1
|
C-type natriuretic peptide-induced relaxation through cGMP-dependent protein kinase and SERCA activation is impaired in two kidney-one clip rat aorta. Life Sci 2021; 272:119223. [PMID: 33610574 DOI: 10.1016/j.lfs.2021.119223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
AIMS Hypertension underlies endothelial dysfunction, and activation of vasorelaxation signaling with low dependence on nitric oxide (NO) represents a good alternative for vascular modulation. C-type natriuretic peptide (CNP) causes relaxation by increasing cyclic guanosine 3',5'-monophosphate (cGMP) or Gi-protein activation through its natriuretic peptide receptor-B or -C, respectively. We have hypothesized that CNP could exerts its effects and could overcome endothelial dysfunction in two kidney-one clip (2K-1C) hypertensive rat aorta. Here, we investigate the intracellular signaling involved in CNP effects in hypertension. MATERIALS AND METHODS The 2K-1C hypertension was induced in male Wistar rats (200 g). CNP-induced vascular relaxation and cGMP production were investigated in rat thoracic aortas. The natriuretic peptide receptor-B and -C localization was evaluated by immunofluorescence. Calcium mobilization was assessed in endothelial cells from rat aortas. KEY FINDINGS CNP induced similar relaxation in normotensive and 2K-1C hypertensive rat aortas, which increased after endothelium removal. CNP-induced relaxation involved natriuretic peptide receptor-B and -C activation in 2K-1C rats. Nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) counter-regulated CNP-particulate GC (pGC) activation in aortas. CNP reduced endothelial calcium and increased cGMP production, which was lower in 2K-1C. CNP-induced cGMP-dependent protein kinase (PKG) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) activation was impaired in 2K-1C rat aorta. SIGNIFICANCE Our results indicated CNP triggered relaxation through its natriuretic peptide receptor-B and -C in 2K-1C rat aortas, and that CNP-induced relaxation overcomes endothelial dysfunction in hypertension. In addition, NOS and sGC activities counter-regulate CNP-pGC activation to induce vascular relaxation.
Collapse
|
2
|
Araújo AV, Andrade FA, Paulo M, de Paula TD, Potje SR, Pereira AC, Bendhack LM. NO donors induce vascular relaxation by different cellular mechanisms in hypertensive and normotensive rats. Nitric Oxide 2019; 86:12-20. [DOI: 10.1016/j.niox.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 12/25/2022]
|
3
|
Activation of TP receptors induces high release of PGI2 in coronary arteries of renal hypertensive rats. J Mol Cell Cardiol 2018; 122:125-133. [DOI: 10.1016/j.yjmcc.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
|
4
|
de Paula TDC, Silva BR, Grando MD, Pernomian L, do Prado AF, Bendhack LM. Relaxation induced by the nitric oxide donor and cyclooxygenase inhibitor NCX2121 in renal hypertensive rat aortas. Eur J Pharm Sci 2017; 107:45-53. [DOI: 10.1016/j.ejps.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
|
5
|
Oishi JC, Buzinnari TC, Pestana CR, De Moraes TF, Vatanabe IP, Wink DA, da Silva RS, Bendhack LM, Rodrigues GJ. In vitro Treatment with cis-[Ru(H-dcbpy-)2(Cl)(NO)] Improves the Endothelial Function in Aortic Rings with Endothelial Dysfunction. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2016; 18:696-704. [PMID: 26670366 DOI: 10.18433/j3cc9k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE The ruthenium complex cis-[Ru(H-dcbpy-)2(Cl)(NO)] (DCBPY) is a nitric oxide (NO) donor and studies suggested that the ruthenium compounds can inactivate O2-. The aim of this study is to test if DCBPY can revert and/or prevent the endothelial dysfunction. METHODS Normotensive (2K) and hypertensive (2K-1C) wistar rats were used. To vascular reactivity study, thoracic aortas were isolated, rings with intact endothelium were incubated with: DCBPY: 0.1; 1 and 10μM, DCBPY plus hydroxocobalin (NO scavenger) or tempol during 30 minutes, and concentration effect curves to acetylcholine were performed. The potency values (pD2) and maximum effect (ME) were analyzed. The O2- was generated using hypoxantine xantine oxidase and the reduction of cytochrome c, NO consumption by O2- and the effect in avoid NO consumption was measured. RESULTS In 2K-1C DCBPY at 0.1; 1 or 10μM improved the relaxation endothelium dependent induced by acetylcholine in aortic rings compared to control 2K-1C, and also improved ME. In rings from 2K incubation with DCBPY (0.1; 1.0 and 10 μM) did not change pD2 or ME. Incubation with 0.1 μM of DCBPY plus hydroxocobalamin did not modify the potency and ME in 2K-1C compared to DCBPY (0.1 μM). DCBPY and SOD inhibits the reduction of cytochrome c and inhibited the NO consumption by O2-, showing that O2- has been removed from the solution. CONCLUSION Our results suggest that DCBPY at a lower concentration (0.1 µM) is not an NO generator, but can inactivate superoxide and improves the endothelial function.
Collapse
Affiliation(s)
- Jorge Camargo Oishi
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Simplicio JA, Simão MR, Ambrosio SR, Tirapelli CR. The Labdane Ent-3-Acetoxy-Labda-8(17), 13-Dien-15-Oic Decreases Blood Pressure In Hypertensive Rats. Arq Bras Cardiol 2016; 106:481-90. [PMID: 27096521 PMCID: PMC4940147 DOI: 10.5935/abc.20160058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
Background Labdane-type diterpenes induce lower blood pressure via relaxation of
vascular smooth muscle; however, there are no studies describing the effects
of labdanes in hypertensive rats. Objective The present study was designed to investigate the cardiovascular actions of
the labdane-type diterpene ent-3-acetoxy-labda-8(17), 13-dien-15-oic acid
(labda-15-oic acid) in two-kidney 1 clip (2K-1C) renal hypertension. Methods Vascular reactivity experiments were performed in aortic rings isolated from
2K-1C and normotensive (2K) male Wistar rats. Nitrate/nitrite (NOx)
measurement was performed in aortas by colorimetric assay. Blood pressure
measurements were performed in conscious rats. Results Labda-15-oic acid (0.1-300 µmol/l) and forskolin (0.1
nmol/l - 1 µmol/l) relaxed endothelium-intact and
endothelium-denuded aortas from both 2K-1C and 2K rats. Labda-15-oic acid
was more effective at inducing relaxation in endothelium-intact aortas from
2K pre-contracted with phenylephrine when compared to the
endothelium-denuded ones. Forskolin was more potent than labda-15-oic acid
at inducing vascular relaxation in arteries from both 2K and 2K-1C rats.
Labda-15-oic acid-induced increase in NOx levels was lower in arteries from
2K-1C rats when compared to 2K rats. Intravenous administration of
labda-15-oic acid (0.3-3 mg/kg) or forskolin (0.1-1 mg/kg) induced
hypotension in conscious 2K-1C and 2K rats. Conclusion The present findings show that labda-15-oic acid induces vascular relaxation
and hypotension in hypertensive rats.
