1
|
Graczyk E, Hutchison B, Valle G, Bjanes D, Gates D, Raspopovic S, Gaunt R. Clinical Applications and Future Translation of Somatosensory Neuroprostheses. J Neurosci 2024; 44:e1237242024. [PMID: 39358021 PMCID: PMC11450537 DOI: 10.1523/jneurosci.1237-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Somatosensory neuroprostheses restore, replace, or enhance tactile and proprioceptive feedback for people with sensory impairments due to neurological disorders or injury. Somatosensory neuroprostheses typically couple sensor inputs from a wearable device, prosthesis, robotic device, or virtual reality system with electrical stimulation applied to the somatosensory nervous system via noninvasive or implanted interfaces. While prior research has mainly focused on technology development and proof-of-concept studies, recent acceleration of clinical studies in this area demonstrates the translational potential of somatosensory neuroprosthetic systems. In this review, we provide an overview of neurostimulation approaches currently undergoing human testing and summarize recent clinical findings on the perceptual, functional, and psychological impact of somatosensory neuroprostheses. We also cover current work toward the development of advanced stimulation paradigms to produce more natural and informative sensory feedback. Finally, we provide our perspective on the remaining challenges that need to be addressed prior to translation of somatosensory neuroprostheses.
Collapse
Affiliation(s)
- Emily Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Brianna Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Giacomo Valle
- Department of Electrical Engineering, Chalmers University of Technology, Goteborg 41296, Sweden
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - David Bjanes
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125
| | - Deanna Gates
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zurich, Zurich 8092, Switzerland
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Robert Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
2
|
Kapural L, Melton J, Kim B, Mehta P, Sigdel A, Bautista A, Petersen EA, Slavin KV, Eidt J, Wu J, Elshihabi S, Schwalb JM, Garrett Jr HE, Veizi E, Barolat G, Rajani RR, Rhee PC, Guirguis M, Mekhail N. Primary 3-Month Outcomes of a Double-Blind Randomized Prospective Study (The QUEST Study) Assessing Effectiveness and Safety of Novel High-Frequency Electric Nerve Block System for Treatment of Post-Amputation Pain. J Pain Res 2024; 17:2001-2014. [PMID: 38860215 PMCID: PMC11164212 DOI: 10.2147/jpr.s463727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose This multicenter, randomized, double-blinded, active sham-controlled pivotal study was designed to assess the efficacy and safety of high-frequency nerve block treatment for chronic post-amputation and phantom limb pain. Patients and Methods QUEST enrolled 180 unilateral lower-limb amputees with severe post-amputation pain, 170 of whom were implanted with the Altius device, were randomized 1:1 to active-sham or treatment groups and reached the primary endpoint. Responders were those subjects who received ≥50% pain relief 30 min after treatment in ≥50% of their self-initiated treatment sessions within the 3-month randomized period. Differences between the active treatment and sham control groups as well as numerous secondary outcomes were determined. Results At 30-min, (primary outcome), 24.7% of the treatment group were responders compared to 7.1% of the control group (p=0.002). At 120-minutes following treatment, responder rates were 46.8% in the Treatment group and 22.2% in the Control group (p=0.001). Improvement in Brief Pain Inventory interference score of 2.3 ± 0.29 was significantly greater in treatment group than the 1.3 ± 0.26-point change in the Control group (p = 0.01). Opioid usage, although not significantly different, trended towards a greater reduction in the treatment group than in the control group. The incidence of adverse events did not differ significantly between the treatment and control groups. Conclusion The primary outcomes of the study were met, and the majority of Treatment patients experienced a substantial improvement in PAP (regardless of meeting the study definition of a responder). The significant in PAP was associated with significantly improved QOL metrics, and a trend towards reduced opioid utilization compared to Control. These data indicate that Altius treatment represents a significant therapeutic advancement for lower-limb amputees suffering from chronic PAP.
Collapse
Affiliation(s)
- Leonardo Kapural
- Carolinas Pain Institute and Center for Clinical Research, Winston-Salem, NC, USA
| | - Jim Melton
- Department of Vascular Surgery, Cardiovascular Health Clinic, Oklahoma City, OK, USA
| | - Billy Kim
- Department of Vascular Surgery, The Surgical Clinic, Nashville, TN, USA
| | - Priyesh Mehta
- Department of Pain Medicine, Meta Medical Research Institute, Dayton, OH, USA
| | - Abindra Sigdel
- Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Alexander Bautista
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY, USA
| | - Erika A Petersen
- Department of Neurosurgery, University of Arkansas, Little Rock, AR, USA
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Neurology, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - John Eidt
- Department of Vascular Surgery, Baylor Scott and White Heart and Vascular Hospital Dallas, Dallas, TX, USA
| | - Jiang Wu
- Department of Anesthesiology & Pain Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Said Elshihabi
- Department of Neurosurgery, Legacy Brain & Spine Surgical Center, Atlanta, GA, USA
| | | | - H Edward Garrett Jr
- Department of Vascular Surgery, University of Tennessee-Memphis, Memphis, TN, USA
| | - Elias Veizi
- Department of Pain Medicine, VA Northeast OH Healthcare System, Cleveland, OH, USA
| | - Giancarlo Barolat
- Department of Neurosurgery, Barolat Neuroscience, Presbyterian/St Luke’s Medical Center, Denver, CO, USA
| | - Ravi R Rajani
- Department of Vascular Surgery, Emory University and Grady Memorial Hospital, Atlanta, GA, USA
| | - Peter C Rhee
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Maged Guirguis
- Department of Interventional Pain Management, Ochsner Health System, New Orleans, LA, USA
| | - Nagy Mekhail
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Rugnath R, Orzechowicz C, Newell C, Carullo V, Rugnath A. A Literature Review: The Mechanisms and Treatment of Neuropathic Pain-A Brief Discussion. Biomedicines 2024; 12:204. [PMID: 38255308 PMCID: PMC10812949 DOI: 10.3390/biomedicines12010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024] Open
Abstract
Classically, neuropathic pain is described as a pain caused by a lesion or disease of the somatosensory system. However, one must note that the presence of somatosensory pathology alone does not guarantee a progression to neuropathic pain. This is due, in part, to the fact that neuropathic pain is a notoriously complex disease process, involving sensitization of both the central and peripheral nervous systems. Its causes are also numerous and varied, including trauma, the compression of a nerve, autoimmune disorders, diabetes, and infections. Due to the various manifestations, causes, and symptoms of neuropathic pain, the treatment of this disease process has proved challenging for generations of physicians. This section aims to elaborate on newly proposed mechanisms for pharmacological and targeted therapies, such as neurostimulation, which aim to reduce the negative somatosensory effects of neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | - Anesh Rugnath
- Department and Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (R.R.)
| |
Collapse
|
4
|
Weiss T, Koehler H, Croy I. Pain and Reorganization after Amputation: Is Interoceptive Prediction a Key? Neuroscientist 2023; 29:665-675. [PMID: 35950521 PMCID: PMC10623598 DOI: 10.1177/10738584221112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an ongoing discussion on the relevance of brain reorganization following amputation for phantom limb pain. Recent attempts to provide explanations for seemingly controversial findings-specifically, maladaptive plasticity versus persistent functional representation as a complementary process-acknowledged that reorganization in the primary somatosensory cortex is not sufficient to explain phantom limb pain satisfactorily. Here we provide theoretical considerations that might help integrate the data reviewed and suppose a possible additional driver of the development of phantom limb pain-namely, an error in interoceptive predictions to somatosensory sensations and movements of the missing limb. Finally, we derive empirically testable consequences based on our considerations to guide future research.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Hanna Koehler
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Ilona Croy
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Amoruso E, Terhune DB, Kromm M, Kirker S, Muret D, Makin TR. Reassessing referral of touch following peripheral deafferentation: The role of contextual bias. Cortex 2023; 167:167-177. [PMID: 37567052 PMCID: PMC11139647 DOI: 10.1016/j.cortex.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/28/2023] [Accepted: 04/21/2023] [Indexed: 08/13/2023]
Abstract
Some amputees have been famously reported to perceive facial touch as arising from their phantom hand. These referred sensations have since been replicated across multiple neurological disorders and were classically interpreted as a perceptual correlate of cortical plasticity. Common to all these and related studies is that participants might have been influenced in their self-reports by the experimental design or related contextual biases. Here, we investigated whether referred sensations reports might be confounded by demand characteristics (e.g., compliance, expectation, suggestion). Unilateral upper-limb amputees (N = 18), congenital one-handers (N = 19), and two-handers (N = 22) were repeatedly stimulated with computer-controlled vibrations on 10 body-parts and asked to report the occurrence of any concurrent sensations on their hand(s). To further manipulate expectations, we gave participants the suggestion that some of these vibrations had a higher probability to evoke referred sensations. We also assessed similarity between (phantom) hand and face representation in primary somatosensory cortex (S1), using functional Magnetic Resonance Imaging (fMRI) multivariate representational similarity analysis. We replicated robust reports of referred sensations in amputees towards their phantom hand; however, the frequency and distribution of reported referred sensations were similar across groups. Moreover, referred sensations were evoked by stimulation of multiple body-parts and similarly reported on both the intact and phantom hand in amputees. Face-to-phantom-hand representational similarity was not different in amputees' missing hand region, compared with controls. These findings weaken the interpretation of referred sensations as a perceptual correlate of S1 plasticity and reveal the need to account for contextual biases when evaluating anomalous perceptual phenomena.
Collapse
Affiliation(s)
- Elena Amoruso
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Devin B Terhune
- Department of Psychology, Goldsmiths, University of London, London SE14 6NW, UK
| | - Maria Kromm
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Stephen Kirker
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK.
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
6
|
Jin Q, Chang Y, Lu C, Chen L, Wang Y. Referred pain: characteristics, possible mechanisms, and clinical management. Front Neurol 2023; 14:1104817. [PMID: 37448749 PMCID: PMC10338069 DOI: 10.3389/fneur.2023.1104817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose of this review Referred pain is a common but less understood symptom that originates from somatic tissues. A comprehensive recognition of referred pain is important for clinicians when dealing with it. The purpose of this study is to summarize the current understanding of referred pain, including its pathogenesis, characteristics, diagnosis, and treatment. Recent findings Referred pain arises not only from pathologies primarily involving local tissue but also from lesions in distant structures. Central sensitization of convergent neurons and peripheral reflexes of dichotomizing afferent fibers are two theories proposed to explain the pathological mechanism of referred pain. Because syndromes related to referred pain of different origins overlap each other, it is challenging to define referred pain and identify its originating lesions. Although various approaches have been used in the diagnosis and treatment of referred pain, including conservative treatment, blockade, radiofrequency, and surgery, management of referred pain remains a clinical challenge. Summary Unlike radicular pain and neuropathic pain, referred pain is a less studied area, despite being common in clinics. Referred pain can derive from various spinal structures, and blockage helps identify the primary pathology. Due to the heterogeneity of referred pain, treatment outcomes remain uncertain. Further studies are needed to improve our understanding of referred pain.
