1
|
Alberry B, Silveira PP. Brain insulin signaling as a potential mediator of early life adversity effects on physical and mental health. Neurosci Biobehav Rev 2023; 153:105350. [PMID: 37544390 DOI: 10.1016/j.neubiorev.2023.105350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In numerous brain structures, insulin signaling modulates the homeostatic processes, sensitivity to reward pathways, executive function, memory, and cognition. Through human studies and animal models, mounting evidence implicates central insulin signaling in the metabolic, physiological, and psychological consequences of early life adversity. In this review, we describe the consequences of early life adversity in the brain where insulin signaling is a key factor and how insulin may moderate the effects of adversity on psychiatric and cardio-metabolic health outcomes. Further understanding of how early life adversity and insulin signaling impact specific brain regions and mental and physical health outcomes will assist in prevention, diagnosis, and potential intervention following early life adversity.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Li D, Xu X, Yin Y, Yao B, Dong J, Zhao L, Wang H, Wang H, Zhang J, Peng R. Physiological and Psychological Stress of Microwave Radiation-Induced Cardiac Injury in Rats. Int J Mol Sci 2023; 24:ijms24076237. [PMID: 37047212 PMCID: PMC10093827 DOI: 10.3390/ijms24076237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Electromagnetic waves are widely used in both military and civilian fields, which could cause long-term and high-power exposure to certain populations and may pose a health hazard. The aim of this study was to simulate the long-term and high-power working environment of workers using special electromagnetic radiation occupations to clarify the radiation-induced stress response and cardiac damage and thus gain insights into the mechanisms of injuries caused by electromagnetic radiation. In this study, the combination of microwave and stress was an innovative point, aiming to broaden the research direction with regard to the effect and mechanism of cardiac injury caused by radiation. The myocardial structure was observed by optical and transmission electron microscope, mitochondrial function was detected by flow cytometry, oxidative-stress markers were detected by microplate reader, serum stress hormone was detected by radioimmunoassay, and heart rate variability (HRV) was analyzed by multichannel-physiological recorder. The rats were weighed and subjected to an open field experiment. Western blot (WB) and immunofluorescence (IF) were used to detect the expressions and distributions of JNK (c-Jun N-terminal kinase), p-JNK (phosphorylated c-Jun N-terminal kinase), HSF1 (heat shock factor), and NFATc4 (nuclear factor of activated T-cell 4). This study found that radiation could lead to the disorganization, fragmentation, and dissolution of myocardial fibers, severe mitochondrial cavitation, mitochondrial dysfunction, oxidative-stress injury in myocardium, increase to stress hormone in serum, significant changes in HRV, and a slow gain in weight. The open field experiment indicated that the rats experienced anxiety and depression and had decreased exercise capacity after radiation. The expressions of JNK, p-JNK, HSF1, and NFATc4 in myocardial tissue were all increased. The above results suggested that 30 mW/cm2 of S-band microwave radiation for 35 min could cause both physiological and psychological stress damage in rats; the damage was related to the activation of the JNK pathway, which provided new ideas for research on protection from radiation.
Collapse
|
3
|
Yan C, Hartcher K, Liu W, Xiao J, Xiang H, Wang J, Liu H, Zhang H, Liu J, Chen S, Zhao X. Adaptive response to a future life challenge: consequences of early-life environmental complexity in dual-purpose chicks. J Anim Sci 2020; 98:5941772. [PMID: 33111138 DOI: 10.1093/jas/skaa348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Conditions in early life play profound and long-lasting effects on the welfare and adaptability to stress of chickens. This study aimed to explore the hypothesis that the provision of environmental complexity in early life improves birds' adaptive plasticity and ability to cope with a challenge later in life. It also tried to investigate the effect of the gut-brain axis by measuring behavior, stress hormone, gene expression, and gut microbiota. One-day-old chicks were split into 3 groups: (1) a barren environment (without enrichment items) group (BG, n = 40), (2) a litter materials group (LG, n = 40), and (3) a perches with litter materials group (PLG, n = 40). Then, enrichment items were removed and simulated as an environmental challenge at 31 to 53 d of age. Birds were subjected to a predator test at 42 d of age. In the environmental challenge, when compared with LG, PLG birds were characterized by decreased fearfulness, lower plasma corticosterone, improved gut microbial functions, lower relative mRNA expression of GR, and elevated mRNA expressions of stress-related genes CRH, BDNF, and NR2A in the hypothalamus (all P < 0.05). Unexpectedly, the opposite was true for the LG birds when compared with the BG (P < 0.05). Decreased plasma corticosterone and fearfulness were accompanied by altered hypothalamic gene mRNA expressions of BDNF, NR2A, GR, and CRH through the HPA axis in response to altered gut microbial compositions and functions. The findings suggest that gut microbiota may integrate fearfulness, plasma corticosterone, and gene expression in the hypothalamus to provide an insight into the gut-brain axis in chicks. In conclusion, having access to both perches and litter materials in early life allowed birds to cope better with a future challenge. Birds in perches and litter materials environment may have optimal development and adaptive plasticity through the gut-brain axis.
Collapse
Affiliation(s)
- Chao Yan
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Kate Hartcher
- Centre for Animal Welfare and Ethics, the University of Queensland, Brisbane, QLD, Australia
| | - Wen Liu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinlong Xiao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Hai Xiang
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, China
| | - Hao Liu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Liu
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Siyu Chen
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
4
|
Alberry BLJ, Castellani CA, Singh SM. Hippocampal transcriptome analysis following maternal separation implicates altered RNA processing in a mouse model of fetal alcohol spectrum disorder. J Neurodev Disord 2020; 12:15. [PMID: 32416732 PMCID: PMC7231420 DOI: 10.1186/s11689-020-09316-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
Background Fetal alcohol spectrum disorders (FASD) are common, seen in 1–5% of the population in the USA and Canada. Children diagnosed with FASD are not likely to remain with their biological parents, facing early maternal separation and foster placements throughout childhood. Methods We model FASD in mice via prenatal alcohol exposure and further induce early life stress through maternal separation. We use RNA-seq followed by clustering of expression profiles through weighted gene co-expression network analysis (WGCNA) to analyze transcriptomic changes that result from the treatments. We use reverse transcription qPCR to validate these changes in the mouse hippocampus. Results We report an association between adult hippocampal gene expression and prenatal ethanol exposure followed by postnatal separation stress that is related to behavioral changes. Expression profile clustering using WGCNA identifies a set of transcripts, module 19, associated with anxiety-like behavior (r = 0.79, p = 0.002) as well as treatment group (r = 0.68, p = 0.015). Genes in this module are overrepresented by genes involved in transcriptional regulation and other pathways related to neurodevelopment. Interestingly, one member of this module, Polr2a, polymerase (RNA) II (DNA directed) polypeptide A, is downregulated by the combination of prenatal ethanol and postnatal stress in an RNA-Seq experiment and qPCR validation (q = 2e−12, p = 0.004, respectively). Conclusions Together, transcriptional control in the hippocampus is implicated as a potential underlying mechanism leading to anxiety-like behavior via environmental insults. Further research is required to elucidate the mechanism involved and use this insight towards early diagnosis and amelioration strategies involving children born with FASD.
Collapse
Affiliation(s)
- Bonnie L J Alberry
- Department of Biology, Western University, 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - Christina A Castellani
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Shiva M Singh
- Department of Biology, Western University, 1151 Richmond St, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
5
|
Spexin as an anxiety regulator in mouse hippocampus: Mechanisms for transcriptional regulation of spexin gene expression by corticotropin releasing factor. Biochem Biophys Res Commun 2020; 525:326-333. [PMID: 32093887 DOI: 10.1016/j.bbrc.2020.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 11/23/2022]
Abstract
Spexin (SPX) acts as a neuropeptide with pleiotropic functions that can participate in anxiety regulation. Corticotropin releasing factor (CRF) is widely expressed in brain tissues and associated with depression and anxiety and addiction. With the anxious mice under chronic unpredictable stress, we found SPX mRNA expression level in the hippocampus of the brain was significantly reduced, while local CRF mRNA expression level was increased. Furthermore, CRF injection in the hippocampus could also decrease SPX mRNA expression levels in hippocampus and other brain tissues, including pituitary and hypothalamus. With the primary mouse hippocampal cell model, CRF treatment could decrease SPX mRNA expression at hippocampal cell level and this inhibitory effect was mediated only by corticotropin releasing factor receptor 2 (CRFR2) but not corticotropin releasing factor receptor 1 (CRFR1). In HEK293 cells with CRFR2 over-expression, CRF could also inhibit SPX promoter activity coupling with AC/cAMP/PKA and MEK1/2/Erk1/2 cascades. In addition, Epac was also involved with the CRF-repressed SPX promoter activity and cross-talked with MEK1/2/Erk1/2 pathway. CRF could inhibit SPX gene expression in mouse hippocampus via transcriptional activation at the promoter level with coupling of AC/cAMP and MEK1/2/Erk1/2 signaling, which will be relevant to the anxiety response mediated by SPX in central nervous system.