Collapse
Affiliation(s)
- Janaina A Simplicio
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Marilia R Simão
- Núcleo de Pesquisa em Ciências e Tecnologia, Universidade de Franca, Franca, SP, Brazil
| | - Sergio R Ambrosio
- Núcleo de Pesquisa em Ciências e Tecnologia, Universidade de Franca, Franca, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Choi S, Ryu KH, Park SH, Jun JY, Shin BC, Chung JH, Yeum CH. Direct vascular actions of quercetin in aorta from renal hypertensive rats. Kidney Res Clin Pract 2016; 35:15-21. [PMID: 27069853 PMCID: PMC4811985 DOI: 10.1016/j.krcp.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/30/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023] Open
Abstract
Background Chronic treatment with the dietary flavonoid quercetin is known to lower blood pressure and restore endothelial dysfunction in animal models of hypertension. This study investigated the direct effects of quercetin on vascular response in chronic 2-kidney, 1-clip (2K1C) renal hypertensive rats. The effects of antioxidant vitamin ascorbic acid on the vasoreactivity were also examined. Methods 2K1C renal hypertension was induced by clipping the left renal artery; age-matched rats that received sham treatment served as controls. Thoracic aortae were mounted in tissue baths for the measurement of isometric tension. Results Relaxant responses to acetylcholine were significantly attenuated in 2K1C rats in comparison with sham rats. Quercetin or ascorbic acid augmented acetylcholine-induced relaxation in 2K1C rats, whereas no significant differences were noted in sham rats. The relaxation response to sodium nitroprusside was comparable between 2K1C and sham rats, and sodium nitroprusside–induced relaxation was not altered by quercetin or ascorbic acid in either group. The contractile response to phenylephrine was significantly enhanced in 2K1C rats compared with sham rats. Phenylephrine-induced contraction was inhibited by pretreatment with quercetin or ascorbic acid in 2K1C rats, whereas neither chemical affected responses in sham rats. Nw-nitro-L-arginine methyl ester markedly augmented the contractile response to phenylephrine in sham rats, whereas no significant differences were observed in 2K1C rats. Quercetin or ascorbic acid did not affect phenylephrine-induced contraction in the presence of Nw-nitro-L-arginine methyl ester in either 2K1C or sham rats. Conclusion Acute exposure to quercetin appears to improve endothelium-dependent relaxation and inhibit the contractile response, similar to the effect of ascorbic acid in 2K1C hypertension. These results partially explain the vascular beneficial effects of quercetin in renal hypertension.
Collapse
Affiliation(s)
- Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Kwon Ho Ryu
- Department of Psychiatry, College of Medicine, Chosun University, Gwangju, Korea
| | - Sang Hag Park
- Department of Psychiatry, College of Medicine, Chosun University, Gwangju, Korea
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Byung Chul Shin
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Jong Hoon Chung
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Cheol Ho Yeum
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| |
Collapse
|
8
|
Xue H, Zhou S, Xiao L, Guo Q, Liu S, Wu Y. Hydrogen sulfide improves the endothelial dysfunction in renovascular hypertensive rats. Physiol Res 2015; 64:663-72. [PMID: 25804097 DOI: 10.33549/physiolres.932848] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As a novel gasotransmitter, hydrogen sulfide (H(2)S) has vasodilating and antihypertensive effects in cardiovascular system. Thus, we hypothesized that H(2)S might have beneficial effects on thoracic endothelial function in two-kidney one-clip (2K1C) rats, a model of renovascular hypertension. Sodium hydrosulfide (NaHS, 56 micromol/kg/day) was administrated intra-peritoneally from the third day after the 2K1C operation. Along with the development of hypertension, the systolic blood pressure (SBP) was measured before the operation and each week thereafter. The oxidative stress was determined by measurement of malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity and protein expression of oxidative stress-related proteins (AT(1)R, NADPH oxidase subunits). Acetylcholine (ACh)-induced vasorelaxation and angiotensin II (Ang II)-induced vasocontraction were performed on isolated thoracic aorta. The SBP was significantly increased from the first week after operation, and was lowered by NaHS. NaHS supplementation ameliorated endothelial dysfunction. The protein expression of oxidative stress-related proteins were downregulated, while SOD activity upregulated. In conclusion, improvement of endothelial function is involved in the antihypertensive mechanism of H(2)S. The protective effect of H(2)S is attributable to suppression of vascular oxidative stress that involves inhibition of Ang II-AT(1)R action, downregulation of oxidases, as well as upregulation of antioxidant enzyme.
Collapse
Affiliation(s)
- H Xue
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China.
| | | | | | | | | | | |
Collapse
|
9
|
Choi S, Jung WS, Cho NS, Ryu KH, Jun JY, Shin BC, Chung JH, Yeum CH. Mechanisms of phytoestrogen biochanin A-induced vasorelaxation in renovascular hypertensive rats. Kidney Res Clin Pract 2014; 33:181-6. [PMID: 26885474 PMCID: PMC4714256 DOI: 10.1016/j.krcp.2014.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
Background The plant-derived estrogen biochanin A is known to cause vasodilation, but its mechanism of action in hypertension remains unclear. This study was undertaken to investigate the effects and mechanisms of biochanin A on the thoracic aorta in two-kidney, one clip (2K1C) renovascular hypertensive rats. Methods Hypertension was induced by clipping the left renal artery, and control age-matched rats were sham treated. Thoracic aortae were mounted in tissue baths to measure isometric tension. Results Biochanin A caused concentration-dependent relaxation in aortic rings from 2K1C hypertensive and sham-treated rats, which was greater in 2K1C rats than in sham rats. Biochanin A-induced relaxation was significantly attenuated by removing the endothelium in aortic rings from 2K1C rats, but not in sham rats. Nω-Nitro-l-arginine methyl ester, a nitric oxide synthase inhibitor, or indomethacin, a cyclooxygenase inhibitor, did not affect the biochanin A-induced relaxation in aortic rings from 2K1C and sham rats. By contrast, treatment with glibenclamide, a selective inhibitor of adenosine triphosphate-sensitive K+ channels, or tetraethylammonium, an inhibitor of Ca2+-activated K+ channels, significantly reduced biochanin A-induced relaxation in aortic rings from both groups. However, 4-aminopyridine, a selective inhibitor of voltage-dependent K+ channels, inhibited the relaxation induced by biochanin A in 2K1C rats, whereas no significant differences were observed in sham rats. Conclusion These results suggest that the enhanced relaxation caused by biochanin A in aortic rings from hypertensive rats is endothelium dependent. Vascular smooth muscle K+ channels may be involved in biochanin A-induced relaxation in aortae from hypertensive and normotensive rats. In addition, an endothelium-derived activation of voltage-dependent K+ channels contributes, at least in part, to the relaxant effect of biochanin A in renovascular hypertension.
Collapse
Affiliation(s)
- Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Won Suk Jung
- Department of Emergency Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Nam Soo Cho
- Department of Emergency Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Kwon Ho Ryu
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Byung Chul Shin
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Jong Hoon Chung
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Cheol Ho Yeum
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
- Corresponding author. Department of Physiology, College of Medicine, Chosun University, 309, Pilmundaero, Dong-Gu, Gwangju 501-759, Korea.
| |
Collapse
|
10
|
Ruthenium complexes as NO donors for vascular relaxation induction. Molecules 2014; 19:9628-54. [PMID: 25004072 PMCID: PMC6271244 DOI: 10.3390/molecules19079628] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/09/2014] [Accepted: 06/26/2014] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) donors are substances that can release NO. Vascular relaxation induction is among the several functions of NO, and the administration of NO donors is a pharmacological alternative to treat hypertension. This review will focus on the physicochemical description of ruthenium-derived NO donor complexes that release NO via reduction and light stimulation. In particular, we will discuss the complexes synthesized by our research group over the last ten years, and we will focus on the vasodilation and arterial pressure control elicited by these complexes. Soluble guanylyl cyclase (sGC) and potassium channels are the main targets of the NO species released from the inorganic compounds. We will consider the importance of the chemical structure of the ruthenium complexes and their vascular effects.
