 years postoperatively. CONCLUSIONS Indications for peroneal nerve decompression included neurologic symptoms and pain. The odds of a complication increased with excision of anterior osteochondromas and previous decompression. Recurrence of symptoms following decompression and osteochondroma excision was found exclusively in skeletally immature patients. LEVEL OF EVIDENCE Therapeutic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Aaron J. Huser
- Paley Orthopedic & Spine Institute, West Palm Beach, Florida
| | - Hans K. Nugraha
- Paley Orthopedic & Spine Institute, West Palm Beach, Florida
| | | | | | | |
Collapse
|
2
|
Veraldi N, Quadri ID, van de Looij Y, Modernell LM, Sinquin C, Zykwinska A, Tournier BB, Dalonneau F, Li H, Li JP, Millet P, Vives R, Colliec-Jouault S, de Agostini A, Sanches EF, Sizonenko SV. Low-molecular weight sulfated marine polysaccharides: Promising molecules to prevent neurodegeneration in mucopolysaccharidosis IIIA? Carbohydr Polym 2023; 320:121214. [PMID: 37659814 DOI: 10.1016/j.carbpol.2023.121214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 09/04/2023]
Abstract
Mucopolysaccharidosis IIIA is a hereditary disease caused by mutations in the sulfamidase enzyme that participates in catabolism of heparan sulfate (HS), leading to HS fragment accumulation and multisystemic failure. No cure exists and death occurs around the second decade of life. Two low molecular weight highly sulfated compounds derived from marine diabolican and infernan exopolysaccharides (A5_3 and A5_4, respectively) with heparanase inhibiting properties were tested in a MPSIIIA cell line model, resulting in limited degradation of intracellular HS. Next, we observed the effects of intraperitoneal injections of the diabolican derivative A5_3 from 4 to 12 weeks of age on MPSIIIA mice. Brain metabolism and microstructure, levels of proteins and genes involved in MPSIIIA brain pathophysiology were also investigated. 1H-Magnetic Resonance Spectroscopy (MRS) indicated deficits in energetic metabolism, tissue integrity and neurotransmission at both 4 and 12 weeks in MPSIIIA mice, with partial protective effects of A5_3. Ex-vivo Diffusion Tensor Imaging (DTI) showed white matter microstructural damage in MPSIIIA, with noticeable protective effects of A5_3. Protein and gene expression assessments displayed both pro-inflammatory and pro-apoptotic profiles in MPSIIIA mice, with benefits of A5_3 counteracting neuroinflammation. Overall, derivative A5_3 was well tolerated and was shown to be efficient in preventing brain metabolism failure and inflammation, resulting in preserved brain microstructure in the context of MPSIIIA.
Collapse
Affiliation(s)
- Noemi Veraldi
- Division of Clinical Pathology, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.
| | - Isabelle Dentand Quadri
- Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland.
| | - Yohan van de Looij
- Center for Biomedical Imaging, Animal Imaging Technology section, Federal Polytechnic School of Lausanne, Lausanne, Switzerland; Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland.
| | - Laura Malaguti Modernell
- Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
| | | | | | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
| | | | - Honglian Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
| | - Romain Vives
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
| | | | - Ariane de Agostini
- Division of Clinical Pathology, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland.
| | - Eduardo Farias Sanches
- Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland.
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
3
|
Jiang L, Zhang T, Lu H, Li S, Lv K, Tuffour A, Zhang L, Ding K, Li JP, Li H, Liu X. Heparin mimetics as potential intervention for COVID-19 and their bio-manufacturing. Synth Syst Biotechnol 2023; 8:11-19. [PMID: 36313216 PMCID: PMC9595387 DOI: 10.1016/j.synbio.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The COVID-19 pandemic has caused severe health problems worldwide and unprecedented decimation of the global economy. Moreover, after more than 2 years, many populations are still under pressure of infection. Thus, a broader perspective in developing antiviral strategies is still of great importance. Inspired by the observed multiple benefits of heparin in the treatment of thrombosis, the potential of low molecular weight heparin (LMWH) for the treatment of COVID-19 have been explored. Clinical applications found that LMWH decreased the level of inflammatory cytokines in COVID-19 patients, accordingly reducing lethality. Furthermore, several in vitro studies have demonstrated the important roles of heparan sulfate in SARS-CoV-2 infection and the inhibitory effects of heparin and heparin mimetics in viral infection. These clinical observations and designed studies argue for the potential to develop heparin mimetics as anti-SARS-CoV-2 drug candidates. In this review, we summarize the properties of heparin as an anticoagulant and the pharmaceutical possibilities for the treatment of virus infection, focusing on the perspectives of developing heparin mimetics via chemical synthesis, chemoenzymatic synthesis, and bioengineered production by microbial cell factories. The ultimate goal is to pave the eminent need for exploring novel compounds to treat coronavirus infection-caused diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saijuan Li
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Alex Tuffour
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin-Ping Li
- International Research Center for Soft Matter, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Hongmei Li
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Pathogenic Roles of Heparan Sulfate and Its Use as a Biomarker in Mucopolysaccharidoses. Int J Mol Sci 2022; 23:ijms231911724. [PMID: 36233030 PMCID: PMC9570396 DOI: 10.3390/ijms231911724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is an essential glycosaminoglycan (GAG) as a component of proteoglycans, which are present on the cell surface and in the extracellular matrix. HS-containing proteoglycans not only function as structural constituents of the basal lamina but also play versatile roles in various physiological processes, including cell signaling and organ development. Thus, inherited mutations of genes associated with the biosynthesis or degradation of HS can cause various diseases, particularly those involving the bones and central nervous system (CNS). Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders involving GAG accumulation throughout the body caused by a deficiency of GAG-degrading enzymes. GAGs are stored differently in different types of MPSs. Particularly, HS deposition is observed in patients with MPS types I, II, III, and VII, all which involve progressive neuropathy with multiple CNS system symptoms. While therapies are available for certain symptoms in some types of MPSs, significant unmet medical needs remain, such as neurocognitive impairment. This review presents recent knowledge on the pathophysiological roles of HS focusing on the pathogenesis of MPSs. We also discuss the possible use and significance of HS as a biomarker for disease severity and therapeutic response in MPSs.
Collapse
|
5
|
Genome-wide CRISPR screen for HSV-1 host factors reveals PAPSS1 contributes to heparan sulfate synthesis. Commun Biol 2022; 5:694. [PMID: 35854076 PMCID: PMC9296583 DOI: 10.1038/s42003-022-03581-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/10/2022] [Indexed: 12/01/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that causes various diseases in humans, ranging from common mucocutaneous lesions to severe life-threatening encephalitis. However, our understanding of the interaction between HSV-1 and human host factors remains incomplete. Here, to identify the host factors for HSV-1 infection, we performed a human genome-wide CRISPR screen using near-haploid HAP1 cells, in which gene knockout (KO) could be efficiently achieved. Along with several already known host factors, we identified 3′-phosphoadenosine 5′-phosphosulfate synthase 1 (PAPSS1) as a host factor for HSV-1 infection. The KO of PAPSS1 in HAP1 cells reduced heparan sulfate (HepS) expression, consequently diminishing the binding of HSV-1 and several other HepS-dependent viruses (such as HSV-2, hepatitis B virus, and a human seasonal coronavirus). Hence, our findings provide further insights into the host factor requirements for HSV-1 infection and HepS biosynthesis. A genome-wide CRISPR screen for HSV-1 host factors using near-haploid HAP1 cells revealed PAPSS1 as an essential factor for heparan sulfate biosynthesis and HSV-1 infection, and identified several other host factors also involved in both processes.
Collapse
|
6
|
Wilson LFL, Dendooven T, Hardwick SW, Echevarría-Poza A, Tryfona T, Krogh KBRM, Chirgadze DY, Luisi BF, Logan DT, Mani K, Dupree P. The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nat Commun 2022; 13:3314. [PMID: 35676258 PMCID: PMC9178029 DOI: 10.1038/s41467-022-31048-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Heparan sulfate is a highly modified O-linked glycan that performs diverse physiological roles in animal tissues. Though quickly modified, it is initially synthesised as a polysaccharide of alternating β-D-glucuronosyl and N-acetyl-α-D-glucosaminyl residues by exostosins. These enzymes generally possess two glycosyltransferase domains (GT47 and GT64)-each thought to add one type of monosaccharide unit to the backbone. Although previous structures of murine exostosin-like 2 (EXTL2) provide insight into the GT64 domain, the rest of the bi-domain architecture is yet to be characterised; hence, how the two domains co-operate is unknown. Here, we report the structure of human exostosin-like 3 (EXTL3) in apo and UDP-bound forms. We explain the ineffectiveness of EXTL3's GT47 domain to transfer β-D-glucuronosyl units, and we observe that, in general, the bi-domain architecture would preclude a processive mechanism of backbone extension. We therefore propose that heparan sulfate backbone polymerisation occurs by a simple dissociative mechanism.
