1
|
Ignjatović Đ, Nestorović N, Tomić M, Ristić N, Veličković N, Perović M, Manojlović-Stojanoski M. Effects of Prenatal Dexamethasone Treatment and Post-Weaning Moderate Fructose Intake on Synaptic Plasticity and Behavior in Adult Male Wistar Rat Offspring. BIOLOGY 2024; 13:547. [PMID: 39056739 PMCID: PMC11274266 DOI: 10.3390/biology13070547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Early-life glucocorticoid overexposure induces diverse neurodevelopmental outcomes regarding stress reactivity and cognition. Increased fructose consumption has also been associated with alterations in cognitive capacity and behavior. The present study investigated the effects of prenatal dexamethasone exposure on synaptic plasticity, locomotion, anxiety, and recognition memory in adult male Wistar rat offspring, and whether these effects are potentiated by postnatal fructose consumption. Pregnant female rats were treated with dexamethasone during late gestation and male offspring were supplemented with a moderate dose of fructose. Recognition memory, locomotion, and anxiety-like behavior were assessed using a novel object recognition test, open-field test, and elevated plus maze, respectively. Hippocampal synaptic plasticity was estimated by the levels of growth-associated protein 43 (GAP-43), synaptophysin, postsynaptic density protein 95, calcium/calmodulin-dependent kinase IIα, and their activating phosphorylations. Additionally, protein levels of the glucocorticoid receptor (GR) and its transcriptionally active phosphorylated form were evaluated. Prenatal dexamethasone treatment induced an anxiolytic-like effect, stimulation of exploratory behavior, and novelty preference associated with an increase in GR and GAP-43 protein levels in the hippocampus. Fructose overconsumption after weaning did not modify the effects of prenatal glucocorticoid exposure. Applied prenatal dexamethasone treatment may induce changes in reactions to novel situations in male Wistar rats.
Collapse
Affiliation(s)
- Đurđica Ignjatović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (M.T.); (N.V.)
| | - Nataša Nestorović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (N.N.); (N.R.)
| | - Mirko Tomić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (M.T.); (N.V.)
| | - Nataša Ristić
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (N.N.); (N.R.)
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (M.T.); (N.V.)
| | - Milka Perović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia;
| | - Milica Manojlović-Stojanoski
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (N.N.); (N.R.)
| |
Collapse
|
2
|
Shirayama Y, Iwata M, Miyano K, Hirose Y, Oda Y, Fujita Y, Hashimoto K. Infusions of beta-hydroxybutyrate, an endogenous NLRP3 inflammasome inhibitor, produce antidepressant-like effects on learned helplessness rats through BDNF-TrkB signaling and AMPA receptor activation, and strengthen learning ability. Brain Res 2023; 1821:148567. [PMID: 37689333 DOI: 10.1016/j.brainres.2023.148567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Beta-hydroxybutyrate (BHB), an endogenous NLRP3 inflammasome inhibitor, has been shown to be associated with the pathophysiology of depression in rodents. However its active mechanism has not been revealed. Herein, we probed both the pathways and brain regions involved in BHB's antidepressant-like effects in a learned helplessness (LH) rat model of depression. A single bilateral infusion of BHB into the cerebral ventricles induced the antidepressant-like effects on the LH rats. The antidepressant-like effects of BHB were blocked by the TrkB inhibitor ANA-12 and the AMPA receptor antagonist NBQX, indicating that the antidepressant-like effects of BHB involve BDNF-TrkB signaling and AMPA receptor activation. Further, infusions of BHB into the prelimbic and infralimbic portions of medial prefrontal cortex, the dentate gyrus of hippocampus, and the basolateral region of amygdala produced the antidepressant-like effects on LH rats. However, infusions of BHB into the central region of amygdala, the CA3 region of hippocampus, and the shell and core regions of nucleus accumbens had no effect. Finally, a single bilateral infusion of BHB into the cerebral ventricles of naive rats strengthened learning ability on repeated active avoidance test where saline-infused animals failed to increase avoidance responses.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara, Japan; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Hirose
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
3
|
Yang H, Narayan S, Schmidt MV. From Ligands to Behavioral Outcomes: Understanding the Role of Mineralocorticoid Receptors in Brain Function. Stress 2023; 26:2204366. [PMID: 37067948 DOI: 10.1080/10253890.2023.2204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Stress is a normal response to situational pressures or demands. Exposure to stress activates the hypothalamic-pituitary-adrenal (HPA) axis and leads to the release of corticosteroids, which act in the brain via two distinct receptors: mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Persistent HPA axis overactivation or dysregulation can disrupt an individual's homeostasis, thereby contributing to an increased risk for mental illness. On the other hand, successful coping with stressful events involves adaptive and cognitive processes in the brain that render individuals more resilient to similar stressors in the future. Here we review the role of the MR in these processes, starting with an overview of the physiological structure, ligand binding, and expression of MR, and further summarizing its role in the brain, its relevance to psychiatric disorders, and related rodent studies. Given the central role of MR in cognitive and emotional functioning, and its importance as a target for promoting resilience, future research should investigate how MR modulation can be used to alleviate disturbances in emotion and behavior, as well as cognitive impairment, in patients with stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
4
|
Stress in pregnancy: Clinical and adaptive behavior of offspring following Superstorm Sandy. Dev Psychopathol 2021; 34:1249-1259. [PMID: 34596500 DOI: 10.1017/s0954579421000304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current study investigated 304 children from a longitudinal project (the Stress in Pregnancy (SIP) Study) who were exposed and unexposed to Superstorm Sandy ("Sandy") in utero. They were prospectively followed from 2 to 6 years of age and their clinical and adaptive behaviors were assessed annually. Using a hierarchical linear model, the study found that in utero Sandy exposure was associated with greater clinical (anxiety, depression, and somatization) and lower adaptive behaviors (social skills and functional communication) at age 2 years. However, the trajectories were notably different between the two groups. Anxiety increased more rapidly among the exposed than unexposed group at ages 2-4, and depression increased only among the exposed. In contrast, social skills and functional communication were lower in exposed compared to unexposed children at age 2, but quickly increased and exceeded the capacities of unexposed children by age 3. The findings confirm that prenatal Sandy exposure is not only associated with an increase in anxiety, depression, and somatization in offspring, but also with greater adaptive skills as the children got older. Our study demonstrates that while children who have experienced stress in utero demonstrate elevated suboptimal clinical behaviors related to affective disorders, they nevertheless have the potential to learn adaptive skills.
Collapse
|
5
|
Ceniceros LC, Capitanio JP, Kinnally EL. Prenatal Relocation Stress Enhances Resilience Under Challenge in Infant Rhesus Macaques. Front Behav Neurosci 2021; 15:641795. [PMID: 33854420 PMCID: PMC8039121 DOI: 10.3389/fnbeh.2021.641795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
The prenatal period is a developmental stage of peak sensitivity, during which environmental exposures can program post-natal developmental outcomes. Prenatal stress, in particular, has often been associated with detrimental neurobehavioral outcomes like mood and anxiety disorders. In the present study, we examined the effects of a stressful prenatal maternal experience (maternal relocation during pregnancy) on the post-partum development of offspring in rhesus macaques. To help isolate the effects of prenatal stress from genetic predispositions and post-natal experience, we compared biologically reared infants (infants raised with their biological mothers) with cross-fostered infants (those raised by non-related females in new social groups). We examined the effects of prenatal relocation stress on measures collected at 3-4 months of age during a standardized biobehavioral assessment. Unexpectedly, we found that prenatal stress resulted in a behavioral pattern consistent with resilience rather than anxiety: prenatal stress was linked with greater activity, lower anxiety, and more interaction with novel objects, as well as higher ratings of temperamental confidence during assessment. These effects were observed in infants reared by biological mothers as well as cross-fostered infants, suggesting that the effects of prenatal stress were not attributable to maternal genetics or post-natal factors. Our surprising results suggest that prenatal relocation stress may confer resilience in infant rhesus monkeys.