Collapse
|
11
|
Silva BR, Pernomian L, Grando MD, Bendhack LM. Phenylephrine activates eNOS Ser 1177 phosphorylation and nitric oxide signaling in renal hypertensive rat aorta. Eur J Pharmacol 2014; 738:192-9. [PMID: 24886887 DOI: 10.1016/j.ejphar.2014.05.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
The endothelial nitric oxide synthase (eNOS) plays an important role in the control of the vascular tone. This work aimed to evaluate the role of an α1-adrenoceptor agonist phenylephrine (PE) on eNOS activity and downstream signaling pathway activation in normotensive (2K) and renal hypertensive (2K-1C) intact-endothelium rat aortas. Concentration-effect curves were performed for PE in intact-endothelium aortas from 2K and 2K-1C rats, in the absence of or in the presence of NOS or soluble guanylyl cyclase (sGC) inhibitor. Intact endothelium aortas were stimulated with PE in organ chambers and eNOS Ser(1177)/Thr(495) phosphorylation expression was evaluated by western blot. Nitric Oxide (NO) production was evaluated in isolated endothelial cells from 2K and 2K-1C rat aortas by flow-cytometry using NO selective fluorescent probe, DAF-2DA. The sGC activity/expression was also evaluated. PE-induced contractile response is lower in 2K-1C than in 2K intact-endothelium rat aorta. This is due to higher eNOS Ser(1177) phosphorylation in 2K-1C, which induces the eNOS overactivation. It was abolished by NOS or sGC inhibition. Phenylephrine reduces NO production in 2K as compared to the basal level, but it is not modified in 2K-1C. In PE-stimulated endothelial cells, the NO production is higher in 2K-1C than in 2K. Phenylephrine induces higher cGMP production in 2K-1C than in 2K, despite the lower expression of sGC in 2K-1C. Our results suggest that alpha1-adrenoceptor activation contributes to the increased activity of the enzyme eNOS by Ser(1177) phosphorylation in 2K-1C intact-endothelium aorta, which consequently decreases PE-induced contractile response.
Collapse
Affiliation(s)
- Bruno R Silva
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903 Ribeirão Preto, Sao Paulo, Brazil.
| | - Laena Pernomian
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, Sao Paulo, Brazil
| | - Marcella D Grando
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903 Ribeirão Preto, Sao Paulo, Brazil
| | - Lusiane M Bendhack
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903 Ribeirão Preto, Sao Paulo, Brazil
| |
Collapse
|
12
|
Choi S, Shin HR, Kim SH, Lee MJ, Jun JY, Kim HL, Chung JH, Yeum CH. Effects of oxidative stress on endothelial modulation of contractions in aorta from renal hypertensive rats. Kidney Res Clin Pract 2014; 33:19-25. [PMID: 26877946 PMCID: PMC4714182 DOI: 10.1016/j.krcp.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endothelial dysfunction is linked to exaggerated production of superoxide anions. This study was conducted to examine the effects of oxidative stress on endothelial modulation of contractions in chronic two-kidney, one-clip (2K1C) renal hypertensive rats. METHODS The 2K1C hypertension was induced by clipping the left renal artery; age-matched rats receiving sham treatment served as controls. Thoracic aortae were isolated and mounted in tissue baths for measurement of isometric tension. RESULTS Norepinephrine-induced contraction was augmented by the removal of the endothelium, which was more pronounced in sham rats than in 2K1C rats. Nω-nitro-L-arginine methyl ester, an inhibitor of nitric oxide production, had a similar augmenting effect. Vitamin C inhibited the contraction in aortic rings with intact endothelium from 2K1C rats but not from sham rats. The contraction was also suppressed by treatment with diphenyleneiodonium or apocynin, inhibitors of nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) oxidase, in the aortae with intact endothelium from 2K1C rats but not in those from sham rats. Superoxide anions generated by xanthine oxidase/hypoxanthine enhanced the contraction in the aortae with intact endothelium from sham rats, but had no effect in 2K1C rats. Enhanced contractile responses to norepinephrine by xanthine oxidase/hypoxanthine in sham rats were reversed by vitamin C. CONCLUSION These results suggest that the effect on endothelial modulation of endothelium-derived nitric oxide is impaired in 2K1C hypertension. The impairment is, at least in part, related to increased production of superoxide anions by NADH/NADPH oxidase.
Collapse
Affiliation(s)
- Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Hye Rang Shin
- Department of Psychiatry, College of Medicine, Chosun University, Gwangju, Korea
| | - Sang Hoon Kim
- Department of Psychiatry, College of Medicine, Chosun University, Gwangju, Korea
| | - Mi Jung Lee
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Hyun Lee Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Jong Hoon Chung
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Cheol Ho Yeum
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| |
Collapse
|
13
|
Choi S, Il Kim H, Hag Park S, Jung Lee M, Yeoul Jun J, Lee Kim H, Hoon Chung J, Ho Yeum C. Endothelium-dependent vasodilation by ferulic acid in aorta from chronic renal hypertensive rats. Kidney Res Clin Pract 2012; 31:227-33. [PMID: 26889426 PMCID: PMC4716118 DOI: 10.1016/j.krcp.2012.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/06/2012] [Accepted: 07/30/2012] [Indexed: 02/07/2023] Open
Abstract
Background Ferulic acid (FA) is a naturally occurring nutritional compound. Although it has been shown to have antihypertensive effects, its effects on vascular function have not been intensively established. The aim of this study was to assess the vasoreactivity of FA in chronic two-kidney, one-clip (2K1C) renal hypertensive rats. Methods Hypertension was induced in 2K1C rats by clipping the left renal artery and age-matched rats that received a sham treatment served as a control. Thoracic aortas were mounted in tissue baths to measure isometric tension. The effects of FA on vasodilatory responses were evaluated based on contractile responses induced by phenylephrine in the aortic rings obtained from both 2K1C and sham rats. Basal nitric oxide (NO) bioavailability in the aorta was determined by the contractile response induced by NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME). Results FA induced concentration-dependent relaxation responses which were greater in 2K1C hypertensive rats than in sham-clipped control rats. This relaxation induced by FA was partially blocked by the removal of endothelium or by pretreating with l-NAME. l-NAME-induced contractile responses were augmented by FA in 2K1C rats, while no significant differences were noted in sham rats. FA improved acetylcholine-induced endothelium-dependent vasodilation in 2K1C rats, but not in sham rats. The simultaneous addition of hydroxyhydroquinone significantly inhibited the increase in acetylcholine-induced vasodilation by FA. Conclusion These results suggest that FA restores endothelial function by altering the bioavailability of NO in 2K1C hypertensive rats. The results explain, in part, the mechanism underlying the vascular effects of FA in chronic renal hypertension.
Collapse
Affiliation(s)
- Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Hyun Il Kim
- Department of Psychiatry, College of Medicine, Chosun University, Gwangju, Korea
| | - Sang Hag Park
- Department of Psychiatry, College of Medicine, Chosun University, Gwangju, Korea
| | - Mi Jung Lee
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Hyun Lee Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Jong Hoon Chung
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Cheol Ho Yeum
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
- Corresponding author. Department of Physiology, College of Medicine, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 501-759, Korea.
| |
Collapse
|
14
|
Famaey N, Vander Sloten J, Kuhl E. A three-constituent damage model for arterial clamping in computer-assisted surgery. Biomech Model Mechanobiol 2012; 12:123-36. [DOI: 10.1007/s10237-012-0386-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
|
15
|
Bonaventura D, de Lima RG, da Silva RS, Bendhack LM. NO donors-relaxation is impaired in aorta from hypertensive rats due to a reduced involvement of K(+) channels and sarcoplasmic reticulum Ca(2+)-ATPase. Life Sci 2011; 89:595-602. [PMID: 21839096 DOI: 10.1016/j.lfs.2011.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/05/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
AIMS To examine the vasodilatation induce by the NO donors, [Ru(terpy)(bdq)NO](3+) (TERPY) and sodium nitroprusside (SNP), and to compare their effects in aortic rings from hypertensive 2K-1C and normotensive 2K rats. MAIN METHODS Vascular reactivity was performed in aortic rings pre-contracted with phenylephrine (Phe 100nM). We have analyzed the maximal relaxation (Emax) and potency (pD(2)) of NO donors. KEY FINDINGS Potency of SNP was greater than TERPY in both arterial groups. The vasodilatation induced by TERPY was greater in 2K than in 2K-1C, and it was inhibited by sGC inhibitor ODQ in 2K and in 2K-1C aortic rings. ODQ did not alter the efficacy to SNP, but it reduced its potency in 2K and 2K-1C. The blockade of K(+) channels reduced the potency of TERPY only in aortic rings of 2K. On the other hand, the potency of SNP was reduced in both 2K and 2K-1C. The combination of ODQ and TEA reduced the relaxation induced by TERPY and SNP in 2K and reduced the efficacy to SNP in 2K-1C aortic rings but it had no additional effect on the TERPY relaxation in 2K-1C aortas. The production of cGMP induced by TERPY was greater than that produced by SNP, which was similarly increased in 2K and 2K-1C. Sarcoplasmic reticulum Ca-ATPase inhibition only impaired the relaxation induced by SNP in 2K aortic rings. SIGNIFICANCE Taken together, our results provide evidences that in this model of hypertension, impaired K(+) channels activation by TERPY and SERCA activation by SNP may contribute to decreased vasodilatation.
