1
|
Gay SM, Brett CA, Stinson JPC, Gabriele ML. Alignment of EphA4 and ephrin-B2 expression patterns with developing modularity in the lateral cortex of the inferior colliculus. J Comp Neurol 2018; 526:2706-2721. [PMID: 30156295 DOI: 10.1002/cne.24525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023]
Abstract
In the multimodal lateral cortex of the inferior colliculus (LCIC), there are two neurochemically and connectionally distinct compartments, termed modular and extramodular zones. Modular fields span LCIC layer 2 and are recipients of somatosensory afferents, while encompassing extramodular domains receive auditory inputs. Recently, in developing mice, we identified several markers (among them glutamic acid decarboxylase, GAD) that consistently label the same modular set, and a reliable extramodular marker, calretinin, (CR). Previous reports from our lab show similar modular-extramodular patterns for certain Eph-ephrin guidance members, although their precise alignment with the developing LCIC neurochemical framework has yet to be addressed. Here we confirm in the nascent LCIC complementary GAD/CR-positive compartments, and characterize the registry of EphA4 and ephrin-B2 expression patterns with respect to its emerging modular-extramodular organization. Immunocytochemical approaches in GAD67-GFP knock-in mice reveal patchy EphA4 and ephrin-B2 domains that precisely align with GAD-positive LCIC modules, and are complementary to CR-defined extramodular zones. Such patterning was detectable neonatally, yielding discrete compartments prior to hearing onset. A dense plexus of EphA4-positive fibers filled modules, surrounding labeled ephrin-B2 and GAD cell populations. The majority of observed GABAergic neurons within modular boundaries were also positive for ephrin-B2. These results suggest an early compartmentalization of the LCIC that is likely instructed in part through Eph-ephrin guidance mechanisms. The overlap of developing LCIC neurochemical and guidance patterns is discussed in the context of its seemingly segregated multimodal input-output streams.
Collapse
Affiliation(s)
- Sean M Gay
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Cooper A Brett
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | | | - Mark L Gabriele
- Department of Biology, James Madison University, Harrisonburg, Virginia
| |
Collapse
|
2
|
Humpel C. Organotypic brain slice cultures: A review. Neuroscience 2015; 305:86-98. [PMID: 26254240 PMCID: PMC4699268 DOI: 10.1016/j.neuroscience.2015.07.086] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/27/2022]
Abstract
In vitro cell cultures are an important tool for obtaining insights into cellular processes in an isolated system and a supplement to in vivo animal experiments. While primary dissociated cultures permit a single homogeneous cell population to be studied, there is a clear need to explore the function of brain cells in a three-dimensional system where the main architecture of the cells is preserved. Thus, organotypic brain slice cultures have proven to be very useful in investigating cellular and molecular processes of the brain in vitro. This review summarizes (1) the historical development of organotypic brain slices focusing on the membrane technology, (2) methodological aspects regarding culturing procedures, age of donors or media, (3) whether the cholinergic neurons serve as a model of neurodegeneration in Alzheimer’s disease, (4) or the nigrostriatal dopaminergic neurons as a model of Parkinson’s disease and (5) how the vascular network can be studied, especially with regard to a synthetic blood–brain barrier. This review will also highlight some limits of the model and give an outlook on future applications.
Collapse
Affiliation(s)
- C Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Ullrich C, Daschil N, Humpel C. Organotypic vibrosections: novel whole sagittal brain cultures. J Neurosci Methods 2011; 201:131-41. [PMID: 21835204 PMCID: PMC3176904 DOI: 10.1016/j.jneumeth.2011.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 10/27/2022]
Abstract
In vitro cell culture models are of enormous importance in neuroscience research and organotypic brain slices are found to be a potent model very close to the in vivo situation. Brain slices can be cultured as single slices or as co-slices. However, there is need to culture whole brain sections, containing the complex functional architecture. The aim of the present study was to develop and characterize whole brain sagittal slice cultures (200μm organotypic vibrosections) from postnatal day 8 rats. We show that sagittal vibrosections can be cultured for several weeks and they maintain survival of cholinergic and dopaminergic neurons, as well as a strong capillary network. Partly long-distance cortico-striatal and cortico-hippocampal nerve fibers were found using Mini-Ruby neurotracing. Dopaminergic nerve fibers extended from the mesencephalon, but in the striato-nigral tract and in the striatum only strong dense varicosities were found. The model also allows to study pathological triggers, such as e.g. hydrogen peroxide markedly increased propidiumiodide-positive nuclei in the hippocampus. In conclusion, our novel model provides an easy potent whole sagittal brain culture system that allows to study cholinergic and dopaminergic neurons together but also in close interaction with all other cells of the brain and with capillaries. It will be a great challenge in future to use this model to re-construct whole pathways. This vibrosection model may partly represent a close adult in vivo situation, which allows to study neurodegeneration and neuroprotection of cholinergic and dopaminergic neurons, which plays an important role in Alzheimer's and Parkinson's disease, respectively.