Collapse
Affiliation(s)
- Lesly C Ceniceros
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - John P Capitanio
- California National Primate Research Center, University of California, Davis, Davis, CA, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Erin L Kinnally
- California National Primate Research Center, University of California, Davis, Davis, CA, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Labeur L, Small AH, Hinch GN, McFarlane JR, Schmoelzl S. Mid- and late-pregnancy ewe shearing affects lamb neonatal reactivity and vigour. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Colson V, Cousture M, Damasceno D, Valotaire C, Nguyen T, Le Cam A, Bobe J. Maternal temperature exposure impairs emotional and cognitive responses and triggers dysregulation of neurodevelopment genes in fish. PeerJ 2019; 7:e6338. [PMID: 30723624 PMCID: PMC6360074 DOI: 10.7717/peerj.6338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/21/2018] [Indexed: 01/29/2023] Open
Abstract
Fish are sensitive to temperature, but the intergenerational consequences of maternal exposure to high temperature on offspring behavioural plasticity and underlying mechanisms are unknown. Here we show that a thermal maternal stress induces impaired emotional and cognitive responses in offspring rainbow trout (Oncorhynchus mykiss). Thermal stress in mothers triggered the inhibition of locomotor fear-related responses upon exposure to a novel environment and decreased spatial learning abilities in progeny. Impaired behavioural phenotypes were associated with the dysregulation of several genes known to play major roles in neurodevelopment, including auts2 (autism susceptibility candidate 2), a key gene for neurodevelopment, more specifically neuronal migration and neurite extension, and critical for the acquisition of neurocognitive function. In addition, our analysis revealed the dysregulation of another neurodevelopment gene (dpysl5) as well as genes associated with human cognitive disorders (arv1, plp2). We observed major differences in maternal mRNA abundance in the eggs following maternal exposure to high temperature indicating that some of the observed intergenerational effects are mediated by maternally-inherited mRNAs accumulated in the egg. Together, our observations shed new light on the intergenerational determinism of fish behaviour and associated underlying mechanisms. They also stress the importance of maternal history on fish behavioural plasticity.
Collapse
Affiliation(s)
- Violaine Colson
- Fish Physiology and Genomics, INRA LPGP UR1037, Rennes, France
| | | | | | | | - Thaovi Nguyen
- Fish Physiology and Genomics, INRA LPGP UR1037, Rennes, France
| | - Aurélie Le Cam
- Fish Physiology and Genomics, INRA LPGP UR1037, Rennes, France
| | - Julien Bobe
- Fish Physiology and Genomics, INRA LPGP UR1037, Rennes, France
| |
Collapse
|
8
|
Nrg1 deficiency modulates the behavioural effects of prenatal stress in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:86-95. [PMID: 29964074 DOI: 10.1016/j.pnpbp.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 11/23/2022]
Abstract
Little is known about the exact genes that confer vulnerability or resilience to environmental stressors during early neurodevelopment. Partial genetic deletion of neuregulin 1 (Nrg1) moderates the neurobehavioural effects of stressors applied in adolescence and adulthood, however, no study has yet examined its impact on prenatal stress. Here we examined whether Nrg1 deficiency in mice modulated the impact of prenatal stress on various behaviours in adulthood. Male heterozygous Nrg1 mice were mated with wild-type female mice who then underwent daily restraint stress from days 13 to 19 of gestation. Surprisingly, prenatal stress had overall beneficial effects by facilitating sensorimotor gating, increasing sociability, decreasing depressive-like behaviour, and improving spatial memory in adulthood. Such benefits were not due to any increase in maternal care, as prenatal stress decreased nurturing of the offspring. Nrg1 deficiency negated the beneficial behavioural effects of prenatal stress on all measures except sociability. However, Nrg1 deficiency interacted with prenatal stress to trigger locomotor hyperactivity. Nrg1 deficiency, prenatal stress or their combination failed to alter acute stress-induced plasma corticosterone concentrations. Collectively these results demonstrate that Nrg1 deficiency moderates the effects of prenatal stress on adult behaviour, but it does so in a complex, domain-specific fashion.
Collapse
|
9
|
Prenatal depression, fetal neurobehavior, and infant temperament: Novel insights on early neurodevelopment from a socioeconomically disadvantaged Indian cohort. Dev Psychopathol 2018; 30:725-742. [PMID: 30068420 DOI: 10.1017/s0954579418000615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This article extends the research focusing on the early origins of psychopathology into the prenatal period, by exploring the association between maternal prenatal depression and offspring (fetal and infant) neurobehavior. The sample is recruited from a rural population in South India where women in the third trimester of pregnancy were assessed for depression and the heart rate responses of their fetuses to extrinsically applied vibroacoustic stimuli were studied. At 2 months postbirth, infant temperament and cortisol responsivity to immunization were assessed. The association between maternal prenatal depression and fetal responsivity to vibroacoustic stimulation, and infant responsivity to immunization, was U shaped with higher levels of responsivity noted in the offspring of mothers with very high and very low depression scores, and lower levels noted in the offspring of mothers with moderate depression scores. Maternal prenatal depression was not associated with infant temperament. The findings highlight the importance of environmental influences in the developmental origins of neurobehavior, suggesting that such differences, not evident at baseline, may emerge upon exposure to stressors. The study also emphasizes the need for further investigation in low- and middle-income contexts by providing preliminary evidence of the differing patterns of association observed between high- and low-income populations.
Collapse
|
10
|
Boulanger-Bertolus J, Pancaro C, Mashour GA. Increasing Role of Maternal Immune Activation in Neurodevelopmental Disorders. Front Behav Neurosci 2018; 12:230. [PMID: 30344483 PMCID: PMC6182081 DOI: 10.3389/fnbeh.2018.00230] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/13/2018] [Indexed: 02/03/2023] Open
Abstract
The earliest stages of development are critically sensitive to environmental insults. An unfortunately timed stress on the developing brain can have dramatic consequences for the neurodevelopment and future mental health of the individual. In particular, infection of the mother during pregnancy has been correlated with increased risk of psychiatric and neurodevelopmental disorders. Evidence suggests that maternal immune activation, independently from the infection itself, can be responsible for the outcome in the offspring. This recognition has resulted in expanding study designs from epidemiologic correlations to the search for a causal relationship between activation of the maternal immune system and cognitive consequences for the offspring. However, this causality analysis remained limited in humans until recent work that longitudinally linked specific markers of maternal inflammation during pregnancy with alterations of the newborn brain and cognitive development of toddlers. This focused narrative review compares and discusses the results of these recent studies and places them into the broader landscape of maternal immune activation literature. New data point, in particular, to the association between the levels of interleukin 6 (IL-6) and modifications of the offspring's salience network and subsequent cognitive impairments. This article further emphasizes the need to carefully control for potential confounders in studying the effects of maternal immune activation on the neonatal brain as well as the under-investigated consequences of intra-partum fever on offspring neurodevelopment.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | | | | |
Collapse
|
11
|
Soares-Cunha C, Coimbra B, Borges S, Domingues AV, Silva D, Sousa N, Rodrigues AJ. Mild Prenatal Stress Causes Emotional and Brain Structural Modifications in Rats of Both Sexes. Front Behav Neurosci 2018; 12:129. [PMID: 30034328 PMCID: PMC6043801 DOI: 10.3389/fnbeh.2018.00129] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Stress or high levels of glucocorticoids (GCs) during developmental periods is known to induce persistent effects in the neuroendocrine circuits that control stress response, which may underlie individuals’ increased risk for developing neuropsychiatric conditions later in life, such as anxiety or depression. We developed a rat model (Wistar han) of mild exposure to unpredictable prenatal stress (PS), which consists in a 4-h stressor administered three times per week on a random basis; stressors include strobe lights, noise and restrain. Pregnant dams subjected to this protocol present disrupted circadian corticosterone secretion and increased corticosterone secretion upon acute stress exposure. Regarding progeny, both young adult (2 months old) male and female rats present increased levels of circulating corticosterone and hyperactivity of the hypothalamus-pituitary-adrenal axis to acute stress exposure. Both sexes present anxious- and depressive-like behaviors, shown by the decreased time spent in the open arms of the elevated plus maze (EPM) and in the light side of the light-dark box (LDB), and by increased immobility time in the forced swim test, respectively. Interestingly, these results were accompanied by structural modifications of the bed nucleus of stria terminalis (BNST) and hippocampus, as well as decreased norepinephrine and dopamine levels in the BNST, and serotonin levels in the hippocampus. In summary, we characterize a new model of mild PS, and show that stressful events during pregnancy can lead to long-lasting structural and neurochemical effects in the offspring, which affect behavior in adulthood.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Borges
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Prenatal stress-induced impairments of cognitive flexibility and bidirectional synaptic plasticity are possibly associated with autophagy in adolescent male-offspring. Exp Neurol 2017; 298:68-78. [DOI: 10.1016/j.expneurol.2017.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/03/2017] [Accepted: 09/01/2017] [Indexed: 11/18/2022]
|
13
|