Collapse
Affiliation(s)
- Daniella Bonaventura
- Depto. de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
16
|
Famaey N, Verbeken E, Vinckier S, Willaert B, Herijgers P, Sloten JV. In vivo soft tissue damage assessment for applications in surgery. Med Eng Phys 2010; 32:437-43. [DOI: 10.1016/j.medengphy.2010.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 03/11/2010] [Accepted: 04/02/2010] [Indexed: 11/29/2022]
|
17
|
Costa CA, Amaral TAS, Carvalho LCRM, Ognibene DT, da Silva AFE, Moss MB, Valenca SS, de Moura RS, Resende AC. Antioxidant treatment with tempol and apocynin prevents endothelial dysfunction and development of renovascular hypertension. Am J Hypertens 2009; 22:1242-9. [PMID: 19779472 DOI: 10.1038/ajh.2009.186] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Two-kidney-one-clip (2K-1C) rats develop renovascular hypertension associated with endothelial dysfunction and elevated levels of oxidative stress. The role of oxidative damage is unknown in vascular dysfunction coupled with 2K-1C hypertension. The aims of this study were to evaluate the effects of chronic treatment with a superoxide dismutase (SOD) mimetic (tempol) and an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase (apocynin) on the development of hypertension, endothelial dysfunction, and oxidative damage in 2K-1C rats. METHODS 2K-1C rats and sham-operated rats were treated with tempol or apocynin for 40 days, while the corresponding nontreated groups received tap water. Blood pressure (BP), mesenteric arterial reactivity, plasma and mesentery oxidative damage, mesenteric protein expression, and antioxidant activities were compared among the four groups. RESULTS Chronic treatment with tempol (1 mmol/l) or apocynin (33 microg/kg/day) impaired the development of hypertension in 2K-1C rats and did not change the BP in control animals. The reduction in vasodilatory effect induced by acetylcholine (ACh) in the mesenteric arterial beds (MABs) of 2K-1C rats was restored by tempol and apocynin. Plasma and mesentery levels of malondialdehyde (MDA) were higher in 2K-1C rats, and these levels were significantly reduced by the administration of tempol and apocynin. Mesenteric SOD activity and expression were higher in 2K-1C rats than in the controls, and treatment with tempol resulted in a reduction in SOD activity. CONCLUSIONS The data suggest that a compromised mechanism of antioxidant defense and an increase in oxidative damage contribute to the development of hypertension and associated vascular dysfunction in 2K-1C rats, and that tempol and apocynin prevent these effects.
Collapse
|
18
|
Decreased number of caveolae in endothelial cells impairs the relaxation induced by acetylcholine in hypertensive rat aortas. Eur J Pharmacol 2009; 627:251-7. [PMID: 19903465 DOI: 10.1016/j.ejphar.2009.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/15/2009] [Accepted: 11/03/2009] [Indexed: 11/22/2022]
Abstract
The present study was designed to investigate the contribution of endothelial cell caveolae to vascular relaxation in aortas from a normotensive (2K) and renal hypertensive (2K-1C) rat. For that purpose, concentration-effect curves to acetylcholine were constructed in 2K and 2K-1C intact endothelium aortic rings, in the absence or in the presence of the caveolae disassembler methyl-beta-ciclodextrin. The potency (pD(2)) and the maximum relaxant effect to acetylcholine were greater in 2K than in 2K-1C aortas. Methyl-beta-ciclodextrin reduced the pD(2) in 2K and the maximum relaxant effect in both 2K and 2K-1C. The quantification of the caveolae number by electronic microscopy has shown a larger number of caveolae in 2K than in 2K-1C endothelial cells, which was reduced by methyl-beta-ciclodextrin in both 2K and 2K-1C. The production of NO stimulated with acetylcholine was greater in 2K than in 2K-1C endothelial cells, and this effect was impaired by methyl-beta-ciclodextrin in both 2K and 2K-1C. The cytosolic Ca(2+) concentration ([Ca(2+)]c) was simultaneously measured in endothelial and smooth muscle cells stimulated with acetylcholine by confocal image of aortic slices. Acetylcholine produced a greater [Ca(2+)]c increase in 2K than in 2K-1C endothelial cells, which response was inhibited by methyl-beta-ciclodextrin only in 2K cells. In smooth muscle cells the reduction of [Ca(2+)]c was higher in 2K than in 2K-1C. This effect was inhibited by methyl-beta-ciclodextrin only in 2K cells. Taken together, our results suggest that the decreased number of caveolae in the endothelial cells from 2K-1C rat aortas is involved in the impaired effect of acetylcholine on [Ca(2+)]c and NO.
Collapse
|
19
|
Oliveira APS, Lunardi CN, Rodrigues GJ, Bendhack LM. Relaxation induced by calcium ionophore is impaired in carotid arteries from 2K-1C rats due to failed effect of nitric oxide on the smooth muscle cells. Vascul Pharmacol 2009; 50:153-9. [PMID: 19100862 DOI: 10.1016/j.vph.2008.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 10/21/2022]
Abstract
Vascular endothelium generates nitric oxide (NO) in large vessels and induces relaxation of vascular smooth muscle cells (VSMC). The aim of this study was to evaluate the contribution of NO produced in the endothelial cells (EC) to the relaxation induced by the Ca2+ ionophore A23187 and whether this relaxation is impaired in renal hypertensive (2K-1C) rat arteries. Concentration-effect curves for A23187 were constructed in intact endothelium isolated carotid rings from 2K-1C and normotensive (2K) in the absence or in the presence of the extracellular NO scavenger haemoglobin or inhibitors of NO-synthase (NOS, L-NOARG), guanylyl-cyclase (GC, ODQ). In carotid rings loaded with Fluo-3AM, both EC and VSMC were simultaneously imaged by a confocal microscope and [Ca2+]c was derived from fluorescence intensities (IF). The maximal relaxation (ME) induced by A23187 was lower in 2K-1C than in 2K arteries. A23187-induced relaxation was abolished by haemoglobin and L-NOARG in both groups. ODQ reduced the ME to A23187 in 2K and abolished its relaxation in 2K-1C. A23187 increased [Ca2+]c in a similar way in 2K and 2K-1C EC, and decreased [Ca2+]c in VSMC, which effect was higher in 2K than in 2K-1C arteries. L-NOARG inhibited the effect of A23187 in VSMC from 2K and abolished it in 2K-1C rats. On the other hand, L-NOARG did not modify the effect of A23187 in EC from 2K and 2K-1C rats. The basal content of cGMP was higher in 2K than in 2K-1C arterial rings that was similarly increased by A23187. In conclusion, the Ca2+ ionophore A23187 increases Ca2+, activates NOS and NO production in the EC activating GC in VSMC and [Ca2+]c decrease. All these effects are higher in 2K, which contribute to the impaired relaxation to A23187 in 2K-1C rat arteries.