Collapse
Affiliation(s)
- L F L Wilson
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - T Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - S W Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - A Echevarría-Poza
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - T Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - K B R M Krogh
- Department of Protein Biochemistry and Stability, Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Denmark
| | - D Y Chirgadze
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - B F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - D T Logan
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00, Lund, Sweden
| | - K Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, SE-221 00, Lund, Sweden.
| | - P Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
7
|
Wang C, Liu Y, Zhang M, Yang F, Xu F, Shi S, Zeng C, Chen X, Miao Y, Liu Z, Hu W. Glomerular Exostosin as a Subtype and Activity Marker of Class V Lupus Nephritis. Clin J Am Soc Nephrol 2022; 17:986-993. [PMID: 35584929 PMCID: PMC9269634 DOI: 10.2215/cjn.00350122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Background and objectives There have been only several studies on the correlation between glomerular exostosin expression and membranous lupus nephritis. In this study, we validate the previous findings in Chinese patients with class V lupus nephritis. Design, setting, participants, and measurements 165 class V cases and varying numbers of control cases were included. Exostosin1/exostosin2 staining was performed by immunohistochemistry and the staining intensity was quantified using an imaging analysis system. Between-group comparisons were tested for statistical significance using Pearson's chi-square test, Fisher's exact test, unpaired t-test, Mann-Whitney U test, or one-way ANOVA. Results 46% of class V, 9% of class V+III/IV, and none of the other classes of lupus nephritis were exostosin positive. Only 3 cases were exostosin-positive among the 61 cases with other secondary membranous nephropathy. Exostosin-positive rate in cases with nephrotic syndrome was significantly higher than that without nephrotic syndrome(P<0.001) and the exostosin staining intensities of the exostosin- positive class V patients were positively correlated with proteinuria (r=0.53 P<0.001). Compared with the exostosin-negative cases, the exostosin-positive ones had higher proteinuria levels [3.9(IQR, 2.0-6.3)g/day vs 2.3 (IQR, 1.0-3.6)g/day] (P<0.001), lower scores of activity index [1(IQR, 1-2) vs 2 (IQR, 1-3)] (p=0.001), chronicity index [1(IQR, 0-2) vs 2(IQR, 1-2)] (P=0.02) and tubular atrophy score[0 (IQR, 0-1) vs 1 (IQR, 0-1)](P=0.008), a higher proportion of extensive subepithelial deposition [62% vs 27%](P<0.001), a similar treatment response and comparable time to kidney endpoint. Among the 47 class V cases who underwent repeat biopsy because of relapse or unresponsiveness to treatment, 97% of the exostosin-negative cases remained negative, while 44% of the exostosin-positive cases were still positive. The rate of histological transition in the exostosin-negative class V cases was significantly higher than that in the exostosin-positive class V cases (59% vs 22%, P=0.03). Conclusions exostosin positivity occured frequently in patients with class V lupus nephritis, and the exostosin-positive cases have more severe proteinuria and a lower rate of histologic transition than the exostosin-negative patients.
Collapse
Affiliation(s)
- Chengyu Wang
- C Wang, The First School of Clinical Medicine, Southern Medical University, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| | - Yang Liu
- Y Liu, The First School of Clinical Medicine, Southern Medical University, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| | - Mingchao Zhang
- M Zhang, Nanjing University School of Medicine, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| | - Fan Yang
- F Yang, Nanjing University School of Medicine, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| | - Feng Xu
- F Xu, Nanjing University School of Medicine, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| | - Shaolin Shi
- S Shi, Nanjing University School of Medicine, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| | - Caihong Zeng
- C Zeng, Nanjing University School of Medicine, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| | - Xin Chen
- X Chen, Nanjing University School of Medicine, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| | - Yiqi Miao
- Y Miao, Nanjing University School of Medicine, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| | - Zhengzhao Liu
- Z Liu, Nanjing University School of Medicine, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| | - Weixin Hu
- W Hu, The First School of Clinical Medicine, Southern Medical University, Jinling Hospital National Clinical Research Center of Kidney Diseases, Nanjing, China
| |
Collapse
|
8
|
Exostosin glycosyltransferase 1 reduces porcine reproductive and respiratory syndrome virus infection through proteasomal degradation of nsp3 and nsp5. J Biol Chem 2021; 298:101548. [PMID: 34971707 PMCID: PMC8888461 DOI: 10.1016/j.jbc.2021.101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a serious threat to the swine industry worldwide. Exostosin glycosyltransferase 1 (EXT1), an enzyme involved in the biosynthesis of heparin sulfate, has also been reported to be a host factor essential for a wide variety of pathogens. However, the role of EXT1 in PRRSV infection remains uncharted. Here we identified that PRRSV infection caused an increase of EXT1 expression. EXT1 knockdown promoted virus infection, while its overexpression inhibited virus infection, suggesting an inhibitory function of EXT1 to PRRSV infection. We found that EXT1 had no effects on the attachment, internalization, or release of PRRSV, but did restrict viral RNA replication. EXT1 was determined to interact with viral non-structural protein 3 (nsp3) and nsp5 via its N-terminal cytoplasmic tail and to enhance K48-linked polyubiquitination of these two nsps to promote their degradation. Furthermore, the C-terminal glycosyltransferase activity domain of EXT1 was necessary for nsp3 and nsp5 degradation. We also found that EXT2, a EXT1 homologue, interacted with EXT1 and inhibited PRRSV infection. Similarly, EXT1 effectively restricted porcine epidemic diarrhea virus (PEDV) and porcine enteric alphacoronavirus (PEAV) infection in Vero cells. Taken together, this study reveals that EXT1 may serve as a broad-spectrum host restriction factor and suggests a molecular basis for the potential development of therapeutics against PRRSV infection.
Collapse
|
9
|
Ahmed G, Shinmyo Y. Multiple Functions of Draxin/Netrin-1 Signaling in the Development of Neural Circuits in the Spinal Cord and the Brain. Front Neuroanat 2021; 15:766911. [PMID: 34899198 PMCID: PMC8655782 DOI: 10.3389/fnana.2021.766911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections. Draxin has been shown to not only control axon guidance through netrin-1 receptors, deleted in colorectal cancer (Dcc), and neogenin (Neo1) but also modulate netrin-1-mediated axon guidance and fasciculation. In this review, we summarize the multifaceted functions of draxin and netrin-1 signaling in neural circuit formation in the central nervous system. Furthermore, because recent studies suggest that the distributions and functions of axon guidance cues are highly regulated by glycoproteins such as Dystroglycan and Heparan sulfate proteoglycans, we discuss a possible function of glycoproteins in draxin/netrin-1-mediated axon guidance.
Collapse
Affiliation(s)
- Giasuddin Ahmed
- Department of Neuroscience and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Garcia SA, Ng VY, Iwamoto M, Enomoto-Iwamoto M. Osteochondroma Pathogenesis: Mouse Models and Mechanistic Insights into Interactions with Retinoid Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2042-2051. [PMID: 34809786 PMCID: PMC8647428 DOI: 10.1016/j.ajpath.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 05/02/2023]
Abstract
Osteochondromas are cartilage-capped tumors that arise near growing physes and are the most common benign bone tumor in children. Osteochondromas can lead to skeletal deformity, pain, loss of motion, and neurovascular compression. Currently, surgery is the only available treatment for symptomatic osteochondromas. Osteochondroma mouse models have been developed to understand the pathology and the origin of osteochondromas and develop therapeutic drugs. Several cartilage regulatory pathways have been implicated in the development of osteochondromas, such as bone morphogenetic protein, hedgehog, and WNT/β-catenin signaling. Retinoic acid receptor-γ is an important regulator of endochondral bone formation. Selective agonists for retinoic acid receptor-γ, such as palovarotene, have been investigated as drugs for inhibition of ectopic endochondral ossification, including osteochondromas. This review discusses the signaling pathways involved in osteochondroma pathogenesis and their possible interactions with the retinoid pathway.
Collapse
Affiliation(s)
- Sonia Arely Garcia
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Vincent Y Ng
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
11
|
An update on the imaging of diaphyseal aclasis. Skeletal Radiol 2021; 50:1941-1962. [PMID: 33791832 DOI: 10.1007/s00256-021-03770-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Solitary osteochondromas are common, benign hyaline cartilage-capped exostoses that primarily arise from the metaphyses of long and flat bones. Diaphyseal aclasis is an autosomal dominant condition resulting from EXT1 or EXT2 gene mutations and is characterized by multifocal osteochondromas. These can result in a wide spectrum of complications, such as skeletal deformity, neurological and vascular complications, adventitial bursa formation, fracture, and rarely malignant transformation to peripheral chondrosarcoma. In this review, we outline in detail the multimodality imaging features of DA and its associated complications.
