1
|
Black SAG, Ribeiro FM, Ferguson SSG, Rylett RJ. Rapid, transient effects of the protein kinase C activator phorbol 12-myristate 13-acetate on activity and trafficking of the rat high-affinity choline transporter. Neuroscience 2010; 167:765-73. [PMID: 20167259 DOI: 10.1016/j.neuroscience.2010.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/05/2010] [Accepted: 02/11/2010] [Indexed: 11/24/2022]
Abstract
Cholinergic neurons rely on the sodium-dependent choline transporter CHT to provide choline for synthesis of acetylcholine. CHT cycles between cell surface and subcellular organelles, but little is known about regulation of this trafficking. We hypothesized that activation of protein kinase C with phorbol ester modulates choline uptake by altering the rate of CHT internalization from or delivery to the plasma membrane. Using SH-SY5Y cells that stably express rat CHT, we found that exposure of cells to phorbol ester for 2 or 5 min significantly increased choline uptake, whereas longer treatment had no effect. Kinetic analysis revealed that 5 min phorbol ester treatment significantly enhanced V(max) of choline uptake, but had no effect on K(m) for solute binding. Cell-surface biotinylation assays showed that plasma membrane levels of CHT protein were enhanced following 5 min phorbol ester treatment; this was blocked by protein kinase C inhibitor bisindolylmaleimide-I. Moreover, CHT internalization was decreased and delivery of CHT to plasma membrane was increased by phorbol ester. Our results suggest that treatment of neural cells with the protein kinase C activator phorbol ester rapidly and transiently increases cell surface CHT levels and this corresponds with enhanced choline uptake activity which may play an important role in replenishing acetylcholine stores following its release by depolarization.
Collapse
Affiliation(s)
- S A G Black
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
2
|
Ivy MT, Newkirk RF, Wang Y, Townsel JG. A novel choline cotransporter sequestration compartment in cholinergic neurons revealed by selective endosomal ablation. J Neurochem 2009; 112:1295-304. [PMID: 20015153 DOI: 10.1111/j.1471-4159.2009.06543.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sodium-dependent, high affinity choline transporter - choline cotransporter - (ChCoT, aka: cho-1, CHT1, CHT) undergoes constitutive and regulated trafficking between the plasma membrane and cytoplasmic compartments. The pathways and regulatory mechanisms of this trafficking are not well understood. We report herein studies involving selective endosomal ablation to further our understanding of the trafficking of the ChCoT. Selective ablation of early sorting and recycling endosomes resulted in a decrease of approximately 75% of [3H]choline uptake and approximately 70% of [3H]hemicholinium-3 binding. Western blot analysis showed that ablation produced a similar decrease in ChCoTs in the plasma membrane subcellular fraction. The time frame for this loss was approximately 2 h which has been shown to be the constitutive cycling time for ChCoTs in this tissue. Ablation appears to be dependent on the intracellular cycling of transferrin-conjugated horseradish peroxidase and the selective deposition of transferrin-conjugated horseradish peroxidase in early endosomes, both sorting and recycling. Ablated brain slices retained their capacity to recruit via regulated trafficking ChCoTs to the plasma membrane. This recruitment of ChCoTs suggests that the recruitable compartment is distinct from the early endosomes. It will be necessary to do further studies to identify the novel sequestration compartment supportive of the ChCoT regulated trafficking.