Collapse
|
7
|
Schmitt MS, Wright JD, Triolo RJ, Charkhkar H, Graczyk EL. The experience of sensorimotor integration of a lower limb sensory neuroprosthesis: A qualitative case study. Front Hum Neurosci 2023; 16:1074033. [PMID: 36712150 PMCID: PMC9874950 DOI: 10.3389/fnhum.2022.1074033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Lower limb prosthesis users often struggle to navigate uneven terrain or ambulate in low light conditions where it can be challenging to rely on visual cues for balance and walking. Sensory feedback about foot-floor interactions may allow users to reduce reliance on secondary sensory cues and improve confidence and speed when navigating difficult terrain. Our group has developed a Sensory Neuroprosthesis (SNP) to restore sensation to people with lower limb amputation by pairing electrical stimulation of nerves in the residual limb applied via implanted neurotechnology with pressure sensors in the insole of a standard prosthesis. Stimulation applied to the nerves evoked sensations perceived as originating on the missing leg and foot. Methods This qualitative case study reports on the experiences of a 68-year-old with a unilateral trans-tibial amputation who autonomously used the SNP at home for 31 weeks. Interview data collected throughout the study period was analyzed using a grounded theory approach with constant comparative methods to understand his experience with this novel technology and its impacts on his daily life. Results A conceptual model was developed that explained the experience of integrating SNP-provided sensory feedback into his body and motor plans. The model described the requirements of integration, which were a combination of a low level of mental focus and low stimulation levels. While higher levels of stimulation and focus could result in distinct sensory percepts and various phantom limb experiences, optimal integration was associated with SNP-evoked sensation that was not readily perceivable. Successful sensorimotor integration of the SNP resulted in improvements to locomotion, a return to a more normal state, an enhancement of perceived prosthesis utility, and a positive outlook on the experience. Discussion These outcomes emerged over the course of the nearly 8 month study, suggesting that findings from long-term home studies of SNPs may differ from those of short-term in-laboratory tests. Our findings on the experience of sensorimotor integration of the SNP have implications for the optimal training of SNP users and the future deployment of clinical SNP systems for long-term home use.
Collapse
Affiliation(s)
- Melissa S. Schmitt
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States,Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, United States
| | - John D. Wright
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Ronald J. Triolo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Hamid Charkhkar
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Emily L. Graczyk
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Emily L. Graczyk,
| |
Collapse
|
8
|
Root V, Muret D, Arribas M, Amoruso E, Thornton J, Tarall-Jozwiak A, Tracey I, Makin TR. Complex pattern of facial remapping in somatosensory cortex following congenital but not acquired hand loss. eLife 2022; 11:e76158. [PMID: 36583538 PMCID: PMC9851617 DOI: 10.7554/elife.76158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Cortical remapping after hand loss in the primary somatosensory cortex (S1) is thought to be predominantly dictated by cortical proximity, with adjacent body parts remapping into the deprived area. Traditionally, this remapping has been characterised by changes in the lip representation, which is assumed to be the immediate neighbour of the hand based on electrophysiological research in non-human primates. However, the orientation of facial somatotopy in humans is debated, with contrasting work reporting both an inverted and upright topography. We aimed to fill this gap in the S1 homunculus by investigating the topographic organisation of the face. Using both univariate and multivariate approaches we examined the extent of face-to-hand remapping in individuals with a congenital and acquired missing hand (hereafter one-handers and amputees, respectively), relative to two-handed controls. Participants were asked to move different facial parts (forehead, nose, lips, tongue) during functional MRI (fMRI) scanning. We first confirmed an upright face organisation in all three groups, with the upper-face and not the lips bordering the hand area. We further found little evidence for remapping of both forehead and lips in amputees, with no significant relationship to the chronicity of their phantom limb pain (PLP). In contrast, we found converging evidence for a complex pattern of face remapping in congenital one-handers across multiple facial parts, where relative to controls, the location of the cortical neighbour - the forehead - is shown to shift away from the deprived hand area, which is subsequently more activated by the lips and the tongue. Together, our findings demonstrate that the face representation in humans is highly plastic, but that this plasticity is restricted by the developmental stage of input deprivation, rather than cortical proximity.
Collapse
Affiliation(s)
- Victoria Root
- WIN Centre, University of OxfordOxfordUnited Kingdom
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Maite Arribas
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Elena Amoruso
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - John Thornton
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | | | - Irene Tracey
- WIN Centre, University of OxfordOxfordUnited Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Liu S, Fu W, Wei C, Ma F, Cui N, Shan X, Zhang Y. Interference of unilateral lower limb amputation on motor imagery rhythm and remodeling of sensorimotor areas. Front Hum Neurosci 2022; 16:1011463. [DOI: 10.3389/fnhum.2022.1011463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
PurposeThe effect of sensorimotor stripping on neuroplasticity and motor imagery capacity is unknown, and the physiological mechanisms of post-amputation phantom limb pain (PLP) illness remain to be investigated.Materials and methodsIn this study, an electroencephalogram (EEG)-based event-related (de)synchronization (ERD/ERS) analysis was conducted using a bilateral lower limb motor imagery (MI) paradigm. The differences in the execution of motor imagery tasks between left lower limb amputations and healthy controls were explored, and a correlation analysis was calculated between level of phantom limb pain and ERD/ERS.ResultsThe multiple frequency bands showed a significant ERD phenomenon when the healthy control group performed the motor imagery task, whereas amputees showed significant ERS phenomena in mu band. Phantom limb pain in amputees was negatively correlated with bilateral sensorimotor areas electrode powers.ConclusionSensorimotor abnormalities reduce neural activity in the sensorimotor cortex, while the motor imagination of the intact limb is diminished. In addition, phantom limb pain may lead to over-activation of sensorimotor areas, affecting bilateral sensorimotor area remodeling.
Collapse
|
10
|
Kothari SF, Blicher JU, Dagsdottir LK, Kothari M, Kumar A, Sengupta K, Buchholtz PE, Ashkanian M, Svensson P. Facilitatory Effect of Intermittent Repetitive Transcranial Magnetic Stimulation on Perceptual Distortion of the Face. THE JOURNAL OF PAIN 2022; 23:1051-1059. [PMID: 35041936 DOI: 10.1016/j.jpain.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Orofacial pain patients often report that the painful facial area is "swollen" without clinical signs - known as perceptual distortion (PD). The neuromodulatory effect of facilitatory repetitive transcranial magnetic stimulation (rTMS) on PD in healthy individuals was investigated, to provide further support that the primary somatosensory cortex (SI) is involved in facial PD. Participants were allocated to active (n = 26) or sham (n = 26) rTMS group in this case-control study. PD was induced experimentally by injecting local anesthesia (LA) in the right infraorbital region. PD was measured at baseline, 6 min after LA, immediately, 20 and 40 min after rTMS. Intermittent theta-burst stimulation (iTBS) as active rTMS and sham rTMS was applied to the face representation area of SI at 10 min after LA. The magnitude of PD was compared between the groups. The magnitude of PD significantly increased immediately after iTBS compared with sham rTMS (P = .009). The PD was significantly higher immediately after iTBS compared to 6 min after LA (P = .004) in the active rTMS group, but not in the sham rTMS group (P = .054). iTBS applied to a somatotopic-relevant cortical region appears to facilitate facial PD further supporting the involvement of SI in the processing of one´s own face and PD. PERSPECTIVE: This study provides information on neural substrate responsible for processing of perceptual distortion of the face which is speculated to contribute to the chronification of orofacial pain. The findings of this study may aid in mechanism-based management of the condition in orofacial pain disorders and possibly other chronic pain states.
Collapse
Affiliation(s)
- Simple Futarmal Kothari
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark; Scandinavian Center for Orofacial Neurosciences (SCON); Hammel Neurorehabilitation Center and University Research Clinic, Aarhus University, Hammel, Denmark.
| | - Jakob U Blicher
- CFIN, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lilja K Dagsdottir
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark; Scandinavian Center for Orofacial Neurosciences (SCON)
| | - Mohit Kothari
- Hammel Neurorehabilitation Center and University Research Clinic, Aarhus University, Hammel, Denmark; JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, India
| | - Abhishek Kumar
- Scandinavian Center for Orofacial Neurosciences (SCON); Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Kaushik Sengupta
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Larix A/S, Herlev, Denmark
| | - Poul E Buchholtz
- Department for Depression and Anxiety Disorders, Aarhus University Hospital, Aarhus, Denmark
| | - Mahmoud Ashkanian
- Department for Depression and Anxiety Disorders, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Svensson
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark; Scandinavian Center for Orofacial Neurosciences (SCON); Department of Orofacial Pain and Jaw Function, Faculty of Odontology, Malmӧ University, Malmӧ, Sweden
| |
Collapse
|
11
|
Otaki R, Oouchida Y, Aizu N, Sudo T, Sasahara H, Saito Y, Takemura S, Izumi SI. Relationship Between Body-Specific Attention to a Paretic Limb and Real-World Arm Use in Stroke Patients: A Longitudinal Study. Front Syst Neurosci 2022; 15:806257. [PMID: 35273480 PMCID: PMC8902799 DOI: 10.3389/fnsys.2021.806257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Learned nonuse is a major problem in upper limb (UL) rehabilitation after stroke. Among the various factors that contribute to learned nonuse, recent studies have focused on body representation of the paretic limb in the brain. We previously developed a method to measure body-specific attention, as a marker of body representation of the paretic limb and revealed a decline in body-specific attention to the paretic limb in chronic stroke patients by a cross-sectional study. However, longitudinal changes in body-specific attention and paretic arm use in daily life (real-world arm use) from the onset to the chronic phase, and their relationship, remain unknown. Here, in a longitudinal, prospective, observational study, we sought to elucidate the longitudinal changes in body-specific attention to the paretic limb and real-world arm use, and their relationship, by using accelerometers and psychophysical methods, respectively, in 25 patients with subacute stroke. Measurements were taken at baseline (TBL), 2 weeks (T2w), 1 month (T1M), 2 months (T2M), and 6 months (T6M) after enrollment. UL function was measured using the Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT). Real-world arm use was measured using accelerometers on both wrists. Body-specific attention was measured using a visual detection task. The UL function and real-world arm use improved up to T6M. Longitudinal changes in body-specific attention were most remarkable at T1M. Changes in body-specific attention up to T1M correlated positively with changes in real-world arm use up to T6M, and from T1M to T6M, and the latter more strongly correlated with changes in real-world arm use. Changes in real-world arm use up to T2M correlated positively with changes in FMA up to T2M and T6M. No correlation was found between body-specific attention and FMA scores. Thus, these results suggest that improved body-specific attention to the paretic limb during the early phase contributes to increasing long-term real-world arm use and that increased real-world use is associated with the recovery of UL function. Our results may contribute to the development of rehabilitation strategies to enhance adaptive changes in body representation in the brain and increase real-world arm use after stroke.