Collapse
Affiliation(s)
- Celine Ullrich
- Laboratory of Psychiatry and Exp. Alzheimeŕs Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Austria
| | | | | |
Collapse
|
4
|
Schock SC, Jolin-Dahel KS, Schock PC, Staines WA, Garcia-Munoz M, Arbuthnott GW. Striatal interneurons in dissociated cell culture. Histochem Cell Biol 2010; 134:1-12. [PMID: 20490535 PMCID: PMC2892084 DOI: 10.1007/s00418-010-0707-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2010] [Indexed: 11/20/2022]
Abstract
In addition to the well-characterized direct and indirect projection neurons there are four major interneuron types in the striatum. Three contain GABA and either parvalbumin, calretinin or NOS/NPY/somatostatin. The fourth is cholinergic. It might be assumed that dissociated cell cultures of striatum (typically from embryonic day E18.5 in rat and E14.5 for mouse) contain each of these neuronal types. However, in dissociated rat striatal (caudate/putamen, CPu) cultures arguably the most important interneuron, the giant aspiny cholinergic neuron, is not present. When dissociated striatal neurons from E14.5 Sprague–Dawley rats were mixed with those from E18.5 rats, combined cultures from these two gestational periods yielded surviving cholinergic interneurons and representative populations of the other interneuron types at 5 weeks in vitro. Neurons from E12.5 CD-1 mice were combined with CPu neurons from E14.5 mice and the characteristics of striatal interneurons after 5 weeks in vitro were determined. All four major classes of interneurons were identified in these cultures as well as rare tyrosine hydroxylase positive interneurons. However, E14.5 mouse CPu cultures contained relatively few cholinergic interneurons rather than the nearly total absence seen in the rat. A later dissection day (E16.5) was required to obtain mouse CPu cultures totally lacking the cholinergic interneuron. We show that these cultures generated from two gestational age cells have much more nearly normal proportions of interneurons than the more common organotypic cultures of striatum. Interneurons are generated from both ages of embryos except for the cholinergic interneurons that originate from the medial ganglionic eminence of younger embryos. Study of these cultures should more accurately reflect neuronal processing as it occurs in the striatum in vivo. Furthermore, these results reveal a procedure for parallel culture of striatum and cholinergic depleted striatum that can be used to examine the function of the cholinergic interneuron in striatal networks.
Collapse
Affiliation(s)
- S C Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 2009; 88:221-45. [DOI: 10.1016/j.pneurobio.2009.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/09/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
|
6
|
Passante L, Gaspard N, Degraeve M, Frisén J, Kullander K, De Maertelaer V, Vanderhaeghen P. Temporal regulation of ephrin/Eph signalling is required for the spatial patterning of the mammalian striatum. Development 2008; 135:3281-90. [PMID: 18755772 DOI: 10.1242/dev.024778] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain structures, whether mature or developing, display a wide diversity of pattern and shape, such as layers, nuclei or segments. The striatum in the mammalian forebrain displays a unique mosaic organization (subdivided into two morphologically and functionally defined neuronal compartments: the matrix and the striosomes) that underlies important functional features of the basal ganglia. Matrix and striosome neurons are generated sequentially during embryonic development, and segregate from each other to form a mosaic of distinct compartments. However, the molecular mechanisms that underlie this time-dependent process of neuronal segregation remain largely unknown. Using a novel organotypic assay, we identified ephrin/Eph family members as guidance cues that regulate matrix/striosome compartmentalization. We found that EphA4 and its ephrin ligands displayed specific temporal patterns of expression and function that play a significant role in the spatial segregation of matrix and striosome neurons. Analysis of the striatal patterning in ephrin A5/EphA4 mutant mice further revealed the requirement of EphA4 signalling for the proper sorting of matrix and striosome neuronal populations in vivo. These data constitute the first identification of genes involved in striatal compartmentalization, and reveal a novel mechanism by which the temporal control of guidance cues enables neuronal segregation, and thereby the generation of complex cellular patterns in the brain.