O'Brien CE, Jozet-Alves C, Mezrai N, Bellanger C, Darmaillacq AS, Dickel L. Maternal and Embryonic Stress Influence Offspring Behavior in the Cuttlefish Sepia officinalis. Front Physiol 2017; 8:981. [PMID: 29249984 PMCID: PMC5717421 DOI: 10.3389/fphys.2017.00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Stress experienced during prenatal development-either applied to reproducing females (maternal stress), directly to developing offspring (embryonic stress) or in combination-is associated with a range of post-natal behavioral effects in numerous organisms. We conducted an experiment to discern if maternal and embryonic stressors affect the behavior of hatchlings of the cuttlefish Sepia officinalis, a species with features that allow for the examination of these stress types in isolation. Separating the impact of stress transmitted through the mother vs. stress experienced by the embryo itself will help clarify the behavioral findings in viviparous species for which it is impossible to disentangle these effects. We also compared the effect of a naturally-occurring (predator cue) and an "artificial" (bright, randomly-occurring LED light) embryonic stressor. This allowed us to test the hypothesis that a threat commonly faced by a species (natural threat) would be met with a genetically-programmed and adaptive response while a novel one would confound innate defense mechanisms and lead to maladaptive effects. We found that the maternal stressor was associated with significant differences in body patterning and activity patterns. By contrast, embryonic exposure to stressors increased the proportion of individuals that pursued prey. From these results, it appears that in cuttlefish, maternal and embryonic stressors affect different post-natal behavior in offspring. In addition, the effect of the artificial stressor suggests that organisms can sometimes react adaptively to a stressor even if it is not one that has been encountered during the evolutionary history of the species.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| | | | - Nawel Mezrai
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| | - Cécile Bellanger
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| | | | - Ludovic Dickel
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| |
Collapse
|
14
|
Bartlett AA, Singh R, Hunter RG. Anxiety and Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:145-166. [PMID: 28523545 DOI: 10.1007/978-3-319-53889-1_8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anxiety disorders are highly prevalent psychiatric disorders often comorbid with depression and substance abuse. Twin studies have shown that anxiety disorders are moderately heritable. Yet, genome-wide association studies (GWASs) have failed to identify gene(s) significantly associated with diagnosis suggesting a strong role for environmental factors and the epigenome. A number of anxiety disorder subtypes are considered "stress related." A large focus of research has been on the epigenetic and anxiety-like behavioral consequences of stress. Animal models of anxiety-related disorders have provided strong evidence for the role of stress on the epigenetic control of the hypothalamic-pituitary-adrenal (HPA) axis and of stress-responsive brain regions. Neuroepigenetics may continue to explain individual variation in susceptibility to environmental perturbations and consequently anxious behavior. Behavioral and pharmacological interventions aimed at targeting epigenetic marks associated with anxiety may prove fruitful in developing treatments.
Collapse
Affiliation(s)
- Andrew A Bartlett
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Rumani Singh
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Richard G Hunter
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA, 02125, USA.
| |
Collapse
|
15
|
Impact of maternal prenatal and parental postnatal stress on 1-year-old child development: results from the OTIS antidepressants in pregnancy study. Arch Womens Ment Health 2016; 19:835-43. [PMID: 26957509 DOI: 10.1007/s00737-016-0624-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/29/2016] [Indexed: 02/03/2023]
Abstract
Perinatal psychological stress has been associated with unfavorable maternal and neonatal outcomes. We aimed to assess the impact of perinatal stress on infant development at 1 year of age. We recruited pregnant women calling North American Teratogen Information Services or attending outpatient clinics at CHU Sainte Justine (Montreal) between 2008 and 2010 and their spouses. To be part of our study, women had to be (1) >18 years of age, (2) <15 weeks of gestational age at recruitment, (3) living within 250-km radius of Montreal, and (4) taking antidepressants or non-teratogenic drugs. Stress was assessed using the telephone-administered four-item perceived stress scale during pregnancy in mothers and at 2 months postpartum in both parents. Child development at 1 year of age was evaluated with the Bayley III scales. Socio-demographic and potential confounders were collected through telephone interviews. Multivariable linear regression models were built to assess the association between perinatal parental stress and child development. Overall, 71 couples and their infants were included. When adjusted for potential confounders, maternal prenatal stress was positively associated with motor development (adjusted β = 1.85, CI 95 % (0.01, 3.70)). Postpartum maternal and paternal stresses were negatively associated with motor and socio-emotional development, respectively (adjusted β = -1.54, CI 95 % (-3.07, -0.01) and adjusted β = -1.67, CI 95 % (-3.25, -0.10), respectively). Maternal and paternal postnatal stress seems to be harmful for the motor and socio-emotional development in 1-year-old children. No association was demonstrated between parental stress and cognitive, language, and adaptive behavioral development. However, prenatal maternal stress appears to improve motor skills.
Collapse
|
16
|
Transgenerational transmission of pregestational and prenatal experience: maternal adversity, enrichment, and underlying epigenetic and environmental mechanisms. J Dev Orig Health Dis 2016; 7:588-601. [PMID: 27488022 DOI: 10.1017/s2040174416000416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transgenerational transmission refers to positive and negative adaptations in brain function and behavior that affect following generations. In this paper, empirical findings regarding the transgenerational transmission of maternal adversity during three critical periods - childhood, pregestational adulthood and pregnancy - will be reviewed in terms of pregnancy outcomes, maternal care, offspring behavior and development, and physiological functioning. Research on the transgenerational transmission of enrichment and the implications for interventions to ameliorate the consequences of adversity will also be presented. In the final section, underlying epigenetic and environmental mechanisms that have been proposed to explain how experience is transferred across generations through transgenerational transmission will be reviewed. Directions for future research are suggested throughout.
Collapse
|
17
|
Barbie-Shoshani Y, Shoham S, Bejar C, Weinstock M. Sex-Specific Effects of Prenatal Stress on Memory and Markers of Neuronal Activity in Juvenile Rats. Dev Neurosci 2016; 38:206-219. [DOI: 10.1159/000446981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 05/20/2016] [Indexed: 11/19/2022] Open
Abstract
Stress during pregnancy can increase the incidence of emotional problems, learning and language difficulties in human infants and pre-adolescents. Most preclinical studies in rats that attempted to find experimental support for these observations were performed in adult male offspring, but the results are inconsistent. The aim of the current study was to examine the effect of prenatal stress on novel object recognition (NOR) and spatial learning and memory in the Morris water maze (MWM) of juvenile rats of both sexes. By the use of fluorescence immunohistochemistry and protein measurements by Western blot, we measured the expression of markers of neurogenesis (doublecortin, DCX) and neuronal activity that are important for synaptic plasticity and learning (c-fos, GluR1, nNOS). Since neuronal activity in the developing and adult brain can be regulated by astrocytes, we also measured the number of astrocytes and the expression of two astroglial proteins (GFAP and S100B) in the stress-responsive hippocampal dentate gyrus (DG). Experiments were performed on littermates of rats in which its effects on behavior were measured. We found for the first time that juvenile females performed better than males in the NOR and MWM tests. They also had higher densities of DCX and c-fos in the DG, together with the expression of nNOS and GluR1 in the subgranular zone (SGZ) of the DG. There were no sex differences in the expression of GFAP and S100B in astrocytes. Prenatal stress did not affect NOR in females, but improved it in males, together with an increase in DCX+ and c-fos, the number of GFAP-expressing astrocytes and the intensity of GFAP and S100B immunofluorescence in the DG. Staining intensity of GluR1 and nNOS in the hilus and SGZ of the DG, and protein expression in the whole DG, was unchanged in prenatally stressed males. Thus, prenatal stress changed the behavior and expression of key proteins in the DG to resemble that in females. A reduction in plasma testosterone, which although not attaining statistical significance was associated with that in anogenital distance, may contribute to the effect of prenatal stress in males. In females, prenatal stress had no effect on c-fos, DCX or the number of astrocytes but reduced the staining intensity of GluR1 and nNOS. Protein expression of nNOS was also significantly lower than that in prenatally stressed males. The differential effects of prenatal stress on hippocampal neuronal and glial markers may help to explain the sex-dependent effect on spatial learning in prepubertal rats.
Collapse
|
18
|
Abstract
The notion that a woman's psychological state during pregnancy affects the fetus is a persistent cultural belief in many parts of the world. Recent results indicate that prenatal maternal distress in rodents and nonhuman primates negatively influences long-term learning, motor development, and behavior in their offspring. The applicability of these findings to human pregnancy and child development is considered in this article. Potential mechanisms through which maternal psychological functioning may alter development of the fetal nervous system are being identified by current research, but it is premature to conclude that maternal prenatal stress has negative consequences for child development. Mild stress may be a necessary condition for optimal development.