Collapse
|
12
|
Mutational Analysis of EXT1in a Chinese Family Affected by Hereditary Multiple Osteochondroma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8888948. [PMID: 34409107 PMCID: PMC8367584 DOI: 10.1155/2021/8888948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Objectives To discuss the mutational features and their relationships with disease in a family with hereditary multiple osteochondroma (HMO) from Guangxi Province (GXBB-1 family), China. Methods Genomic DNA and total mRNA were extracted from peripheral blood cells of GXBB-1 family members. Whole elements of the EXT1gene and its transcript, including exons, introns, exon-intron boundaries, and coding sequence (CDS) clones, were amplified and sequenced. Allele-specific PCR was used to confirm the position and type of mutation. Results All patients from the GXBB-1 family harbored the cosegregating heterozygous c.1056+1G>A mutation located in EXT1at an exon-intron boundary. Another three single-nucleotide polymorphisms (SNPs) were also detected in the patients, including IVS2+1G>A in intron 2, c.1844 T>C [p.Pro (CCT) 614Pro (CCC)] in exon 3, and c.2534G>A [p.Glu (GAG) 844Glu (GAA)] in exon 9. The latter two SNPs were synonymous variations. Conclusions The heterozygous c.1056+1G>A mutation cosegregated with the phenotype, indicating that it is a pathogenic mutation in the GXBB-1 family. This mutation is reported for the first time in Chinese HMO patients. IVS2+1G>A and c.2534G>A have no relationship with the occurrence of disease. However, c.1844 T>C and c.1056+1G>A are linked, and their interaction needs to be further studied. c.1844T>C is a new SNP that has not been reported internationally.
Collapse
|
13
|
Yang M, Xie H, Xu B, Xiang Q, Wang H, Hu T, Liu S. Identification of a novel EXT2 frameshift mutation in a family with hereditary multiple exostoses by whole-exome sequencing. J Clin Lab Anal 2021; 35:e23968. [PMID: 34403521 PMCID: PMC8418499 DOI: 10.1002/jcla.23968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hereditary multiple exostoses (HME), also referred to as multiple osteochondromas, is an autosomal dominant skeletal disease characterized by the development of multiple overgrown benign bony tumors capped by cartilage and is associated with bone deformity, joint limitation, and short stature. Mutations in exostosin glycosyltransferase (EXT)1 and EXT2 genes, which are located on chromosomes 8q24.1 and 11p13, contribute to the pathogenesis of HME. METHODS In the present study, a genetic analysis of a four-generation Chinese family with HME was conducted using whole-exome sequencing (WES), followed by validation using Sanger sequencing. RESULTS A novel heterozygous frameshift mutation in exon 5 of EXT2 (c.944dupT, p.Leu316fs) was identified in all affected individuals but was not detected in any unaffected individuals. This mutation results in a frameshift that introduces a premature termination codon at position 318 (p.Leu316fs) with the ability to produce a truncated EXT2 protein that lacks the last 433 amino acids at its C-terminal to indicate a defective exostosin domain and the absence of the glycosyltransferase family 64 domain, or to lead to the degradation of mRNAs by nonsense-mediated mRNA decay, which is critical for the function of EXT2. CONCLUSION Our results indicate that WES is effective in extending the EXT mutational spectra and is advantageous for genetic counseling and the subsequent prenatal diagnosis.
Collapse
Affiliation(s)
- Mei Yang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hanbing Xie
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Bocheng Xu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Qinqin Xiang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - He Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Ting Hu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Shanling Liu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Sheaffer K, Hampton S, Barnard E, Patel MN, Kim L, Gendreau JL. Hemothorax and Pneumothorax Secondary to Costal Involvement in Hereditary Multiple Exostoses: A Systematic Review of Reported Cases in the Literature. Cureus 2021; 13:e16326. [PMID: 34395113 PMCID: PMC8356515 DOI: 10.7759/cureus.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
Hereditary multiple exostoses (HME) are an autosomal dominant skeletal disorder characterized by the development of multiple benign osteochondromas (exostoses) that frequently involve long bones of the body. Less commonly, the ribs are a site of involvement, and long-term friction between an exostosis and pleura can produce a hemothorax or pneumothorax. The purpose of this study is to provide a comprehensive review of existing literature on pneumothorax or hemothorax secondary to costal exostosis in HME patients. We reviewed the databases of PubMed and Embase and included data as current as of February 15, 2021. All case reports included cases of hemothorax or pneumothorax in patients with a known personal or family history of HME. After evaluation for inclusion based on eligibility criteria, 18 cases were included. The average age at presentation was 11.7 years (range: 3-32), and most patients were male (83%). Hemothoraces occurred in 15 cases, while pneumothoraces occurred in three cases. All cases were evaluated using chest X-ray and CT scan, and the majority of the cases were treated with surgical resection of the exostosis, either with video-assisted thoracoscopic surgery (VATS; 61%) or thoracotomy (22%). Outcomes were successful with no cases of recurrence after surgical intervention. Although rare, costal exostosis should be considered as a differential in patients presenting with pneumothorax or hemothorax and past medical history or physical exam findings suggestive of HME. Immediate evaluation and surgical intervention to resect costal exostosis are essential to reduce the risk of recurrent life-threatening injury.
Collapse
Affiliation(s)
| | - Sarah Hampton
- School of Medicine, Mercer University, Savannah, USA
| | - Emily Barnard
- School of Medicine, Mercer University, Savannah, USA
| | - Meet N Patel
- School of Medicine, Mercer University, Savannah, USA
| | - Lucas Kim
- School of Medicine, Mercer University, Savannah, USA
| | | |
Collapse
|
15
|
Limb Length Discrepancy and Angular Deformity due to Benign Bone Tumors and Tumor-like Lesions. JOURNAL OF THE AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS GLOBAL RESEARCH AND REVIEWS 2021; 5:01979360-202103000-00001. [PMID: 33720060 PMCID: PMC7954373 DOI: 10.5435/jaaosglobal-d-20-00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/31/2021] [Indexed: 12/02/2022]
Abstract
Benign bone tumors and tumor-like lesions are frequently diagnosed in children and adolescents. The immature skeleton is at risk for growth disturbances and deformity because of the effects of the lesions on normal bone architecture and the physis. The development, manifestation, and severity of the limb length inequality and deformity differs between the various bone pathologies. Distraction osteogenesis, osteotomy, and guided growth are key tools in the treatment of limb inequality and deformity using a combination of external and internal fixation devices.
Collapse
|
16
|
Wenstedt EFE, Oppelaar JJ, Besseling S, Rorije NMG, Olde Engberink RHG, Oosterhof A, van Kuppevelt TH, van den Born BJH, Aten J, Vogt L. Distinct osmoregulatory responses to sodium loading in patients with altered glycosaminoglycan structure: a randomized cross-over trial. J Transl Med 2021; 19:38. [PMID: 33472641 PMCID: PMC7816310 DOI: 10.1186/s12967-021-02700-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/06/2021] [Indexed: 01/21/2023] Open
Abstract
Background By binding to negatively charged polysaccharides called glycosaminoglycans, sodium can be stored in the body—particularly in the skin—without concurrent water retention. Concordantly, individuals with changed glycosaminoglycan structure (e.g. type 1 diabetes (DM1) and hereditary multiple exostosis (HME) patients) may have altered sodium and water homeostasis. Methods We investigated responses to acute (30-min infusion) and chronic (1-week diet) sodium loading in 8 DM1 patients and 7 HME patients in comparison to 12 healthy controls. Blood samples, urine samples, and skin biopsies were taken to investigate glycosaminoglycan sulfation patterns and both systemic and cellular osmoregulatory responses. Results Hypertonic sodium infusion increased plasma sodium in all groups, but more in DM1 patients than in controls. High sodium diet increased expression of nuclear factor of activated t-cells 5 (NFAT5)—a transcription factor responsive to changes in osmolarity—and moderately sulfated heparan sulfate in skin of healthy controls. In HME patients, skin dermatan sulfate, rather than heparan sulfate, increased in response to high sodium diet, while in DM1 patients, no changes were observed. Conclusion DM1 and HME patients show distinct osmoregulatory responses to sodium loading when comparing to controls with indications for reduced sodium storage capacity in DM1 patients, suggesting that intact glycosaminoglycan biosynthesis is important in sodium and water homeostasis. Trial registration These trials were registered with the Netherlands trial register with registration numbers: NTR4095 (https://www.trialregister.nl/trial/3933 at 2013-07-29) and NTR4788 (https://www.trialregister.nl/trial/4645 at 2014-09-12).
Collapse
Affiliation(s)
- Eliane F E Wenstedt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jetta J Oppelaar
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stijn Besseling
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Nienke M G Rorije
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Rik H G Olde Engberink
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arie Oosterhof
- Department of Biochemistry, Radboud UMC, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud UMC, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Bert-Jan H van den Born
- Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jan Aten
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, Room D3-324, Meibergdreef 9, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Mohaidat Z, Bodoor K, Almomani R, Alorjani M, Awwad MA, Bany-Khalaf A, Al-Batayneh K. Hereditary multiple osteochondromas in Jordanian patients: Mutational and immunohistochemical analysis of EXT1 and EXT2 genes. Oncol Lett 2020; 21:151. [PMID: 33552269 PMCID: PMC7798038 DOI: 10.3892/ol.2020.12412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/26/2020] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the molecular characteristics of hereditary multiple osteochondromas (HMO) in a subset of Jordanian patients with a focus on the genetic variants of exostosin (EXT1)/(EXT2) and their protein expression. Patients with HMO and their family members were included. Recorded clinical characteristics included age, sex, tumors number and location, joint deformities and associated functional limitations. Mutational analysis of EXT1 and EXT2 exonic regions was performed. Immunohistochemical staining for EXT1 and EXT2 was performed manually using two different commercially available rabbit anti-human EXT1 and EXT2 antibodies. A total of 16 patients with HMO from nine unrelated families were included, with a mean age of 13.9 years. A total of 75% (12/16) of the patients were male and (69%) (11/16) had a mild disease (class I). EXT mutation analysis revealed only EXT1 gene mutations in 13 patients. Seven variants were detected, among which three were novel: c.1019G>A, p. (Arg340His), c.962+1G>A and c.1469del, p. (Leu490Argfs*9). Of the 16 patients, 3 did not harbor any mutations for either EXT1 or EXT2. Immunohistochemical examination revealed decreased expression of EXT1 protein in all patients with EXT1 mutation. Surprisingly, EXT2 protein was not detected in these patients, although none had EXT2 mutations. The majority of Jordanian patients with HMO, who may represent an ethnic group that is infrequently investigated, were males and had a mild clinical disease course; whereas most patients with EXT1 gene mutations were not necessarily associated with a severe clinical disease course. The role of EXT2 gene remains a subject of debate, since patients with EXT1 mutations alone did not express the non-mutated EXT2 gene.