Collapse
Affiliation(s)
- Lara Passante
- Université Libre de Bruxelles (U.L.B.), IRIBHM (Interdisciplinary Research), Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
7
|
Snyder-Keller A, Stark PF. Prenatal inflammatory effects on nigrostriatal development in organotypic cultures. Brain Res 2008; 1233:160-7. [PMID: 18710655 DOI: 10.1016/j.brainres.2008.07.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 12/21/2022]
Abstract
Maternal intrauterine infection, and the accompanying inflammation in the fetal brain, represent a significant risk to the developing fetus. Dopamine (DA) neurons have been shown to be particularly vulnerable to inflammation induced by injection of the bacterial endotoxin lipopolysaccharide (LPS). In order to further examine the nature of this vulnerability, we used a combination of in vivo prenatal LPS exposure, and in vitro analysis of nigrostriatal development in organotypic cultures prepared from LPS-exposed rat fetuses. Control co-cultures prepared from unexposed E14 substantia nigra (SN/VTA) and E21 striatum exhibited numerous DA neurons in the nigral piece and robust ingrowth into the striatal piece. When E14 SN/VTA was obtained from fetuses exposed to LPS (0.1 mg/kg) on E10, initial DA cell numbers and striatal innervation in co-cultures were normal, but at longer durations in vitro, a reduction in DA neurons was observed. When striatal tissue from fetuses exposed to LPS on E14 or E18 was used in combination with non-exposed SN/VTA, DA neurons initially exhibited a normal pattern of ingrowth into LPS-exposed striatum. However, with longer durations in vitro, DA neurons were lost more rapidly when co-cultured with LPS-exposed striatum. Despite the loss of DA neurons, striatal DA innervation was only reduced in cultures prepared with striatum exposed to LPS at E18, at the longest time period examined. Experiments in which unexposed SN/VTA was given the choice to grow toward control striatum or toward LPS-exposed striatum supported the idea that the tropic qualities of the striatum were not altered by LPS-induced inflammation. Thus, the inflammation induced by LPS not only affects the SN/VTA DA neurons, but also alters the neurotrophic--although not the neurotropic--characteristics of the striatum. Such alterations in nigrostriatal development may demonstrate how adverse perinatal events predispose the developing brain toward the later development of Parkinson's disease.
Collapse
Affiliation(s)
- Abigail Snyder-Keller
- Wadsworth Center, David Axelrod Institute, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | | |
Collapse
|
8
|
Larsen TR, Rossen S, Gramsbergen JB. Dopamine release in organotypic cultures of foetal mouse mesencephalon: effects of depolarizing agents, pargyline, nomifensine, tetrodotoxin and calcium. Eur J Neurosci 2008; 28:569-76. [DOI: 10.1111/j.1460-9568.2008.06354.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Snyder-Keller A, Tseng KY, Lyng GD, Graber DJ, O'Donnell P. Afferent influences on striatal development in organotypic cocultures. Synapse 2008; 62:487-500. [DOI: 10.1002/syn.20518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Lyng GD, Seegal RF. Polychlorinated biphenyl-induced oxidative stress in organotypic co-cultures: experimental dopamine depletion prevents reductions in GABA. Neurotoxicology 2007; 29:301-8. [PMID: 18262273 DOI: 10.1016/j.neuro.2007.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 11/19/2022]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been demonstrated to be toxic to the dopamine (DA) systems of the central nervous system. One proposed mechanism for PCB-induced DA neurotoxicity is inhibition of the vesicular monoamine transporter (VMAT); such inhibition results in increased levels of unsequestered DA and DA metabolism leading to oxidative stress. We have used an organotypic co-culture system of developing rat striatum and ventral mesencephalon (VM) to determine whether alterations in the vesicular storage of DA, resulting from PCB exposure and consequent induction of oxidative stress, leads to GABA and DA neuronal dysfunction. Twenty-four-hour exposure to an environmentally relevant mixture of PCBs reduced tissue DA and GABA concentrations, increased medium levels of DA and measures of oxidative stress in both the striatum and VM. Alterations in neurochemistry and increases in measures of oxidative stress were blocked in the presence of n-acetylcysteine (NAC). Although NAC treatment did not alter PCB-induced changes in DA neurochemistry, it did protect against reductions in GABA concentration. To determine whether alterations in the vesicular storage of DA were responsible for PCB-induced oxidative stress and consequent reductions in GABA levels, we depleted DA from the co-cultures using alpha-methyl-p-tyrosine (AMPT). AMPT reduced striatal and VM DA levels by 90% and 70%, respectively. PCB exposure, following DA depletion, neither increased levels of oxidative stress nor resulted in GABA depletion. These results suggest that PCB-induced alterations in the vesicular storage of DA, resulting in increased levels of unsequestered DA, leads to increased oxidative stress, depletion of tissue glutathione, and consequent reductions in tissue GABA concentrations.