Collapse
|
6
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Abstract
Stress is an integral part of life. Activation of the hypothalamus-pituitary-adrenal (HPA) axis in the adult can be viewed as mostly adaptive to restore homeostasis in the short term. When stress occurs during development, and specifically during periods of vulnerability in maturing systems, it can significantly reprogram function, leading to pathologies in the adult. Thus, it is critical to understand how the HPA axis is regulated during developmental periods and what are the factors contributing to shape its activity and reactivity to environmental stressors. The HPA axis is not a passive system. It can actively participate in critical physiological regulation, inducing parturition in the sheep for instance or being a center stage actor in the preparation of the fetus to aerobic life (lung maturation). It is also a major player in orchestrating mental function, metabolic, and cardiovascular function often reprogrammed by stressors even prior to conception through epigenetic modifications of gametes. In this review, we review the ontogeny of the HPA axis with an emphasis on two species that have been widely studied-sheep and rodents-because they each share many similar regulatory mechanism applicable to our understanding of the human HPA axis. The studies discussed in this review should ultimately inform us about windows of susceptibility in the developing brain and the crucial importance of early preconception, prenatal, and postnatal interventions designed to improve parental competence and offspring outcome. Only through informed studies will our public health system be able to curb the expansion of many stress-related or stress-induced pathologies and forge a better future for upcoming generations.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Zhang Y, Liu W, Ma C, Geng J, Li Y, Li S, Yu F, Zhang X, Cong B. Endoplasmic reticulum stress contributes to CRH-induced hippocampal neuron apoptosis. Exp Cell Res 2012; 318:732-40. [PMID: 22285133 DOI: 10.1016/j.yexcr.2012.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/11/2011] [Accepted: 01/03/2012] [Indexed: 11/30/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is critical to mediating the body's response to stress. Corticotropin releasing hormone (CRH) plays a central role in controlling the stress response and regulating the HPA axis. Recent findings support CRH participates in the stress-induced hippocampal neuron apoptosis, but the underlying mechanisms are not fully understood. Our present study demonstrates that CRH can independently decrease hippocampal neuron cell viability in vitro in a concentration- and time-dependent manner. CRH receptor 1 (CRHR1) is involved in CRH-induced neuron apoptosis. Endoplasmic reticulum (ER) stress response marker, glucose-regulated protein 78 (GRP78), either protein or mRNA, is significantly elevated after treatment of CRH, and decreased when co-treated with salubrinal, ER stress inhibitor. The ER stress associated proapoptotic transcription factor C/EBP homologous protein (CHOP) and cleavage of caspase-12 protein expression are also increased following CRH treatment. Furthermore, we investigate which ER stress cascades are affected by CRH. CRH activates inositol-requiring enzyme 1 (IRE1), apoptosis signal regulating kinase 1 (ASK1), and c-jun kinase (JNK). Neuron apoptotic rate, examined by flow cytometry, is increased when CRH treatment and attenuated by salubrinal, thioredoxin (ASK1 inhibitor) and SP600125 (JNK inhibitor). Therefore, current data indicate that ER stress, through activating the IRE1/ASK1/JNK cascade, plays an important role in CRH-induced neuron apoptosis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fraga MC, Moura EG, Silva JO, Bonomo IT, Filgueiras CC, Abreu-Villaça Y, Passos MCF, Lisboa PC, Manhães AC. Maternal prolactin inhibition at the end of lactation affects learning/memory and anxiety-like behaviors but not novelty-seeking in adult rat progeny. Pharmacol Biochem Behav 2011; 100:165-73. [PMID: 21777608 DOI: 10.1016/j.pbb.2011.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 12/13/2022]
Abstract
Maternal hypoprolactinemia at the end of lactation in rats reduces milk production and is associated with offspring's malnutrition. Since malnutrition during development is also known to have long lasting effects on cognition and emotion, in the present study we tested the hypothesis that maternal hypoprolactinemia, induced by bromocriptine treatment, at the end of the lactating period affects memory/learning, novelty-seeking and anxiety-like behaviors in adult male Wistar rats using, respectively, the radial arm water maze (RAWM), the hole board (HB) arena and the elevated plus-maze (EPM). We also analyzed serum corticosterone and thyroid hormone levels at postnatal day (PN) 21. Lactating dams were treated with bromocriptine (BRO, 1mg twice a day, inhibiting prolactin) or saline from PN19 to 21 (the last 3 days of lactation). BRO offspring had hypercorticosteronemia and hypothyroidism at PN21. In the RAWM, reductions in latency observed in CON rats were initially more accentuated than in BRO ones. By the end of the testing period, latencies became similar between groups. No difference was observed between groups regarding the number of nose-pokes in the HB. In the EPM, BRO rats stayed less time in and had fewer entries into the open-arms than CON ones. This pattern of results indicates that maternal bromocriptine treatment at the end of the lactating period results in poorer memory/learning performance and in higher levels of anxiety-like behavior in the adult offspring, demonstrating that even a relatively short period of malnutrition during development can have long lasting detrimental effects regarding cognition and emotion.
Collapse
Affiliation(s)
- Mabel C Fraga
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
McClelland S, Dubé CM, Yang J, Baram TZ. Epileptogenesis after prolonged febrile seizures: mechanisms, biomarkers and therapeutic opportunities. Neurosci Lett 2011; 497:155-62. [PMID: 21356275 DOI: 10.1016/j.neulet.2011.02.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/15/2011] [Indexed: 01/08/2023]
Abstract
Epidemiological and recent prospective analyses of long febrile seizures (FS) and febrile status epilepticus (FSE) support the idea that in some children, such seizures can provoke temporal lobe epilepsy (TLE). Because of the high prevalence of these seizures, if epilepsy was to arise as their direct consequence, this would constitute a significant clinical problem. Here we discuss these issues, and describe the use of animal models of prolonged FS and of FSE to address the following questions: Are long FS epileptogenic? What governs this epileptogenesis? What are the mechanisms? Are there any predictive biomarkers of the epileptogenic process, and can these be utilized, together with information about the mechanisms of epileptogenesis, for eventual prevention of the TLE that results from long FS and FSE.
Collapse
Affiliation(s)
- Shawn McClelland
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697-4475, USA
| | | | | | | |
Collapse
|
11
|
McClelland S, Korosi A, Cope J, Ivy A, Baram TZ. Emerging roles of epigenetic mechanisms in the enduring effects of early-life stress and experience on learning and memory. Neurobiol Learn Mem 2011; 96:79-88. [PMID: 21338703 DOI: 10.1016/j.nlm.2011.02.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 12/25/2022]
Abstract
Epigenetic mechanisms are involved in programming gene expression throughout development. In addition, they are key contributors to the processes by which early-life experience fine-tunes the expression levels of key neuronal genes, governing learning and memory throughout life. Here we describe the long-lasting, bi-directional effects of early-life experience on learning and memory. We discuss how enriched postnatal experience enduringly augments spatial learning, and how chronic early-life stress results in persistent and progressive deficits in the structure and function of hippocampal neurons. The existing and emerging roles of epigenetic mechanisms in these fundamental neuroplasticity phenomena are illustrated.