Collapse
Affiliation(s)
- Ziyad Mohaidat
- Orthopedic Division, Special Surgery Department, Faculty of Medicine, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid 22110, Jordan
| | - Khaldon Bodoor
- Department of Applied Biology, Faculty of Science, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rowida Almomani
- Department of Laboratory Medical Sciences, Faculty of Science, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammed Alorjani
- Department of Pathology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad-Akram Awwad
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21110, Jordan
| | - Audai Bany-Khalaf
- Orthopedic Division, Special Surgery Department, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Khalid Al-Batayneh
- Department of Biology, Faculty of Sciences, Yarmouk University, Irbid 21110, Jordan
| |
Collapse
|
18
|
Mordenti M, Shih F, Boarini M, Pedrini E, Gnoli M, Antonioli D, Tremosini M, Sangiorgi L. The natural history of multiple osteochondromas in a large Italian cohort of pediatric patients. Bone 2020; 139:115499. [PMID: 32592948 DOI: 10.1016/j.bone.2020.115499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Multiple osteochondromas is a rare hereditary skeletal disorder, characterized by bony protrusions arising from growth plates on long bones during skeletal development. The disorder frequently leads to diminished stature, deformities and functional limitations. Understanding of the natural history of multiple osteochondromas and its evolution in children and adolescents is limited. OBJECTIVE To provide valuable information on the natural history of multiple osteochondromas, to inform recommendations for treatment and prevent impairments caused by osteochondromas. DESIGN This retrospective cohort study in children with multiple osteochondromas includes longitudinal data collected from first to last follow-up visit for patient demographics, and over 36 months for disease evolution. SETTING Data were collected from the Registry of Multiple Osteochondromas, which includes data from circa 1200 patients with multiple osteochondromas treated from 2003 to 2017 at IRCCS Istituto Ortopedico Rizzoli in Bologna. PARTICIPANTS Patients ≤18 years with multiple osteochondromas, who provided written informed consent and had data for ≥1 12-month follow-up visit. MAIN OUTCOME(S) AND MEASUREMENT(S) Demographics, clinical features, incidence of surgeries, and disease evolution (progression or regression) were assessed. Results were summarized using descriptive statistics, annual rates of new clinical features and surgeries, and Kaplan-Meier estimates. Patient height was evaluated following Italian growth charts. RESULTS 158 patients were included in these analyses. Throughout follow-up, 80.4% of patients developed new osteochondromas, 57.6% developed new deformities, 23.4% developed new functional limitation(s). New osteochondroma(s) were developed by 28.5% patients by Month 12, 39.9% at Month 24, 50% at Month 36. Most new osteochondromas were detected in the younger population; patients aged 0-4 years underwent a significantly higher number of lesions within 12, 24 and 36 months of follow-up. The overall incidence of patients with ≥1 new deformity within 12 months was 17.7%, with incidences decreasing with increasing age (p = .023). In addition, the analyses on height highlight that 13 years is a cut off age for slow growth of the stature (p < .0005). At last follow-up visit, 46.2% of patients had disease progression, while regression (spontaneous and surgical) occurred in 7.6% (p = .007). CONCLUSIONS AND RELEVANCE This natural history study reports the main set of clinically relevant data for patients with multiple osteochondromas during skeletal development, providing insight for patient management and development of therapeutic interventions.
Collapse
Affiliation(s)
- Marina Mordenti
- Department of Medical Genetics and Rare Orthopedic Diseases and CLIBI Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | | | - Manila Boarini
- Department of Medical Genetics and Rare Orthopedic Diseases and CLIBI Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Elena Pedrini
- Department of Medical Genetics and Rare Orthopedic Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Maria Gnoli
- Department of Medical Genetics and Rare Orthopedic Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Diego Antonioli
- Ward of Pediatric Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Morena Tremosini
- Department of Medical Genetics and Rare Orthopedic Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Luca Sangiorgi
- Department of Medical Genetics and Rare Orthopedic Diseases and CLIBI Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
19
|
Viskochil D, Clarke LA, Bay L, Keenan H, Muenzer J, Guffon N. Growth patterns for untreated individuals with MPS I: Report from the international MPS I registry. Am J Med Genet A 2019; 179:2425-2432. [PMID: 31639289 PMCID: PMC6899772 DOI: 10.1002/ajmg.a.61378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
Mucopolysaccharidosis Type I (MPS I), caused by deficiency of α-L-iduronidase results in progressive, multisystemic disease with a broad phenotypic spectrum including patients with severe (Hurler syndrome) to attenuated (Hurler-Scheie and Scheie syndromes) disease. Disordered growth is common with either phenotype. The study objectives were to construct sex- and age-specific estimated length/height and head circumference growth curves for untreated individuals with severe and attenuated disease and compare them with clinical reference standards. Untreated individuals in the MPS I Registry with at least one observation for length/height and/or head circumference and assigned phenotype as of May 2017 were included. Median growth for 463 untreated individuals with severe disease deviated from reference growth curves by ~6 months of age and fell below the third percentile by 4 years of age. Median head circumference was above reference curves from 3 to 4 months through 3 years of age. Among 207 individuals with untreated attenuated disease, median height fell below the third percentile by 9 years of age with divergence from reference curves by 2 years of age. MPS I-specific growth curves will be useful in evaluation of long-term outcomes of therapeutics interventions and will provide a foundation for understanding the pathogenesis of skeletal disease in MPS I.
Collapse
Affiliation(s)
- David Viskochil
- Department of Pediatrics, Division of Medical GeneticsUniversity of Utah School of MedicineSalt Lake CityUtah
| | - Lorne A. Clarke
- British Columbia Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Luisa Bay
- Hospital Nacional de Pediatría J. P. GarrahanCiudad Autónoma de Buenos AiresArgentina
| | | | - Joseph Muenzer
- Department of PediatricsUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Nathalie Guffon
- Centre de Référence des Maladies Héréditaires du MétabolismeHôpital Femme Mère EnfantLyonFrance
| |
Collapse
|
20
|
Veraldi N, Parra A, Urso E, Cosentino C, Locatelli M, Corsini S, Pedrini E, Naggi A, Bisio A, Sangiorgi L. Structural Features of Heparan Sulfate from Multiple Osteochondromas and Chondrosarcomas. Molecules 2018; 23:E3277. [PMID: 30544937 PMCID: PMC6321082 DOI: 10.3390/molecules23123277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple osteochondromas (MO) is a hereditary disorder associated with benign cartilaginous tumors, known to be characterized by absence or highly reduced amount of heparan sulfate (HS) in the extracellular matrix of growth plate cartilage, which alters proper signaling networks leading to improper bone growth. Although recent studies demonstrated accumulation of HS in the cytoplasm of MO chondrocytes, nothing is known on the structural alterations which prevent HS from undergoing its physiologic pathway. In this work, osteochondroma (OC), peripheral chondrosarcoma, and healthy cartilaginous human samples were processed following a procedure previously set up to structurally characterize and compare HS from pathologic and physiologic conditions, and to examine the phenotypic differences that arise in the presence of either exostosin 1 or 2 (EXT1 or EXT2) mutations. Our data suggest that HS chains from OCs are prevalently below 10 kDa and slightly more sulfated than healthy ones, whereas HS chains from peripheral chondrosarcomas (PCSs) are mostly higher than 10 kDa and remarkably more sulfated than all the other samples. Although deeper investigation is still necessary, the approach here applied pointed out, for the first time, structural differences among OC, PCS, and healthy HS chains extracted from human cartilaginous excisions, and could help in understanding how the structural features of HS are modulated in the presence of pathological situations also involving different tissues.