Collapse
Affiliation(s)
- Ryoji Otaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation, Yamagata Saisei Hospital, Yamagata, Japan
| | - Yutaka Oouchida
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Education, Osaka Kyoiku University, Osaka, Japan
| | - Naoki Aizu
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Tamami Sudo
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Computer and Information Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Sasahara
- Department of Rehabilitation, Yamagata Saisei Hospital, Yamagata, Japan
| | - Yuki Saito
- Department of Neurosurgery, Yamagata Saisei Hospital, Yamagata, Japan
| | - Sunao Takemura
- Department of Neurosurgery, Yamagata Saisei Hospital, Yamagata, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| |
Collapse
|
12
|
Griffin SC, Alphonso AL, Tung M, Finn S, Perry BN, Hill W, O’Connell C, Hanling SR, Goff BJ, Pasquina PF, Tsao J. Characteristics of phantom limb pain in U.S. civilians and service members. Scand J Pain 2022; 22:125-132. [PMID: 34529903 PMCID: PMC10896663 DOI: 10.1515/sjpain-2021-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The population of Americans with limb loss is on the rise, with a different profile than in previous generations (e.g., greater incidence of amputation due to diabetes). This study aimed to identify the key characteristics of phantom limb sensation (PLS) and pain (PLP) in a current sample of Americans with limb loss. METHODS This cross-sectional study is the first large-scale (n=649) study on PLP in the current population of Americans with limb loss. A convenience sample of military and civilian persons missing one or more major limbs was surveyed regarding their health history and experience with phantom limb phenomena. RESULTS Of the participants surveyed, 87% experienced PLS and 82% experienced PLP. PLS and PLP typically first occurred immediately after amputation (47% of cases), but for a small percentage (3-4%) onset did not occur until over a year after amputation. Recent PLP severity decreased over time (β=0.028, 95% CI: -0.05-0.11), but most participants reported PLP even 10 years after amputation. Higher levels of recent PLP were associated with telescoping (β=0.123, 95% CI: 0.04-0.21) and higher levels of pre-amputation pain (β=0.104, 95% CI: 0.03-0.18). Those with congenitally missing limbs experienced lower levels of recent PLP (t (37.93)=3.93, p<0.01) but there were no consistent differences in PLP between other amputation etiologies. CONCLUSIONS Phantom limb phenomena are common and enduring. Telescoping and pre-amputation pain are associated with higher PLP. Persons with congenitally missing limbs experience lower levels of PLP than those with amputation(s), yet PLP is common even in this subpopulation.
Collapse
Affiliation(s)
- Sarah C. Griffin
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham, NC, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Aimee L. Alphonso
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Monica Tung
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sacha Finn
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Briana N. Perry
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Wendy Hill
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
| | - Colleen O’Connell
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
| | | | - Brandon J. Goff
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Center for the Intrepid, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Paul F. Pasquina
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jack Tsao
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- University of Tennessee Health Science Center, Memphis, TN, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Memphis Veterans Affairs Medical Center, Memphis, TN, USA
| |
Collapse
|
13
|
Diers M, Krumm B, Fuchs X, Bekrater-Bodmann R, Milde C, Trojan J, Foell J, Becker S, Rümenapf G, Flor H. The Prevalence and Characteristics of Phantom Limb Pain and Non-Painful Phantom Phenomena in a Nationwide Survey of 3,374 Unilateral Limb Amputees. THE JOURNAL OF PAIN 2021; 23:411-423. [PMID: 34583023 DOI: 10.1016/j.jpain.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 11/20/2022]
Abstract
The experience of phantom limb pain (PLP) is a common consequence of limb amputation, resulting in severe impairments of the affected person. Previous studies have shown that several factors such as age at or site of amputation are associated with the emergence and maintenance of PLP. In this cross-sectional study we assessed the presence of several phantom phenomena including PLP and other amputation-related information in a sample of 3,374 unilateral upper and lower limb amputees. Clinical and demographic variables (age at amputation, level of amputation) explained 10.6% of the variance in PLP and perceptual variables (intensity of phantom limb sensation [PLS], referred sensations, intensity of telescoping, residual limb pain [RLP] intensity) explained 16.9% of the variance. These variables were specific for PLP and not for RLP. These results suggest that distinct variables are associated with PLP (age at amputation, level of amputation, PLS intensity, referred sensations, intensity of telescoping, RLP intensity) and RLP (PLP intensity) and point at partly different mechanisms for the emergence and maintenance of PLP and RLP. PERSPECTIVE: Clinical/demographic variables as well as perceptual variables are 2 major components related to PLP and explain ∼11% and ∼17% of the variance. These results could potentially help clinicians to understand which factors may contribute to chronic phantom limb pain.
Collapse
Affiliation(s)
- Martin Diers
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Bertram Krumm
- Division of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xaver Fuchs
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Biopsychology and Cognitive Neuroscience, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | - Robin Bekrater-Bodmann
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christopher Milde
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Biological Psychology, University Koblenz-Landau, Landau, Germany
| | - Jörg Trojan
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Foell
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, Florida State University, Tallahassee, Florida
| | - Susanne Becker
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Integrative Spinal Research, Research Chiropractic, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Gerhard Rümenapf
- Clinic for Vascular Surgery, Deaconess Foundation Hospital, Upper Rhine Vascular Center Speyer
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
14
|
Fuchs X, Diers M, Trojan J, Kirsch P, Milde C, Bekrater-Bodmann R, Rance M, Foell J, Andoh J, Becker S, Flor H. Phantom limb pain after unilateral arm amputation is associated with decreased heat pain thresholds in the face. Eur J Pain 2021; 26:114-132. [PMID: 34288253 DOI: 10.1002/ejp.1842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The mechanisms underlying chronic phantom limb pain (PLP) are complex and insufficiently understood. Altered sensory thresholds are often associated with chronic pain but quantitative sensory testing (QST) in PLP has so far been inconclusive due to large methodological variation between studies and small sample sizes. METHODS In this study, we applied QST in 37 unilateral upper-limb amputees (23 with and 14 without PLP) and 19 healthy controls. We assessed heat pain (HPT), pressure pain, warmth detection and two-point discrimination thresholds at the residual limb, a homologous point and the thenar of the intact limb as well as both corners of the mouth. RESULTS We did not find significant differences in any of the thresholds between the groups. However, PLP intensity was negatively associated with HPT at all measured body sites except for the residual limb, indicating lower pain thresholds with higher PLP levels. Correlations between HPT and PLP were strongest in the contralateral face (r = -0.65, p < 0.001). Facial HPT were specifically associated with PLP, independent of residual limb pain (RLP) and various other covariates. HPT at the residual limb, however, were significantly associated with RLP, but not with PLP. CONCLUSION We conclude that the association between PLP and, especially facial, HPT could be related to central mechanisms. SIGNIFICANCE Phantom limb pain (PLP) is still poorly understood. We show that PLP intensity is associated with lower heat pain thresholds, especially in the face. This finding could be related to central nervous changes in PLP.
Collapse
Affiliation(s)
- Xaver Fuchs
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Biopsychology and Cognitive Neuroscience, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | - Martin Diers
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jörg Trojan
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pinar Kirsch
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christopher Milde
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychology, University of Koblenz-Landau, Landau, Germany
| | - Robin Bekrater-Bodmann
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mariela Rance
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jens Foell
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Jamila Andoh
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Susanne Becker
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Integrative Spinal Research, Research Chiropractic, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
15
|
Surgical prevention of terminal neuroma and phantom limb pain: a literature review. Arch Plast Surg 2021; 48:310-322. [PMID: 34024077 PMCID: PMC8143949 DOI: 10.5999/aps.2020.02180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
The incidence of extremity amputation is estimated at about 200,000 cases annually. Over 25% of patients suffer from terminal neuroma or phantom limb pain (TNPLP), resulting in pain, inability to wear a prosthetic device, and lost work. Once TNPLP develops, there is no definitive cure. Therefore, there has been an emerging focus on TNPLP prevention. We examined the current literature on TNPLP prevention in patients undergoing extremity amputation. A literature review was performed using Ovid Medline, Cochrane Collaboration Library, and Google Scholar to identify all original studies that addressed surgical prophylaxis against TNPLP. The search was conducted using both Medical Subject Headings and free-text using the terms “phantom limb pain,” “amputation neuroma,” and “surgical prevention of amputation neuroma.” Fifteen studies met the inclusion criteria, including six prospective trials, two comprehensive literature reviews, four retrospective chart reviews, and three case series/technique reviews. Five techniques were identified, and each was incorporated into a target-based classification system. A small but growing body of literature exists regarding the surgical prevention of TNPLP. Targeted muscle reinnervation (TMR), a form of physiologic target reassignment, has the greatest momentum in the academic surgical community, with multiple recent prospective studies demonstrating superior prevention of TNPLP. Neurorrhaphy and transposition with implantation are supported by less robust evidence, but merit future study as alternatives to TMR.
Collapse
|
16
|
Changes in Temporal and Spatial Patterns of Intrinsic Brain Activity and Functional Connectivity in Upper-Limb Amputees: An fMRI Study. Neural Plast 2021; 2021:8831379. [PMID: 33981337 PMCID: PMC8088358 DOI: 10.1155/2021/8831379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Amputation in adults is a serious procedure or traumatic outcome, one that leads to a possible “remapping” of limb representations (somatotopy) in the motor and sensory cortex. The temporal and spatial extent underlying reorganization of somatotopy is unclear. The aim of this study was to better understand how local and global structural plasticity in sensory-motor cortical networks changes temporally and spatially after upper-limb amputation. Methods We studied 8 healthy nonamputee control subjects and 16 complete upper-limb amputees. Resting-state MRI (rs-fMRI) was used to measure local and large-scale relative differences (compared to controls) in both the amplitude of low-frequency fluctuations (ALFF) and degree of centrality (DC) at 2 months, 6 months, and 12 months after traumatic amputation. Results In amputees, rs-fMRI scans revealed differences in spatial patterns of ALFF and DC among brain regions over time. Significant relative increases in ALFF and DC were detected not only in the sensory and motor cortex but also in related cortical regions believed to be involved in cognition and motor planning. We observed changes in the magnitude of ALFFs in the pre- and postcentral gyrus and primary sensory cortex, as well as in the anterior cingulate, parahippocampal gyrus, and hippocampus, 2 months after the amputation. The regional distribution of increases/decreases in ALFFs and DC documented at 2-month postamputation was very different from those at 6 and 12-month postamputation. Conclusion Local and wide-spread changes in ALFFs in the sensorimotor cortex and cognitive-related brain regions after upper-limb amputation may imply dysfunction not only in sensory and motor function but also in areas responsible for sensorimotor integration and motor planning. These results suggest that cortical reorganization after upper extremity deafferentation is temporally and spatially more complicated than previously appreciated, affecting DC in widespread regions.