Collapse
|
12
|
Litvin Y, Tovote P, Pentkowski NS, Zeyda T, King LB, Vasconcellos AJ, Dunlap C, Spiess J, Blanchard DC, Blanchard RJ. Maternal separation modulates short-term behavioral and physiological indices of the stress response. Horm Behav 2010; 58:241-9. [PMID: 20298695 DOI: 10.1016/j.yhbeh.2010.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/26/2010] [Accepted: 03/08/2010] [Indexed: 01/23/2023]
Abstract
Early-life stress produces an anxiogenic profile in adulthood, presumably by activating the otherwise quiescent hypothalamic-pituitary-adrenal (HPA) axis during the vulnerable 'stress hyporesponsive period'. While the long-term effects of such early-life manipulations have been extensively characterized, little is known of the short-term effects. Here, we compared the short-term effects of two durations of maternal separation stress and one unseparated group (US) on behavioral and physiological indices of the stress response in rat pups. Separations included 3h on each of 12days, from postnatal day (PND) 2 to 13 (MS2-13) and 3days of daily, 6-h separation from PND11-13 (MS11-13). On PND14 (Experiment 1), both MS2-13 and MS11-13 produced marked reductions in freezing toward an adult male conspecific along with reduced levels of glucocorticoid type 2 (GR) and CRF type-1 (CRF(1)) receptor mRNA in the hippocampus. Group MS2-13 but not MS11-13 produced deficits in stressor-induced corticosterone secretion, accompanied by reductions in body weight. Our results suggest that GR and/or CRF(1) levels, not solely the magnitude of corticosterone secretion, may be involved in the modulation of freezing. In a second experiment, we aimed to extend these findings by testing male and female separated and unseparated pups' unconditioned defensive behaviors to cat odor on PND26, and subsequent cue+context conditioning and extinction throughout postnatal days 27-32. Our results show that maternal separation produced reductions in unconditioned freezing on PND26, with MS2-13 showing stronger deficits than MS11-13. However, separation did not affect any other defensive behaviors. Furthermore, separated rats failed to show conditioned freezing, although they did avoid the no-odor block conditioned cue. There were no sex differences other than weight. We suggest that maternal separation may have produced these changes by disrupting normal development of hippocampal regions involved in olfactory-mediated freezing, not in mechanisms of learning and memory per se. These findings may have direct relevance for understanding the mechanisms by which early-life adverse experiences produce short-term and lasting psychopathologies.
Collapse
Affiliation(s)
- Yoav Litvin
- Department of Psychology, University of Hawaii, 2430 Campus Rd., Honolulu, HI 96822, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Transient early-life forebrain corticotropin-releasing hormone elevation causes long-lasting anxiogenic and despair-like changes in mice. J Neurosci 2010; 30:2571-81. [PMID: 20164342 DOI: 10.1523/jneurosci.4470-09.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During development, early-life stress, such as abuse or trauma, induces long-lasting changes that are linked to adult anxiety and depressive behavior. It has been postulated that altered expression of corticotropin-releasing hormone (CRH) can at least partially account for the various effects of stress on behavior. In accord with this hypothesis, evidence from pharmacological and genetic studies has indicated the capacity of differing levels of CRH activity in different brain areas to produce behavioral changes. Furthermore, stress during early life or adulthood causes an increase in CRH release in a variety of neural sites. To evaluate the temporal and spatial specificity of the effect of early-life CRH exposure on adult behavior, the tetracycline-off system was used to produce mice with forebrain-restricted inducible expression of CRH. After transient elevation of CRH during development only, behavioral testing in adult mice revealed a persistent anxiogenic and despair-like phenotype. These behavioral changes were not associated with alterations in adult circadian or stress-induced corticosterone release but were associated with changes in CRH receptor type 1 expression. Furthermore, the despair-like changes were normalized with antidepressant treatment. Overall, these studies suggest that forebrain-restricted CRH signaling during development can permanently alter stress adaptation leading to increases in maladaptive behavior in adulthood.
Collapse
|
14
|
Tottenham N, Sheridan MA. A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Front Hum Neurosci 2010; 3:68. [PMID: 20161700 PMCID: PMC2813726 DOI: 10.3389/neuro.09.068.2009] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/08/2009] [Indexed: 11/13/2022] Open
Abstract
A review of the human developmental neuroimaging literature that investigates outcomes following exposure to psychosocial adversity is presented with a focus on two subcortical structures – the hippocampus and the amygdala. Throughout this review, we discuss how a consideration of developmental timing of adverse experiences and age at measurement might provide insight into the seemingly discrepant findings across studies. We use findings from animal studies to suggest some mechanisms through which timing of experiences may result in differences across time and studies. The literature suggests that early life may be a time of heightened susceptibility to environmental stressors, but that expression of these effects will vary by age at measurement.
Collapse
Affiliation(s)
- Nim Tottenham
- University of California, Los Angeles Los Angeles, CA, USA
| | | |
Collapse
|
15
|
Barr CS, Dvoskin RL, Yuan Q, Lipsky RH, Gupte M, Hu X, Zhou Z, Schwandt ML, Lindell SG, McKee M, Becker ML, Kling MA, Gold PW, Higley D, Heilig M, Suomi SJ, Goldman D. CRH haplotype as a factor influencing cerebrospinal fluid levels of corticotropin-releasing hormone, hypothalamic-pituitary-adrenal axis activity, temperament, and alcohol consumption in rhesus macaques. ACTA ACUST UNITED AC 2008; 65:934-44. [PMID: 18678798 DOI: 10.1001/archpsyc.65.8.934] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CONTEXT Both highly stress-reactive and novelty-seeking individuals are susceptible to alcohol use disorders. Variation in stress reactivity, exploration, and response to novelty have been attributed to differences in corticotropin-releasing hormone (CRH) system function. As such, CRH gene variation may influence risk for alcohol use and dependence. OBJECTIVE To determine whether CRH variation influences relevant intermediate phenotypes, behavior, and alcohol consumption in rhesus macaques. DESIGN We sequenced the rhesus macaque CRH locus (rhCRH) and performed cladistic clustering of haplotypes. In silico analysis, gel shift, and in vitro reporter assays were performed to identify functional variants. Cerebrospinal fluid (CSF) and blood samples were obtained, and levels of CRH and corticotropin (ACTH) were measured by radioimmunoassay. Behavioral data were collected from macaques during infancy. Among adolescent/adult animals, we recorded responses to an unfamiliar conspecific and measured levels of ethanol consumption. SETTING National Institutes of Health Animal Center. PARTICIPANTS Rhesus macaques. MAIN OUTCOME MEASURES Animals were genotyped for a single-nucleotide polymorphism disrupting a glucocorticoid response element, rhCRH -2232 C>G, and the effects of this allele on CSF levels of CRH, plasma levels of ACTH, behavior, and ethanol consumption were assessed by analysis of variance. RESULTS We show that -2232C>G alters DNA x protein interactions and confers decreased sensitivity of the CRH promoter to glucocorticoids in vitro. Consistent with the known effects of glucocorticoids on CRH expression in the brain, carriers of the G allele had lower CSF levels of CRH but higher levels of ACTH. Infants carrying the G allele were more exploratory and bold, and among adolescent and adult male macaques, the G allele was associated with exploratory/bold responding to an unfamiliar male. Adults with the C/G genotype also exhibited increased alcohol consumption in the social group, a model for high-risk alcohol-seeking behavior. CONCLUSION Haplotypes that differ in terms of corticosteroid sensitivity have been identified in humans. Our data may suggest that functionally similar CRH variants could influence risk for externalizing disorders in human subjects.
Collapse
Affiliation(s)
- Christina S Barr
- Laboratory of Clinical Studies, Primate Section, National Institute on Alcohol Abuse Alcoholism, Division of Intramural Clinical and Biological Research, TR 112, PO Box 529, Poolesville, MD 20837, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang J, Xu S. Effects of Cold Stress on the Messenger Ribonucleic Acid Levels of Corticotrophin-Releasing Hormone and Thyrotropin-Releasing Hormone in Hypothalami of Broilers. Poult Sci 2008; 87:973-8. [DOI: 10.3382/ps.2007-00281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Kobayashi MS, Asai S, Ishikawa K, Nishida Y, Nagata T, Takahashi Y. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain. ACTA ACUST UNITED AC 2008; 58:171-91. [PMID: 18440647 DOI: 10.1016/j.brainresrev.2008.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 02/08/2008] [Accepted: 03/08/2008] [Indexed: 12/20/2022]
Abstract
Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.
Collapse
Affiliation(s)
- Megumi Sugahara Kobayashi
- Division of Genomic Epidemiology and Clinical Trials, Advanced Medical Research Center, Nihon University School of Medicine, Oyaguchi-Kami Machi, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Korosi A, Baram TZ. The central corticotropin releasing factor system during development and adulthood. Eur J Pharmacol 2008; 583:204-14. [PMID: 18275957 DOI: 10.1016/j.ejphar.2007.11.066] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/28/2007] [Accepted: 11/07/2007] [Indexed: 11/18/2022]
Abstract
Corticotropin releasing factor (CRH) has been shown to contribute critically to molecular and neuroendocrine responses to stress during both adulthood and development. This peptide and its receptors are expressed in the hypothalamus, as well as in limbic brain areas including amygdala and hippocampus. This is consistent with roles for CRH in mediating the influence of stress on emotional behavior and cognitive function. The expression of CRH and of its receptors in hypothalamus, amygdala and hippocampus is age-dependent, and is modulated by stress throughout life (including the first postnatal weeks). Uniquely during development, the cardinal influence of maternal care on the central stress response governs the levels of central CRH expression, and may alter the 'set-point' of CRH-gene sensitivity to stress in a lasting manner.