Collapse
Affiliation(s)
- Noemi Veraldi
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, V. G. Colombo 81, 20133 Milan, Italy.
| | - Alessandro Parra
- IRCCS-Istituto Ortopedico Rizzoli, V. di Barbiano 1/10, 40136 Bologna, Italy.
| | - Elena Urso
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, V. G. Colombo 81, 20133 Milan, Italy.
| | - Cesare Cosentino
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, V. G. Colombo 81, 20133 Milan, Italy.
| | - Manuela Locatelli
- Department of Medical Genetics and Rare Orthopaedic Diseases-IRCCS, Istituto Ortopedico Rizzoli, V. di Barbiano 1/10, 40136 Bologna, Italy.
| | - Serena Corsini
- Department of Medical Genetics and Rare Orthopaedic Diseases-IRCCS, Istituto Ortopedico Rizzoli, V. di Barbiano 1/10, 40136 Bologna, Italy.
| | - Elena Pedrini
- Department of Medical Genetics and Rare Orthopaedic Diseases-IRCCS, Istituto Ortopedico Rizzoli, V. di Barbiano 1/10, 40136 Bologna, Italy.
| | - Annamaria Naggi
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, V. G. Colombo 81, 20133 Milan, Italy.
| | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, V. G. Colombo 81, 20133 Milan, Italy.
| | - Luca Sangiorgi
- Department of Medical Genetics and Rare Orthopaedic Diseases & CLIBI Laboratory-IRCCS, Istituto Ortopedico Rizzoli, V. di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
21
|
Abstract
Heparin and heparan sulfate (HS) are polydisperse mixtures of polysaccharide chains between 5 and 50 kDa. Sulfate modifications to discreet regions along the chains form protein binding sites involved in cell signaling cascades and other important cellular physiological and pathophysiological functions. Specific protein affinities of the chains vary among different tissues and are determined by the arrangements of sulfated residues in discreet regions along the chains which in turn appear to be determined by the expression levels of particular enzymes in the biosynthetic pathway. Although not all the rules governing synthesis and modification are known, analytical procedures have been developed to determine composition, and all of the biosynthetic enzymes have been identified and cloned. Thus, through cell engineering, it is now possible to direct cellular synthesis of heparin and HS to particular compositions and therefore particular functional characteristics. For example, directing heparin producing cells to reduce the level of a particular type of polysaccharide modification may reduce the risk of heparin induced thrombocytopenia (HIT) without reducing the potency of anticoagulation. Similarly, HS has been linked to several biological areas including wound healing, cancer and lipid metabolism among others. Presumably, these roles involve specific HS compositions that could be produced by engineering cells. Providing HS reagents with a range of identified compositions should help accelerate this research and lead to new clinical applications for specific HS compositions. Here I review progress in engineering CHO cells to produce heparin and HS with compositions directed to improved properties and advancing medical research.
Collapse
|
22
|
Li Y, Wang J, Tang J, Wang Z, Han B, Li N, Yu T, Chen Y, Fu Q. Heterogeneous spectrum of EXT gene mutations in Chinese patients with hereditary multiple osteochondromas. Medicine (Baltimore) 2018; 97:e12855. [PMID: 30334991 PMCID: PMC6211902 DOI: 10.1097/md.0000000000012855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hereditary multiple osteochondroma (HMO) is one of the most common genetic skeletal disorders. It is caused by mutations in either EXT1 or EXT2 resulting in abnormal skeletal growth and morphogenesis. However, the spectrum and frequency of EXT1 and EXT2 mutations in Chinese patients with HMO was not previously investigated.Mutations were identified by performing Sanger sequencing analysis of the complete coding regions and flanking intronic sequences of EXT1 and EXT2, followed by multiplex ligation-dependent probe amplification (MLPA) analysis to detect gene deletions or duplications that could not be identified by the Sanger sequencing method.The present study identified pathogenic mutations in 93% (68/73) of unrelated HMO probands from 73 pedigrees. Mutations in EXT1 and EXT2 were identified in 53% (39/73) and 40% (29/73) of families. We identified 58 distinct mutations in EXT1 and EXT2, including 20 frameshift mutations, 16 nonsense mutations, 7 missense mutations, 9 splice site mutations, 5 large deletions, and 1 in-frame deletion mutation. Twenty-six of these mutations were novel and 32 were previously reported. Most of the mutations in EXT1 were base deletions or insertions (21/33), whereas the majority of those in EXT2 were single base substitution (18/25).Complete sequencing of both the EXT1 and EXT2 followed by MLPA analysis is recommended for genetic analysis of Chinese patients with HMO. This study provides a comprehensive characterization of the genetic aberrations found in Chinese patients with HMO and highlights the diagnostic value of molecular genetic analysis in this particular disease.
Collapse
Affiliation(s)
| | - Jian Wang
- Department of Medical Genetics
- Department of Laboratory Medicine
| | - Jingyan Tang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | - Niu Li
- Department of Medical Genetics
| | | | | | - Qihua Fu
- Department of Medical Genetics
- Department of Laboratory Medicine
| |
Collapse
|
23
|
Chen Z, Bi Q, Kong M, Cao L, Ruan W. A novel EXT2 frameshift mutation identified in a family with multiple osteochondromas. Oncol Lett 2018; 16:5167-5171. [PMID: 30250583 PMCID: PMC6144921 DOI: 10.3892/ol.2018.9248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/26/2018] [Indexed: 11/20/2022] Open
Abstract
Multiple osteochondromas (MO) is an autosomal inherited disease that is characterized by benign bone tumors. However, the underlying mechanism of MO at a molecular level requires further investigation. The majority of mutations associated with MO occur in the exostosin glycosyltransferase genes (EXT)1 or EXT2. In the present study, the genetic causes of the disease were investigated. Polymerase chain reaction amplification, followed by DNA sequencing of the complete EXT1 and EXT2 coding regions, were conducted in a family with MO (n=5). A novel frameshift mutation in exon 3 of EXT2 (c.660delG) was detected. The production of a defective EXT2 protein, lacking 450 C-terminal amino acid residues is predicted to be caused by the c.660delG mutation, located within the exostosin domain of EXT2. The missing residues contain the exostosin and glycosyltransferase family 64 domains, which are critical for the function of EXT2. The novel c.660delG frameshift mutation in the EXT2 gene extends the etiological understanding of MO and may provide an effective reference for genetic counseling and prenatal diagnosis in this family.
Collapse
Affiliation(s)
- Zhonghua Chen
- Graduate Department, Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| | - Qing Bi
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, The People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Mingxiang Kong
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, The People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Li Cao
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, The People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Weiwei Ruan
- Department of Orthopedics, The Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
24
|
Potential role for Ext1-dependent heparan sulfate in regulating P311 gene expression in A549 carcinoma cells. Biochim Biophys Acta Gen Subj 2018; 1862:1472-1481. [PMID: 29580921 DOI: 10.1016/j.bbagen.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Exostosin-1 (EXT1), a member of the EXT protein family, is indispensable for synthesis of heparan sulfate (HS) chains that bind to and modulate the signaling efficiency of numerous growth factor activities. We have previously shown that Ext1 mutated mouse embryonic fibroblasts produce short sulfated HS chains which dramatically influence tumor cell behavior in a 3-dimensional (3D) heterospheroid system composed of tumor cells and fibroblasts. METHODS In this study, we have used both 2D co-culture and 3D heterospheroid models, consisting of human A549 carcinoma cells co-cultured with wild-type or Ext1-mutated mouse embryonic fibroblasts. RESULTS AND CONCLUSIONS Gene expression profiling of differentially expressed genes in fibroblast/A549 heterospheroids identified P311 as a gene substantially down-regulated in A549 cells co-cultured with Ext1-mutated fibroblasts. In addition, we observed that the Ext1 mutants displayed reduced Tgf-β1 mRNA levels and lower levels of secreted active TGF-β protein. Re-introduction of Ext1 in the Ext1 mutant fibroblasts rescued the levels of Tgf-β1 mRNA, increased the amounts of secreted active TGF-β in these cells, as well as P311 mRNA levels in adjacent A549 cells. Accordingly, small interfering RNAs (siRNAs) against fibroblast Tgf-β1 reduced P311 expression in neighboring A549 tumor cells. Our data raises the possibility that fibroblast Ext1 levels play a role in P311 expression in A549/fibroblast co-culture through TGF-β1. GENERAL SIGNIFICANCE This study considers a possible novel mechanism of Ext1-regulated heparan sulfate structure in modifying tumor-stroma interactions through altering stromal tgf-ß1 expression.
Collapse
|
25
|
Awad W, Kjellström S, Svensson Birkedal G, Mani K, Logan DT. Structural and Biophysical Characterization of Human EXTL3: Domain Organization, Glycosylation, and Solution Structure. Biochemistry 2018; 57:1166-1177. [PMID: 29346724 DOI: 10.1021/acs.biochem.7b00557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heparan sulfate proteoglycans are proteins substituted with one or more heparan sulfate (HS) polysaccharides, found in abundance at cell surfaces. HS chains influence the activity of many biologically important molecules involved in cellular communication and signaling. The exostosin (EXT) proteins are glycosyltransferases in the Golgi apparatus that assemble HS chains on HSPGs. The EXTL3 enzyme mainly works as an initiator in HS biosynthesis. In this work, human lumenal N-glycosylated EXTL3 (EXTL3ΔN) was cloned, expressed in human embryonic kidney cells, and purified. Various biophysical and biochemical approaches were then employed to elucidate the N-glycosylation sites and the function of their attached N-glycans. Furthermore, the stability and conformation of the purified EXTL3ΔN protein in solution have been analyzed. Our data show that EXTL3ΔN has N-glycans at least at two positions, Asn290 and Asn592, which seem to be critical for proper protein folding and/or release. EXTL3ΔN is quite stable, as high temperature (∼59 °C) was required for denaturation. Deconvolution of the EXTL3ΔN far-UV CD spectrum revealed a substantial fraction of β sheets (25%) with a minor proportion of α-helices (14%) in the secondary structure. Solution small-angle X-ray scattering and dynamic light scattering revealed an extended structure suggestive of a dimeric arrangement and consisting of two distinct regions, narrow and broad, respectively. This is consistent with bioinformatics analyses suggesting a 3-domain structure with two glycosyltransferase domains and a coiled-coil domain.