Collapse
|
17
|
Duarte D, Bauer CCC, Pinto CB, Saleh Velez FG, Estudillo-Guerra MA, Pacheco-Barrios K, Gunduz ME, Crandell D, Merabet L, Fregni F. Cortical plasticity in phantom limb pain: A fMRI study on the neural correlates of behavioral clinical manifestations. Psychiatry Res Neuroimaging 2020; 304:111151. [PMID: 32738724 PMCID: PMC9394643 DOI: 10.1016/j.pscychresns.2020.111151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022]
Abstract
The neural mechanism of phantom limb pain (PLP) is related to the intense brain reorganization process implicating plasticity after deafferentation mostly in sensorimotor system. There is a limited understanding of the association between the sensorimotor system and PLP. We used a novel task-based functional magnetic resonance imaging (fMRI) approach to (1) assess neural activation within a-priori selected regions-of-interested (motor cortex [M1], somatosensory cortex [S1], and visual cortex [V1]), (2) quantify the cortical representation shift in the affected M1, and (3) correlate these changes with baseline clinical characteristics. In a sample of 18 participants, we found a significantly increased activity in M1 and S1 as well as a shift in motor cortex representation that was not related to PLP intensity. In an exploratory analyses (not corrected for multiple comparisons), they were directly correlated with time since amputation; and there was an association between increased activity in M1 with a lack of itching sensation and V1 activation was negatively correlated with PLP. Longer periods of amputation lead to compensatory changes in sensory-motor areas; and itching seems to be a protective marker for less signal changes. We confirmed that PLP intensity is not associated with signal changes in M1 and S1 but in V1.
Collapse
Affiliation(s)
- D Duarte
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Department of Psychiatry and Behavioural Neurosciences, McMaster University. 100 West 5th Street, Hamilton, ON L8N 3K7, Canada
| | - C C C Bauer
- McGovern Institute for Brain Research, MIT. 43 Vassar St, Cambridge, MA 02139, USA; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, 76230 Juriquilla, Querétaro, 76230, México; Department of Psychology, Northeastern University, 805 Columbus Avenue, Boston, MA 02139, USA.
| | - C B Pinto
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - F G Saleh Velez
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; University of Chicago Medical Center, Department of Neurology, University of Chicago. 5841 S Maryland Ave # C411, Chicago, IL 60637, USA
| | - M A Estudillo-Guerra
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - K Pacheco-Barrios
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru. Av. La Fontana 750 Edificio El Cubo, La Molina - Perú
| | - M E Gunduz
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - D Crandell
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - L Merabet
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School. 243 Charles St, Boston, MA 02114, USA
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Massachusetts General Hospital, Harvard Medical School. 55 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Pacheco-Barrios K, Pinto CB, Saleh Velez FG, Duarte D, Gunduz ME, Simis M, Lepesteur Gianlorenco AC, Barouh JL, Crandell D, Guidetti M, Battistella L, Fregni F. Structural and functional motor cortex asymmetry in unilateral lower limb amputation with phantom limb pain. Clin Neurophysiol 2020; 131:2375-2382. [PMID: 32828040 DOI: 10.1016/j.clinph.2020.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The role of motor cortex reorganization in the development and maintenance of phantom limb pain (PLP) is still unclear. This study aims to evaluate neurophysiological and structural motor cortex asymmetry in patients with PLP and its relationship with pain intensity. METHODS Cross-sectional analysis of an ongoing randomized-controlled trial. We evaluated the motor cortex asymmetry through two techniques: i) changes in cortical excitability indexed by transcranial magnetic stimulation (motor evoked potential, paired-pulse paradigms and cortical mapping), and ii) voxel-wise grey matter asymmetry analysis by brain magnetic resonance imaging. RESULTS We included 62 unilateral traumatic lower limb amputees with a mean PLP of 5.9 (SD = 1.79). We found, in the affected hemisphere, an anterior shift of the hand area center of gravity (23 mm, 95% CI 6 to 38, p = 0.005) and a disorganized and widespread representation. Regarding voxel-wise grey matter asymmetry analysis, data from 21 participants show a loss of grey matter volume in the motor area of the affected hemisphere. This asymmetry seems negatively associated with time since amputation. For TMS data, only the ICF ratio is negatively correlated with PLP intensity (r = -0.25, p = 0.04). CONCLUSION There is an asymmetrical reorganization of the motor cortex in patients with PLP, characterized by a disorganized, widespread, and shifted hand cortical representation and a loss in grey matter volume in the affected hemisphere. This reorganization seems to reduce across time since amputation. However, it is not associated with pain intensity. SIGNIFICANCE These findings are significant to understand the role of the motor cortex reorganization in patients with PLP, showing that the pain intensity may be related with other neurophysiological factors, not just cortical reorganization.
Collapse
Affiliation(s)
- K Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - C B Pinto
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - F G Saleh Velez
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; University of Chicago Medical Center, Department of Neurology, University of Chicago, Chicago, IL, USA
| | - D Duarte
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada
| | - M E Gunduz
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Simis
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - A C Lepesteur Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - J L Barouh
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - D Crandell
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M Guidetti
- Università degli Studi di Milano, Dipartimento di scienze della Salute, "Aldo Ravelli" Center for Neurotechnolgy and Experimental Brain Therapeutics, Milano, Italy
| | - L Battistella
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - F Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Münger M, Pinto CB, Pacheco-Barrios K, Duarte D, Gunduz ME, Simis M, Battistella LR, Fregni F. Protective and Risk Factors for Phantom Limb Pain and Residual Limb Pain Severity. Pain Pract 2020; 20:578-587. [PMID: 32176435 PMCID: PMC7363546 DOI: 10.1111/papr.12881] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The exact mechanisms underlying the development and maintenance of phantom limb pain (PLP) are still unclear. This study aimed to identify the factors affecting pain intensity in patients with chronic, lower limb, traumatic PLP. METHODS This is a cross-sectional analysis of patients with PLP. We assessed amputation-related and pain-related clinical and demographic variables. We used univariate and multivariate models to evaluate the associated factors modulating PLP and residual limb pain (RLP) intensity. RESULTS We included 71 unilateral traumatic lower limb amputees. Results showed that (1) amputation-related perceptions were experienced by a large majority of the patients with chronic PLP (sensations: 90.1%, n = 64; residual pain: 81.7%, n = 58); (2) PLP intensity has 2 significant protective factors (phantom limb movement and having effective treatment for PLP previously) and 2 significant risk factors (phantom limb sensation intensity and age); and (3) on the other hand, for RLP, risk factors are different: presence of pain before amputation and level of amputation (in addition to the same protective factors). CONCLUSION These results suggest different neurobiological mechanisms to explain PLP and RLP intensity. While PLP risk factors seem to be related to maladaptive plasticity, since phantom sensation and older age are associated with more pain, RLP risk factors seem to have components leading to neuropathic pain, such as the amount of neural lesion and previous history of chronic pain. Interestingly, the phantom movement appears to be protective for both phenomena.
Collapse
Affiliation(s)
- Marionna Münger
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neuropsychology, Institute of Psychology, University of Zurich, 8050 Zurich, Switzerland
| | - Camila B. Pinto
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru
| | - Dante Duarte
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Muhamed Enes Gunduz
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcel Simis
- Department of Physical Medicine and Rehabilitation, Instituto de Reabilitação Lucy Montoro
| | | | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
21
|
Sensinger JW, Dosen S. A Review of Sensory Feedback in Upper-Limb Prostheses From the Perspective of Human Motor Control. Front Neurosci 2020; 14:345. [PMID: 32655344 PMCID: PMC7324654 DOI: 10.3389/fnins.2020.00345] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
This manuscript reviews historical and recent studies that focus on supplementary sensory feedback for use in upper limb prostheses. It shows that the inability of many studies to speak to the issue of meaningful performance improvements in real-life scenarios is caused by the complexity of the interactions of supplementary sensory feedback with other types of feedback along with other portions of the motor control process. To do this, the present manuscript frames the question of supplementary feedback from the perspective of computational motor control, providing a brief review of the main advances in that field over the last 20 years. It then separates the studies on the closed-loop prosthesis control into distinct categories, which are defined by relating the impact of feedback to the relevant components of the motor control framework, and reviews the work that has been done over the last 50+ years in each of those categories. It ends with a discussion of the studies, along with suggestions for experimental construction and connections with other areas of research, such as machine learning.
Collapse
Affiliation(s)
- Jonathon W. Sensinger
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
| | - Strahinja Dosen
- Department of Health Science and Technology, The Faculty of Medicine, Integrative Neuroscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
22
|
The role of afferent input in postamputation pain: a randomized, double-blind, placebo-controlled crossover study. Pain 2020; 160:1622-1633. [PMID: 30817438 DOI: 10.1097/j.pain.0000000000001536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this randomized, double-blind, placebo-controlled crossover study, we investigated whether a peripheral nerve block could temporarily eliminate phantom and stump pain after amputation. Amputees with constant postamputation pain were included and randomized to receive a nerve block with lidocaine 2% with adrenaline or saline in a crossover design. Spontaneous phantom and stump pain and evoked responses were assessed at baseline and at fixed time-points until 120 minutes after lidocaine or saline injection. The primary outcome was the difference in absolute change between worst pain intensity, either phantom or stump pain, at baseline and at 30 minutes after lidocaine or saline injection. Twelve amputees were randomized and 9 patients were included in the analysis. The absolute change in median worst pain intensity between lidocaine and saline injection was -2.0 (interquartile range, -4.0 to 0.0) (n = 9, P = 0.12). Nine of 9 patients reported at least some pain relief after lidocaine injection compared with only 2 of 9 patients after saline injection (P = 0.02). Phantom pain intensity was significantly reduced after lidocaine compared with saline injection (P = 0.04), whereas there was no significant change in stump pain intensity between the 2 interventions (P = 0.17). In all 9 amputees, evoked responses were eliminated after lidocaine injection. Thus, our findings suggest that afferent input from the peripheral nervous system plays an important role in postamputation pain.