Collapse
Affiliation(s)
- Aniko Korosi
- Department of Anatomy, University of California Irvine, Irvine, CA 92697-4475, USA
| | | |
Collapse
|
19
|
Dubé CM, Brewster AL, Richichi C, Zha Q, Baram TZ. Fever, febrile seizures and epilepsy. Trends Neurosci 2007; 30:490-6. [PMID: 17897728 PMCID: PMC2766556 DOI: 10.1016/j.tins.2007.07.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/23/2022]
Abstract
Seizures induced by fever (febrile seizures) are the most common type of pathological brain activity in infants and children. These febrile seizures and their potential contribution to the mechanisms of limbic (temporal lobe) epilepsy have been a topic of major clinical and scientific interest. Key questions include the mechanisms by which fever generates seizures, the effects of long febrile seizures on neuronal function and the potential contribution of these seizures to epilepsy. This review builds on recent advances derived from animal models and summarizes our current knowledge of the mechanisms underlying febrile seizures and of changes in neuronal gene expression and function that facilitate the enduring effects of prolonged febrile seizures on neuronal and network excitability. The review also discusses the relevance of these findings to the general mechanisms of epileptogenesis during development and points out gaps in our knowledge, including the relationship of animal models to human febrile seizures and epilepsy.
Collapse
Affiliation(s)
- Céline M Dubé
- Department of Anatomy/Neurobiology, University of California at Irvine, ZOT 4475, Irvine, CA 92697-4475, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Seizures induce profound plastic changes in the brain, including altered expression of neuropeptide Y (NPY) and its receptors. Here, I discuss a potential role of NPY plasticity in the developmental brain: in a rat model of febrile seizures (FS), the most common type of seizures in infants and young children, NPY expression was up-regulated in hippocampus after experimentally induced FS. Interestingly, NPY up-regulation was associated with an increased seizure threshold for additional (recurrent) FS, and this effect was abolished when an antagonist against NPY receptor type 2 was applied. These findings suggest that inhibitory actions of NPY, released after seizures, exert a protective effect that reduces the risk of seizure recurrence in the developing brain.
Collapse
Affiliation(s)
- Celine Dubé
- Department of Anatomy & Neurobiology, ZOT 1275, University of California Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
21
|
Chen Y, Fenoglio KA, Dubé CM, Grigoriadis DE, Baram TZ. Cellular and molecular mechanisms of hippocampal activation by acute stress are age-dependent. Mol Psychiatry 2006; 11:992-1002. [PMID: 16801951 PMCID: PMC2927976 DOI: 10.1038/sj.mp.4001863] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of stress, including their putative contribution to pathological psychiatric conditions, are crucially governed by the age at which the stress takes place. However, the cellular and molecular foundations for the impact of stress on neuronal function, and their change with age, are unknown. For example, it is not known whether 'psychological' stress signals are perceived by similar neuronal populations at different ages, and whether they activate similar or age-specific signaling pathways that might then mediate the spectrum of stress-evoked neuronal changes. We employed restraint and restraint/noise stress to address these issues in juvenile (postnatal day 18, [P18]) and adult rats, and used phosphorylation of the transcription factor CREB (pCREB) and induction of c-fos as markers of hippocampal neuronal responses. Stress-activated neuronal populations were identified both anatomically and biochemically, and selective blockers of the stress-activated hippocampal peptide, corticotropin-releasing hormone (CRH) were used to probe the role of this molecule in stress-induced hippocampal cell activation. Stress evoked strikingly different neuronal response patterns in immature vs adult hippocampus. Expression of pCREB appeared within minutes in hippocampal CA3 pyramidal cells of P18 rats, followed by delayed induction of Fos protein in the same cell population. In contrast, basal pCREB levels were high in adult hippocampus and were not altered at 10-120 min by stress. Whereas Fos induction was elicited by stress in the adult, it was essentially confined to area CA1, with little induction in CA3. At both age groups, central pretreatment with either a nonselective blocker of CRH receptors (alpha-helical CRH [9-41]) or the CRF1-selective antagonist, NBI 30775, abolished stress-evoked neuronal activation. In conclusion, hippocampal neuronal responses to psychological stress are generally more rapid and robust in juvenile rats, compared to fully mature adults, and at both ages, CRH plays a key role in this process. Enhanced hippocampal response to stress during development, and particularly the activation of the transcription factor CREB, may contribute to the enduring effects of stress during this period on hippocampal function.
Collapse
Affiliation(s)
- Y Chen
- Department of Pediatrics, University of California at Irvine, Irvine, CA, USA
| | - KA Fenoglio
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - CM Dubé
- Department of Pediatrics, University of California at Irvine, Irvine, CA, USA
| | | | - TZ Baram
- Department of Pediatrics, University of California at Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
22
|
Fenoglio KA, Brunson KL, Baram TZ. Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front Neuroendocrinol 2006; 27:180-92. [PMID: 16603235 PMCID: PMC2937188 DOI: 10.1016/j.yfrne.2006.02.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 02/11/2006] [Accepted: 02/13/2006] [Indexed: 12/16/2022]
Abstract
Whereas genetic factors contribute crucially to brain function, early-life events, including stress, exert long-lasting influence on neuronal function. Here, we focus on the hippocampus as the target of these early-life events because of its crucial role in learning and memory. Using a novel immature-rodent model, we describe the deleterious consequences of chronic early-life 'psychological' stress on hippocampus-dependent cognitive tasks. We review the cellular mechanisms involved and discuss the roles of stress-mediating molecules, including corticotropin releasing hormone, in the process by which stress impacts the structure and function of hippocampal neurons.
Collapse
Affiliation(s)
- Kristina A. Fenoglio
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - Kristen L. Brunson
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA 92697-4475, USA
- Department of Pediatrics, University of California at Irvine, Irvine, CA 92697-4475, USA
- Corresponding author. Fax: +1 949 824 1106. (T.Z. Baram)
| |
Collapse
|
23
|
Fenoglio KA, Chen Y, Baram TZ. Neuroplasticity of the hypothalamic-pituitary-adrenal axis early in life requires recurrent recruitment of stress-regulating brain regions. J Neurosci 2006; 26:2434-42. [PMID: 16510721 PMCID: PMC2408688 DOI: 10.1523/jneurosci.4080-05.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An eloquent example of experience-induced neuroplasticity involves the enduring effects of daily "handling" of rat pups on the expression of genes regulating hormonal and behavioral responses to stress. Handling-evoked augmentation of maternal care of pups induces long-lasting reduction of hypothalamic corticotropin releasing hormone (CRH) expression and upregulates hippocampal glucocorticoid receptor levels. These changes promote a lifelong attenuation of hormonal stress responses. We have found previously that handling-evoked downregulation of CRH expression occurs already by postnatal day 9, implicating it as an early step in this experience-induced neuroplasticity. Here, we investigated the neuronal pathways and cellular mechanisms involved. CRH mRNA expression in hypothalamic paraventricular nucleus (PVN) diminished after daily handling but not after handling once only, indicating that "recurrent" handling was required for this effect. Return of handled pups to their cage provoked a burst of nurturing behavior in dams that, in turn, induced transient, coordinate Fos expression in selected regions of the pups' brains. These included central nucleus of the amygdala (ACe) and bed nucleus of the stria terminals (BnST), regions that are afferent to PVN and influence CRH expression there. Whereas handling once sufficed to evoke Fos expression within ACe and BnST, expression in thalamic paraventricular nucleus, a region involved in storing and processing stress-related experience, required recurrent handling. Fos induction in all three regions elicited reduced transcription factor phosphorylation, followed by attenuated activation of CRH gene transcription within the PVN. These studies provide a neurobiological foundation for the profound neuroplasticity of stress-related genes evoked by early-life experience.