Collapse
Affiliation(s)
- Michael T Ivy
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | | | | | | |
Collapse
|
3
|
MKC-231, a choline uptake enhancer: (3) mode of action of MKC-231 in the enhancement of high-affinity choline uptake. J Neural Transm (Vienna) 2008; 115:1037-46. [DOI: 10.1007/s00702-008-0049-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
|
4
|
Ribeiro FM, Pinthong M, Black SAG, Gordon AC, Prado VF, Prado MAM, Rylett RJ, Ferguson SSG. Regulated recycling and plasma membrane recruitment of the high-affinity choline transporter. Eur J Neurosci 2008; 26:3437-48. [PMID: 18088276 DOI: 10.1111/j.1460-9568.2007.05967.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The high-affinity choline transporter (CHT1) is responsible for uptake of choline from the synaptic cleft and supplying choline for acetylcholine synthesis. CHT1 internalization by clathrin-coated vesicles is proposed to represent a mechanism by which high-affinity choline uptake can be modulated. We show here that internalized CHT1 is rapidly recycled back to the cell surface in both human embryonic kidney cells (HEK 293 cells) and SH-SY5Y neuroblastoma cells. This rapidly recycling pool of CHT1 comprises about 10% of total CHT1 protein. In the SH-SY5Y neuroblastoma cell line K(+)-depolarization promotes Ca(2+)-dependent increase in the rate of CHT1 recycling to the plasma membrane without affecting the rate of CHT1 internalization. K(+)-depolarization also increases the size of the pool of CHT1 protein that can be mobilized to the plasma membrane. Thus, the activity-dependent increase in plasma membrane CHT1 localization appears to be regulated by two mechanisms: (i) an increase in the rate of externalization of the intracellular CHT1 pool; and (ii) the recruitment of additional intracellular transporters to the recycling pool.
Collapse
Affiliation(s)
- Fabiola M Ribeiro
- Cell Biology Research Group, Robarts Research Institute London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Silva VS, Nunes MA, Cordeiro JM, Calejo AI, Santos S, Neves P, Sykes A, Morgado F, Dunant Y, Gonçalves PP. Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase. Toxicology 2007; 236:158-77. [PMID: 17560001 DOI: 10.1016/j.tox.2007.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/16/2007] [Accepted: 04/10/2007] [Indexed: 11/25/2022]
Abstract
Closing the gap between adverse health effects of aluminum and its mechanisms of action still represents a huge challenge. Cholinergic dysfunction has been implicated in neuronal injury induced by aluminum. Previously reported data also indicate that in vivo and in vitro exposure to aluminum inhibits the mammalian (Na(+)/K(+))ATPase, an ubiquitous plasma membrane pump. This study was undertaken with the specific aim of determining whether in vitro exposure to AlCl(3) and ouabain, the foremost utilized selective inhibitor of (Na(+)/K(+))ATPase, induce similar functional modifications of cholinergic presynaptic nerve terminals, by comparing their effects on choline uptake, acetylcholine release and (Na(+)/K(+))ATPase activity, on subcellular fractions enriched in synaptic nerve endings isolated from rat brain, cuttlefish optic lobe and torpedo electric organ. Results obtained show that choline uptake by rat synaptosomes was inhibited by submillimolar AlCl(3), whereas the amount of choline taken up by synaptosomes isolated from cuttlefish and torpedo remained unchanged. Conversely, choline uptake was reduced by ouabain to a large extent in all synaptosomal preparations analyzed. In contrast to ouabain, which modified the K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions, AlCl(3) induced reduction of stimulated acetylcholine release was only observed when rat synaptosomes were challenged. Finally, it was observed that the aluminum effect on cuttlefish and torpedo synaptosomal (Na(+)/K(+))ATPase activity was slight when compared to its inhibitory action on mammalian (Na(+)/K(+))ATPase. In conclusion, inhibition of (Na(+)/K(+))ATPase by AlCl(3) and ouabain jeopardized the high-affinity (Na(+)-dependent, hemicholinium-3 sensitive) uptake of choline and the Ca(2+)-dependent, K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions. The effects of submillimolar AlCl(3) on choline uptake and acetylcholine release only resembled those of ouabain when rat synaptosomes were assayed. Therefore, important differences were found between the species regarding the cholinotoxic action of aluminum. The variability of (Na(+)/K(+))ATPase sensitivity to aluminum of cholinergic neurons might contribute to their differential susceptibility to this neurotoxic agent.