Collapse
|
19
|
Hiroi R, Carbone DL, Zuloaga DG, Bimonte-Nelson HA, Handa RJ. Sex-dependent programming effects of prenatal glucocorticoid treatment on the developing serotonin system and stress-related behaviors in adulthood. Neuroscience 2016; 320:43-56. [PMID: 26844389 PMCID: PMC4840233 DOI: 10.1016/j.neuroscience.2016.01.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/12/2016] [Accepted: 01/26/2016] [Indexed: 12/25/2022]
Abstract
Prenatal stress and overexposure to glucocorticoids (GC) during development may be associated with an increased susceptibility to a number of diseases in adulthood including neuropsychiatric disorders, such as depression and anxiety. In animal models, prenatal overexposure to GC results in hyper-responsiveness to stress in adulthood, and females appear to be more susceptible than males. Here, we tested the hypothesis that overexposure to GC during fetal development has sex-specific programming effects on the brain, resulting in altered behaviors in adulthood. We examined the effects of dexamethasone (DEX; a synthetic GC) during prenatal life on stress-related behaviors in adulthood and on the tryptophan hydroxylase-2 (TpH2) gene expression in the adult dorsal raphe nucleus (DRN). TpH2 is the rate-limiting enzyme for serotonin (5-HT) synthesis and has been implicated in the etiology of human affective disorders. Timed-pregnant rats were treated with DEX from gestational days 18-22. Male and female offspring were sacrificed on the day of birth (postnatal day 0; P0), P7, and in adulthood (P80-84) and brains were examined for changes in TpH2 mRNA expression. Adult animals were also tested for anxiety- and depressive- like behaviors. In adulthood, prenatal DEX increased anxiety- and depressive- like behaviors selectively in females, as measured by decreased time spent in the center of the open field and increased time spent immobile in the forced swim test, respectively. Prenatal DEX increased TpH2 mRNA selectively in the female caudal DRN at P7, whereas it decreased TpH2 mRNA selectively in the female caudal DRN in adulthood. In animals challenged with restraint stress in adulthood, TpH2 mRNA was significantly lower in rostral DRN of prenatal DEX-treated females compared to vehicle-treated females. These data demonstrated that prenatal overexposure to GC alters the development of TpH2 gene expression and these alterations correlated with lasting behavioral changes found in adult female offspring.
Collapse
Affiliation(s)
- R Hiroi
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ 85004, USA; Department of Psychology, Arizona State University, 950 S. McAllister Avenue, Tempe, AZ 85287, USA.
| | - D L Carbone
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ 85004, USA.
| | - D G Zuloaga
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ 85004, USA.
| | - H A Bimonte-Nelson
- Department of Psychology, Arizona State University, 950 S. McAllister Avenue, Tempe, AZ 85287, USA.
| | - R J Handa
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ 85004, USA.
| |
Collapse
|
20
|
Miyagawa K, Saito A, Miyagishi H, Takeda K, Tsuji M, Takeda H. [Prenatal stress induces vulnerability to stress together with the disruption of central serotonin neurons in mice]. Nihon Yakurigaku Zasshi 2016; 147:212-8. [PMID: 27063904 DOI: 10.1254/fpj.147.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Simcock G, Kildea S, Elgbeili G, Laplante DP, Stapleton H, Cobham V, King S. Age-related changes in the effects of stress in pregnancy on infant motor development by maternal report: The Queensland Flood Study. Dev Psychobiol 2016; 58:640-59. [DOI: 10.1002/dev.21407] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/25/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Gabrielle Simcock
- Mater Research Institute-University of Queensland; Brisbane; Queensland Australia
- School of Psychology; The University of Queensland; Brisbane Queensland Australia
| | - Sue Kildea
- Mater Research Institute-University of Queensland; Brisbane; Queensland Australia
- School of Nursing, Midwifery, and Social Work; The University of Queensland; Brisbane Queensland Australia
| | - Guillaume Elgbeili
- Schizophrenia and Neurodevelopmental Disorders Research; Douglas Mental Health Institute; Verdun Quebec Canada
| | - David P. Laplante
- Schizophrenia and Neurodevelopmental Disorders Research; Douglas Mental Health Institute; Verdun Quebec Canada
| | - Helen Stapleton
- Mater Research Institute-University of Queensland; Brisbane; Queensland Australia
- School of Nursing, Midwifery, and Social Work; The University of Queensland; Brisbane Queensland Australia
| | - Vanessa Cobham
- Mater Research Institute-University of Queensland; Brisbane; Queensland Australia
- School of Psychology; The University of Queensland; Brisbane Queensland Australia
| | - Suzanne King
- Schizophrenia and Neurodevelopmental Disorders Research; Douglas Mental Health Institute; Verdun Quebec Canada
- Department of Psychiatry; McGill University; Montreal Quebec Canada
| |
Collapse
|
22
|
Maternal dexamethasone exposure ameliorates cognition and tau pathology in the offspring of triple transgenic AD mice. Mol Psychiatry 2016; 21:403-10. [PMID: 26077691 DOI: 10.1038/mp.2015.78] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 11/08/2022]
Abstract
Dysregulation of stress hormones, such as glucocorticoids, in adult life increases the risk to develop Alzheimer's disease (AD). However, the effect of prenatal glucocorticoids exposure on AD development in the offspring remains unknown. We studied how gestational dexamethasone exposure influences the AD-like phenotype in the offspring of triple transgenic AD mice (3 × Tg). To this end, female mice received dexamethasone or vehicle during the entire pregnancy time in the drinking water. Offspring from vehicle-treated 3 × Tg (controls) were compared with offspring from dexamethasone-treated 3 × Tg later in life for their memory, learning ability and brain pathology. Compared with controls, offspring from dexamethasone-treated mothers displayed improvement in their memory as assessed by fear conditioning test, both in the cue and recall phases. The same animals had a significant reduction in the insoluble fraction of tau, which was associated with an increase in autophagy. In addition, they showed an activation of the transcription factor cellular response element-binding protein and an increase in brain-derived neurotrophic factor and c-FOS protein levels, key regulators of synaptic plasticity and memory. We conclude that dexamethasone exposure during pregnancy provides long-lasting protection against the onset and development of the AD-like phenotype by improving cognition and tau pathology.
Collapse
|
23
|
Lasting Differential Effects on Plasticity Induced by Prenatal Stress in Dorsal and Ventral Hippocampus. Neural Plast 2016; 2016:2540462. [PMID: 26881096 PMCID: PMC4736977 DOI: 10.1155/2016/2540462] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/18/2015] [Accepted: 12/20/2015] [Indexed: 12/14/2022] Open
Abstract
Early life adversaries have a profound impact on the developing brain structure and functions that persist long after the original traumatic experience has vanished. One of the extensively studied brain structures in relation to early life stress has been the hippocampus because of its unique association with cognitive processes of the brain. While the entire hippocampus shares the same intrinsic organization, it assumes different functions in its dorsal and ventral sectors (DH and VH, resp.), based on different connectivity with other brain structures. In the present review, we summarize the differences between DH and VH and discuss functional and structural effects of prenatal stress in the two sectors, with the realization that much is yet to be explored in understanding the opposite reactivity of the DH and VH to stressful stimulation.
Collapse
|
24
|
Doyle C, Werner E, Feng T, Lee S, Altemus M, Isler JR, Monk C. Pregnancy distress gets under fetal skin: Maternal ambulatory assessment & sex differences in prenatal development. Dev Psychobiol 2015; 57:607-25. [PMID: 25945698 DOI: 10.1002/dev.21317] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 04/08/2015] [Indexed: 12/12/2022]
Abstract
Prenatal maternal distress is associated with an at-risk developmental profile, yet there is little fetal evidence of this putative in utero process. Moreover, the biological transmission for these maternal effects remains uncertain. In a study of n = 125 pregnant adolescents (ages 14-19), ambulatory assessments of daily negative mood (anger, frustration, irritation, stress), physical activity, blood pressure, heart rate (every 30 min over 24 hr), and salivary cortisol (six samples) were collected at 13-16, 24-27, 34-37 gestational weeks. Corticotropin-releasing hormone, C-reactive protein, and interleukin 6 from blood draws and 20 min assessments of fetal heart rate (FHR) and movement were acquired at the latter two sessions. On average, fetuses showed development in the expected direction (decrease in FHR, increase in SD of FHR and in the correlation of movement and FHR ("coupling")). Maternal distress characteristics were associated with variations in the level and trajectory of fetal measures, and results often differed by sex. For males, greater maternal 1st and 2nd session negative mood and 2nd session physical activity were associated with lower overall FHR (p < .01), while 1st session cortisol was associated with a smaller increase in coupling (p < .01), and overall higher levels (p = .05)-findings suggesting accelerated development. For females, negative mood, cortisol, and diastolic blood pressure were associated with indications of relatively less advanced and accelerated outcomes. There were no associations between negative mood and biological variables. These data indicate that maternal psychobiological status influences fetal development, with females possibly more variously responsive to different exposures.