Collapse
|
23
|
Gunduz ME, Pinto CB, Saleh Velez FG, Duarte D, Pacheco-Barrios K, Lopes F, Fregni F. Motor Cortex Reorganization in Limb Amputation: A Systematic Review of TMS Motor Mapping Studies. Front Neurosci 2020; 14:314. [PMID: 32372907 PMCID: PMC7187753 DOI: 10.3389/fnins.2020.00314] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: The purpose of this systematic review is to evaluate motor cortex reorganization in amputees as indexed by transcranial magnetic stimulation (TMS) cortical mapping and its relationship with phantom limb pain (PLP). Methods: Pubmed database were systematically searched. Three independent researchers screened the relevant articles, and the data of motor output maps, including the number of effective stimulation sites, center of gravity (CoG) shift, and their clinical correlations were extracted. We calculated a pooled CoG shift for motor cortex TMS mapping. Results: The search yielded 468 articles, 11 were included. Three studies performed correlation between the cortical changes and PLP intensity, and only one study compared cortical mapping changes between amputees with pain and without pain. Results showed (i) enlarged excitable area and a shift of CoG of neighboring areas toward the deafferented limb area; (ii) no correlation between motor cortex reorganization and level of pain and (iii) greater cortical reorganization in patients with PLP compared to amputation without pain. Conclusion: Our review supports the evidence for cortical reorganization in the affected hemisphere following an amputation. The motor cortex reorganization could be a potential clinical target for prevention and treatment response of PLP.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Camila Bonin Pinto
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Faddi Ghassan Saleh Velez
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Dante Duarte
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Unidad de Investigación Para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Fernanda Lopes
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Felipe Fregni
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| |
Collapse
|
24
|
Giurgola S, Pisoni A, Maravita A, Vallar G, Bolognini N. Somatosensory cortical representation of the body size. Hum Brain Mapp 2019; 40:3534-3547. [PMID: 31056809 PMCID: PMC6865590 DOI: 10.1002/hbm.24614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
The knowledge of the size of our own body parts is essential for accurately moving in space and efficiently interact with objects. A distorted perceptual representation of the body size often represents a core diagnostic criterion for some psychopathological conditions. The metric representation of the body was shown to depend on somatosensory afferences: local deafferentation indeed causes a perceptual distortion of the size of the anesthetized body part. A specular effect can be induced by altering the cortical map of body parts in the primary somatosensory cortex. Indeed, the present study demonstrates, in healthy adult participants, that repetitive Transcranial Magnetic Stimulation to the somatosensory cortical map of the hand in both hemispheres causes a perceptual distortion (i.e., an overestimation) of the size of the participants' own hand (Experiments 1-3), which does not involve other body parts (i.e., the foot, Experiment 2). Instead, the stimulation of the inferior parietal lobule of both hemispheres does not affect the perception of the own body size (Experiment 4). These results highlight the role of the primary somatosensory cortex in the building up and updating of the metric of body parts: somatosensory cortical activity not only shapes our somatosensation, it also affects how we perceive the dimension of our body.
Collapse
Affiliation(s)
- Serena Giurgola
- Department of Medicine and SurgeryPh.D. Program in Neuroscience, University of Milano‐BicoccaMonzaItaly
- Department of Psychology & Milan Center for Neuroscience (NeuroMI)University of Milano‐BicoccaMilanItaly
| | - Alberto Pisoni
- Department of Psychology & Milan Center for Neuroscience (NeuroMI)University of Milano‐BicoccaMilanItaly
| | - Angelo Maravita
- Department of Psychology & Milan Center for Neuroscience (NeuroMI)University of Milano‐BicoccaMilanItaly
| | - Giuseppe Vallar
- Department of Psychology & Milan Center for Neuroscience (NeuroMI)University of Milano‐BicoccaMilanItaly
- IRCCS Istituto Auxologico ItalianoLaboratory of NeuropsychologyMilanItaly
| | - Nadia Bolognini
- Department of Psychology & Milan Center for Neuroscience (NeuroMI)University of Milano‐BicoccaMilanItaly
- IRCCS Istituto Auxologico ItalianoLaboratory of NeuropsychologyMilanItaly
| |
Collapse
|
25
|
Chan AWY, Bilger E, Griffin S, Elkis V, Weeks S, Hussey-Anderson L, Pasquina PF, Tsao JW, Baker CI. Visual responsiveness in sensorimotor cortex is increased following amputation and reduced after mirror therapy. NEUROIMAGE-CLINICAL 2019; 23:101882. [PMID: 31226622 PMCID: PMC6587025 DOI: 10.1016/j.nicl.2019.101882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 04/17/2019] [Accepted: 05/25/2019] [Indexed: 11/07/2022]
Abstract
Phantom limb pain (PLP) following amputation, which is experienced by the vast majority of amputees, has been reported to be relieved with daily sessions of mirror therapy. During each session, a mirror is used to view the reflected image of the intact limb moving, providing visual feedback consistent with the movement of the missing/phantom limb. To investigate potential neural correlates of the treatment effect, we measured brain responses in volunteers with unilateral leg amputation using functional magnetic resonance imaging (fMRI) during a four-week course of mirror therapy. Mirror therapy commenced immediately following baseline scans, which were repeated after approximately two and four week intervals. We focused on responses in the region of sensorimotor cortex corresponding to primary somatosensory and motor representations of the missing leg. At baseline, prior to starting therapy, we found a strong and unexpected response in sensorimotor cortex of amputees to visually presented images of limbs. This response was stronger for images of feet compared to hands and there was no such response in matched controls. Further, this response to visually presented limbs was no longer present at the end of the four week mirror therapy treatment, when perceived phantom limb pain was also reduced. A similar pattern of results was also observed in extrastriate and parietal regions typically responsive to viewing hand actions, but not in regions corresponding to secondary somatosensory cortex. Finally, there was a significant correlation between initial visual responsiveness in sensorimotor cortex and reduction in PLP suggesting a potential marker for predicting efficacy of mirror therapy. Thus, enhanced visual responsiveness in sensorimotor cortex is associated with PLP and modulated over the course of mirror therapy. Visual responsiveness to the sight of limbs in sensorimotor cortex of leg amputees but not matched controls Consistent with prior studies, mirror therapy over 4 weeks reduced phantom limb pain Visual responsiveness in sensorimotor cortex of amputees diminished following mirror therapy Visual responsiveness in sensorimotor cortex might be useful in predicting the potential efficacy of mirror therapy
Collapse
Affiliation(s)
- Annie W-Y Chan
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Life Sciences, Division of Psychology, Centre for Cognitive Neuroscience, Brunel University London, UK; University of Tennessee Health Science Center, Department of Radiology, Memphis, TN, USA.
| | - Emily Bilger
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; George Washington University Hospital, USA
| | - Sarah Griffin
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Viktoria Elkis
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sharon Weeks
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Paul F Pasquina
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jack W Tsao
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA; University of Tennessee Health Science Center, Department of Neurology, Memphis, TN, USA; Le Bonheur Children's Hospital, Memphis, TN, USA; Memphis Veterans Affairs Medical Center, Memphis, TN, USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Nardone R, Versace V, Sebastianelli L, Brigo F, Christova M, Scarano GI, Saltuari L, Trinka E, Hauer L, Sellner J. Transcranial magnetic stimulation in subjects with phantom pain and non-painful phantom sensations: A systematic review. Brain Res Bull 2019; 148:1-9. [DOI: 10.1016/j.brainresbull.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
|
27
|
Whitsel BL, Vierck CJ, Waters RS, Tommerdahl M, Favorov OV. Contributions of Nociresponsive Area 3a to Normal and Abnormal Somatosensory Perception. THE JOURNAL OF PAIN 2019; 20:405-419. [PMID: 30227224 PMCID: PMC6420406 DOI: 10.1016/j.jpain.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 12/29/2022]
Abstract
Traditionally, cytoarchitectonic area 3a of primary somatosensory cortex (SI) has been regarded as a proprioceptive relay to motor cortex. However, neuronal spike-train recordings and optical intrinsic signal imaging, obtained from nonhuman sensorimotor cortex, show that neuronal activity in some of the cortical columns in area 3a can be readily triggered by a C-nociceptor afferent drive. These findings indicate that area 3a is a critical link in cerebral cortical encoding of secondary/slow pain. Also, area 3a contributes to abnormal pain processing in the presence of activity-dependent reversal of gamma-aminobutyric acid A receptor-mediated inhibition. Accordingly, abnormal processing within area 3a may contribute mechanistically to generation of clinical pain conditions. PERSPECTIVE: Optical imaging and neurophysiological mapping of area 3a of SI has revealed substantial driving from unmyelinated cutaneous nociceptors, complementing input to areas 3b and 1 of SI from myelinated nociceptors and non-nociceptors. These and related findings force a reconsideration of mechanisms for SI processing of pain.
Collapse
Affiliation(s)
- Barry L Whitsel
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Charles J Vierck
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | - Robert S Waters
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Oleg V Favorov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
28
|
Rothgangel A, Bekrater-Bodmann R. Mirror therapy versus augmented/virtual reality applications: towards a tailored mechanism-based treatment for phantom limb pain. Pain Manag 2019; 9:151-159. [DOI: 10.2217/pmt-2018-0066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phantom limb pain (PLP) is a clinically relevant consequence of limb amputation and its treatment is still challenging. Mirror therapy, in other words, observing and engaging in the intact limb's mirrored movements, offers a promising, mechanism-based treatment for PLP. However, intervention and patient characteristics, such as the realism of mirrored exercises and perceptions related to the phantom limb, might influence treatment effectiveness. Novel approaches using augmented and virtual reality setups represent an alternative to traditional mirror therapy. In this paper, based on recent studies in the field, we compare both approaches and discuss their unique advantages and disadvantages. We argue for the necessity of a tailored treatment for PLP that is personalized to the patients’ characteristics, preferences and psychological needs.