Collapse
Affiliation(s)
- Ana P S Oliveira
- Laboratório de Farmacología, Faculdade de Ciências Farmaocêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 RibeirBo Preto, SP Brazil
| | | | | | | |
Collapse
|
20
|
Kong X, Yang JR, Guo LQ, Xiong Y, Wu XQ, Huang K, Zhou Y. Sesamin improves endothelial dysfunction in renovascular hypertensive rats fed with a high-fat, high-sucrose diet. Eur J Pharmacol 2009; 620:84-9. [PMID: 19699195 DOI: 10.1016/j.ejphar.2009.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 07/03/2009] [Accepted: 08/06/2009] [Indexed: 11/15/2022]
Abstract
The present study was designed to evaluate the possible in vivo protective effects of sesamin on hypertension and endothelial function in two-kidney, one-clip renovascular hypertensive rats fed with a high-fat, high-sucrose diet (2K1C rats on HFS diet). Sesamin was orally administered for 8 weeks in 2K1C rats on HFS diet. Then, the serum malondialdehyde level was determined. The protein expression of endothelial nitric oxide synthase (eNOS), nitrotyrosine and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47(phox) in aortas was detected by Western blotting. Vasorelaxation response to acetylcholine and nitroprusside, and functional assessment of nitric oxide (NO) bioactivity were also determined in aortic rings. Sesamin treatment reduced systolic blood pressure, improved vasodilatation induced by acetylcholine and enhanced NO bioactivity in the thoracic aortas. These changes were associated with increased eNOS, decreased malondialdehyde content, and reduced nitrotyrosine and p47(phox) protein expression. All these results suggest that chronic treatment with sesamin reduces hypertension and improves endothelial dysfunction through upregulation of eNOS expression and reduction of NO oxidative inactivation in 2K1C rats on HFS diet.
Collapse
Affiliation(s)
- Xiang Kong
- Department of Pharmacology, Third-Grade Pharmacology Laboratory of State Administration of Traditional Chinese Medicine, Wannan Medical College, Wuhu, Anhui Province, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Linder AE, Dorrance AM, Mills TM, Webb RC, Leite R. Erectile function in two-kidney, one-clip hypertensive rats is maintained by a potential increase in nitric oxide production. J Sex Med 2009; 6 Suppl 3:279-85. [PMID: 19267850 DOI: 10.1111/j.1743-6109.2008.01185.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Hypertension is closely associated with erectile dysfunction (ED) as it has been observed in many experimental models of hypertension. Additionally, epidemiological studies show that approximately a third of hypertensive patients have ED. AIM To test the hypothesis that the two-kidney, one-clip (2K-1C) rat model of hypertension displays normal erectile function due to increased nitric oxide (NO) production in the penis. METHODS Ganglionic-induced increase in intracavernosal pressure (ICP)/mean arterial pressure (MAP) ratio was used as an index of erectile function in 2K-1C and in normotensive sham-operated (SHAM) anesthetized rats. Cavernosal strips from hypertensive and normotensive rats were used for isometric tension measurement. The contraction induced by alpha-adrenergic agonist phenylephrine and the relaxation induced by the NO donor sodium nitroprusside (SNP) and by the Rho-kinase inhibitor Y-27632 were performed in the absence and in the presence of the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA). RESULTS Changes in ICP/MAP induced by ganglionic stimulation were not different between 2K-1C and SHAM rats. The contractile response induced by phenylephrine as well as the relaxation induced by SNP or the Y-27632 were similar in cavernosal strips from both groups. However, in the presence of L-NNA, the relaxation induced by Y-27632 was significantly impaired in 2K-1C compared to SHAM. CONCLUSIONS These data suggest that hypertension and ED could be dissociated from high levels of blood pressure in some animal models of hypertension. Erectile function in 2K-1C hypertensive rats is maintained in spite of the increased Rho-kinase activity by increased NO signaling.
Collapse
Affiliation(s)
- A Elizabeth Linder
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
22
|
Hypotensive effect of the nitrosyl ruthenium complex nitric oxide donor in renal hypertensive rats. Nitric Oxide 2009; 20:195-9. [DOI: 10.1016/j.niox.2008.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/27/2008] [Accepted: 12/02/2008] [Indexed: 11/17/2022]
|
23
|
Grgic I, Kaistha BP, Hoyer J, Köhler R. Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses--relevance to cardiovascular pathologies and drug discovery. Br J Pharmacol 2009; 157:509-26. [PMID: 19302590 DOI: 10.1111/j.1476-5381.2009.00132.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The arterial endothelium critically contributes to blood pressure control by releasing vasodilating autacoids such as nitric oxide, prostacyclin and a third factor or pathway termed 'endothelium-derived hyperpolarizing factor' (EDHF). The nature of EDHF and EDHF-signalling pathways is not fully understood yet. However, endothelial hyperpolarization mediated by the Ca(2+)-activated K(+) channels (K(Ca)) has been suggested to play a critical role in initializing EDHF-dilator responses in conduit and resistance-sized arteries of many species including humans. Endothelial K(Ca) currents are mediated by the two K(Ca) subtypes, intermediate-conductance K(Ca) (KCa3.1) (also known as, a.k.a. IK(Ca)) and small-conductance K(Ca) type 3 (KCa2.3) (a.k.a. SK(Ca)). In this review, we summarize current knowledge about endothelial KCa3.1 and KCa2.3 channels, their molecular and pharmacological properties and their specific roles in endothelial function and, particularly, in the EDHF-dilator response. In addition we focus on recent experimental evidences derived from KCa3.1- and/or KCa2.3-deficient mice that exhibit severe defects in EDHF signalling and elevated blood pressures, thus highlighting the importance of the KCa3.1/KCa2.3-EDHF-dilator system for blood pressure control. Moreover, we outline differential and overlapping roles of KCa3.1 and KCa2.3 for EDHF signalling as well as for nitric oxide synthesis and discuss recent evidence for a heterogeneous (sub) cellular distribution of KCa3.1 (at endothelial projections towards the smooth muscle) and KCa2.3 (at inter-endothelial borders and caveolae), which may explain their distinct roles for endothelial function. Finally, we summarize the interrelations of altered KCa3.1/KCa2.3 and EDHF system impairments with cardiovascular disease states such as hypertension, diabetes, dyslipidemia and atherosclerosis and discuss the therapeutic potential of KCa3.1/KCa2.3 openers as novel types of blood pressure-lowering drugs.
Collapse
Affiliation(s)
- Ivica Grgic
- Department of Internal Medicine-Nephrology, Philipps-University, Marburg, Germany
| | | | | | | |
Collapse
|
24
|
Aras-López R, Blanco-Rivero J, Hernanz R, Briones AM, Rossoni LV, Ferrer M, Salaices M, Balfagón G. Chronic ouabain treatment increases the contribution of nitric oxide to endothelium-dependent relaxation. J Physiol Biochem 2008; 64:115-25. [PMID: 19043981 DOI: 10.1007/bf03168239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this study was to analyze the contribution of nitric oxide, prostacyclin and endothelium-dependent hyperpolarizing factor to endothelium-dependent vasodilation induced by acetylcholine in rat aorta from control and ouabain-induced hypertensive rats. Preincubation with the nitric oxide synthase inhibitor N-omega-nitro-L-arginine methyl esther (L-NAME) inhibited the vasodilator response to acetylcholine in segments from both groups but to a greater extent in segments from ouabain-treated rats. Basal and acetylcholine-induced nitric oxide release were higher in segments from ouabain-treated rats. Preincubation with the prostacyclin synthesis inhibitor tranylcypromine or with the cyclooxygenase inhibitor indomethacin inhibited the vasodilator response to acetylcholine in aortic segments from both groups. The Ca2+-dependent potassium channel blocker charybdotoxin inhibited the vasodilator response to acetylcholine only in segments from control rats. These results indicate that hypertension induced by chronic ouabain treatment is accompanied by increased endothelial nitric oxide participation and impaired endothelium-dependent hyperpolarizing factor contribution in acetylcholine-induced relaxation. These effects might explain the lack of effect of ouabain treatment on acetylcholine responses in rat aorta.