Collapse
Affiliation(s)
- Colleen Doyle
- Department of Psychiatry, Columbia University Medical Center, New York, NY
| | - Elizabeth Werner
- Department of Psychiatry, Columbia University Medical Center, New York, NY
| | - Tianshu Feng
- New York State Psychiatric Institute, New York, NY
| | - Seonjoo Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| | - Margaret Altemus
- Department of Psychiatry, Weill Cornell Medical College, New York, NY
| | - Joseph R Isler
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Catherine Monk
- Department of Psychiatry, Columbia University Medical Center, New York, NY. .,New York State Psychiatric Institute, New York, NY. .,Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY.
| |
Collapse
|
25
|
Changes induced by prenatal stress in behavior and brain morphology: can they be prevented or reversed? ADVANCES IN NEUROBIOLOGY 2015; 10:3-25. [PMID: 25287533 DOI: 10.1007/978-1-4939-1372-5_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter presents a critical analysis of the behavioral alterations reported in the offspring of women exposed to stress and/or depression during pregnancy and the neurochemical and structural changes underlying them. Among the alterations attributed to prenatal stress in humans and experimental rats of both sexes is impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis, anxiety and exaggerated fear of novelty, and decreased social interaction. Learning and attention deficits are more prevalent in boys and male rats. Fear of novelty and anxiety are associated with enlargement of the amygdala and its corticotropin-releasing factor content, and decreased socialization, with lower oxytocin activity in the amygdala. Learning deficits are associated with a decrease in neurogenesis, dendritic complexity, and spine number in the dorsal hippocampus. Fostering prenatally stressed (PS) pups onto control mothers prevents the dysregulation of the HPA axis and heightened anxiety, indicating a role for postnatal factors in their etiology. By contrast, learning impairment and decreased socialization are not affected by this fostering procedure and are therefore prenatally mediated.In spite of their widespread use in depressed pregnant women, selective serotonin reuptake inhibitor (SSRI) antidepressants do not normalize the behavior of their children. When administered during gestation to stressed rats, SSRIs do not reduce anxiety or learning deficits in their offspring. Moreover, when given to unstressed mothers, SSRIs induce anxiety in the offspring. The detrimental effect of SSRIs may result from inhibition of the serotonin transporter exposing the brain to excess amounts of 5-hydroxytryptamine (5-HT) at a critical time during fetal development.
Collapse
|
26
|
Griffiths B, Hunter R. Neuroepigenetics of stress. Neuroscience 2014; 275:420-35. [DOI: 10.1016/j.neuroscience.2014.06.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/05/2014] [Accepted: 06/16/2014] [Indexed: 01/12/2023]
|
27
|
Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:932757. [PMID: 24999483 PMCID: PMC4066721 DOI: 10.1155/2014/932757] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/18/2014] [Indexed: 12/13/2022]
Abstract
Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) during early life (including prenatal period) or adulthood, giving emphasis to the data on the changes of neurotrophic factors and neuroinflammatory indices in the brain. These parameters are closely related to behavioral depression-like symptoms and impairments of neuronal plasticity and are both gender- and genotype-dependent. Stress-related changes in expression of neurotrophins and cytokines in rodent brain are region-specific. Some contradictory data reported by different groups may be a consequence of differences of stress paradigms or their realization in different laboratories. Like all experimental models, stress-induced depression-like conditions are experimental simplification of clinical depression states; however, they are suitable for understanding the involvement of neurotrophic factors and cytokines in the pathogenesis of the disease—a goal unachievable in the clinical reality. These major regulatory systems may be important targets for therapeutic measures as well as for development of drugs for treatment of depression states.
Collapse
|
28
|
Prenatal stress decreases spatial learning and memory retrieval of the adult male offspring of rats. Physiol Behav 2014; 129:104-9. [DOI: 10.1016/j.physbeh.2014.02.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/25/2014] [Accepted: 02/18/2014] [Indexed: 01/13/2023]
|
29
|
Maternal depression and foetal responses to novel stimuli: insights from a socio-economically disadvantaged Indian cohort. J Dev Orig Health Dis 2014; 5:178-82. [DOI: 10.1017/s2040174414000129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal stress during pregnancy has pervasive effects on stress responsivity in children. This study is the first to test the hypothesis that maternal prenatal depression, as observed in South India, may be associated with how foetuses respond to a potentially stressful stimulus. We employed measures of foetal heart rate at baseline, during exposure to a vibroacoustic stimulus, and post-stimulation, to study patterns of response and recovery in 133 third trimester foetuses of depressed and non-depressed mothers. We show that the association between maternal depression and foetal stress responsivity is U-shaped with foetuses of mothers with high and low depression scores demonstrating elevated responses, and poorer recovery, than foetuses of mothers with moderate levels. The right amount of intra-uterine stimulation is important in conditioning foetuses towards optimal regulation of their stress response. Our results imply that, in certain environmental contexts, exposure to moderate amounts of intra-uterine stress may facilitate this process.
Collapse
|
30
|
Chen J, Li Q, Rialdi A, Mystal E, Ly J, Finik J, Davey T, Lambertini L, Nomura Y. Influences of Maternal Stress during Pregnancy on the Epi/genome: Comparison of Placenta and Umbilical Cord Blood. ACTA ACUST UNITED AC 2014; 3. [PMID: 29963333 PMCID: PMC6020835 DOI: 10.4172/2167-1044.1000152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Maternal stress during pregnancy is one of the major adverse environmental factors in utero that is capable of influencing health outcomes of the offspring throughout life. Both genetic and epigenetic processes are susceptible to environmental insults in utero and are potential biomarkers of the experienced environment including maternal stress. Methods We profiled expression level of six genes in hypothalamic pituitary adrenal (HPA) axis functioning (HSD11B2, SLC6A4, NR3C1, NR3C2, CRHR1 and CRHR2), two imprinted genes (IGF2 and H19) and one neurodevelopmental gene (EGR1), from 49 pairs of placenta and umbilical cord blood (UCB) samples from a birth cohort. We also assessed global methylation levels by LUminometric Methylation Assay (LUMA) and methylation at the imprinting control region (ICR) of IGF2/H19. Results Little correlations between paired placenta and UCB were observed except H19 expression (r = 0.31, P = 0.04) and IGF2/H19 ICR methylation (r = 0.43, P = 0.01); gene expression levels were significantly higher (P < 0.001) in placenta than UCB except CRHR1 and CRHR2, which were unexpressed in placenta. Maternal stress correlated higher levels of HPA genes and lower levels of EGR1 and LUMA, but only in placenta. Positive association between maternal stress and IGF2/H19 ICR methylation was present in both placenta and UCB. Conclusions Our findings support the notion that adverse in utero environment, as measured by antenatal maternal stress, depression and anxiety, can be observed in the epi/genome of the relevant tissues, i.e. placenta and UCBs, leading to development of molecular markers for assessing in utero adversities.
Collapse
Affiliation(s)
- Jia Chen
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qian Li
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexender Rialdi
- Graduate School, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elana Mystal
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenny Ly
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jackie Finik
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Taira Davey
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luca Lambertini
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yoko Nomura
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,William E. Macaulay Honors College (Queens), New York, NY, USA
| |
Collapse
|
31
|
Hunter RG, McEwen BS. Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation. Epigenomics 2013; 5:177-94. [PMID: 23566095 DOI: 10.2217/epi.13.8] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The brain is the central organ of the body's response to and perception of stress. Both the juvenile and the adult brain show a significant capacity for lasting physiological, structural and behavioral plasticity as a consequence of stress exposure. The hypothesis that epigenetic mechanisms might lie behind the lasting effects of stress upon the brain has proven a fruitful one. In this review, we examine the growing literature showing that stress has a direct impact on epigenetic marks at all life history stages thus far examined and how, in turn, epigenetic mechanisms play a role in altering stress responsiveness, anxiety and brain plasticity across the lifespan and beyond to succeeding generations. In addition, we will examine our own recent findings that stress interacts with the epigenome to regulate the expression of transposable elements in a regionally specific fashion, a finding with significant implications for a portion of the genome which is tenfold larger than that occupied by the genes themselves.