Collapse
Affiliation(s)
- Virgília S Silva
- CESAM, Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ribeiro FM, Black SAG, Prado VF, Rylett RJ, Ferguson SSG, Prado MAM. The "ins" and "outs" of the high-affinity choline transporter CHT1. J Neurochem 2006; 97:1-12. [PMID: 16524384 DOI: 10.1111/j.1471-4159.2006.03695.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maintenance of acetylcholine (ACh) synthesis depends on the activity of the high-affinity choline transporter (CHT1), which is responsible for the reuptake of choline from the synaptic cleft into presynaptic neurons. In this review, we discuss the current understanding of mechanisms involved in the cellular trafficking of CHT1. CHT1 protein is mainly found in intracellular organelles, such as endosomal compartments and synaptic vesicles. The presence of CHT1 at the plasma membrane is limited by rapid endocytosis of the transporter in clathrin-coated pits in a mechanism dependent on a dileucine-like motif present in the carboxyl-terminal region of the transporter. The intracellular pool of CHT1 appears to constitute a reserve pool of transporters, important for maintenance of cholinergic neurotransmission. However, the physiological basis of the presence of CHT1 in intracellular organelles is not fully understood. Current knowledge about CHT1 indicates that stimulated and constitutive exocytosis, in addition to endocytosis, will have major consequences for regulating choline uptake. Future investigations of CHT1 trafficking should elucidate such regulatory mechanisms, which may aid in understanding the pathophysiology of diseases that affect cholinergic neurons, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Fabiola M Ribeiro
- Departamento de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Gates J, Ferguson SM, Blakely RD, Apparsundaram S. Regulation of choline transporter surface expression and phosphorylation by protein kinase C and protein phosphatase 1/2A. J Pharmacol Exp Ther 2004; 310:536-45. [PMID: 15064333 DOI: 10.1124/jpet.104.066795] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Na(+)/Cl(-)-dependent, hemicholinium-3-sensitive choline transporter (CHT) provides choline for acetylcholine biosynthesis. Recent studies show that CHT contains canonical protein kinase C (PKC) serine and threonine residues. We examined the ability of PKC and serine/threonine protein phosphatase 1/2A (PP1/PP2A) to regulate CHT function, surface expression, and phosphorylation. In mouse crude striatal and hippocampal synaptosomes, PKC activators beta-phorbol 12-myristate 13-acetate (beta-PMA) and beta-phorbol 12,13-dibutyrate produced time- and concentration-dependent reductions in CHT function. PP1/PP2A inhibitors okadaic acid (OKA) and calyculin A (CL-A) produced a time- and concentration-dependent decrease in CHT function. However, tautomycin (PP1 inhibitor) and cyclosporin A (PP2B inhibitor) failed to alter CHT-mediated choline uptake. Choline transport kinetic studies following beta-PMA, OKA, and CL-A treatment revealed a reduction in the maximal choline transport velocity (V(max)) with no change in K(m) for choline. These modulators also produced no change in the total levels of CHT protein in the crude hippocampal and striatal synaptosomes; however, surface biotinylation studies using the membrane-impermeant N-hydroxysuccinimide-biotin in crude synaptosomes following treatment with beta-PMA, OKA, and CL-A indicate significant reductions of CHT levels in biotinylated fractions. Pretreatment with OKA alone, but not beta-PMA, significantly augmented the phosphorylation level of CHT proteins. Our findings suggest that neuronal PKC and PP1/PP2A activity may establish the level of function and surface expression of CHT. These studies also provide the first evidence that CHT is a phosphoprotein and that the basal PP1/PP2A activity may have a dominant role in controlling the levels of CHT phosphorylation.