Collapse
|
24
|
Marini F, Pozzato C, Andreetta V, Jansson B, Arban R, Domenici E, Carboni L. Single exposure to social defeat increases corticotropin-releasing factor and glucocorticoid receptor mRNA expression in rat hippocampus. Brain Res 2005; 1067:25-35. [PMID: 16360122 DOI: 10.1016/j.brainres.2005.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 09/27/2005] [Accepted: 10/02/2005] [Indexed: 11/30/2022]
Abstract
Stressful life events are able to induce long-term modifications in physiological and neuroendocrine parameters that are related to the onset of several psychiatric disorders. To gain information on molecular modifications involved in long-term changes triggered by stress, we evaluated gene expression in the hippocampus of rats exposed to a single social defeat session. In the social defeat model, the experimental animal is defeated by a dominant male. The defeat induced an increase in body temperature, in distress vocalisations, in serum corticosterone levels and in anxiety-related behaviour measured with an open field test applied 6 h after the exposure to the dominant rat. In the open field test, anxiety-related behaviours were not detectable anymore 30 h after the exposure to the dominant rat and mRNA levels were evaluated at this time-point. The mRNA levels of genes modulated by stress (corticotropin-releasing factor; corticotropin-releasing factor receptor 1; corticotropin-releasing factor binding protein; mineralocorticoid and glucocorticoid receptors; Ca2+/calmodulin-dependent protein kinase-like kinase; Krox20; Bcl-2) and control genes (glyceraldehyde-3-phosphate dehydrogenase; beta-actin and cyclophilin A) were measured with real-time reverse transcription polymerase chain reaction. Corticotropin-releasing factor and glucocorticoid receptor mRNA levels were significantly modulated by the stress procedure, both genes showing an increase in rats exposed to a social defeat. No expression level differences were detected for the other genes. In conclusion, we report that 30 h after an acute social stress, a modification in mRNA levels can be detected in rat hippocampus, thus suggesting potential candidate genes involved in mediating long-term responses.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Medicine and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Wilson DN, Chung H, Elliott RC, Bremer E, George D, Koh S. Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci 2005; 25:285-98. [PMID: 15800381 DOI: 10.1385/jmn:25:3:285] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 11/12/2004] [Indexed: 11/11/2022]
Abstract
Unlike adults, kainic acid (KA)-induced status epilepticus (SE) in immature rats causes neither cell death nor recurrent spontaneous seizures. To elucidate the mechanisms of these distinct responses, transcriptional changes in neuropeptides were examined following KA-induced SE. We aimed to determine whether neuropeptides with anticonvulsant/neuroprotective properties were preferentially increased in immature rats while those with a proconvulsant/neurotoxic role were elevated to a greater extent in mature rats. We used high-density oligonucleotide gene arrays and directly compared transcriptional regulation of seven select neuropeptides at P15 and P30 over five time points. Total RNAs were isolated from hippocampi of 12 animals and pooled to hybridize to triplicate Affymetrix Genechips. Microarray results were validated by real-time quantitative RT-PCR (qRT-PCR). Independent individual RNA samples were purified for triplicate runs of qRT-PCR. Neuropeptides are significantly regulated by seizures in both immature and mature hippocampus. The magnitude of increase is significantly higher at P30 compared with that at P15, not only for neuropeptides with neurotoxic/proconvulsant properties but also for those with neuroprotective/ anticonvulsant properties. Galanin is induced at 24 h only in P30 rats. CST shows high expression in immature hippocampus and is further increased after KA-induced SE only in P15. The expression trends seen in the microarray data are confirmed by qRT-PCR for all six neuropeptides analyzed. CST might play a neuroprotective role in immature rats, and its overexpression might prevent neuronal loss after seizure in adults. Also, suppression of tachykinin and corticotropin-releasing hormone might be effective in alleviating seizure-induced neuronal damage.
Collapse
Affiliation(s)
- Dawn N Wilson
- Division of Neurology, Children's Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wiedenmayer CP, Magariños AM, McEwen BS, Barr GA. Age-specific threats induce CRF expression in the paraventricular nucleus of the hypothalamus and hippocampus of young rats. Horm Behav 2005; 47:139-50. [PMID: 15664017 DOI: 10.1016/j.yhbeh.2004.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 07/20/2004] [Accepted: 09/13/2004] [Indexed: 11/26/2022]
Abstract
Young animals respond to threatening stimuli in an age-specific way. Their endocrine and behavioral responses reflect the potential threat of the situation at a given age. The aim of the present study was to determine whether corticotropin-releasing factor (CRF) is involved in the endocrine and behavioral responses to threat and their developmental changes in young rats. Preweaning 14-day-old and postweaning 26-day-old rats were exposed to two age-specific threats, cat odor and an adult male rat. The acute behavioral response was determined during exposure. After exposure, the time courses of the corticosterone response and of CRF expression in the paraventricular nucleus of the hypothalamus (PVN) and in extrahypothalamic areas were assessed. Preweaning rats became immobile when exposed to cat odor or the male rat, whereas postweaning rats became immobile to cat odor only. Male exposure increased serum corticosterone levels in 14-day-old rats, but cat odor failed to increase levels at either age. Exposure induced elevation of CRF mRNA levels in the PVN that paralleled changes in corticosterone levels. CRF may thus play a role in endocrine regulation and its developmental changes during early life. Neither cat odor nor the adult male altered CRF mRNA levels in the bed nucleus of the stria terminalis (BNST) or the amygdala, but both stimuli increased levels in the hippocampus. Hippocampal CRF mRNA expression levels did not parallel cat odor or male-induced immobility, indicating that CRF is not involved in this response in young rats but may be involved in aspects of learning and memory.
Collapse
|
27
|
Dubé C, Brunson KL, Eghbal-Ahmadi M, Gonzalez-Vega R, Baram TZ. Endogenous neuropeptide Y prevents recurrence of experimental febrile seizures by increasing seizure threshold. J Mol Neurosci 2005; 25:275-84. [PMID: 15800380 PMCID: PMC2930787 DOI: 10.1385/jmn:25:3:275] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/28/2004] [Indexed: 11/11/2022]
Abstract
Febrile seizures (FSs) typically occur at the onset of fever and do not recur within the same febrile episode despite enduring or increased hyperthermia. Recurrent seizures during the same febrile episode are considered "complex," with potentially altered prognosis. A characterized immature rat model of FS was used to test the hypotheses that (1) a first FS influences the threshold temperature for subsequent ones, and (2) the underlying mechanisms involve the release and actions of the endogenous inhibitory hippocampal neuropeptide Y (NPY). Experimental FSs were induced two or three times, at 3- to 4-h intervals, and threshold temperatures measured. To determine the potential effects of seizure-induced endogenous NPY on thresholds for subsequent seizures, an antagonist of the major hippocampal NPY receptor (type 2) was infused prior to induction of the second seizure. As an indicator of NPY release, NPY expression was determined 4 and 24 h later. Threshold core and brain temperatures for hyperthermic seizures were consistent with those observed during human fever. Threshold temperatures for a second and third seizure were significantly and progressively higher than those required for the first. This "protective" effect involved induction of endogenous NPY because it was abolished by the NPY antagonist. In addition, NPY mRNA expression was increased in dentate gyrus, CA3 and CA1, after an experimental FS, consistent with peptide release. Collectively these data indicate that the absence of repetitive seizures during a febrile episode involves the inhibitory actions of endogenous NPY, suggesting that the signaling cascade triggered by this peptide might provide targets for therapeutic intervention.
Collapse
Affiliation(s)
- Céline Dubé
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697
| | - Kristen L. Brunson
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697
| | | | - Rebeca Gonzalez-Vega
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697
| | - Tallie Z. Baram
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697
- Pediatrics, University of California at Irvine, Irvine, CA 92697
| |
Collapse
|
28
|
Chen Y, Brunson KL, Adelmann G, Bender RA, Frotscher M, Baram TZ. Hippocampal corticotropin releasing hormone: pre- and postsynaptic location and release by stress. Neuroscience 2004; 126:533-40. [PMID: 15183503 PMCID: PMC2923444 DOI: 10.1016/j.neuroscience.2004.03.036] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2004] [Indexed: 10/26/2022]
Abstract
Neuropeptides modulate neuronal function in hippocampus, but the organization of hippocampal sites of peptide release and actions is not fully understood. The stress-associated neuropeptide corticotropin releasing hormone (CRH) is expressed in inhibitory interneurons of rodent hippocampus, yet physiological and pharmacological data indicate that it excites pyramidal cells. Here we aimed to delineate the structural elements underlying the actions of CRH, and determine whether stress influenced hippocampal principal cells also via actions of this endogenous peptide. In hippocampal pyramidal cell layers, CRH was located exclusively in a subset of GABAergic somata, axons and boutons, whereas the principal receptor mediating the peptide's actions, CRH receptor 1 (CRF1), resided mainly on dendritic spines of pyramidal cells. Acute 'psychological' stress led to activation of principal neurons that expressed CRH receptors, as measured by rapid phosphorylation of the transcription factor cyclic AMP responsive element binding protein. This neuronal activation was abolished by selectively blocking the CRF1 receptor, suggesting that stress-evoked endogenous CRH release was involved in the activation of hippocampal principal cells.