Collapse
Affiliation(s)
- R Aras-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rodrigues GJ, Restini CB, Lunardi CN, Moreira JE, Lima RG, da Silva RS, Bendhack LM. Caveolae Dysfunction Contributes to Impaired Relaxation Induced by Nitric Oxide Donor in Aorta from Renal Hypertensive Rats. J Pharmacol Exp Ther 2007; 323:831-7. [PMID: 17785608 DOI: 10.1124/jpet.107.127241] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Relaxation induced by nitric oxide (NO) donors is impaired in renal hypertensive two kidney-one clip (2K-1C) rat aortas. It has been proposed that caveolae are important in signal transduction and Ca2+ homeostasis. Therefore, in the present study we investigate the integrity of caveolae in vascular smooth muscle cells (VSMCs), as well as their influence on the effects produced by NO released from both the new NO donor [Ru(NH.NHq) (terpy)NO+]3+ (TERPY) and sodium nitroprusside (SNP) on 2K-1C rat aorta. The potency of both TERPY and SNP was lower in the 2K-1C aorta that in the normotensive aorta [two kidney (2K)], whereas the maximal relaxant effect (ME) was similar in both 2K-1C and 2K aortas. In the 2K aorta, methyl-beta-cyclodextrin (CD) reduced both the potency of TERPY and SNP, and their ME compared with the control, but it had no effect on the potency and ME of these NO donors in 2K-1C aortas. The decrease in cytosolic Ca2+ concentration ([Ca2+]c) induced by TERPY was larger in 2K than in 2K-1C cells, and this effect was inhibited by CD in 2K cells only. Aortic VSMCs from 2K rats presented a larger number of caveolae than those from 2K-1C rats. Treatment with CD reduced the number of caveolae in both 2K and 2K-1C aortic VSMCs. Our results support the idea that caveolae play a critical role in the relaxant effect and in the decrease in [Ca2+]c induced by NO, and they could be responsible for impaired aorta relaxation by NO in renal hypertensive rats.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Calcium/metabolism
- Caveolae/drug effects
- Caveolae/metabolism
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Renal/etiology
- Hypertension, Renal/metabolism
- Male
- Muscle Relaxation/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- G J Rodrigues
- Depto. de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, 14040-903 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Helle F, Vågnes ØB, Iversen BM. Angiotensin II-induced calcium signaling in the afferent arteriole from rats with two-kidney, one-clip hypertension. Am J Physiol Renal Physiol 2006; 291:F140-7. [PMID: 16467128 DOI: 10.1152/ajprenal.00279.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate ANG II-induced Ca2+signaling in freshly isolated afferent arterioles (AA) from two-kidney, one-clip hypertensive (2K1C) rats, which have an elevated plasma and renal ANG II level, and different perfusion pressure and vascular tone in the clipped and nonclipped kidney. The Ca2+responses in vessels from 2K1C and control rats were similar in all groups ( P > 0.1). The intracellular Ca2+(Cai2+) response in the afferent arteriole after 10−8M ANG II stimulation was 0.57 ± 0.10, 0.50 ± 0.07, 0.48 ± 0.04, and 0.36 ± 0.05 in the control, sham, nonclipped, and clipped kidney, respectively. These data were consistent with the finding of unchanged AT1aR mRNA levels in AAs from all groups. Although the absolute values were similar, the dose-response curves to ANG II were different. In the control, sham, and nonclipped kidney from 2K1C, the dose-response curve leveled off between 10−8and 10−6M ANG II. In the clipped kidney, the dose-response curve was linear, with a significantly increased response at 10−6M compared with 10−8M ANG II ( P < 0.05). Inhibition of cyclooxygenase-1 (COX-1) with indomethacin enhanced the ANG II response in the nonclipped (Δ0.30 ± 0.09) and clipped (Δ0.30 ± 0.09) kidneys from 2K1C ( P < 0.005), but not in control rats (Δ−0.02 ± 0.11, P > 0.8). Conclusively, the ANG II-induced Cai2+response was reduced by COX-1-derived prostaglandins in 2K1C, in contrast to control animals, where the COX-1 inhibition had no effect. COX-2 inhibition with NS-398 did not increase the ANG II-mediated Cai2+response in any of the groups.
Collapse
MESH Headings
- Angiotensin II/physiology
- Animals
- Arterioles/chemistry
- Arterioles/drug effects
- Arterioles/physiology
- Calcium/analysis
- Calcium/physiology
- Cyclooxygenase 1/metabolism
- Cyclooxygenase 2/metabolism
- Cyclooxygenase Inhibitors/pharmacology
- Dose-Response Relationship, Drug
- Hypertension, Renovascular/physiopathology
- Kidney/blood supply
- Kidney/chemistry
- Kidney/physiopathology
- Male
- Nitrobenzenes/pharmacology
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1/analysis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Regional Blood Flow/drug effects
- Regional Blood Flow/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Frank Helle
- Renal Research Group, Institute of Medicine, University of Bergen, and Haukeland University Hospital, Norway.
| | | | | |
Collapse
|
27
|
Rodriguez-Rodriguez R, Perona JS, Herrera MD, Ruiz-Gutierrez V. Triterpenic compounds from "orujo" olive oil elicit vasorelaxation in aorta from spontaneously hypertensive rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:2096-102. [PMID: 16536581 DOI: 10.1021/jf0528512] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
There is currently a considerable amount of interest in the benefits of certain dietary elements, and in particular of olive oil, in endothelial function and thus in hypertension. "Orujo" or pomace olive oil is obtained from the residues of the olive by a novel centrifugation process, and it is a good dietary source of triterpenic compounds such as oleanolic and maslinic acid, erythrodiol, and uvaol. Until now, there was no information available regarding the properties of these triterpenoids on the vasculature of hypertensive animals. However, in this in vitro study, we have analyzed the vasorelaxation induced by these triterpenoids in isolated aorta from spontaneously hypertensive rats (SHR). The triterpenoids tested induced concentration-dependent vasorelaxation, mostly involving nitric oxide (NO). Indeed, the responses were attenuated by removal of the endothelium or following pretreatment with the NO synthase inhibitor L-NAME. Furthermore, the differences that were observed in the potency of relaxation, the selectivity, and the dependence on the endothelium were attributed to structural features of the triterpenoids. In conclusion, triterpenic components in pomace olive oil induce vasorelaxation of the aorta from SHR, and this effect generally involves endothelial NO.
Collapse
|
28
|
Vizioli EO, Spadin MD, Corrêa FMA, Viaro F, Evora PRB, Chies AB. Acetylcholine-induced aortic relaxation studied in salbutamol treated rats. J Smooth Muscle Res 2006; 41:271-81. [PMID: 16428866 DOI: 10.1540/jsmr.41.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been proposed that the acetylcholine (ACh)-induced relaxation of the rat aorta is entirely mediated by endothelium derived-nitric oxide (NO). However, some authors have reported that indomethacin pretreatment attenuates ACh-induced relaxation of rat aortic ring preparations. Moreover, it has also been suggested that cAMP accumulation may regulate either nitric oxide synthase (NOS) or cyclooxygenase (COX) expression in different tissues. Thus, in this in vitro study we have investigated the endothelial mechanisms involved in the ACh-induced relaxation of ring preparations of the rat thoracic aorta, as well as the influence chronic treatment with the selective beta(2)-agonist salbutamol had upon such mechanisms. Results of functional experiments show that N(G)-monomethyl-L-arginine (L-NMMA, 3 x 10(-4) M) considerably inhibited the ACh-induced relaxation of rat aortic ring preparations. However, indomethacin (10(-5) M) was also found to partially attenuate this ACh response, suggesting that although NO is the most important mediator of the ACh-induced relaxation of the rat aortic ring preparations, vasorelaxation may also involve prostanoids. Moreover, the results suggest that treatment with salbutamol failed to produce any change in the ACh-induced relaxation of rat aortic ring preparations.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Albuterol/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Cyclic AMP/analysis
- Cyclic AMP/physiology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/physiology
- Indomethacin/pharmacology
- Male
- Muscle Relaxation/drug effects
- Muscle Relaxation/physiology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide/physiology
- Nitric Oxide Synthase/physiology
- Prostaglandins/physiology
- Rats
- Rats, Wistar
- omega-N-Methylarginine/pharmacology
Collapse
Affiliation(s)
- Ednir O Vizioli
- Laboratory of Pharmacology, School of Medicine of Marília, SP, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Miyamoto A, Wada R, Inoue A, Ishiguro S, Liao JK, Nishio A. Role of angiotensin II receptor subtypes in porcine basilar artery: functional, radioligand binding, and cell culture studies. Life Sci 2006; 78:943-9. [PMID: 16223512 PMCID: PMC2641039 DOI: 10.1016/j.lfs.2005.06.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 06/01/2005] [Indexed: 11/26/2022]
Abstract
We aimed to clarify responsiveness to angiotensin (Ang) II in the porcine basilar artery and the role of Ang II receptor subtypes by functional, radioligand binding, and cell culture studies. Ang II induced more potent contractions in the proximal part than in the distal part of isolated porcine basilar arteries. The contraction induced by Ang II was inhibited by the Ang II type 1 (AT1) receptor antagonist losartan, but the Ang II type 2 (AT2) receptor antagonist PD123319 enhanced it. After removal of the endothelium, the effect of losartan remained but the effect of PD123319 was abolished. The specific binding site of [3H]Ang II on the smooth muscle membrane was inhibited by losartan, but not by PD123319. Stimulation of angiotensin II increased nitric oxide (NO) production in cultured basilar arterial endothelial cells. This production was inhibited by PD123319 and the NO synthase inhibitor L-NG-nitroarginine. These results suggest that the contraction induced by Ang II might be mediated via the activation of AT1 receptors on the basilar arterial smooth muscle cells and be modulated via the activation of AT2 receptors on the endothelial cells, followed by NO production.