Collapse
Affiliation(s)
- Gregory D Lyng
- School of Public Health, University at Albany, Albany, NY 12201, USA
| | | |
Collapse
|
11
|
Hynd MR, Frampton JP, Burnham MR, Martin DL, Dowell-Mesfin NM, Turner JN, Shain W. Functionalized hydrogel surfaces for the patterning of multiple biomolecules. J Biomed Mater Res A 2007; 81:347-54. [PMID: 17120223 DOI: 10.1002/jbm.a.31002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patterning of multiple proteins and enzymes onto biocompatible surfaces can provide multiple signals to control cell attachment and growth. Acrylamide-based hydrogels were photo-polymerized in the presence of streptavidin-acrylamide, resulting in planar gel surfaces functionalized with the streptavidin protein. This surface was capable of binding biotin-labeled biomolecules. The proteins fibronectin and laminin, the enzyme alkaline phosphatase, and the photo-protein R-phycoerythrin were patterned using soft lithographic techniques. Polydimethylsiloxane stamps were used to transfer biotinylated proteins onto streptavidin-conjugated hydrogel surfaces. Stamped biomolecules were spatially resolved to feature sizes of 10 mum. Fluorescence measurements were used to assess protein transfer and enzyme functionality on modified surfaces. Our results demonstrate that hydrogel surfaces can be patterned with multiple proteins and enzymes, with retention of biological and catalytic activity. These surfaces are biocompatible and provide cues for cell attachment and growth. (c) 2006 Wiley Periodicals, Inc. J Biomed Mater Res 2007.
Collapse
Affiliation(s)
- Matthew R Hynd
- Laboratory of Nervous System Disorders, Wadsworth Center, PO Box 509, Empire State Plaza, Albany, New York 12201-0509, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Tseng KY, Snyder-Keller A, O’Donnell P. Dopaminergic modulation of striatal plateau depolarizations in corticostriatal organotypic cocultures. Psychopharmacology (Berl) 2007; 191:627-40. [PMID: 16758237 PMCID: PMC2213368 DOI: 10.1007/s00213-006-0439-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 05/08/2006] [Indexed: 11/29/2022]
Abstract
RATIONALE It has been proposed that dopamine (DA) sustains up states in striatal medium spiny neurons (MSN). Testing this hypothesis requires an in vitro preparation, but up states are typically only observed in vivo. OBJECTIVES In this study, we used corticostriatal organotypic cocultures, a preparation in which up states have been previously observed, to test the DA control of cortically-driven plateau depolarizations. RESULTS After 7-21 days in vitro in serum-free conditions, plateau depolarizations resembling up states were only observed in cultures with a critical extent of striatal DA innervation. These plateaus were completely blocked by the non-NMDA antagonist CNQX and significantly shortened by the NMDA antagonist APV or the D(1) antagonist SCH23390. Intracellular interruption of Ca(++) or protein-kinase A (PKA) signaling also eliminated the plateaus. The D(2) antagonist eticlopride failed to disrupt the plateaus, but significantly increased MSN excitability. CONCLUSIONS These results suggest that coincident activation of corticostriatal glutamatergic and mesostriatal DA transmission may set ensembles of MSN into prolonged depolarizations through a D(1) enhancement of striatal NMDA function in a Ca(++) and PKA-dependent manner.