Collapse
Affiliation(s)
- Richard G Hunter
- Harold & Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| | | |
Collapse
|
32
|
Grigoryan G, Segal M. Prenatal stress alters noradrenergic modulation of LTP in hippocampal slices. J Neurophysiol 2013; 110:279-85. [DOI: 10.1152/jn.00834.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long-term effects of stress during pregnancy on brain and behavior have been analyzed extensively in recent years. These effects include changes in emotional behavior, a reduction in learning capacity, and ability to generate long-term potentiation (LTP) in the offspring. In earlier studies, we and others have described a difference in ability to express LTP in dorsal and ventral sectors of the hippocampus (DH and VH, respectively) and its modification by prior stress. We now found that norepinephrine (NE) facilitated conversion of short-term potentiation to LTP in the normal DH but not in VH. Prenatal stress (PS) switched the locus of the facilitating action of NE from the DH to the VH. The effects of NE are likely to be mediated by activation of calcium stores. PS also facilitated ( S)-3,5-dihydroxyphenylglycine hydrate (DHPG)-induced LTD in the VH, assumed to be mediated by release of calcium from stores. These observations have important implications for the role of the hippocampus in cognitive and emotional memories.
Collapse
Affiliation(s)
- Gayane Grigoryan
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
33
|
Grigoryan G, Segal M. Prenatal stress affects network properties of rat hippocampal neurons. Biol Psychiatry 2013; 73:1095-102. [PMID: 23541001 DOI: 10.1016/j.biopsych.2013.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Long-term effects of stress during pregnancy on brain and behavior have been analyzed extensively in recent years. One major problem with these studies is the inability to separate between the net effects of the prenatal stress (PS) and the effects of the stressed mother and siblings on the newborn animals. METHODS To address these issues, we studied morphological and electrophysiological properties of neurons in dissociated cultures of the hippocampus taken from newborn PS rats. We complemented these studies with experiments on behaving rats and recordings from slices taken from PS rats and their control rats. RESULTS While the density of cultured neurons was not different between PS and control rats, there were fewer glutamic acid decarboxylase-positive neurons in the former cultures. Additionally, cells taken from PS pups developed more extensive dendrites than control animals. These differences were correlated with a higher rate of synchronous activity in the PS cultures and a lower rate of spontaneous miniature inhibitory postsynaptic current activity. There were no differences in the excitatory synaptic currents or the passive and active properties of the recorded neurons in the two groups. Young PS rats were more motile in open field and elevated plus maze than control rats, and they learned faster to navigate in a water maze. Slices taken from hippocampus of PS rats expressed less paired-pulse inhibition than slices from control rats. CONCLUSIONS These results indicate that PS affects network properties of hippocampal neurons, by reducing gamma-aminobutyric acidergic inhibition.
Collapse
Affiliation(s)
- Gayane Grigoryan
- Department of Neurobiology, The Weizmann Institute, Rehovot 75100, Israel
| | | |
Collapse
|
34
|
Gutiérrez-Rojas C, Pascual R, Bustamante C. Prenatal stress alters the behavior and dendritic morphology of the medial orbitofrontal cortex in mouse offspring during lactation. Int J Dev Neurosci 2013; 31:505-11. [PMID: 23727133 DOI: 10.1016/j.ijdevneu.2013.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 02/01/2023] Open
Abstract
Several preclinical and clinical studies have shown that prenatal stress alters neuronal dendritic development in the prefrontal cortex, together with behavioral disturbances (anxiety). Nevertheless, neither whether these alterations are present during the lactation period, nor whether such findings may reflect the onset of anxiety disorders observed in childhood and adulthood has been studied. The central aim of the present study was to determine the effects of prenatal stress on the neuronal development and behavior of mice offspring during lactation (postnatal days 14 and 21). We studied 24 CF-1 male mice, grouped as follows: (i) control P14 (n=6), (ii) stressed P14 (n=6), (iii) control P21 (n=6) and (iv) stressed P21 (n=6). On the corresponding days, animals were evaluated with the open field test and sacrificed. Their brains were then stained in Golgi-Cox solution for 30 days. The morphological analysis dealt with the study of 96 pyramidal neurons. The results showed, first, that prenatal stress resulted in a significant (i) decrease in the apical dendritic length of pyramidal neurons in the orbitofrontal cortex at postnatal day 14, (ii) increase in the apical dendritic length of pyramidal neurons in the orbitofrontal cortex at postnatal day 21, and (iii) reduction in exploratory behavior at postnatal day 14 and 21.
Collapse
Affiliation(s)
- Cristian Gutiérrez-Rojas
- Laboratorio de Neurociencias, Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Chile.
| | | | | |
Collapse
|
35
|
The effects of prenatal and postnatal environmental interaction: prenatal environmental adaptation hypothesis. ACTA ACUST UNITED AC 2013; 107:483-92. [PMID: 23624396 DOI: 10.1016/j.jphysparis.2013.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 01/23/2023]
Abstract
Adverse antenatal maternal environments during pregnancy influence fetal development that consequently increases risks of mental health problems including psychiatric disorders in offspring. Therefore, behavioral and brain alterations caused by adverse prenatal environmental conditions are generally considered as deficits. In this article, we propose a novel hypothesis, along with summarizing a body of literatures supporting it, that fetal neurodevelopmental alterations, particularly synaptic network changes occurring in the prefrontal cortex, associated with adverse prenatal environmental conditions may be adaptation to cope with expected severe postnatal environments, and therefore, psychiatric disorders may be able to be understood as adaptive strategies against severe environmental conditions through evolution. It is hoped that the hypothesis presented in this article stimulates and opens a new venue on research toward understanding of biological mechanisms and therapeutic treatments of psychiatric disorders.
Collapse
|
36
|
Li J, Robinson M, Malacova E, Jacoby P, Foster J, van Eekelen A. Maternal life stress events in pregnancy link to children's school achievement at age 10 years. J Pediatr 2013; 162:483-9. [PMID: 23084705 DOI: 10.1016/j.jpeds.2012.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 07/26/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To test the hypothesis that maternal antenatal exposure to life stress events is associated with lower achievement in literacy and numeracy at age 10 years, with sex differences in this link. STUDY DESIGN The Western Australian Pregnancy Cohort Study recruited 2900 women at 18 weeks' pregnancy, and 2868 children were followed up at birth and postnatally. At age 10 years, information on 1038 children was linked to their literacy and numeracy test scores. Multivariate regression models were used to test the foregoing hypotheses, adjusting for important confounders. RESULTS In girls, maternal antenatal exposure to 4 or more maternal life stress events or death of the mother's friend and/or relative was associated with lower reading scores. In contrast, exposure to 3 or more life stress events or to a pregnancy or financial problem was associated with higher reading scores in boys. Furthermore, maternal exposure to 4 or more life stress events was associated with higher mathematic scores and a residential move was linked to higher writing scores in boys. CONCLUSION Maternal antenatal exposure to life stress events has differing effects on the school performance of male and female offspring. Further research is needed to explore the reasons for this sex difference.