Collapse
Affiliation(s)
- Jeremiah Gates
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, 306 Whitney-Hendrickson Building, 800 Rose Street, Lexington, KY 40536-0098, USA
| | | | | | | |
Collapse
|
8
|
Wang Y, Cao Z, Xu W, Kemp MD, McAdory BS, Newkirk RF, Ivy MT, Townsel JG. Cloning and partial characterization of four plasmalemmal-associated syntaxin isoforms in Limulus. Gene 2004; 326:189-99. [PMID: 14729277 DOI: 10.1016/j.gene.2003.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We describe herein the cloning of a group of syntaxins in Limulus that are associated with the plasma membrane. Initially, multiple degenerate oligonucleotide primers (DOP) and probes were designed from sequences of known plasma membrane associated syntaxins. Combined experiments using reverse transcriptase-polymerase chain reaction (RT-PCR), colony hybridization and reverse dot blot yielded three distinct probes. Subsequently, two cDNA libraries derived from the Limulus central nervous system (CNS) were screened and four distinct isoforms, designated Limulus syntaxin (Lim-syn) 1A, 1B, 1C and 1D, were obtained from forty cloned full-length sequences. The predicted amino acid (aa) sequences 1-265 were identical for Lim-syn 1A, 1C and for Lim-syn 1B, 1D, respectively. A comparison of the 265 aa cytoplasmic segments for the two subgroups Lim-syn 1A/1C and Lim-syn 1B/1D differed at 13 aa residues within this sequence. Lim-syn 1A and 1B contained 290 aa residues, and both contained a transmembrane domain (TMD, 267-288) and a myristylation-like site (286-290) at the C-termini. Lim-syn 1C (291 residues) contained only the TMD whereas Lim-syn 1D was truncated (277 residues) and had neither a TMD nor a myristylation-like site. All Lim-syn isoforms showed great identity with syntaxin 1-homologs (syntaxin 1A/1B) from various other species. Ribonuclease protection assay (RPA) analyses revealed distinctive expression patterns for individual Lim-syn transcripts but all were detectable in the CNS. Moreover, the antibody (anti-Lim-syn-1) produced against aa 133-145 epitope of Lim-syn identified a protein of approximately 35 kDa found only in CNS tissues.
Collapse
Affiliation(s)
- Yilun Wang
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ribeiro FM, Alves-Silva J, Volknandt W, Martins-Silva C, Mahmud H, Wilhelm A, Gomez MV, Rylett RJ, Ferguson SSG, Prado VF, Prado MAM. The hemicholinium-3 sensitive high affinity choline transporter is internalized by clathrin-mediated endocytosis and is present in endosomes and synaptic vesicles. J Neurochem 2003; 87:136-46. [PMID: 12969261 DOI: 10.1046/j.1471-4159.2003.01974.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synthesis of acetylcholine depends on the plasma membrane uptake of choline by a high affinity choline transporter (CHT1). Choline uptake is regulated by nerve impulses and trafficking of an intracellular pool of CHT1 to the plasma membrane may be important for this regulation. We have generated a hemagglutinin (HA) epitope tagged CHT1 to investigate the organelles involved with intracellular trafficking of this protein. Expression of CHT1-HA in HEK 293 cells establishes Na+-dependent, hemicholinium-3 sensitive high-affinity choline transport activity. Confocal microscopy reveals that CHT1-HA is found predominantly in intracellular organelles in three different cell lines. Importantly, CHT1-HA seems to be continuously cycling between the plasma membrane and endocytic organelles via a constitutive clathrin-mediated endocytic pathway. In a neuronal cell line, CHT1-HA colocalizes with the early endocytic marker green fluorescent protein (GFP)-Rab 5 and with two markers of synaptic-like vesicles, VAMP-myc and GFP-VAChT, suggesting that in cultured cells CHT1 is present mainly in organelles of endocytic origin. Subcellular fractionation and immunoisolation of organelles from rat brain indicate that CHT1 is present in synaptic vesicles. We propose that intracellular CHT1 can be recruited during stimulation to increase choline uptake in nerve terminals.
Collapse
Affiliation(s)
- F M Ribeiro
- Laboratório de Neurobiologia Molecular, Departamento de Bioquímica-Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|