Collapse
Affiliation(s)
- Wael Awad
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Deptartment of Chemistry, Lund University , SE-221 00 Lund, Sweden.,Department of Biophysics, Faculty of Science, Cairo University , 12316 Cairo, Egypt
| | - Sven Kjellström
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Deptartment of Chemistry, Lund University , SE-221 00 Lund, Sweden
| | - Gabriel Svensson Birkedal
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University , SE-221 00 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University , SE-221 00 Lund, Sweden
| | - Derek T Logan
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Deptartment of Chemistry, Lund University , SE-221 00 Lund, Sweden
| |
Collapse
|
26
|
Ferrari EJ, Crotty RK, Eikermann-Haerter K, Stone JR. Hereditary multiple exostoses as a novel cause of bilateral popliteal artery aneurysms in the elderly. Cardiovasc Pathol 2017; 31:20-25. [PMID: 28818770 DOI: 10.1016/j.carpath.2017.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022] Open
Abstract
Hereditary multiple exostoses (HME) is a genetic condition characterized by the development of multiple osteochondromas during childhood and adolescence. On rare occasions, these bony tumors can be associated with vascular injury, most commonly involving the popliteal artery. Such patients typically present with vascular complications in adolescence and young adulthood. We report an autopsy study of an elderly man who presented with bilateral popliteal artery pseudoaneurysms in the setting of HME at age 81. This is the oldest patient presenting with a vascular complication due to HME reported to date, as well as the only known case of bilateral popliteal pseudoaneurysms caused by HME. This is also the only autopsy study of this vascular complication so far reported. Our case illustrates that vascular complications from HME can occur even in the elderly, and may show bilateral involvement.
Collapse
Affiliation(s)
- Eliza J Ferrari
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rory K Crotty
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - James R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
28
|
Hong G, Guo X, Yan W, Li Q, Zhao H, Ma P, Hu X. Identification of a novel mutation in the EXT1 gene from a patient with multiple osteochondromas by exome sequencing. Mol Med Rep 2016; 15:657-664. [PMID: 28035357 PMCID: PMC5364847 DOI: 10.3892/mmr.2016.6086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/18/2016] [Indexed: 01/16/2023] Open
Abstract
Multiple osteochondromas (MO) is an autosomal skeletal disease with an elusive molecular mechanism. To further elucidate the genetic mechanism of the disease a three-generation Chinese family with MO was observed and researched, and a novel frameshift mutation (c.335_336insA) in the exotosin 1 (EXT1) gene of one patient with MO was observed through exome sequencing. This was further validated by Sanger sequencing and comparison with 200 unrelated healthy controls. Immunohistochemistry and multiple sequence alignment were performed to determine the pathogenicity of the candidate mutation. Multiple sequence alignment suggested that codon 335 and 336 in the EXT1 gene were highly conserved regions in vertebrates. Immunohistochemistry revealed that EXT1 protein expression levels were decreased in a patient with MO and this mutation compared with a patient with MO who had no EXT1 mutation. Owing to the appearance of c.335_336insA in exon 1 of EXT1, a premature stop codon was introduced, resulting in truncated EXT1. As a result integrated and functional EXT1 was reduced. EXT1 is involved in the biosynthesis of heparan sulfate (HS), an essential molecule, and its dysfunction may lead to MO. The novel mutation of c.335_336insA in the EXT1 gene reported in the present study has enlarged the causal mutation spectrum of MO, and may assist genetic counseling and prenatal diagnosis of MO.
Collapse
Affiliation(s)
- Guolin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xiaoyan Guo
- Department of Laboratory Medicine, The Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Wei Yan
- Department of Bone Tumors, The Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Qianqian Li
- Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Hailing Zhao
- Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Ping Ma
- Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiao Hu
- Shenzhen Huada Gene Research Institute, Shenzhen, Fujian 518083, P.R. China
| |
Collapse
|
29
|
Yan G, Littlewood A, Latimer MD. Unusual cause of pleuritic chest pain in a child. BMJ Case Rep 2016; 2016:bcr-2016-217307. [PMID: 27895080 DOI: 10.1136/bcr-2016-217307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We present the case of a 5-year-old boy with hereditary multiple exostoses who presented with left-sided pleuritic chest pain. A CT scan of the chest revealed an intrathoracic exostosis in close association with the heart.
Collapse
Affiliation(s)
- Georgina Yan
- University of Leicester Medical School, Leicester, UK
| | - Alastair Littlewood
- Department of Radiology, Peterborough and Stamford Hospitals, Peterborough, UK
| | - Mark David Latimer
- Department of Orthopaedics, Peterborough and Stamford Hospitals, Peterborough, UK.,Department of Orthopaedics, Addenbrookes Hospital, Cambridge, UK
| |
Collapse
|
30
|
Affiliation(s)
- Preeti Singh
- Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India.
| | | |
Collapse
|
31
|
Xia P, Xu H, Shi Q, Li D. Identification of a novel frameshift mutation of the EXT2 gene in a family with multiple osteochondroma. Oncol Lett 2015; 11:105-110. [PMID: 26870176 PMCID: PMC4727190 DOI: 10.3892/ol.2015.3844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 10/02/2015] [Indexed: 01/31/2023] Open
Abstract
Multiple osteochondroma (MO), also known as multiple hereditary exostoses, is an autosomal dominant skeletal disorder with characteristic multiple cartilage-capped tumours (osteochondromas or exostoses) growing outward from the metaphyseal region of the long tubular bones. Mutations in exostosin glycosyltransferase 1 (EXT1) or EXT2 are the most commonly associated mutations with MO and are responsible for 70–95% of cases. In the present study, a genetic analysis was performed on a large family with MO using polymerase chain reaction and direct DNA sequencing of the entire coding regions of EXT1 and EXT2. Sanger sequencing identified a novel heterozygous frameshift mutation, c.119_120delCT (p.Thr40ArgfsX15), in exon 2 of the EXT2 gene in the proband and all other affected individuals, while this deleterious mutation was not detected in the healthy family members and normal controls. The c.119_120delCT mutation is located in the transmembrane region of the EXT2 protein and results in a truncated EXT2 protein lacking 665 amino acids at the C-terminus, which includes the critical exostosin and glycosyltransferase family 64 domains. Thus, the present study identified a novel causative frameshift mutation in EXT2 from a large MO family. This study is useful for extending the known mutational spectrum of EXT2, for understanding the genetic basis of MO in the patients studied, and for further application of mutation screening in the genetic counseling and subsequent prenatal diagnosis of this family.
Collapse
Affiliation(s)
- Peng Xia
- Department of Spinal Surgery, Orthopedics Hospital, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Haikun Xu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Qingyang Shi
- Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dejun Li
- Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
32
|
Mechanisms of FGF gradient formation during embryogenesis. Semin Cell Dev Biol 2015; 53:94-100. [PMID: 26454099 DOI: 10.1016/j.semcdb.2015.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factors (FGFs) have long been attributed to influence morphogenesis in embryonic development. Signaling by FGF morphogen encodes positional identity of tissues by creating a concentration gradient over the developing embryo. Various mechanisms that influence the development of such gradient have been elucidated in the recent past. These mechanisms of FGF gradient formation present either as an extracellular control over FGF ligand diffusion or as a subcellular control of FGF propagation and signaling. In this review, we describe our current understanding of FGF as a morphogen, the extracellular control of FGF gradient formation by heparan sulfate proteoglycans (HSPGs) and mechanisms of intracellular regulation of FGF signaling that influence gradient formation.
Collapse
|
33
|
Tosi LL, Warman ML. Mechanistic and therapeutic insights gained from studying rare skeletal diseases. Bone 2015; 76:67-75. [PMID: 25819040 DOI: 10.1016/j.bone.2015.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 12/14/2022]
Abstract
Rare bone diseases account for 5% of all birth defects and can cause significant morbidity throughout patients' lives. Significant progress is being made to elucidate the pathophysiological mechanisms underlying these diseases. This paper summarizes presentation highlights of a workshop on Rare Skeletal Diseases convened to explore how the study of rare diseases has influenced the field's understanding of bone anabolism and catabolism and directed the search for new therapies benefiting patients with rare conditions as well as patients with common skeletal disorders.