Collapse
Affiliation(s)
- Atsushi Miyamoto
- Department of Veterinary Pharmacology, Faculty of Agriculture, Kagoshima University, Kagoshima, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Molin JC, Sguilla FS, Bendhack LM. Decreased contraction to phenylephrine by ouabain in 2K-1C rat aorta is modulated by the endothelium. Eur J Pharmacol 2005; 522:94-9. [PMID: 16188252 DOI: 10.1016/j.ejphar.2005.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
The effects of ouabain were studied on the contraction stimulated with phenylephrine or KCl in intact endothelium and denuded aortic rings isolated from normotensive (2K) and renal hypertensive 2 kidney-1clip (2K-1C) rats. Ouabain did not change the basal tone of aortic rings. Ouabain (1 nmol/l) had no effect on the contraction to phenylephrine in all the artery groups studied. Ouabain (10 nmol/l) decreased the E(max) to phenylephrine in intact endothelium arteries from 2K-1C. By contrast, ouabain (10 nmol/l) had no effect on the contraction to KCl. Ouabain induced membrane depolarization measured by confocal image with Di-4-ANEPPS dye, that was greater in 2K than in 2K-1C rat aorta smooth muscle cells. In conclusion, ouabain (10 nmol/l) decreased the contractile responses to phenylephrine only in 2K-1C rat aortic rings with intact endothelium. Interestingly, 10 nmol/l ouabain depolarizes the smooth muscle cells but this depolarization level is not enough to alter the phenylephrine or KCl-induced contractions. Our results indicate that the endothelium modulates the vascular action of ouabain.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Blood Pressure
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Hypertension, Renovascular/physiopathology
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Ouabain/pharmacology
- Phenylephrine/pharmacology
- Potassium Chloride/pharmacology
- Rats
- Rats, Wistar
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Josiane C Molin
- Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
31
|
Bonaventura D, Oliveira FS, da Silva RS, Bendhack LM. DECREASED VASODILATION INDUCED BY A NEW NITRIC OXIDE DONOR IN TWO KIDNEY, ONE CLIP HYPERTENSIVE RATS IS DUE TO IMPAIRED K+ CHANNEL ACTIVATION. Clin Exp Pharmacol Physiol 2005; 32:478-81. [PMID: 15854162 DOI: 10.1111/j.1440-1681.2005.04215.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. We studied the effect of the new compound trans-[RuCl([15]aneN(4))NO](2+) (15-ane) in denuded aortic rings of two kidney (2K) normotensive and two kidney, one clip (2K-1C) hypertensive rats. 2. The compound 15-ane releases nitric oxide (NO) when reduced by a catecholamine (noradrenaline). 3. Oxyhemoglobin (HbO(2)), an NO scavenger, completely abolished the effect of 15-ane in both 2K and 2K-1C rats, indicating that the relaxation is really due to NO release. 4. We tested the hypothesis that an impairment of K(+) channels plays an important role in the vasodilation induced by 15-ane. 5. The selective inhibitor of soluble guanylyl-cyclase, namely 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ; 1 micromol/L) reduced the relaxation induced by 15-ane. In 2K-1C rat aortic rings, ODQ reduced the maximum effect (E(max)) of 15-ane, whereas in 2K rat aortic rings ODQ reduced E(max) and pD(2) values to 15-ane. 6. The selective K(+) channel blockers glibenclamide (blocks K(ATP); 3 micromol/L), 4-aminopyridine (blocks K(V); 1 mmol/L) and the small conductance K(Ca) channel blocker apamin (1 micromol/L) reduced E(max) and pD(2) values for 15-ane-induced relaxation responses of aortas from 2K rats. However, iberiotoxin, a blocker of large conductance K(Ca) channels, reduced only the E(max) to 15-ane. None of these K(+) channel blockers had any effect on the relaxation induced by 15-ane of aortas from 2K-1C rats. 7. These data indicate that an impaired functional activity of K(+) channels contributes to the deficient relaxation induced by the NO donor 15-ane in renal hypertensive 2K-1C rat aortas.
Collapse
Affiliation(s)
- Daniella Bonaventura
- Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
32
|
Sendão Oliveira AP, Bendhack LM. Relaxation induced by acetylcholine involves endothelium-derived hyperpolarizing factor in 2-kidney 1-clip hypertensive rat carotid arteries. Pharmacology 2005; 72:231-9. [PMID: 15539883 DOI: 10.1159/000080378] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 04/20/2004] [Indexed: 01/20/2023]
Abstract
Acetylcholine induced relaxation in a concentration-dependent way in isolated phenylephrine-contracted carotid artery rings from normotensive two-kidney (2K) and hypertensive two-kidney one-clip (2K-1C) rats. In the presence of the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine (L-NOARG, 100 micromol/l), the relaxation stimulated with acetylcholine was blocked in 2K arteries. However, in 2K-1C arteries, the relaxation was only partially inhibited. Indomethacin (3 micromol/l) had no effect in both groups. In 2K arteries, the combination of L-NOARG and indomethacin had similar effects to L-NOARG alone. On the other hand, in 2K-1C arteries, indomethacin further inhibited the maximum effect induced by acetylcholine. Endothelium-dependent relaxation induced by acetylcholine was markedly reduced in 2K arteries contracted with 90 mmol/l KCl, and it was abolished in 2K-1C arteries. The remaining response to acetylcholine in 2K arteries was blocked by L-NOARG. Thus, in addition to NO, a relaxing factor sensitive to extracellular K+ changes in the membrane potential contributes to endothelium-dependent relaxation in 2K-1C rat carotid artery. On the other hand, in arteries from 2K rats, only NO is involved in the relaxation induced by acetylcholine. The combination of 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 3 micromol/l), indomethacin (3 micromol/l) and L-NOARG (100 micromol/l) reduced the relaxation induced by acetylcholine in arteries from 2K-1C rats contracted with phenylephrine. On the other hand, in 2K arteries, the relaxation induced by acetylcholine was abolished. The combination of ODQ and K+ channel blockers charybdotoxin (100 nmol/l), apamin (500 nmol/l) and 4-aminopyridine (1 micromol/l) abolished the relaxation induced by acetylcholine in 2K and 2K-1C carotid arteries. These data indicate that the endothelium-derived relaxing factors that contribute to relaxation induced by acetylcholine are different in 2K and 2K-1C arteries. In 2K arteries, the only factor is NO, which involves the activation of K+ channels and the cGMP pathway. However, in 2K-1C arteries, the relaxation induced by acetylcholine is dependent on NO in addition to another factor, which is insensitive to indomethacin, but also activates the K+ channels and the cGMP pathway, presumably by membrane hyperpolarization through endothelium-derived hyperpolarizing factor.