Collapse
Affiliation(s)
- Andreas Rothgangel
- Research Centre for Nutrition, Lifestyle and Exercise, Department of Health, Zuyd University of Applied Sciences, Heerlen, The Netherlands
- CAPHRI School for Public Health and Primary Care, Department of Rehabilitation Medicine, Maastricht University, Maastricht, The Netherlands
| | - Robin Bekrater-Bodmann
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
29
|
Bramati IE, Rodrigues EC, Simões EL, Melo B, Höfle S, Moll J, Lent R, Tovar-Moll F. Lower limb amputees undergo long-distance plasticity in sensorimotor functional connectivity. Sci Rep 2019; 9:2518. [PMID: 30792514 PMCID: PMC6384924 DOI: 10.1038/s41598-019-39696-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/21/2019] [Indexed: 11/08/2022] Open
Abstract
Amputation in adults is associated with an extensive remapping of cortical topography in primary and secondary sensorimotor areas. Here, we used tactile residual limb stimulation and 3T functional magnetic resonance imaging in humans to investigate functional connectivity changes in the sensorimotor network of patients with long-term lower limb traumatic amputations with phantom sensation, but without pain. We found a pronounced reduction of inter-hemispheric functional connectivity between homologous sensorimotor cortical regions in amputees, including the primary (S1) and secondary (S2) somatosensory areas, and primary (M1) and secondary (M2) motor areas. We additionally observed an intra-hemispheric increased functional connectivity between primary and secondary somatosensory regions, and between the primary and premotor areas, contralateral to amputation. These functional connectivity changes in specialized small-scale sensory-motor networks improve our understanding of the functional impact of lower limb amputation in the brain. Our findings in a selective group of patients with phantom limb sensations, but without pain suggest that disinhibition of neural inputs following traumatic limb amputation disrupts sensorimotor topology, unbalancing functional brain network organization. These findings step up the description of brain plasticity related with phantom sensations by showing that pain is not critical for sensorimotor network changes after peripheral injury.
Collapse
Affiliation(s)
- Ivanei E Bramati
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Erika C Rodrigues
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
- Augusto Motta University (Unisuam), Rio de Janeiro, 21041-020, Brazil
| | - Elington L Simões
- Rio de Janeiro State University (UERJ), Rio de Janeiro, 20550-900, Brazil
| | - Bruno Melo
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
| | - Sebastian Höfle
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
| | - Jorge Moll
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
| | - Roberto Lent
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil.
- National Centre for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
30
|
Graczyk EL, Gill A, Tyler DJ, Resnik LJ. The benefits of sensation on the experience of a hand: A qualitative case series. PLoS One 2019; 14:e0211469. [PMID: 30703163 PMCID: PMC6355013 DOI: 10.1371/journal.pone.0211469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The experience of upper limb loss involves loss of both functional capabilities and the sensory connection of a hand. Research studies to restore sensation to persons with upper limb loss with neural interfaces typically measure outcomes through standardized functional tests or quantitative surveys. However, these types of metrics cannot fully capture the personal experience of living with limb loss or the impact of sensory restoration on this experience. Qualitative studies can demonstrate the viewpoints and priorities of specific persons or groups and reveal the underlying conceptual structure of various aspects of their experiences. METHODS AND FINDINGS Following a home use trial of a neural-connected, sensory-enabled prosthesis, two persons with upper limb loss were interviewed about their experiences using the sensory restoration system in unsupervised, unconstrained settings. We used grounded theory methodology to examine their experiences, perspectives, and opinions about the sensory restoration system. We then developed a model to describe the impact of sensation on the experience of a hand for persons with upper limb loss. CONCLUSIONS The experience of sensation was complex and included concepts such as the naturalness of the experience, sensation modality, and the usefulness of the sensory information. Sensation was critical for outcome acceptance, and contributed to prosthesis embodiment, confidence, reduced focus and attention for using the prosthesis, and social interactions. Embodiment, confidence, and social interactions were also key determinants of outcome acceptance. This model provides a unified framework to study and understand the impact of sensation on the experience of limb loss and to understand outcome acceptance following upper limb loss more broadly.
Collapse
Affiliation(s)
- Emily L. Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Anisha Gill
- Providence Veterans Affairs Medical Center, Providence, Rhode Island, United States of America
| | - Dustin J. Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Linda J. Resnik
- Providence Veterans Affairs Medical Center, Providence, Rhode Island, United States of America
- Department of Health Services, Policy, and Practice, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
31
|
Phantom Limb Pain. Pain 2019. [DOI: 10.1007/978-3-319-99124-5_193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Viceconti A, Camerone EM, Luzzi D, Pardini M, Ristori D, Gallace A, Testa M. Explicit and implicit experience of own's body in painful musculoskeletal disorders and rheumatic diseases: A scoping review protocol of available quantitative and qualitative evidence. SAGE Open Med 2018; 6:2050312118820026. [PMID: 30574308 PMCID: PMC6299299 DOI: 10.1177/2050312118820026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
Introduction Our body experience is organized at twofold levels: perceptual and cognitive-emotional. These higher-order processes are clearly different from the primary sensory processing of somatic stimuli (somatosensation). However, most of the available studies have mainly investigated the mechanisms of somatosensation. Moreover, disturbances of our body experience have been documented in some pathological conditions of interest for rehabilitative interventions, but their clinical role and relevance is yet to be clarified. Because in this field we have limited knowledge on perceptual and cognitive body experience, there emerges a need to better clarify this matter. The aim of the present scoping review is to systematically map this topic and to examine the magnitude and the nature of the available evidences. Materials and Methods The scoping review will be performed following the six-stage methodology suggested by Arksey and O'Malley. Ten electronic databases will be investigated since their inception. The search strategy will be peer reviewed by PRESS 2015 Evidence-Based Checklist as a quality assurance step. All records retrieved will be screened by two independent reviewers. The Population, Concept, and Context method will be adopted for eligibility criteria and Preferred Reporting Items for Systematic Reviews and Meta-Analyses will be used for results reporting. Two reviewers with different background will perform the search process independently. One author will extract data, checked by a second reviewer checking the matching with the research questions and goals. Any disagreements will be solved by a third reviewer. Ethics and Dissemination Ethical approval is not required for scoping reviews. Dissemination will include submission to peer-reviewed journal and presentations in conferences in the area of rehabilitation.
Collapse
Affiliation(s)
- Antonello Viceconti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, Savona, Italy
| | - Eleonora Maria Camerone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, Savona, Italy
| | - Deborah Luzzi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, Savona, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Diego Ristori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, Savona, Italy
| | - Alberto Gallace
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Marco Testa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, Savona, Italy
| |
Collapse
|
33
|
Ortiz-Catalan M. The Stochastic Entanglement and Phantom Motor Execution Hypotheses: A Theoretical Framework for the Origin and Treatment of Phantom Limb Pain. Front Neurol 2018; 9:748. [PMID: 30237784 PMCID: PMC6135916 DOI: 10.3389/fneur.2018.00748] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022] Open
Abstract
Phantom limb pain (PLP) is a debilitating condition common after amputation that can considerably hinder patients' quality of life. Several treatments have reported promising results in alleviating PLP. However, clinical evaluations are usually performed in small cohorts and rigorous clinical trials are scarce. In addition, the underlying mechanisms by which novel interventions alleviate PLP are often unclear, potentially because the condition itself is poorly understood. This article presents a theoretical framework of PLP that can be used as groundwork for hypotheses of novel treatments. Current hypotheses on the origins of PLP are discussed in relation to available clinical findings. Stochastic entanglement of the pain neurosignature, or connectome, with impaired sensorimotor circuitry is proposed as an alternative hypothesis for the genesis of PLP, and the implications and predictions this hypothesis entails are examined. In addition, I present a hypothesis for the working mechanism of Phantom Motor Execution (PME) as a treatment of PLP, along with its relation to the aforementioned stochastic entanglement hypothesis, which deals with PLP's incipience. PME aims to reactivate the original central and peripheral circuitry involved in motor control of the missing limb, along with increasing dexterity of stump muscles. The PME hypothesis entails that training of phantom movements induces gradual neural changes similar to those of perfecting a motor skill, and these purposefully induced neural changes disentangle pain processing circuitry by competitive plasticity. This is a testable hypothesis that can be examined by brain imaging and behavioral studies on subjects undergoing PME treatment. The proposed stochastic entanglement hypothesis of PLP can be generalized to neuropathic pain due to sensorimotor impairment, and can be used to design suitable therapeutic treatments.
Collapse
Affiliation(s)
- Max Ortiz-Catalan
- Biomechatronics and Neurorehabilitation Laboratory, Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Integrum AB, Mölndal, Sweden
| |
Collapse
|
34
|
Thøgersen M, Hansen J, Arendt-Nielsen L, Flor H, Petrini L. Removing own-limb visual input using mixed reality (MR) produces a "telescoping" illusion in healthy individuals. Behav Brain Res 2018; 347:263-271. [PMID: 29551734 DOI: 10.1016/j.bbr.2018.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 11/15/2022]
Abstract
The purpose of the present study was to assess changes in body perception when visual feedback was removed from the hand and arm with the purpose of resembling the visual deprivation arising from amputation. The illusion was created by removing the visual feedback from the participants' own left forearm using a mixed reality (MR) and green screen environment. Thirty healthy persons (15 female) participated in the study. Each subject experienced two MR conditions, one with and one without visual feedback from the left hand, and a baseline condition with normal vision of the limb (no MR). Body perception was assessed using proprioceptive drift, questionnaires on body perception, and thermal sensitivity measures (cold, warm, heat pain and cold pain detection thresholds). The proprioceptive drift showed a significant shift of the tip of the index finger (p<0.001) towards the elbow in the illusion condition (mean drift: -3.71 cm). Self-report showed a significant decrease in ownership (p<0.001), shift in perceptual distortions, (e.g. "It feels as if my lower arm has become shorter") (p=0.025), and changes in sensations of the hand (tingling, tickling) (p=0.025). A significant decrease was also observed in cold detection threshold (p<0.001), i.e. the detection threshold was cooler than for the control conditions. The proprioceptive drift together with the self-reported questionnaire showed that the participants felt a proximal retraction of their limb, resembling the telescoping experienced by phantom limb patients. The study highlights the influence of missing visual feedback and its possible contribution to phantom limb phenomena.
Collapse
Affiliation(s)
- Mikkel Thøgersen
- Center for Neuroplasticity and Pain (CNAP), SMI, Dept. of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - John Hansen
- Laboratory for Cardio-Technology, Medical Informatics Group, Dept. of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Dept. of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Herta Flor
- Center for Neuroplasticity and Pain (CNAP), SMI, Dept. of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Laura Petrini
- Center for Neuroplasticity and Pain (CNAP), SMI, Dept. of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; Department of Communication & Psychology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
35
|
Psychological Factors Associated with Phantom Limb Pain: A Review of Recent Findings. Pain Res Manag 2018; 2018:5080123. [PMID: 30057653 PMCID: PMC6051014 DOI: 10.1155/2018/5080123] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/12/2018] [Indexed: 01/21/2023]
Abstract
Phantom limb pain (PLP) is a common phenomenon occurring after the amputation of a limb and can be accompanied by serious suffering. Psychological factors have been shown to play an important role in other types of chronic pain, where they are pivotal in the acquisition and maintenance of pain symptoms. For PLP, however, the interaction between pain and psychological variables is less well documented. In this review, we summarize research on the role of emotional, motivational, cognitive, and perceptual factors in PLP. The reported findings indicate that emotional factors modulate PLP but might be less important compared to other types of chronic pain. Additional factors such as the amount of disability and adjustment to the amputation appear to also play a role. Bidirectional relationships between stress and PLP have been shown quite consistently, and the potential of stress and tension reduction in PLP treatment could be further exploited. Little is known about the role of cognitive variables such as attention or expectation. Catastrophizing seems to aggravate PLP and could be targeted in treatment. Body perception is altered in PLP and poses a potential target for novel mechanistic treatments. More research on psychological factors and their interactions in PLP is needed.