Collapse
Affiliation(s)
- Y. Chen
- Departments of Anatomy/Neurobiology and Pediatrics, ZOT 4475, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - K. L. Brunson
- Departments of Anatomy/Neurobiology and Pediatrics, ZOT 4475, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - G. Adelmann
- Institute of Anatomy, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - R. A. Bender
- Departments of Anatomy/Neurobiology and Pediatrics, ZOT 4475, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - M. Frotscher
- Institute of Anatomy, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - T. Z. Baram
- Departments of Anatomy/Neurobiology and Pediatrics, ZOT 4475, University of California at Irvine, Irvine, CA 92697-4475, USA
- Corresponding author. Tel: +1-949-824-1131; fax: +1-949-824-1106. (T. Z. Baram)
| |
Collapse
|
29
|
Brunson KL, Chen Y, Avishai-Eliner S, Baram TZ. Stress and the developing hippocampus: a double-edged sword? Mol Neurobiol 2003; 27:121-36. [PMID: 12777683 PMCID: PMC3084035 DOI: 10.1385/mn:27:2:121] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanisms that regulate neuronal function are a sum of genetically determined programs and experience. The effect of experience on neuronal function is particularly important during development, because early-life positive and adverse experience (stress) may influence the still "plastic" nervous system long-term. Specifically, for hippocampal-mediated learning and memory processes, acute stress may enhance synaptic efficacy and overall learning ability, and conversely, chronic or severe stress has been shown to be detrimental. The mechanisms that enable stress to act as this "double-edged sword" are unclear. Here, we discuss the molecular mediators of the stress response in the hippocampus with an emphasis on novel findings regarding the role of the neuropeptide known as corticotropin-releasing hormone (CRH). We highlight the physiological and pathological roles of this peptide in the developing hippocampus, and their relevance to the long-term effects of early-life experience on cognitive function during adulthood.
Collapse
Affiliation(s)
- Kristen L Brunson
- Department of Anatomy and Neurobiology, University of CA at Irvine, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
30
|
Lee TH, Jang MH, Shin MC, Lim BV, Kim YP, Kim H, Choi HH, Lee KS, Kim EH, Kim CJ. Dependence of rat hippocampal c-Fos expression on intensity and duration of exercise. Life Sci 2003; 72:1421-36. [PMID: 12527039 DOI: 10.1016/s0024-3205(02)02406-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression of c-Fos, an immediately early gene, is a marker of neural activity. In the present study, the effect of treadmill exercise on c-Fos expression was investigated in various regions of the rat hippocampus via immunohistochemistry. The first part of the experiment was aimed at determining the dependence of c-Fos expression on the intensity of treadmill exercise. In most of the hippocampal regions studied, increasing c-Fos expression was observed with increasing exercise intensity. In the second part of the experiment, the dependence of c-Fos expression on the duration of treadmill exercise was investigated. The c-Fos expression induced by mild-intensity exercise increased until the 7th day of exercise and subsequently decreased. Results of the present study suggest that the effect of treadmill exercise on neuronal activity in the hippocampus is intensity-and duration-dependent.
Collapse
Affiliation(s)
- Taeck-Hyun Lee
- Department of Physiology, College of Medicine, Kyung Hee University, #1 Hoigi-dong, Dongdaemoon-gu, Seoul 130-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The molecular and cellular mechanisms by which plasticity is induced in the mature CNS (and, specifically, in the hippocampus) by environmental input are progressively being elucidated. However, the mechanisms - and even the existence - of functional and structural effects of environmental input (and, particularly, stress) early in life are incompletely understood. Here, we discuss recent evidence that stressful stimuli have a significant impact on neonatal (rat) and prenatal (human) hippocampal function and integrity. Stressful signals provoke expression and release of neuromodulators, including the peptide corticotropin-releasing hormone (CRH), leading to activation of CRH receptors on principal hippocampal neurons. Although physiological activation of these receptors promotes synaptic efficacy, pathological levels of CRH at hippocampal synapses contribute to neuronal death. Thus, early-life stress could constitute a 'double-edged sword': mild stress might promote hippocampal-dependent cognitive function, whereas severe stress might impair neuronal function and survival, both immediately and in the long-term. Importantly, these CRH-mediated processes could be targets of preventive and interventional strategies.
Collapse
Affiliation(s)
- Sarit Avishai-Eliner
- Dept of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697, USA and Hebrew University, Jerusalem, and Kaplan Medical Center, Rehovoth, Israel 76100
| | - Kristen L. Brunson
- Dept of Anatomy and Neurobiology and Dept of Pediatrics, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - Curt A. Sandman
- Dept of Psychiatry, University of California at Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
32
|
Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J Neurosci 2002. [PMID: 12040066 DOI: 10.1523/jneurosci.22-11-04591.2002] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Febrile seizures, in addition to being the most common seizure type of the developing human, may contribute to the generation of subsequent limbic epilepsy. Our previous work has demonstrated that prolonged experimental febrile seizures in the immature rat model increased hippocampal excitability long term, enhancing susceptibility to future seizures. The mechanisms for these profound proepileptogenic changes did not require cell death and were associated with long-term slowed kinetics of the hyperpolarization-activated depolarizing current (I(H)). Here we show that these seizures modulate the expression of genes encoding this current, the hyperpolarization-activated, cyclic nucleotide-gated channels (HCNs): In CA1 neurons expressing multiple HCN isoforms, the seizures induced a coordinated reduction of HCN1 mRNA and enhancement of HCN2 expression, thus altering the neuronal HCN phenotype. The seizure-induced augmentation of HCN2 expression involved CA3 in addition to CA1, whereas for HCN4, mRNA expression was not changed by the seizures in either hippocampal region. This isoform- and region-specific transcriptional regulation of the HCNs required neuronal activity rather than hyperthermia alone, correlated with seizure duration, and favored the formation of slow-kinetics HCN2-encoded channels. In summary, these data demonstrate a novel, activity-dependent transcriptional regulation of HCN molecules by developmental seizures. These changes result in long-lasting alteration of the HCN phenotype of specific hippocampal neuronal populations, with profound consequences on the excitability of the hippocampal network.
Collapse
|
33
|
Brunson KL, Grigoriadis DE, Lorang MT, Baram TZ. Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain. Exp Neurol 2002; 176:75-86. [PMID: 12093084 PMCID: PMC2930769 DOI: 10.1006/exnr.2002.7937] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to regulating the neuroendocrine stress response, corticotropin-releasing hormone (CRH) has been implicated in both normal and pathological behavioral and cognitive responses to stress. CRH-expressing cells and their target neurons possessing CRH receptors (CRF1 and CRF2) are distributed throughout the limbic system, but little is known about the regulation of limbic CRH receptor function and expression, including regulation by the peptide itself. Because CRH is released from limbic neuronal terminals during stress, this regulation might play a crucial role in the mechanisms by which stress contributes to human neuropsychiatric conditions such as depression or posttraumatic stress disorder. Therefore, these studies tested the hypothesis that CRH binding to CRF1 influenced the levels and mRNA expression of this receptor in stress-associated limbic regions of immature rat. Binding capacities and mRNA levels of both CRF1 and CRF2 were determined at several time points after central CRH administration. CRH downregulated CRF1 binding in frontal cortex significantly by 4 h. This transient reduction (no longer evident at 8 h) was associated with rapid increase of CRF1 mRNA expression, persisting for >8 h. Enhanced CRF1 expression-with a different time course-occurred also in hippocampal CA3, but not in CA1 or amygdala, CRF2 binding and mRNA levels were not altered by CRH administration. To address the mechanisms by which CRH regulated CRF1, the specific contributions of ligand-receptor interactions and of the CRH-induced neuronal stimulation were examined. Neuronal excitation without occupation of CRF1 induced by kainic acid, resulted in no change of CRF1 binding capacity, and in modest induction of CRF1 mRNA expression. Furthermore, blocking the neuroexcitant effects of CRH (using pentobarbital) abolished the alterations in CRF1 binding and expression. These results indicate that CRF1 regulation involves both occupancy of this receptor by its ligand, as well as "downstream" cellular activation and suggest that stress-induced perturbation of CRH-CRF1 signaling may contribute to abnormal neuronal communication after some stressful situations.