Collapse
Affiliation(s)
- Kuei Y. Tseng
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave (MC-136), Albany, NY 12208, USA
| | | | - Patricio O’Donnell
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave (MC-136), Albany, NY 12208, USA,e-mail:
| |
Collapse
|
13
|
Lyng GD, Snyder-Keller A, Seegal RF. Dopaminergic development of prenatal ventral mesencephalon and striatum in organotypic co-cultures. Brain Res 2006; 1133:1-9. [PMID: 17196555 PMCID: PMC1850241 DOI: 10.1016/j.brainres.2006.11.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/01/2006] [Accepted: 11/10/2006] [Indexed: 11/22/2022]
Abstract
Using organotypic co-cultures of rat embryonic day 14 (E14) ventral mesencephalon (VM) and E21 striatum, we have described the developmental changes in (i) dopamine (DA) neurochemistry; (ii) numbers of DA neurons; and (iii) protein expression of tyrosine hydroxylase (TH), DA transporter (DAT), and glutamic acid decarboxylase (GAD 65/67), over 17 days in vitro (DIV). Co-cultures demonstrated changes in DA development similar to those observed in vivo. The numbers of VM DA neurons remained relatively constant, while levels of VM DA progressively increased through 10 DIV. After 3 DIV, the levels of striatal DA increased substantially, through 10 DIV. Tissue levels of DA metabolites homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) reflected changes in tissue DA concentrations, indicating that release and metabolism of DA are similar to these characteristics observed in vivo. Western blot analysis of TH protein expression revealed large increases in VM TH after only 3 DIV, followed by a decline in levels through 17 DIV; levels of striatal TH, in contrast, increased through this period. Additionally, DAT and GAD 65/67 expression increased, in both the VM and striatum, over 17 DIV. By 17 DIV, many measures of DA function had decreased from those assessed at 10 DIV, thus providing an approximate limit to the effective duration of use of this co-culture model. Our results provide a much-needed description of the neurochemical changes that occur during the maturation of VM and striatum in organotypic co-cultures. Additionally, these results provide a foundation for future studies to assess toxic challenges of the developing nigrostriatal DA system, in vitro.
Collapse
Affiliation(s)
- Gregory D Lyng
- School of Public Health, University at Albany, Albany, NY 12222, USA
| | | | | |
Collapse
|
14
|
Johansson S, Strömberg I. Fetal lateral ganglionic eminence attracts one of two morphologically different types of tyrosine hydroxylase-positive nerve fibers formed by cultured ventral mesencephalon. Cell Transplant 2004; 12:243-55. [PMID: 12797379 DOI: 10.3727/000000003108746803] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the influence of fetal lateral ganglionic eminence (LGE) on nerve fiber outgrowth formed by fetal ventral mesencephalon (VM). Organotypic tissue cultures of fetal VM and LGE plated as single or cocultures were employed. Survival time was 3-21 days in vitro. Nerve fiber outgrowth and migration of astrocytes were analyzed using immunohistochemistry for tyrosine hydroxylase (TH) and S100. In addition, cultures were labeled with the TUNEL technique and with antibodies directed against neurofilament (NF) in order to study apoptosis and retraction of nerve fibers, respectively. The results revealed two morphologically different types of TH-positive outgrowth growing into the substrate. The initially formed TH-positive outgrowth radiated continuously without changing direction, while a second wave of TH-positive outgrowth became obvious when the initial growth already had reached a distance of approximately 1000 microm. The second wave of TH-positive outgrowth radiated from the tissue, but at a certain distance changed direction and formed a network surrounding the culture. The initially formed TH-positive growth was not associated with the presence of S100-positive astrocytes and avoided to grow into the LGE. At longer time points the first wave of TH-positive nerve fibers appeared dotted, with disrupted NF-immunoreactive fibers and in most cultures these long distance growing fibers had disappeared at 21 days in vitro. The second wave of TH-positive nerve fibers was growing onto a layer of glia and never reached the distance of the first wave. LGE became innervated by TH-positive fibers at the time point for when the second wave of TH-positive growth had been initiated, and the innervation appeared in TH-dense patches that also showed a high density of S100-positive astrocytes. Significantly increased TUNEL activity within LGE portion of cocultures was observed when TH-positive fibers entered the LGE and formed patches. In conclusion, two morphologically different types of TH-positive outgrowth were found and the initially formed fibers neither targeted the LGE nor were they guided by glial cells, but their potential to grow for long distances was high.