Collapse
Affiliation(s)
- Jianghong Li
- Curtin Health Innovation Research Institute, Center for Population Health Research, Curtin University, Perth, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Cory-Slechta DA, Virgolini MB, Liu S, Weston D. Enhanced stimulus sequence-dependent repeated learning in male offspring after prenatal stress alone or in conjunction with lead exposure. Neurotoxicology 2012; 33:1188-202. [PMID: 22796262 DOI: 10.1016/j.neuro.2012.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
Both lead (Pb) exposure and prenatal stress (PS) can produce cognitive deficits, and in a prior study we demonstrated enhanced cognitive deficits in repeated learning of female rats exposed to both of these developmental insults (Cory-Slechta et al., 2010). However, PS can also lead to improved cognitive outcomes that are both gender- and context-dependent. Thus, the current study examined whether Pb ± PS likewise produced repeated learning deficits in males, either after maternal or lifetime Pb exposure. Repeated learning was evaluated using a multiple schedule of repeated learning and performance that required learning 3-response sequences in male offspring that had been subjected to either maternal Pb (0 or 150 ppm) or lifetime Pb exposure (0 or 50 ppm) beginning two months prior to dam breeding, to prenatal immobilization restraint stress (gestational days 16-17), or to both Pb and PS. Blood Pb, corticosterone, hippocampal glucocorticoid receptor density and brain monoamines were also measured. In contrast to outcomes in females, sequence-specific enhancements of repeated learning accuracy were produced by PS, particularly when combined with Pb, results that appeared to be more robust in combination with lifetime than maternal Pb exposure. A common behavioral mechanism of these improvements appears to be an increased reinforcement density associated with increased response rates and shorter session times seen with PS ± Pb that could shorten time to reinforcement. Trends toward lower levels of nucleus accumbens dopamine activity seen after both maternal Pb and lifetime Pb combined with PS suggest a possible role for this region/neurotransmitter in enhanced accuracy, whereas PS ± Pb-induced corticosterone changes did not exhibit an obvious systematic relationship to accuracy enhancements. While PS ± Pb-based increases in accuracy appear to be an improved outcome, the benefits of increased response rate are by no means universal, but highly context-dependent and can lead to adverse behavioral effects in other conditions.
Collapse
Affiliation(s)
- D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
38
|
Hunter RG. Epigenetic effects of stress and corticosteroids in the brain. Front Cell Neurosci 2012; 6:18. [PMID: 22529779 PMCID: PMC3329877 DOI: 10.3389/fncel.2012.00018] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/02/2012] [Indexed: 01/05/2023] Open
Abstract
Stress is a common life event with potentially long lasting effects on health and behavior. Stress, and the corticosteroid hormones that mediate many of its effects, are well known for their ability to alter brain function and plasticity. While genetic susceptibility may influence the impact of stress on the brain, it does not provide us with a complete understanding of the capacity of stress to produce long lasting perturbations on the brain and behavior. The growing science of epigenetics, however, shows great promise of deepening our understanding of the persistent impacts of stress and corticosteroids on health and disease. Epigenetics, broadly defined, refers to influences on phenotype operating above the level of the genetic code itself. At the molecular level, epigenetic events belong to three major classes: DNA methylation, covalent histone modification and non-coding RNA. This review will examine the bi-directional interactions between stress and corticosteroids and epigenetic mechanisms in the brain and how the novel insights, gleaned from recent research in neuro-epigenetics, change our understanding of mammalian brain function and human disease states.
Collapse
Affiliation(s)
- Richard G Hunter
- Laboratories of Neuroendocrinology and Neurobiology and Behavior, The Rockefeller University, New York NY, USA
| |
Collapse
|
39
|
Wegener G, Mathe AA, Neumann ID. Selectively bred rodents as models of depression and anxiety. Curr Top Behav Neurosci 2012; 12:139-187. [PMID: 22351423 DOI: 10.1007/7854_2011_192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Stress related diseases such as depression and anxiety have a high degree of co morbidity, and represent one of the greatest therapeutic challenges for the twenty-first century. The present chapter will summarize existing rodent models for research in psychiatry, mimicking depression- and anxiety-related diseases. In particular we will highlight the use of selective breeding of rodents for extremes in stress-related behavior. We will summarize major behavioral, neuroendocrine and neuronal parameters, and pharmacological interventions, assessed in great detail in two rat model systems: The Flinders Sensitive and Flinders Resistant Line rats (FSL/FRL model), and rats selectively bred for high (HAB) or low (LAB) anxiety related behavior (HAB/LAB model). Selectively bred rodents also provide an excellent tool in order to study gene and environment interactions. Although it is generally accepted that genes and environmental factors determine the etiology of mental disorders, precise information is limited: How rigid is the genetic disposition? How do genetic, prenatal and postnatal influences interact to shape adult disease? Does the genetic predisposition determine the vulnerability to prenatal and postnatal or adult stressors? In combination with modern neurobiological methods, these models are important to elucidate the etiology and pathophysiology of anxiety and affective disorders, and to assist in the development of new treatment paradigms.
Collapse
Affiliation(s)
- Gregers Wegener
- Centre for Psychiatric Research, Aarhus University Hospital, 8240, Risskov, Denmark,
| | | | | |
Collapse
|
40
|
Emack J, Matthews SG. Effects of chronic maternal stress on hypothalamo-pituitary-adrenal (HPA) function and behavior: no reversal by environmental enrichment. Horm Behav 2011; 60:589-98. [PMID: 21907201 DOI: 10.1016/j.yhbeh.2011.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 11/24/2022]
Abstract
Maternal stress during pregnancy is linked to increased risk for impaired behavioral and emotional development and affective disorders in children. In animal models, acute periods of prenatal or postnatal stress have profound effects on HPA function and behavior in adult offspring. However, few animal studies have determined the impact of chronic exposure to stress throughout the perinatal period. The objective of this study was to determine the effects of chronic maternal stress (CMS) during the 2nd half of pregnancy and nursing on HPA function, locomotor behavior and prepulse inhibition in adult guinea pig offspring, as well as to determine whether environmental enrichment (EE) could reverse the effects of CMS. Guinea pigs were exposed to a random combination of variable stressors every other day over the 2nd half of gestation and from postnatal day (pnd) 1 until weaning (pnd25). Following weaning, offspring were housed in either standard conditions or EE. In both adult male and female offspring, there was no effect of CMS on basal or activated HPA function. CMS significantly increased locomotor activity in an open-field in male offspring, though no effect was observed in females. In female offspring, CMS disrupted PPI; however there was no effect on male PPI. EE had a number of effects on HPA function and behavior but in most cases these were independent of the influence of CMS. EE significantly elevated basal cortisol levels in male offspring at pnd70, whereas in female offspring, EE interacted with CMS to elevate basal cortisol levels from pnd35 to pnd70. In female offspring, EE decreased locomotor activity. In males, EE enhanced PPI; however in female offspring EE disrupted PPI. In conclusion, while CMS had minimal effects on HPA function, there were significant long-term sex-specific effects on behavior. EE did not reverse the effects observed as a result of CMS, but rather modified HPA function and behavior independently of CMS. Further, there was significant interaction of CMS with EE that resulted in elevation of basal HPA function in female offspring. These data, combined with previous studies from our laboratory, suggest that acute phases of maternal stress in late pregnancy may have greater long-term effects on HPA function and related behaviors than prolonged chronic maternal stress.
Collapse
Affiliation(s)
- Jeff Emack
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
41
|
de Souza MA, Szawka RE, Centenaro LA, Diehl LA, Lucion AB. Prenatal stress produces sex differences in nest odor preference. Physiol Behav 2011; 105:850-5. [PMID: 22037198 DOI: 10.1016/j.physbeh.2011.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/28/2022]
Abstract
Prenatal stress (PS) and early postnatal environment may alter maternal care. Infant rats learn to identify their mother through the association between maternal care and familiar odors. Female Wistar rats were exposed to restraint stress for 30 min, 4 sessions per day, in the last 7 days of pregnancy. At birth, pups were cross-fostered and assigned to the following groups: prenatal non-stressed mothers raising non-stressed pups (NS:NS), prenatal stressed mothers raising non-stressed pups (S:NS), prenatal non-stressed mothers raising stressed pups (NS:S), prenatal stressed mothers raising stressed pups (S:S). Maternal behaviors were assessed during 6 postpartum days. On postnatal day (PND) 7, the behavior of male and female pups was analyzed in the odor preference test; and noradrenaline (NA) activity in olfactory bulb (OB) was measured. The results showed that restraint stress increased plasma levels of corticosterone on gestational day 15. After parturition, PS reduced maternal care, decreasing licking the pups and increasing frequency outside the nest. Female pups from the NS:S, S:NS, S:S groups and male pups from the S:S group showed no nest odor preference. Thus, at day 7, female pups that were submitted to perinatal interventions showed more impairment in the nest odor preference test than male pups. No changes were detected in the NA activity in the OB. In conclusion, repeated restraint stress during the last week of gestation reduces maternal care and reduces preference for a familiar odor in rat pups in a sex-specific manner.