Collapse
|
36
|
Persistierende Schmerzen und kortikale Reorganisation nach Makroreplantationen der oberen Extremität. Schmerz 2018; 32:207-210. [DOI: 10.1007/s00482-018-0271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Kikkert S, Johansen-Berg H, Tracey I, Makin TR. Reaffirming the link between chronic phantom limb pain and maintained missing hand representation. Cortex 2018; 106:174-184. [PMID: 30005369 PMCID: PMC6143485 DOI: 10.1016/j.cortex.2018.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/16/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Phantom limb pain (PLP) is commonly considered to be a result of maladaptive brain plasticity. This model proposes that PLP is mainly caused by reorganisation in the primary somatosensory cortex, presumably characterised by functional degradation of the missing hand representation and remapping of other body part representations. In the current study, we replicate our previous results by showing that chronic PLP correlates with maintained representation of the missing hand in the primary sensorimotor missing hand cortex. We asked unilateral upper-limb amputees to move their phantom hand, lips or other body parts and measured the associated neural responses using functional magnetic resonance imaging (fMRI). We confirm that amputees suffering from worse chronic PLP have stronger activity in the primary sensorimotor missing hand cortex while performing phantom hand movements. We find no evidence of lip representation remapping into the missing hand territory, as assessed by measuring activity in the primary sensorimotor missing hand cortex during lip movements. We further show that the correlation between chronic PLP and maintained representation of the missing hand cannot be explained by the experience of chronic non-painful phantom sensations or compensatory usage of the residual arm or an artificial arm (prosthesis). Together, our results reaffirm a likely relationship between persistent peripheral inputs pertaining to the missing hand representation and chronic PLP. Our findings emphasise a need to further study the role of peripheral inputs from the residual nerves to better understand the mechanisms underlying chronic PLP.
Collapse
Affiliation(s)
- Sanne Kikkert
- Wellcome Centre for Integrative Neuroimaging, MRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, MRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, MRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
| | - Tamar R Makin
- Wellcome Centre for Integrative Neuroimaging, MRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Institute of Cognitive Neuroscience, University College London, London, United Kingdom.
| |
Collapse
|
38
|
Ortiz-Catalan M. Restoration of somatosensory perception via electrical stimulation of peripheral nerves. Clin Neurophysiol 2018; 129:845-846. [PMID: 29395847 DOI: 10.1016/j.clinph.2018.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Max Ortiz-Catalan
- Chalmers University of Technology, Department of Electrical Engineering, Biomechatronics and Neurorehabilitation Laboratory, Hörsalsvägen 11, SE-41296 Gothenburg, Sweden; Integrum AB, Krokslätts Fabriker 50, SE-43137 Mölndal, Sweden.
| |
Collapse
|
39
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
40
|
Wakolbinger R, Diers M, Hruby LA, Sturma A, Aszmann OC. Home-Based Tactile Discrimination Training Reduces Phantom Limb Pain. Pain Pract 2017; 18:709-715. [PMID: 29105971 DOI: 10.1111/papr.12657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/25/2017] [Accepted: 10/30/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Phantom limb pain (PLP) affects a high percentage of amputees. Since treatment options are limited, low quality of life and addiction to pain medication frequently occur. New treatments, such as mirror therapy or electrical sensory discrimination training, make use of the brain's plasticity to alleviate this centrally derived pain. AIM This pilot study assessed the question of whether home-based tactile discrimination training (TDT) leads to a stronger decrease in PLP levels compared to standard massage treatment. DESIGN Controlled study. SETTING Outpatient. POPULATION Amputees (upper/lower extremity) with a PLP score of 4 or higher out of a possible 10 points on the visual analog scale. METHODS Eight patients participated in the study. The treatment phase comprised 2 weeks (15 minutes daily). Subjects were examined at baseline, after treatment, 2 weeks after completing treatment, and 4 weeks after completing treatment. Pain was assessed using the West Haven-Yale Multidimensional Pain Inventory. RESULTS There was a significantly stronger reduction in PLP in the treatment group receiving TDT. PLP intensity ratings were significantly reduced at the end of therapy, and at 2 and 4 weeks after completing treatment compared to pretreatment. CONCLUSIONS TDT seems to be an easy, cheap, time-effective, and safe method to achieve sustained alleviation of PLP and also brings about a positive change in body image. REHABILITATION IMPACT Home-based TDT could achieve a sustained reduction in PLP and should be considered as a possible alternative to established treatment methods.
Collapse
Affiliation(s)
- Robert Wakolbinger
- Christian Doppler Laboratory for Restoration of Extremity Function and Rehabilitation, Medical University of Vienna, Vienna, Austria.,Department of Physical Medicine and Rehabilitation, Danube Hospital-Social Medical Center East, Vienna, Austria
| | - Martin Diers
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany.,Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health/Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Laura A Hruby
- Christian Doppler Laboratory for Restoration of Extremity Function and Rehabilitation, Medical University of Vienna, Vienna, Austria
| | - Agnes Sturma
- Christian Doppler Laboratory for Restoration of Extremity Function and Rehabilitation, Medical University of Vienna, Vienna, Austria.,Health Assisting Engineering, University of Applied Sciences FH Campus, Vienna, Austria
| | - Oskar C Aszmann
- Christian Doppler Laboratory for Restoration of Extremity Function and Rehabilitation, Medical University of Vienna, Vienna, Austria.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Nierula B, Martini M, Matamala-Gomez M, Slater M, Sanchez-Vives MV. Seeing an Embodied Virtual Hand is Analgesic Contingent on Colocation. THE JOURNAL OF PAIN 2017; 18:645-655. [DOI: 10.1016/j.jpain.2017.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
42
|
Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury. eNeuro 2017; 4:eN-NWR-0345-16. [PMID: 28396882 PMCID: PMC5378058 DOI: 10.1523/eneuro.0345-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/22/2017] [Accepted: 03/03/2017] [Indexed: 01/12/2023] Open
Abstract
Plastic changes in the CNS in response to peripheral sensory nerve injury are a series of complex processes, ranging from local circuit remodeling to somatotopic reorganization. However, the link between circuit remodeling and somatotopic reorganization remains unclear. We have previously reported that transection of the primary whisker sensory nerve causes the abnormal rewiring of lemniscal fibers (sensory afferents) on a neuron in the mouse whisker sensory thalamus (V2 VPM). In the present study, using transgenic mice whose lemniscal fibers originate from the whisker sensory principle trigeminal nucleus (PrV2) are specifically labeled, we identified that the transection induced retraction of PrV2-originating lemniscal fibers and invasion of those not originating from PrV2 in the V2 VPM. This anatomical remodeling with somatotopic reorganization was highly correlated with the rewiring of lemniscal fibers. Origins of the non-PrV2-origin lemniscal fibers in the V2 VPM included the mandibular subregion of trigeminal nuclei and the dorsal column nuclei (DCNs), which normally represent body parts other than whiskers. The transection also resulted in ectopic receptive fields of V2 VPM neurons and extraterritorial pain behavior on the uninjured mandibular region of the face. The anatomical remodeling, emergence of ectopic receptive fields, and extraterritorial pain behavior all concomitantly developed within a week and lasted more than three months after the transection. Our findings, thus, indicate a strong linkage between these plastic changes after peripheral sensory nerve injury, which may provide a neural circuit basis underlying large-scale reorganization of somatotopic representation and abnormal ectopic sensations.
Collapse
|
43
|
The Transition of Acute Postoperative Pain to Chronic Pain: An Integrative Overview of Research on Mechanisms. THE JOURNAL OF PAIN 2017; 18:359.e1-359.e38. [DOI: 10.1016/j.jpain.2016.11.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 10/15/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
|
44
|
TOITA J, NAITO T, HIRAGA Y, HIRAKAWA Y. Two Cases of Successful Phantom Limb Pain Treatment: Acquisition of Phantom Limb Movement and Phantom Limb Removal. ACTA ACUST UNITED AC 2017. [DOI: 10.1589/rika.32.589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Junichi TOITA
- Department of Rehabilitation, Fukuoka Rehabilitation Hospital
| | - Takuya NAITO
- Department of Rehabilitation, Fukuoka Rehabilitation Hospital
- Physical Therapy Section, Health Sciences Program, Health and Welfare Sciences Course, Graduate School of International University of Health and Welfare
| | - Yuki HIRAGA
- Department of Rehabilitation, Fukuoka Rehabilitation Hospital
| | | |
Collapse
|
45
|
Ortiz-Catalan M, Guðmundsdóttir RA, Kristoffersen MB, Zepeda-Echavarria A, Caine-Winterberger K, Kulbacka-Ortiz K, Widehammar C, Eriksson K, Stockselius A, Ragnö C, Pihlar Z, Burger H, Hermansson L. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet 2016; 388:2885-2894. [PMID: 27916234 DOI: 10.1016/s0140-6736(16)31598-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Phantom limb pain is a debilitating condition for which no effective treatment has been found. We hypothesised that re-engagement of central and peripheral circuitry involved in motor execution could reduce phantom limb pain via competitive plasticity and reversal of cortical reorganisation. METHODS Patients with upper limb amputation and known chronic intractable phantom limb pain were recruited at three clinics in Sweden and one in Slovenia. Patients received 12 sessions of phantom motor execution using machine learning, augmented and virtual reality, and serious gaming. Changes in intensity, frequency, duration, quality, and intrusion of phantom limb pain were assessed by the use of the numeric rating scale, the pain rating index, the weighted pain distribution scale, and a study-specific frequency scale before each session and at follow-up interviews 1, 3, and 6 months after the last session. Changes in medication and prostheses were also monitored. Results are reported using descriptive statistics and analysed by non-parametric tests. The trial is registered at ClinicalTrials.gov, number NCT02281539. FINDINGS Between Sept 15, 2014, and April 10, 2015, 14 patients with intractable chronic phantom limb pain, for whom conventional treatments failed, were enrolled. After 12 sessions, patients showed statistically and clinically significant improvements in all metrics of phantom limb pain. Phantom limb pain decreased from pre-treatment to the last treatment session by 47% (SD 39; absolute mean change 1·0 [0·8]; p=0·001) for weighted pain distribution, 32% (38; absolute mean change 1·6 [1·8]; p=0·007) for the numeric rating scale, and 51% (33; absolute mean change 9·6 [8·1]; p=0·0001) for the pain rating index. The numeric rating scale score for intrusion of phantom limb pain in activities of daily living and sleep was reduced by 43% (SD 37; absolute mean change 2·4 [2·3]; p=0·004) and 61% (39; absolute mean change 2·3 [1·8]; p=0·001), respectively. Two of four patients who were on medication reduced their intake by 81% (absolute reduction 1300 mg, gabapentin) and 33% (absolute reduction 75 mg, pregabalin). Improvements remained 6 months after the last treatment. INTERPRETATION Our findings suggest potential value in motor execution of the phantom limb as a treatment for phantom limb pain. Promotion of phantom motor execution aided by machine learning, augmented and virtual reality, and gaming is a non-invasive, non-pharmacological, and engaging treatment with no identified side-effects at present. FUNDING Promobilia Foundation, VINNOVA, Jimmy Dahlstens Fond, PicoSolve, and Innovationskontor Väst.