Collapse
Affiliation(s)
- Kristen L Brunson
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
34
|
Brunson KL, Avishai-Eliner S, Baram TZ. ACTH treatment of infantile spasms: mechanisms of its effects in modulation of neuronal excitability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 49:185-97. [PMID: 12040892 PMCID: PMC3092432 DOI: 10.1016/s0074-7742(02)49013-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The efficacy of ACTH, particularly in high doses, for rapid and complete elimination of infantile spasms (IS) has been demonstrated in prospective controlled studies. However, the mechanisms for this efficacy remain unknown. ACTH promotes the release of adrenal steroids (glucocorticoids), and most ACTH effects on the central nervous system have been attributed to activation of glucocorticoid receptors. The manner in which activation of these receptors improves IS and the basis for the enhanced therapeutic effects of ACTH--compared with steroids--for this disorder are the focus of this chapter. First, a possible "common excitatory pathway," which is consistent with the many etiologies of IS and explains the confinement of this disorder to infancy, is proposed. This notion is based on the fact that all of the entities provoking IS activate the native "stress system" of the brain. This involves increased synthesis and release of the stress-activated neuropeptide, corticotropin-releasing hormone (CRH), in limbic, seizure-prone brain regions. CRH causes severe seizures in developing experimental animals, as well as limbic neuronal injury. Steroids, given as therapy or secreted from the adrenal gland upon treatment with ACTH, decrease the production and release of CRH in certain brain regions. Second, the hypothesis that ACTH directly influences limbic neurons via the recently characterized melanocortin receptors is considered, focusing on the effects of ACTH on the expression of CRH. Experimental data showing that ACTH potently reduces CRH expression in amygdala neurons is presented. This downregulation was not abolished by experimental elimination of steroids or by blocking their receptors and was reproduced by a centrally administered ACTH fragment that does not promote steroid release. Importantly, selective blocking of melanocortin receptors prevented ACTH-induced downregulation of CRH expression, providing direct evidence for the involvement of these receptors in the mechanisms by which ACTH exerts this effect. Thus, ACTH may reduce neuronal excitability in IS by two mechanisms of action: (1) by inducing steroid release and (2) by a direct, steroid-independent action on melanocortin receptors. These combined effects may explain the robust established clinical effects of ACTH in the therapy of IS.
Collapse
Affiliation(s)
- K L Brunson
- Departments of Pediatrics, Anatomy and Neurobiology, and Neurology, University of California, Irvine, Irvine, California 92697, USA
| | | | | |
Collapse
|
35
|
Baram TZ, Eghbal-Ahmadi M, Bender RA. Is neuronal death required for seizure-induced epileptogenesis in the immature brain? PROGRESS IN BRAIN RESEARCH 2002; 135:365-75. [PMID: 12143355 PMCID: PMC3084550 DOI: 10.1016/s0079-6123(02)35033-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Do seizures cause neuronal death? At least in the immature hippocampus, this may not be the critical question for determining the mechanisms of epileptogenesis. Neuronal injury and death have clearly been shown to occur in most epilepsy models in the mature brain, and are widely considered a prerequisite to seizure-induced epilepsy. In contrast, little neuronal death occurs after even a severe and prolonged seizure prior to the third postnatal week. However, seizures early in life, for example prolonged experimental febrile seizures, can profoundly and permanently change the hippocampal circuit in a pro-epileptogenic direction. These seizure-induced alterations of limbic excitability may require transient structural injury, but are mainly due to functional changes in expression of gene coding for specific receptors and channels, leading to altered functional properties of hippocampal neurons. Thus, in some pro-epileptogenic models in the developing brain, neither the death of neurons nor death-induced abnormalities of surviving neurons may underlie the formation of an epileptic circuit. Rather, findings in the experimental prolonged febrile seizure model suggest that persistent functional alterations of gene expression ('neuroplasticity') in diverse hippocampal neuronal populations may promote pro-epileptogenic processes induced by these seizures. These findings also suggest that during development, relatively short, intense bursts of neuronal activity may disrupt 'normal' programmed maturational processes to result in permanent, selective alterations of gene expression, with profound functional consequences. Therefore, determining the cascade of changes in the programmed expression of pertinent genes, including their temporal and cell-specific spatial profiles, may provide important information for understanding the process of transformation of an evolving, maturing hippocampal network into one which is hyperexcitable.
Collapse
Affiliation(s)
- Tallie Z Baram
- Departments of Pediatrics, Anatomy, Neurobiology and Neurology, University of California at Irvine, Irvine, CA 92697-4475, USA.
| | | | | |
Collapse
|
36
|
Chen Y, Hatalski CG, Brunson KL, Baram TZ. Rapid phosphorylation of the CRE binding protein precedes stress-induced activation of the corticotropin releasing hormone gene in medial parvocellular hypothalamic neurons of the immature rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 96:39-49. [PMID: 11731007 PMCID: PMC3100731 DOI: 10.1016/s0169-328x(01)00265-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanisms of the molecular and neuroendocrine responses to stress in the immature rat have been a focus of intense investigation. A principal regulator of the these responses in both mature and developing rat is the neuropeptide corticotropin releasing hormone (CRH), and levels of hypothalamic CRH mRNA are enhanced by stress. In vitro, transcription of the CRH gene is governed by binding of the phosphorylated form of cAMP responsive element binding protein (pCREB) to the promoter. Here we tested the hypothesis that rapid, stress-induced CRH transcription occurred during the first two postnatal weeks, and is associated with pCREB expression. The time-course of induction of unedited, heteronuclear CRH RNA (CRH hnRNA) was examined in hypothalamic paraventricular nucleus (PVN) of immature rats subjected to both modest and strong acute stressors using in situ hybridization; pCREB abundance was determined in individual neurons in specific PVN sub-nuclei using immunocytochemistry and unbiased quantitative analysis. CRH hnRNA signal was negligible in PVN of immature rats sacrificed under stress-free conditions, but was readily detectable within 2 min, and peaked at 15 min, in PVN of stressed animals. Enhanced pCREB immunoreactivity was evident within 2 min of stress onset, and was enhanced specifically in stress-responsive, CRH-expressing medial parvocellular neurons. These data support the notion that, already during early postnatal life, stress induces rapid CREB phosphorylation, interaction of pCREB-containing transcription complexes with the CRE element of the CRH gene promoter, and initiation of CRH hnRNA production in stress-responsive neurons of rat PVN.
Collapse
Affiliation(s)
| | | | | | - Tallie Z. Baram
- Corresponding author. Tel.: +1-949-824-1063; fax: +1-949-824-1106. (T.Z. Baram)
| |
Collapse
|
37
|
Brunson KL, Eghbal-Ahmadi M, Baram TZ. How do the many etiologies of West syndrome lead to excitability and seizures? The corticotropin releasing hormone excess hypothesis. Brain Dev 2001; 23:533-8. [PMID: 11701250 PMCID: PMC3107538 DOI: 10.1016/s0387-7604(01)00312-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
West syndrome (WS) is associated with diverse etiological factors. This fact has suggested that there must be a 'final common pathway' for these etiologies, which operates on the immature brain to result in WS only at the maturational state present during infancy. Any theory for the pathogenesis of WS has to account for the unique features of this disorder. For example, how can a single entity have so many etiologies? Why does WS arise only in infancy, even when a known insult had occurred prenatally, and why does it disappear? Why is WS associated with lasting cognitive dysfunction? And, importantly, why do these seizures--unlike most others--respond to treatment by a hormone, ACTH? The established hormonal role of ACTH in human physiology is to function in the neuroendocrine cascade of the responses to all stressful stimuli, including insults to the brain. As part of this function, ACTH is known to suppress the production of corticotropin releasing hormone (CRH), a peptide that is produced in response to diverse insults and stressors.The many etiologies of WS all lead to activation of the stress response, including increased production and secretion of the stress-neurohormone CRH. CRH has been shown, in infant animal models, to cause severe seizures and death of neurons in areas involved with learning and memory. These effects of CRH are restricted to the infancy period because the receptors for CRH, which mediate its action on neurons, are most abundant during this developmental period. ACTH administration is known to inhibit production and release of CRH via a negative feedback mechanism. Therefore, the efficacy of ACTH for WS may depend on its ability to decrease the levels of the seizure-promoting stress-neurohormone CRH.This CRH-excess theory for the pathophysiology of WS is consistent not only with the profile of ACTH effects, but also with the many different 'causes' of WS, with the abnormal ACTH levels in the cerebrospinal fluid of affected infants and with the spontaneous disappearance of the seizures. Furthermore, if CRH is responsible for the seizures, and CRH-mediated neuronal injury contributes to the worsened cognitive outcome of individuals with WS, then drugs which block the actions of CRH on its receptors may provide a better therapy for this disorder.