Collapse
Affiliation(s)
- Laura L Tosi
- Division of Orthopaedics and Sports Medicine, Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Boston Children's Hospital, 320 Longwood Avenue, Room EN260.1, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Praissman JL, Live DH, Wang S, Ramiah A, Chinoy ZS, Boons GJ, Moremen KW, Wells L. B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan. eLife 2014; 3:e03943. [PMID: 25279697 PMCID: PMC4227051 DOI: 10.7554/elife.03943] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/01/2014] [Indexed: 12/16/2022] Open
Abstract
Recent studies demonstrated that mutations in B3GNT1, an enzyme proposed to be involved in poly-N-acetyllactosamine synthesis, were causal for congenital muscular dystrophy with hypoglycosylation of α-dystroglycan (secondary dystroglycanopathies). Since defects in the O-mannosylation protein glycosylation pathway are primarily responsible for dystroglycanopathies and with no established O-mannose initiated structures containing a β3 linked GlcNAc known, we biochemically interrogated this human enzyme. Here we report this enzyme is not a β-1,3-N-acetylglucosaminyltransferase with catalytic activity towards β-galactose but rather a β-1,4-glucuronyltransferase, designated B4GAT1, towards both α- and β-anomers of xylose. The dual-activity LARGE enzyme is capable of extending products of B4GAT1 and we provide experimental evidence that B4GAT1 is the priming enzyme for LARGE. Our results further define the functional O-mannosylated glycan structure and indicate that B4GAT1 is involved in the initiation of the LARGE-dependent repeating disaccharide that is necessary for extracellular matrix protein binding to O-mannosylated α-dystroglycan that is lacking in secondary dystroglycanopathies.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - David H Live
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Zoeisha S Chinoy
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| |
Collapse
|
35
|
A broad spectrum of genomic changes in latinamerican patients with EXT1/EXT2-CDG. Sci Rep 2014; 4:6407. [PMID: 25230886 PMCID: PMC4166712 DOI: 10.1038/srep06407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/22/2014] [Indexed: 02/03/2023] Open
Abstract
Multiple osteochondromatosis (MO), or EXT1/EXT2-CDG, is an autosomal dominant O-linked glycosylation disorder characterized by the formation of multiple cartilage-capped tumors (osteochondromas). In contrast, solitary osteochondroma (SO) is a non-hereditary condition. EXT1 and EXT2, are tumor suppressor genes that encode glycosyltransferases involved in heparan sulfate elongation. We present the clinical and molecular analysis of 33 unrelated Latin American patients (27 MO and 6 SO). Sixty-three percent of all MO cases presented severe phenotype and two malignant transformations to chondrosarcoma (7%). We found the mutant allele in 78% of MO patients. Ten mutations were novel. The disease-causing mutations remained unknown in 22% of the MO patients and in all SO patients. No second mutational hit was detected in the DNA of the secondary chondrosarcoma from a patient who carried a nonsense EXT1 mutation. Neither EXT1 nor EXT2 protein could be detected in this sample. This is the first Latin American research program on EXT1/EXT2-CDG.
Collapse
|
36
|
Thompson RL, Hosseinzadeh P, Muchow RD, Talwalkar VR, Iwinski HJ, Walker JL, Milbrandt TA. Syringomyelia and vertebral osteochondromas in patients with multiple hereditary exostosis. J Pediatr Orthop B 2014; 23:449-53. [PMID: 24977942 DOI: 10.1097/bpb.0000000000000074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Involvement of osteochondromas in the spinal canal occurs in patients with multiple hereditary exostosis, but the exact prevalence is unknown. A recent study found an incidence of 68%, with 27% of these lesions encroaching into the spinal canal. We studied MRI findings of 27 patients with multiple hereditary exostosis and found only six (23.1%) patients with osteochondromas arising from the spinal column and three (11.5%) patients with encroachment into the spinal canal. We also found three (11.5%) patients with an incidental syringomyelia. Only five of the nine (55.6%) patients with positive findings on MRI had symptoms prompting the MRI and two patients had significant symptoms that required surgical excision. Although the incidence of spinal osteochondroma in our population is lower than that of previous studies, we found a relatively high incidence of syringomyelia in these patients, which has not been previously reported.
Collapse
|
37
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
38
|
The exostosin family: proteins with many functions. Matrix Biol 2013; 35:25-33. [PMID: 24128412 DOI: 10.1016/j.matbio.2013.10.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022]
Abstract
Heparan sulfates are complex sulfated molecules found in abundance at cell surfaces and in the extracellular matrix. They bind to and influence the activity of a variety of molecules like growth factors, proteases and morphogens and are thus involved in various cell-cell and cell-matrix interactions. The mammalian EXT proteins have glycosyltransferase activities relevant for HS chain polymerization, however their exact role in this process is still confusing. In this review, we summarize current knowledge about the biochemical activities and some proposed functions of the members of the EXT protein family and their roles in human disease.
Collapse
|
39
|
Khoontawad J, Hongsrichan N, Chamgramol Y, Pinlaor P, Wongkham C, Yongvanit P, Pairojkul C, Khuntikeo N, Roytrakul S, Boonmars T, Pinlaor S. Increase of exostosin 1 in plasma as a potential biomarker for opisthorchiasis-associated cholangiocarcinoma. Tumour Biol 2013; 35:1029-39. [PMID: 24018821 DOI: 10.1007/s13277-013-1137-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/23/2013] [Indexed: 12/14/2022] Open
Abstract
A proteomic-based approach was used to search for potential markers in the plasma of hamsters in which cholangiocarcinoma (CCA) was induced by Opisthorchis viverrini infection and N-nitrosodimethylamine treatment. The plasma proteins of CCA-induced hamsters were resolved by 1-D PAGE, digested by trypsin, and analyzed by LC-MS/MS. From the criteria of protein ID scores >15 and an overexpression of at least three times across all time points, 37 proteins were selected. These overexpressed proteins largely consisted of signal transduction, structural, transport, and transcriptional proteins in the order. Among the most frequently upregulated proteins, exostosin 1 (EXT1) was selected for further validation. By western blot analysis, the EXT1 expression level in the plasma of hamster CCA was significantly higher than that of controls at 1 month and thereafter. Immunohistochemistry revealed that EXT1 was expressed at vascular walls and fibroblasts at 21 days (before tumor onset) and at 2 months (early CCA) posttreatment. Its expression was also observed in bile duct cancer cells during tumor progression at 6 months posttreatment. In the human CCA tissue microarray, EXT1 immunoreactivity was found not only in vascular walls and fibroblasts but also in bile duct cancer cells and was positive in 89.7 % (61/68) of the cases. By ELISA and immunoblotting, plasma EXT1 level was significantly higher in human CCA compared to healthy controls. In conclusion, these results suggest that increased expression of EXT1 level in the plasma might be involved in CCA genesis and might be a potential biomarker of CCA.
Collapse
Affiliation(s)
- Jarinya Khoontawad
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
This report outlines the management of a large intrathoracic lesion found in a 2-year-old girl with hereditary multiple exostosis. The lesion arose from the right eighth rib and comprised two separate osteochondromata that had coalesced into a single lesion and caused significant deformity to the chest wall. Aside from the deformity, the lesions were asymptomatic. Further growth of the lesions could cause respiratory complications, worsening of the visible deformity and, being lesions of the axial skeleton, bear an increased risk of malignant change. The lesions and the attached eighth rib were removed operatively and the patient recovered without complications. We demonstrate a place for the operative management of asymptomatic lesions in anticipation of future difficulties or malignant changes.
Collapse
|
41
|
Donor substrate promiscuity of the N-acetylglucosaminyltransferase activities of Pasteurella multocida heparosan synthase 2 (PmHS2) and Escherichia coli K5 KfiA. Appl Microbiol Biotechnol 2013; 98:1127-34. [DOI: 10.1007/s00253-013-4947-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 02/05/2023]
|
42
|
Anower-E-Khuda MF, Matsumoto K, Habuchi H, Morita H, Yokochi T, Shimizu K, Kimata K. Glycosaminoglycans in the blood of hereditary multiple exostoses patients: Half reduction of heparan sulfate to chondroitin sulfate ratio and the possible diagnostic application. Glycobiology 2013; 23:865-76. [PMID: 23514715 DOI: 10.1093/glycob/cwt024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disorder with wide variation in clinical phenotype and is caused by heterogeneous germline mutations in two of the Ext genes, EXT-1 and EXT-2, which encode ubiquitously expressed glycosyltransferases involved in the polymerization of heparan sulfate (HS) chains. To examine whether the Ext mutation could affect HS structures and amounts in HME patients being heterozygous for the Ext genes, we collected blood from patients and healthy individuals, separated it into plasma and cellular fractions and then isolated glycosaminoglycans (GAGs) from those fractions. A newly established method consisting of a combination of selective ethanol precipitation of GAGs, digestion of GAGs recovered on the filter-cup by direct addition of heparitinase or chondroitinase reaction solution and subsequent high-performance liquid chromatography of the unsaturated disaccharide products enabled the analysis using the least amount of blood (200 µL). We found that HS structures of HME patients were almost similar to those of controls in both plasma and cellular fractions. However, interestingly, although both the amounts of HS and chondroitin sulfate (CS) varied depending on the different individuals, the amounts of HS in both the plasma and cellular fractions of HME patient samples were decreased and the ratios of HS to CS (HS/CS) of HME patient samples were almost half those of healthy individuals. The results suggest that HME patients' blood exhibited reduced HS amounts and HS/CS ratios, which could be used as a diagnostic biomarker for HME.