Collapse
Affiliation(s)
- Max Ortiz-Catalan
- Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden; Centre for Advanced Reconstruction of Extremities, Sahlgrenska University Hospital, Mölndal, Sweden; Integrum AB, Mölndal, Sweden.
| | - Rannveig A Guðmundsdóttir
- Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden; Integrum AB, Mölndal, Sweden
| | - Morten B Kristoffersen
- Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden; Integrum AB, Mölndal, Sweden
| | - Alejandra Zepeda-Echavarria
- Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden; Integrum AB, Mölndal, Sweden
| | | | - Katarzyna Kulbacka-Ortiz
- Centre for Advanced Reconstruction of Extremities, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Cathrine Widehammar
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Pediatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Karin Eriksson
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | | | - Zdenka Pihlar
- University Rehabilitation Institute, Ljubljana, Slovenia
| | - Helena Burger
- University Rehabilitation Institute, Ljubljana, Slovenia
| | - Liselotte Hermansson
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Prosthetics and Orthotics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
46
|
Falling C, Mani R. Regional asymmetry, obesity and gender determines tactile acuity of the knee regions: A cross-sectional study. ACTA ACUST UNITED AC 2016; 26:150-157. [DOI: 10.1016/j.math.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/23/2016] [Accepted: 08/01/2016] [Indexed: 01/11/2023]
|
47
|
Brugger P, Christen M, Jellestad L, Hänggi J. Limb amputation and other disability desires as a medical condition. Lancet Psychiatry 2016; 3:1176-1186. [PMID: 27889011 DOI: 10.1016/s2215-0366(16)30265-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 10/20/2022]
Abstract
Some people have a profound dissatisfaction with what is considered an able-bodied state by most others. These individuals desire to be disabled, by conventional standards. In this Review, we integrate research findings about the desire for a major limb amputation or paralysis (xenomelia). Neuropsychological and neuroimaging explorations of xenomelia show functional and structural abnormalities in predominantly right hemisphere cortical circuits of higher-order bodily representation, including affective and sexual aspects of corporeal awareness. These neural underpinnings of xenomelia do not necessarily imply a neurological cause, and a full understanding of the condition requires consideration of the interface between neural and social contributions to the bodily self and the concept of disability. Irrespective of cause, disability desires are accompanied by a disabling bodily dysphoria, in many respects similar to gender dysphoria, and we suggest that they should be considered a mental disorder.
Collapse
Affiliation(s)
- Peter Brugger
- Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Markus Christen
- University Research Priority Program Ethics, University of Zurich, Zurich, Switzerland
| | - Lena Jellestad
- Department of Psychiatry and Psychotherapy, University Hospital Zurich, Zurich, Switzerland
| | - Jürgen Hänggi
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Pazzaglia M, Zantedeschi M. Plasticity and Awareness of Bodily Distortion. Neural Plast 2016; 2016:9834340. [PMID: 27630779 PMCID: PMC5007354 DOI: 10.1155/2016/9834340] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022] Open
Abstract
Knowledge of the body is filtered by perceptual information, recalibrated through predominantly innate stored information, and neurally mediated by direct sensory motor information. Despite multiple sources, the immediate prediction, construction, and evaluation of one's body are distorted. The origins of such distortions are unclear. In this review, we consider three possible sources of awareness that inform body distortion. First, the precision in the body metric may be based on the sight and positioning sense of a particular body segment. This view provides information on the dual nature of body representation, the reliability of a conscious body image, and implicit alterations in the metrics and positional correspondence of body parts. Second, body awareness may reflect an innate organizational experience of unity and continuity in the brain, with no strong isomorphism to body morphology. Third, body awareness may be based on efferent/afferent neural signals, suggesting that major body distortions may result from changes in neural sensorimotor experiences. All these views can be supported empirically, suggesting that body awareness is synthesized from multimodal integration and the temporal constancy of multiple body representations. For each of these views, we briefly discuss abnormalities and therapeutic strategies for correcting the bodily distortions in various clinical disorders.
Collapse
Affiliation(s)
- Mariella Pazzaglia
- Department of Psychology, University of Rome “La Sapienza,” Via dei Marsi 78, 00185 Rome, Italy
- IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
| | - Marta Zantedeschi
- Department of Psychology, University of Rome “La Sapienza,” Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
49
|
Pinto CB, Saleh Velez FG, Bolognini N, Crandell D, Merabet LB, Fregni F. Optimizing Rehabilitation for Phantom Limb Pain Using Mirror Therapy and Transcranial Direct Current Stimulation: A Randomized, Double-Blind Clinical Trial Study Protocol. JMIR Res Protoc 2016; 5:e138. [PMID: 27383993 PMCID: PMC4954918 DOI: 10.2196/resprot.5645] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/30/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
Background Despite the multiple available pharmacological and behavioral therapies for the management of chronic phantom limb pain (PLP) in lower limb amputees, treatment for this condition is still a major challenge and the results are mixed. Given that PLP is associated with maladaptive brain plasticity, interventions that promote cortical reorganization such as non-invasive brain stimulation and behavioral methods including transcranial direct current stimulation (tDCS) and mirror therapy (MT), respectively, may prove to be beneficial to control pain in PLP. Due to its complementary effects, a combination of tDCS and MT may result in synergistic effects in PLP. Objective The objective of this study is to evaluate the efficacy of tDCS and MT as a rehabilitative tool for the management of PLP in unilateral lower limb amputees. Methods A prospective, randomized, placebo-controlled, double-blind, factorial, superiority clinical trial will be carried out. Participants will be eligible if they meet the following inclusion criteria: lower limb unilateral traumatic amputees that present PLP for at least 3 months after the amputated limb has completely healed. Participants (N=132) will be randomly allocated to the following groups: (1) active tDCS and active MT, (2) sham tDCS and active MT, (3) active tDCS and sham MT, and (4) sham tDCS and sham MT. tDCS will be applied with the anodal electrode placed over the primary motor cortex (M1) contralateral to the amputation side and the cathode over the contralateral supraorbital area. Stimulation will be applied at the same time of the MT protocol with the parameters 2 mA for 20 minutes. Pain outcome assessments will be performed at baseline, before and after each intervention session, at the end of MT, and in 2 follow-up visits. In order to assess cortical reorganization and correlate with clinical outcomes, participants will undergo functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) before and after the intervention. Results This clinical trial received institutional review board (IRB) approval in July of 2015 and enrollment started in December of 2015. To date 2 participants have been enrolled. The estimate enrollment rate is about 30 to 35 patients per year; thus we expect to complete enrollment in 4 years. Conclusions This factorial design will provide relevant data to evaluate whether tDCS combined with MT is more effective than each therapy alone, as well as with no intervention (sham/sham) in patients with chronic PLP after unilateral lower limb amputation. In addition, this randomized clinical trial will help to investigate the neurophysiological mechanisms underlying the disease, which could potentially provide relevant findings for further management of this chronic condition and also help to optimize the use of this novel intervention. Trial Registration Clinicaltrials.gov NCT02487966; https://clinicaltrials.gov/ct2/show/NCT02487966 (Archived by WebCite at http://www.webcitation.org/6i3GrKMyf)
Collapse
Affiliation(s)
- Camila Bonin Pinto
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Physics and Rehabilitation Department, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | | | | | | |
Collapse
|
50
|
Rafferty M, Bennett Britton TM, Drew BT, Phillip RD. Cross-sectional study of alteration of phantom limb pain with visceral stimulation in military personnel with amputation. ACTA ACUST UNITED AC 2016; 52:441-8. [PMID: 26360529 DOI: 10.1682/jrrd.2014.04.0114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 03/25/2015] [Indexed: 11/05/2022]
Abstract
While phantom limb pain is a well-recognized phenomenon, clinical experience has suggested that the augmentation of phantom limb pain with visceral stimulation is an issue for many military personnel with amputation (visceral stimulation being the sensation of the bowel or bladder either filling or evacuating). However, the prevalence of this phenomenon is not known. The aim of this study was to investigate the prevalence of the alteration in phantom limb pain and the effect that visceral stimulation has on phantom limb pain intensity. A cross-sectional study of 75 military personnel who have lost one or both lower limbs completed a questionnaire to assess the prevalence of the alteration of phantom limb pain with visceral stimulation. Included in the questionnaire was a pain visual analog scale (VAS) graded from 0 to 10. Patients recorded the presence and intensity of phantom limb pain. They also recorded whether and how this pain altered with a need to micturate or micturition, and/or a need to defecate or defecation, again using a pain VAS. Time since amputation, level of amputation, and medications were also recorded. Patients reported a phantom limb pain prevalence of 85% with a mean VAS of 3.6. In all, 56% of patients reported a change in the severity of phantom limb pain with visceral stimuli. The mean increase in VAS for visceral stimulation was 2.5 +/- 1.6 for bladder stimulation and 2.9 +/- 2.0 for bowel stimulation. Of the patients questioned, 65% reported an improvement in symptoms over time. VAS scores were highest in the subgroup less than 6 mo postamputation. An increase in phantom limb pain with visceral stimulation is a common problem for military personnel with amputation.
Collapse
Affiliation(s)
- Michael Rafferty
- Defence Medical Rehabilitation Centre Headley Court, Headley, Epsom, Surrey, United Kingdom
| | | | | | | |
Collapse
|