Collapse
Affiliation(s)
- Marcelo Alves de Souza
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, Porto Alegre, RS, CEP 90050-170, Brazil.
| | | | | | | | | |
Collapse
|
42
|
Loomans EM, van der Stelt O, van Eijsden M, Gemke RJBJ, Vrijkotte TGM, Van den Bergh BRH. High levels of antenatal maternal anxiety are associated with altered cognitive control in five-year-old children. Dev Psychobiol 2011; 54:441-50. [DOI: 10.1002/dev.20606] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 08/21/2011] [Indexed: 11/08/2022]
|
43
|
Leshem M, Schulkin J. Transgenerational effects of infantile adversity and enrichment in male and female rats. Dev Psychobiol 2011; 54:169-86. [PMID: 21815137 DOI: 10.1002/dev.20592] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/06/2011] [Indexed: 11/08/2022]
Abstract
To discover whether the accumulation of life's experiences, adverse and enriching, inform, and serve the following generation by inheritance we examine whether stress to a weanling female will influence her future offspring, whether prereproductive enrichment to the dam, or postweaning enrichment to the offspring, can reverse the transgenerational effects of stress, and whether, like adversity, enrichment might have transgenerational effects. Female rats were exposed to stressors when they were 27-29 days old. Half of these females and their controls were then raised in an enriched environment from weaning until mating at 60 days to examine whether preproduction enrichment reverses the effects of preproduction stress on offspring. Half of the offspring of each group were raised in an enriched environment after weaning, to see whether it reverses the effects of preproduction stress and buttresses prereproductive enrichment. Behavior was examined in 625 adult offspring in 16 groups covering all permutations of the experimental variables (preproduction weanling stress (PS), preproduction enrichment (PE), offspring enrichment (OE), sex). Exploration, avoidance learning, startle, and social interaction were tested. Results reveal that very early prereproductive experience in females, adverse or enriching, will transgenerationally influence their future offspring, depending on the behavior tested and sex. Our finding that enrichment, whether to the parent or offspring generation, can ameliorate the transgenerational impact of adversity, has novel implications for the malleability of transgenerational inheritance, and its individual, social, and therapeutic impact.
Collapse
Affiliation(s)
- Micah Leshem
- Department of Psychology, University of Haifa, Haifa 31905, Israel.
| | | |
Collapse
|
44
|
Coulon M, Hild S, Schroeer A, Janczak A, Zanella A. Gentle vs. aversive handling of pregnant ewes: II. Physiology and behavior of the lambs. Physiol Behav 2011; 103:575-84. [DOI: 10.1016/j.physbeh.2011.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/14/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022]
|
45
|
Dudley KJ, Li X, Kobor MS, Kippin TE, Bredy TW. Epigenetic mechanisms mediating vulnerability and resilience to psychiatric disorders. Neurosci Biobehav Rev 2011; 35:1544-51. [PMID: 21251925 DOI: 10.1016/j.neubiorev.2010.12.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 01/22/2023]
Abstract
The impact that stressful encounters have upon long-lasting behavioural phenotypes is varied. Whereas a significant proportion of the population will develop "stress-related" conditions such as post-traumatic stress disorder or depression in later life, the majority are considered "resilient" and are able to cope with stress and avoid such psychopathologies. The reason for this heterogeneity is undoubtedly multi-factorial, involving a complex interplay between genetic and environmental factors. Both genes and environment are of critical importance when it comes to developmental processes, and it appears that subtle differences in either of these may be responsible for altering developmental trajectories that confer vulnerability or resilience. At the molecular level, developmental processes are regulated by epigenetic mechanisms, with recent clinical and pre-clinical data obtained by ourselves and others suggesting that epigenetic differences in various regions of the brain are associated with a range of psychiatric disorders, including many that are stress-related. Here we provide an overview of how these epigenetic differences, and hence susceptibility to psychiatric disorders, might arise through exposure to stress-related factors during critical periods of development.
Collapse
Affiliation(s)
- Kevin J Dudley
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
46
|
Effects of a constant light environment on hippocampal neurogenesis and memory in mice. Neurosci Lett 2011; 488:41-4. [DOI: 10.1016/j.neulet.2010.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/05/2010] [Accepted: 11/01/2010] [Indexed: 11/19/2022]
|
47
|
Influence of diurnal phase on startle response in adult rats exposed to dexamethasone in utero. Physiol Behav 2010; 102:444-52. [PMID: 21172366 DOI: 10.1016/j.physbeh.2010.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/19/2010] [Accepted: 12/13/2010] [Indexed: 11/23/2022]
Abstract
Depression and pathological anxiety disorders are among the most prevalent neurological diseases in the world and can be precipitated and exacerbated by stress. Prenatal stress alters both behavioral and endocrine responses to stressful stimuli in later life. We have previously observed increased basal acoustic startle response (ASR) in Wistar rats exposed to stress or dexamethasone (DEX) in utero when tested during the light phase of the circadian rhythm, and decreased prepulse inhibition (PPI) in similar animals tested during the dark phase of the cycle. We speculated that this observation of increased basal startle might be influenced by diurnal phase. In the present study, adult female Sprague Dawley rats, stressed prenatally with DEX (200 μg/kg, gestational days 14-21) and postnatally by blood sampling under restraint, were tested for the ASR during both circadian phases (light and dark). Basal startle was increased in animals tested both during the light and the dark phases of the cycle. We hereby replicated our earlier findings in a new strain and laboratory, thus strengthening the validity of our model regarding prenatal stress effects on ASR in female offspring. Our results indicate that observation of increased basal ASR is not solely dependent on diurnal phase. We found no difference in hippocampal glucocorticoid and mineral corticoid receptor expression between groups.
Collapse
|
48
|
Reissland N, Francis B. The quality of fetal arm movements as indicators of fetal stress. Early Hum Dev 2010; 86:813-6. [PMID: 20947272 DOI: 10.1016/j.earlhumdev.2010.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/07/2010] [Accepted: 09/20/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although a number of studies have found that maternal stress affects the fetus, it is unclear whether jerky fetal movements observed on ultrasound scans are indicative of fetal stress, or whether they are part of normal development. AIMS The present study was designed to examine the relationship between jerky fetal arm movements in relation to fetal age and stress. METHODS Video recordings were made of routine ultrasound scans of 57 fetuses (age range 8 to 33 weeks) classified into three age groups: 1st trimester (8-12 weeks, N=9), 2nd trimester (13-24 weeks, N=38), and 3rd trimester (26-33 weeks, N=10). Following previous research on stress behaviour in neonates, a fetal index of stress was derived from frequency of hiccup, back arch and rhythmical mouthing. RESULTS Results indicated that while stress level was unrelated to fetal age, jerkiness of arm movements was significantly associated with the fetal stress index but not age. CONCLUSIONS Our findings suggest that jerky arm movements in fetuses are suggestive of fetal stress.
Collapse
Affiliation(s)
- Nadja Reissland
- Department of Psychology, University of Durham, Science Site, South Road, Durham DH1 3LE, UK.
| | | |
Collapse
|
49
|
Peng S, Zhang Y, Wang H, Ren B, Zhang J. Anesthetic ketamine counteracts repetitive mechanical stress-induced learning and memory impairment in developing mice. Mol Biol Rep 2010; 38:4347-51. [PMID: 21116850 DOI: 10.1007/s11033-010-0561-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/17/2010] [Indexed: 11/24/2022]
Abstract
The aim of this study is to investigate whether ketamine, a noncompetitive N-methyl-D: -aspartate receptor (NMDAR) antagonist, had an influence on learning and memory in developing mice. Fifty Kunming mice aged 21 days were randomly divided into 5 subgroups (n = 10 for each) to receive intraperitoneal injection of equal volume of saline (S group) or ketamine (25, 50 or 100 mg/kg of body weight/day) for 7 consecutive days, or to be left untreated (C group). A step-down passive avoidance test was performed to evaluate learning and memory in these mice on days 8 and 9. Additionally, the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus was determined. Rats receiving saline or sub-anesthetic dose of ketamine (25 mg/kg) showed significantly decreased abilities of learning and memory and reduced expression of BDNF, compared to the normal controls (P < 0.05). In contrast, comparable abilities of learning and memory and expression of BDNF were found for anesthetic doses of ketamine (50 or 100 mg/kg)-treated rats and controls (P > 0.05). Repetitive mechanical stress impairs learning and memory performance in developing mice, which may be associated with decreased BDNF expression. The stress-induced learning and memory impairment can be prevented by anesthetic doses of ketamine.
Collapse
Affiliation(s)
- Sheng Peng
- Department of Anesthesiology, Affiliated No.4 Hospital of Soochow University, Wuxi 214062, China
| | | | | | | | | |
Collapse
|
50
|
Uygur E, Arslan M. Effects of chronic stress on cognitive functions and anxiety related behaviors in rats. ACTA ACUST UNITED AC 2010; 97:297-306. [DOI: 10.1556/aphysiol.97.2010.3.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|