Collapse
Affiliation(s)
- Ana Paula Sendão Oliveira
- Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | |
Collapse
|
33
|
Molin JC, Bendhack LM. Clonidine induces rat aorta relaxation by nitric oxide-dependent and -independent mechanisms. Vascul Pharmacol 2004; 42:1-6. [PMID: 15664881 DOI: 10.1016/j.vph.2004.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 11/19/2004] [Indexed: 11/21/2022]
Abstract
The alpha1- and alpha2-adrenoceptors coexist in vascular smooth muscle cells producing vascular contraction and relaxation. This study was designed to investigate which is the mechanism activated by clonidine in the rat aorta, and the endothelial factors possibly involved in the relaxation induced by clonidine. The alpha2-adrenoceptors agonist clonidine relaxed rat aortas pre-contracted with phenylephrine, with or without endothelium. In non-contracted denuded arteries, clonidine produced contractions instead of relaxation. In intact endothelium aortic rings, clonidine induced greater relaxation than in denuded aortic rings. In aortas with intact endothelium, the NO-synthase inhibitor L-NAME (10 micromol/L) and the NO-scavenger hemoglobin (10 micromol/L) reduced the relaxation to clonidine. On the other hand, indomethacin (10 micromol/L) failed to alter the relaxation induced by clonidine. These results suggest the participation of NO, but not prostacyclin in clonidine-induced relaxation. In aortic rings pre-contracted with KCl (60 mmol/L) the relaxation induced by clonidine was abolished; however, the K+ channel blockers glibenclamide (K(ATP)), tetraethylamonium (K(Ca)), and the combination of apamin and charybdotoxin (K(Ca)) did not change the relaxation induced by clonidine. The relaxation induced by clonidine on PGF2alpha-contracted arteries was not affected by prazosin. However, in the absence of prazosin, clonidine had an additional contractile effect in PGF2alpha-contracted arteries. In conclusion, our results show that in rat aorta clonidine can activate alpha2-adrenoceptors in the smooth muscle cells and alpha2-adrenoceptors in the endothelial cells that activates NO production, but not prostacyclin and/or EDHF. In the absence of phenylephrine and prazosin, clonidine can also activate alpha1-adrenoceptors and rat aorta contraction.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Clonidine/antagonists & inhibitors
- Clonidine/pharmacology
- Dinoprost/antagonists & inhibitors
- Dinoprost/pharmacology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiology
- Endothelium-Dependent Relaxing Factors/pharmacology
- Indomethacin/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/physiology
- Ouabain/pharmacology
- Phenylephrine/pharmacology
- Potassium Chloride/pharmacology
- Prazosin/pharmacology
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Josiane C Molin
- Laboratório de Farmacologia, Dept. Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/no. 14040-903 Ribeirão Preto, SP, Brasil
| | | |
Collapse
|
34
|
Callera GE, Yeh E, Tostes RCA, Caperuto LC, Carvalho CRO, Bendhack LM. Changes in the vascular beta-adrenoceptor-activated signalling pathway in 2Kidney-1Clip hypertensive rats. Br J Pharmacol 2004; 141:1151-8. [PMID: 15006902 PMCID: PMC1574885 DOI: 10.1038/sj.bjp.0705717] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. beta-Adrenoceptor (beta-AR)-mediated vasodilation, which plays an important physiological role in the regulation of vascular tone, is decreased in two-kidney, one clip (2K-1C) renal hypertension. In this study, downstream pathways related to vascular beta-AR activation were evaluated in 2K-1C rats. 2. Relaxation responses to isoprenaline, forskolin and 8-Br-cAMP were diminished in aortas without endothelium from 2K-1C when compared to those in normotensive two kidney (2K). Basal adenosine-3',5'-monophosphate (cAMP), as well as isoprenaline-induced increase in cAMP levels, was not different between 2K and 2K-1C aortas. 3. Contractile responses to caffeine, after depletion and reloading of intracellular Ca(2+) stores, were greater in 2K-1C than in 2K. The presence of isoprenaline during the Ca(2+)-reloading period abolished the differences between groups by increasing caffeine contraction in 2K without changing this response in 2K-1C aortas. Inhibition of the sarcolemmal Ca(2+)ATPase with thapsigargin markedly attenuated isoprenaline vasodilation in both 2K and 2K-1C and abolished the differences between groups. 4. Blockade of ATP-sensitive K(+) channels (K(ATP)) channels with glibenclamide significantly decreased isoprenaline vasodilation in 2K-1C without affecting this response in 2K. Both vascular gene and protein expression of protein kinase A (PKA), as well as phosphoserine-containing proteins, were increased in 2K-1C vs 2K rats. 5. In conclusion, decreased isoprenaline vasodilation in 2K-1C hypertensive rats is related to impaired modulation of the sarcolemmal Ca(2+)ATPase activity. Moreover, K(ATP) channels may play a compensatory role on isoprenaline-induced relaxation in renal hypertension. Both Ca(2+)ATPase and K(ATP) channel functional alterations, associated with decreased beta-AR vasodilation, are paralleled by an upregulation of protein kinase A (PKA) and phosphoserine proteins expression.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Animals
- Aorta, Thoracic/chemistry
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/pathology
- Caffeine/pharmacology
- Calcium-Transporting ATPases/drug effects
- Calcium-Transporting ATPases/metabolism
- Colforsin/pharmacology
- Cyclic AMP/chemistry
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- Gene Expression/drug effects
- Glyburide/pharmacology
- Hypertension, Renovascular/physiopathology
- Isoproterenol/antagonists & inhibitors
- Isoproterenol/pharmacology
- Kidney/surgery
- Male
- Membrane Proteins/drug effects
- Membrane Proteins/physiology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Phenylephrine/pharmacology
- Potassium Channels
- RNA, Messenger
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Sarcolemma/drug effects
- Sarcolemma/enzymology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thapsigargin/pharmacology
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Glaucia E Callera
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
35
|
Callera GE, Yogi A, Tostes RC, Rossoni LV, Bendhack LM. Ca2+-Activated K+ Channels Underlying the Impaired Acetylcholine-Induced Vasodilation in 2K-1C Hypertensive Rats. J Pharmacol Exp Ther 2004; 309:1036-42. [PMID: 14978190 DOI: 10.1124/jpet.103.062810] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that an abnormal function of K(+) channels in vascular smooth muscle cells plays a key role in the impaired acetylcholine (ACh) vasodilation in aortas from two kidney-one clip (2K-1C) hypertensive rats and further investigated the K(+) channel subtype involved in this altered response. ACh-induced endothelium-dependent relaxation was assessed in aortic rings from 2K-1C and normotensive two kidney (2K) rats. Glibenclamide, an ATP-sensitive K(+) channel blocker, did not inhibit ACh-induced relaxation in aortic rings from 2K or 2K-1C rats. The voltage-dependent K(+) channels inhibitor 4-aminopyridine attenuated ACh-induced relaxation in both groups. Charybdotoxin and iberiotoxin, blockers of Ca(2+)-sensitive (K(Ca)) and large-conductance K(Ca) (BK(Ca)) channels, respectively, reduced ACh-induced relaxation in aortic rings from 2K rats without affecting this response in those from 2K-1C rats, abolishing the differences between groups. ACh-induced relaxation in vessels from both 2K and 2K-1C rats was unaffected by apamin, a small-conductance K(Ca) blocker. NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one], an activator of K(Ca), induced a smaller vasodilation in endothelium-denuded aortic rings from 2K-1C rats compared with those from 2K rats. Iberiotoxin reduced sodium nitroprusside-induced relaxation in endothelium-denuded aortic rings from 2K without affecting this response in those from 2K-1C rats. The inhibition of Na(+),K(+)-ATPase with ouabain had no effects on ACh-induced relaxation in aortic rings from 2K-1C or 2K rats. These data indicate that a deficient functional activity of BK(Ca) channels plays a key role in the impaired ACh vasodilation in aortas from 2K-1C rats.
Collapse
Affiliation(s)
- Glaucia E Callera
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Lineu Prestes, 1524 São Paulo, SP 05508-900 Brazil.
| | | | | | | | | |
Collapse
|