Collapse
Affiliation(s)
- Kristen L. Brunson
- Department of Pediatrics, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Neurology, University of California at Irvine, Irvine, CA, 92697-4475, USA
| | - Mariam Eghbal-Ahmadi
- Department of Pediatrics, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Neurology, University of California at Irvine, Irvine, CA, 92697-4475, USA
| | - Tallie Z. Baram
- Department of Pediatrics, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Neurology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Corresponding author. Tel.: +1-949-824-1063; fax: +1-949-824-1106. (T.Z. Baram)
| |
Collapse
|
38
|
Brunson KL, Avishai-Eliner S, Hatalski CG, Baram TZ. Neurobiology of the stress response early in life: evolution of a concept and the role of corticotropin releasing hormone. Mol Psychiatry 2001; 6:647-56. [PMID: 11673792 PMCID: PMC3100722 DOI: 10.1038/sj.mp.4000942] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2001] [Accepted: 04/06/2001] [Indexed: 11/09/2022]
Abstract
Over the last few decades, concepts regarding the presence of hormonal and molecular responses to stress during the first postnatal weeks in the rat and the role of the neuropeptide corticotropin releasing hormone (CRH) in these processes, have been evolving. CRH has been shown to contribute critically to molecular and neuroendocrine responses to stress during development. In turn the expression of this neuropeptide in both hypothalamus and amygdala is differentially modulated by single and recurrent stress, and is determined also by the type of stress (eg, psychological or physiological). A likely transcriptional regulatory factor for modulating CRH gene expression, the cAMP responsive element binding protein CREB, is phosphorylated (activated) in the developing hypothalamus within seconds of stress onset, preceding the transcription of the CRH gene and initiating the activation of stress-induced cellular and neuroendocrine cascades. Finally, early life stress may permanently modify the hypothalamic pituitary adrenal axis and the response to further stressful stimuli, and recent data suggest that CRH may play an integral role in the mechanisms of these long-term changes.
Collapse
Affiliation(s)
- KL Brunson
- Depts of Anatomy & Neurobiology and Pediatrics, University of California at Irvine, CA 92697–4475, USA
| | - S Avishai-Eliner
- Depts of Anatomy & Neurobiology and Pediatrics, University of California at Irvine, CA 92697–4475, USA
- Hebrew University and Kaplan Hospital, Rehovoth, Israel
| | - CG Hatalski
- Depts of Anatomy & Neurobiology and Pediatrics, University of California at Irvine, CA 92697–4475, USA
| | - TZ Baram
- Depts of Anatomy & Neurobiology and Pediatrics, University of California at Irvine, CA 92697–4475, USA
| |
Collapse
|
39
|
Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis. J Neurosci 2001. [PMID: 11549728 DOI: 10.1523/jneurosci.21-18-07171.2001] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Robust physiological actions of the neuropeptide corticotropin-releasing hormone (CRH) on hippocampal pyramidal neurons have been demonstrated, which may contribute to synaptic efficacy and to learning and memory processes. These excitatory actions of the peptide, as well as the expression of the CRH receptor type that mediates them, are particularly prominent during early postnatal life, suggesting that endogenous CRH may contribute to processes involved in maturation of hippocampal circuitry. To further elucidate the function(s) of endogenous CRH in developing hippocampus, we used neurochemical and quantitative stereological methods to characterize in detail CRH-expressing neuronal populations during postnatal hippocampal differentiation. These experiments revealed progressively increasing numbers of CRH-expressing neurons in developing hippocampus that peaked on postnatal day 11-18 and then declined drastically to adult levels. These cells belonged to several discrete populations, distinguished by GAD67 mRNA expression, morphology, and distinct spatiotemporal distribution profiles. Importantly, a novel population of Cajal-Retzius-like CRH-expressing neurons was characterized that exists only transiently in early postnatal hippocampus and is positioned to contribute to the establishment of hippocampal connectivity. These findings suggest novel, age-specific roles for CRH in regulating early developmental events in the hippocampal formation.
Collapse
|
40
|
Chen Y, Bender RA, Frotscher M, Baram TZ. Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis. J Neurosci 2001; 21:7171-81. [PMID: 11549728 PMCID: PMC3107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Revised: 06/15/2001] [Accepted: 06/27/2001] [Indexed: 02/21/2023] Open
Abstract
Robust physiological actions of the neuropeptide corticotropin-releasing hormone (CRH) on hippocampal pyramidal neurons have been demonstrated, which may contribute to synaptic efficacy and to learning and memory processes. These excitatory actions of the peptide, as well as the expression of the CRH receptor type that mediates them, are particularly prominent during early postnatal life, suggesting that endogenous CRH may contribute to processes involved in maturation of hippocampal circuitry. To further elucidate the function(s) of endogenous CRH in developing hippocampus, we used neurochemical and quantitative stereological methods to characterize in detail CRH-expressing neuronal populations during postnatal hippocampal differentiation. These experiments revealed progressively increasing numbers of CRH-expressing neurons in developing hippocampus that peaked on postnatal day 11-18 and then declined drastically to adult levels. These cells belonged to several discrete populations, distinguished by GAD67 mRNA expression, morphology, and distinct spatiotemporal distribution profiles. Importantly, a novel population of Cajal-Retzius-like CRH-expressing neurons was characterized that exists only transiently in early postnatal hippocampus and is positioned to contribute to the establishment of hippocampal connectivity. These findings suggest novel, age-specific roles for CRH in regulating early developmental events in the hippocampal formation.
Collapse
Affiliation(s)
- Y Chen
- Departments of Anatomy/Neurobiology and Pediatrics, University of California at Irvine, Irvine, California 92697-4475, USA
| | | | | | | |
Collapse
|
41
|
Avishai-Eliner S, Gilles EE, Eghbal-Ahmadi M, Bar-El Y, Baram TZ. Altered regulation of gene and protein expression of hypothalamic-pituitary-adrenal axis components in an immature rat model of chronic stress. J Neuroendocrinol 2001; 13:799-807. [PMID: 11578530 PMCID: PMC3100736 DOI: 10.1046/j.1365-2826.2001.00698.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic stress early in postnatal life influences hormonal and behavioural responses to stress persistently, but the mechanisms and molecular cascades that are involved in this process have not been clarified. To approach these issues, a chronic stress paradigm for the neonatal rat, using limited bedding material to alter the cage environment, was devised. In 9-day-old rats subjected to this chronic stress for 1 week, significant and striking changes in the expression and release patterns of key molecules that govern the neuroendocrine stress responses were observed. The presence of sustained stress was evident from enhanced activation of peripheral elements of the neuroendocrine stress response, i.e. increased basal plasma corticosterone concentrations, high adrenal weight and decreased body weight. Central regulatory elements of the neuroendocrine stress response were perturbed, including reduced expression of hypothalamic corticotropin-releasing hormone that, surprisingly, was accompanied by reduced glucocorticoid receptor expression. Thus, the effects of chronic sustained stress in the neonatal rat on the hypothalamic-pituitary-adrenal axis included substantial changes in the expression and activity of major regulators of this axis. Importantly, the changes induced by this chronic stress differed substantially from those related to acute or recurrent stress, providing a novel model for studying the long-term effects of chronic, early life stress on neuroendocrine functions throughout life.
Collapse
Affiliation(s)
- S Avishai-Eliner
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA 92697-4475, USA
| | | | | | | | | |
Collapse
|
42
|
Brunson KL, Eghbal-Ahmadi M, Bender R, Chen Y, Baram TZ. Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proc Natl Acad Sci U S A 2001; 98:8856-61. [PMID: 11447269 PMCID: PMC37525 DOI: 10.1073/pnas.151224898] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2001] [Accepted: 05/07/2001] [Indexed: 01/13/2023] Open
Abstract
Stress early in postnatal life may result in long-term memory deficits and selective loss of hippocampal neurons. The mechanisms involved are poorly understood, but they may involve molecules and processes in the immature limbic system that are activated by stressful challenges. We report that administration of corticotropin-releasing hormone (CRH), the key limbic stress modulator, to the brains of immature rats reproduced the consequences of early-life stress, reducing memory functions throughout life. These deficits were associated with progressive loss of hippocampal CA3 neurons and chronic up-regulation of hippocampal CRH expression. Importantly, they did not require the presence of stress levels of glucocorticoids. These findings indicate a critical role for CRH in the mechanisms underlying the long-term effects of early-life stress on hippocampal integrity and function.
Collapse
Affiliation(s)
- K L Brunson
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697-4475, USA
| | | | | | | | | |
Collapse
|