Collapse
|
43
|
Reijmers RM, Spaargaren M, Pals ST. Heparan sulfate proteoglycans in the control of B cell development and the pathogenesis of multiple myeloma. FEBS J 2013; 280:2180-93. [PMID: 23419151 DOI: 10.1111/febs.12180] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/13/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) have essential functions during embryonic development and throughout postnatal life. To exert these functions, they undergo a series of processing reactions by heparan-sulfate-modifying enzymes (HSMEs), which endows them with highly modified heparan sulfate (HS) domains that provide specific docking sites for a large number of bioactive molecules. The development and antigen-dependent differentiation of normal B lymphocytes, as well as the growth and progression of B-lineage malignancies, are orchestrated by an array of growth factors, cytokines and chemokines many of which display HS binding. As discussed in this review, tightly regulated HSPG expression is a requirement for normal B cell maturation, differentiation and function. In addition, the HSPG syndecan-1 functions as a versatile co-receptor for signals from the bone marrow microenvironment, essential for the survival of long-lived plasma cells and multiple myeloma (MM) plasma cells. Targeting of HSMEs or HS chains on MM cells increases their sensitivity to drugs currently used in MM treatment, including bortezomib, lenalidomide or dexamethasone. Taken together, these findings render the HS biosynthetic machinery a promising target for MM treatment.
Collapse
Affiliation(s)
- Rogier M Reijmers
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
44
|
Mizumoto S, Ikegawa S, Sugahara K. Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J Biol Chem 2013; 288:10953-61. [PMID: 23457301 DOI: 10.1074/jbc.r112.437038] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 Japan
| | | | | |
Collapse
|
45
|
Huang L, Lu Q, Yan X, Han Y. A 5-year-old boy with a large hereditary multiple exostoses lump grown into thoracic cavity. Ann Thorac Cardiovasc Surg 2013; 20 Suppl:528-30. [PMID: 23364238 DOI: 10.5761/atcs.cr.12.01989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multiple exostosis is associated with the autosomal dominant disorder and hereditary multiple exostoses (HMEs), are rarely growing around the ribs and the formation of a large lump into the thoracic cavity. It's generally agreed that when there are no symptoms present, a HME patient could either avoid any treatment or postpone the operation until adolescence. We present a 5-year-old boy with 4 cm × 3.5 cm HMEs lump invasion into the thoracic cavity, with symptoms of chest distress and right chest pain. This patient received video-assisted thoracoscopic surgery (VATS) and a the lump and 1 cm rib involved was resected. During a 2 years follow-up, the patient remained in good condition without recurrence and complications.
Collapse
Affiliation(s)
- Lijun Huang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | |
Collapse
|
46
|
Cantley L, Saunders C, Guttenberg M, Candela ME, Ohta Y, Yasuhara R, Kondo N, Sgariglia F, Asai S, Zhang X, Qin L, Hecht JT, Chen D, Yamamoto M, Toyosawa S, Dormans JP, Esko JD, Yamaguchi Y, Iwamoto M, Pacifici M, Enomoto-Iwamoto M. Loss of β-catenin induces multifocal periosteal chondroma-like masses in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:917-27. [PMID: 23274133 DOI: 10.1016/j.ajpath.2012.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/15/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022]
Abstract
Osteochondromas and enchondromas are the most common tumors affecting the skeleton. Osteochondromas can occur as multiple lesions, such as those in patients with hereditary multiple exostoses. Unexpectedly, while studying the role of β-catenin in cartilage development, we found that its conditional deletion induces ectopic chondroma-like cartilage formation in mice. Postnatal ablation of β-catenin in cartilage induced lateral outgrowth of the growth plate within 2 weeks after ablation. The chondroma-like masses were present in the flanking periosteum by 5 weeks and persisted for more than 6 months after β-catenin ablation. These long-lasting ectopic masses rarely contained apoptotic cells. In good correlation, transplants of β-catenin-deficient chondrocytes into athymic mice persisted for a longer period of time and resisted replacement by bone compared to control wild-type chondrocytes. In contrast, a β-catenin signaling stimulator increased cell death in control chondrocytes. Immunohistochemical analysis revealed that the amount of detectable β-catenin in cartilage cells of osteochondromas obtained from hereditary multiple exostoses patients was much lower than that in hypertrophic chondrocytes in normal human growth plates. The findings in our study indicate that loss of β-catenin expression in chondrocytes induces periosteal chondroma-like masses and may be linked to, and cause, the persistence of cartilage caps in osteochondromas.
Collapse
Affiliation(s)
- Leslie Cantley
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vuillaumier-Barrot S, Bouchet-Séraphin C, Chelbi M, Devisme L, Quentin S, Gazal S, Laquerrière A, Fallet-Bianco C, Loget P, Odent S, Carles D, Bazin A, Aziza J, Clemenson A, Guimiot F, Bonnière M, Monnot S, Bole-Feysot C, Bernard JP, Loeuillet L, Gonzales M, Socha K, Grandchamp B, Attié-Bitach T, Encha-Razavi F, Seta N. Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am J Hum Genet 2012; 91:1135-43. [PMID: 23217329 DOI: 10.1016/j.ajhg.2012.10.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/27/2012] [Accepted: 10/05/2012] [Indexed: 02/04/2023] Open
Abstract
Cobblestone lissencephaly is a peculiar brain malformation with characteristic radiological anomalies. It is defined as cortical dysplasia that results when neuroglial overmigration into the arachnoid space forms an extracortical layer that produces agyria and/or a "cobblestone" brain surface and ventricular enlargement. Cobblestone lissencephaly is pathognomonic of a continuum of autosomal-recessive diseases characterized by cerebral, ocular, and muscular deficits. These include Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama muscular dystrophy. Mutations in POMT1, POMT2, POMGNT1, LARGE, FKTN, and FKRP identified these diseases as alpha-dystroglycanopathies. Our exhaustive screening of these six genes, in a cohort of 90 fetal cases, led to the identification of a mutation in only 53% of the families, suggesting that other genes might also be involved. We therefore decided to perform a genome-wide study in two multiplex families. This allowed us to identify two additional genes: TMEM5 and ISPD. Because TMEM has a glycosyltransferase domain and ISPD has an isoprenoid synthase domain characteristic of nucleotide diP-sugar transferases, these two proteins are thought to be involved in the glycosylation of dystroglycan. Further screening of 40 families with cobblestone lissencephaly identified nonsense and frameshift mutations in another four unrelated cases for each gene, increasing the mutational rate to 64% in our cohort. All these cases displayed a severe phenotype of cobblestone lissencephaly A. TMEM5 mutations were frequently associated with gonadal dysgenesis and neural tube defects, and ISPD mutations were frequently associated with brain vascular anomalies.
Collapse
|
48
|
Singh P, Schwarzbauer JE. Fibronectin and stem cell differentiation - lessons from chondrogenesis. J Cell Sci 2012; 125:3703-12. [PMID: 22976308 DOI: 10.1242/jcs.095786] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate network of proteins that surrounds cells and has a central role in establishing an environment that is conducive to tissue-specific cell functions. In the case of stem cells, this environment is the stem cell niche, where ECM signals participate in cell fate decisions. In this Commentary, we describe how changes in ECM composition and mechanical properties can affect cell shape and stem cell differentiation. Using chondrogenic differentiation as a model, we examine the changes in the ECM that occur before and during mesenchymal stem cell differentiation. In particular, we focus on the main ECM protein fibronectin, its temporal expression pattern during chondrogenic differentiation, its potential effects on functions of differentiating chondrocytes, and how its interactions with other ECM components might affect cartilage development. Finally, we discuss data that support the possibility that the fibronectin matrix has an instructive role in directing cells through the condensation, proliferation and/or differentiation stages of cartilage formation.
Collapse
Affiliation(s)
- Purva Singh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
49
|
Multhaupt HAB, Couchman JR. Heparan sulfate biosynthesis: methods for investigation of the heparanosome. J Histochem Cytochem 2012; 60:908-15. [PMID: 22899865 PMCID: PMC3527879 DOI: 10.1369/0022155412460056] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has not been carried out in a detailed way using high-resolution microscopy. We have begun this process, using well-known markers for the various Golgi compartments, coupled with the use of characterized antibodies and cDNA expression. Laser scanning confocal microscopy coupled with line scanning provides high-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all the enzymes are clustered in a multimolecular complex or are distributed through the various compartments of the Golgi apparatus.
Collapse
Affiliation(s)
- Hinke A B Multhaupt
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
50
|
May JF, Levengood MR, Splain RA, Brown CD, Kiessling LL. A processive carbohydrate polymerase that mediates bifunctional catalysis using a single active site. Biochemistry 2012; 51:1148-59. [PMID: 22217153 DOI: 10.1021/bi201820p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds.
Collapse
Affiliation(s)
- John F May
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, United States
| | | | | | | | | |
Collapse
|