Collapse
Affiliation(s)
- Saga Johansson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
15
|
Snyder-Keller A. Pattern of corticostriatal innervation in organotypic cocultures is dependent on the age of the cortical tissue. Exp Neurol 2004; 185:262-71. [PMID: 14736507 DOI: 10.1016/j.expneurol.2003.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The patch-matrix organization of the striatum is defined by the selective expression of neuronal markers and a semisegregated pattern of afferents and efferents that develops before birth in all mammals. Differential projections from 'limbic' and 'somatomotor' cortices contribute to the selective circuitry of patch ("striosome") and matrix compartments. Organotypic cultures were used to determine the pattern of early corticostriatal innervation as a first step toward understanding the role of cortical innervation in the development of striatal patch-matrix organization. Perinatal striatum (E19-P4) was cocultured with the cortex obtained from same-age or different-age rats in the presence or absence of substantia nigra obtained from E14-15 fetuses. After 4-21 days in vitro, crystals of biocytin were placed directly onto the cortical piece to trace cortical projections into the striatal piece. Cortex obtained from fetuses (E19-22) or neonatal (P0-1) rats gave rise to a dense innervation of both prenatal and postnatal striatal slices; however, the pattern of biocytin-labeled fibers was found to be highly dependent on the age of the cortical tissue used. Cortex derived from rats between E20 and P1 gave rise to a heterogeneous distribution of fibers indicative of striatal patches when combined with striatal slices from same-age or younger (E18-19) fetuses. Cortex from E18-19 fetuses produced a homogeneous innervation even when cocultured with older striatal tissue in which the striatal patches were already present. The postnatal cortex (P2-P5) gave rise to little to no innervation of striatum of all ages. Similar findings were obtained with the use of either prelimbic or somatosensory cortex. In double- and triple-labeled cultures, the distribution of corticostriatal fibers overlapped substantially with patches of developing striatal neurons, as revealed by DARPP-32 immunocytochemistry. Dopaminergic innervation present when the substantia nigra was included in the cocultures also distributed preferentially to the developing patch compartment, but it did not substantially alter the pattern of corticostriatal innervation. These findings suggest that the cortex provides directive signals to the developing striatum rather than simply responding to the presence of patches that have already formed.
Collapse
|
16
|
Wang H, Cuzon VC, Pickel VM. Postnatal development of mu-opioid receptors in the rat caudate-putamen nucleus parallels asymmetric synapse formation. Neuroscience 2003; 118:695-708. [PMID: 12710977 DOI: 10.1016/s0306-4522(02)00926-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mu-opioid receptor (MOR) in the caudate-putamen nucleus (CPN) appears early during prenatal development, and shows a patch-like distribution throughout the postnatal period and adulthood. In the adult rat CPN, neurons in patch compartments receive glutamatergic excitatory input mainly from the cortex through synapses onto spines, many of which express MORs. Thus, MOR expression in spines may be related to corticostriatal synaptogenesis. We used electron microscopic immunocytochemistry to determine potential age-dependent changes in the distribution pattern of MOR during postnatal synaptogenesis in the rat CPN. Immunogold-silver labeling revealed that the dendritic plasmalemmal density of MOR at postnatal day (P) 0 was significantly lower than, but after P10 was similar to, that of adult. In contrast, such age-dependent changes were not observed in axon terminals. Stereological analysis of immunoperoxidase labeling for MOR showed a good correlation in the developmental numerical densities of synapses with MOR-labeled spines and those of total asymmetric axospinous synapses, linear correlation coefficient r=0.99. Synapses with MOR-labeled dendrites, however, had a low correlation with axodendritic synapses (r=0.61), and synapses with MOR-labeled terminals showed no correlation with axospinous and axodendritic synapses (r=0.19). These results provide ultrastructural evidence that the targeting of MOR on the plasma membrane of dendrites and spines parallels the peak period of synaptogenesis during the third postnatal week in the rat CPN. Thus, the postnatal spatiotemporal expression pattern of MOR appears to match the functional maturation of corticostriatal glutamate transmission.
Collapse
Affiliation(s)
- H Wang
- Division of Neurobiology, Department of Neurology and Neuroscience, Joan and Sanford I. Weill Medical College of Cornell University, 411 East 69th Street, New York, NY 10021, USA.
| | | | | |
Collapse
|