1
|
Liu Z, De Schutter E, Li Y. GABA-Induced Seizure-Like Events Caused by Multi-ionic Interactive Dynamics. eNeuro 2024; 11:ENEURO.0308-24.2024. [PMID: 39443111 PMCID: PMC11524612 DOI: 10.1523/eneuro.0308-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Experimental evidence showed that an increase in intracellular chloride concentration [Formula: see text] caused by gamma-aminobutyric acid (GABA) input can promote epileptic firing activity, but the actual mechanisms remain elusive. Here in this theoretical work, we show that influx of chloride and concomitant bicarbonate ion [Formula: see text] efflux upon GABA receptor activation can induce epileptic firing activity by transition of GABA from inhibition to excitation. We analyzed the intrinsic property of neuron firing states as a function of [Formula: see text] We found that as [Formula: see text] increases, the system exhibits a saddle-node bifurcation, above which the neuron exhibits a spectrum of intensive firing, periodic bursting interrupted by depolarization block (DB) state, and eventually a stable DB through a Hopf bifurcation. We demonstrate that only GABA stimuli together with [Formula: see text] efflux can switch GABA's effect to excitation which leads to a series of seizure-like events (SLEs). Exposure to a low [Formula: see text] can drive neurons with high concentrations of [Formula: see text] downward to lower levels of [Formula: see text], during which it could also trigger SLEs depending on the exchange rate with the bath. Our analysis and simulation results show how the competition between GABA stimuli-induced accumulation of [Formula: see text] and [Formula: see text] application-induced decrease of [Formula: see text] regulates the neuron firing activity, which helps to understand the fundamental ionic dynamics of SLE.
Collapse
Affiliation(s)
- Zichao Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Yinyun Li
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
2
|
Graham RT, Parrish RR, Alberio L, Johnson EL, Owens L, Trevelyan AJ. Optogenetic stimulation reveals a latent tipping point in cortical networks during ictogenesis. Brain 2023; 146:2814-2827. [PMID: 36572952 PMCID: PMC10316782 DOI: 10.1093/brain/awac487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
Brain-state transitions are readily apparent from changes in brain rhythms,1 but are difficult to predict, suggestive that the underlying cause is latent to passive recording methods. Among the most important transitions, clinically, are the starts of seizures. We here show that an 'active probing' approach may have several important benefits for epileptic management, including by helping predict these transitions. We used mice expressing the optogenetic actuator, channelrhodopsin, in pyramidal cells, allowing this population to be stimulated in isolation. Intermittent stimulation at frequencies as low as 0.033 Hz (period = 30 s) delayed the onset of seizure-like events in an acute brain slice model of ictogenesis, but the effect was lost if stimulation was delivered at even lower frequencies (1/min). Notably, active probing additionally provides advance indication of when seizure-like activity is imminent, revealed by monitoring the postsynaptic response to stimulation. The postsynaptic response, recorded extracellularly, showed an all-or-nothing change in both amplitude and duration, a few hundred seconds before seizure-like activity began-a sufficient length of time to provide a helpful warning of an impending seizure. The change in the postsynaptic response then persisted for the remainder of the recording, indicative of a state change from a pre-epileptic to a pro-epileptic network. This occurred in parallel with a large increase in the stimulation-triggered Ca2+ entry into pyramidal dendrites, and a step increase in the number of evoked postsynaptic action potentials, both consistent with a reduction in the threshold for dendritic action potentials. In 0 Mg2+ bathing media, the reduced threshold was not associated with changes in glutamatergic synaptic function, nor of GABAergic release from either parvalbumin or somatostatin interneurons, but simulations indicate that the step change in the optogenetic response can instead arise from incremental increases in intracellular [Cl-]. The change in the response to stimulation was replicated by artificially raising intracellular [Cl-], using the optogenetic chloride pump, halorhodopsin. By contrast, increases in extracellular [K+] cannot account for the firing patterns in the response to stimulation, although this, and other cellular changes, may contribute to ictal initiation in other circumstances. We describe how these various cellular changes form a synergistic network of positive feedback mechanisms, which may explain the precipitous nature of seizure onset. This model of seizure initiation draws together several major lines of epilepsy research as well as providing an important proof-of-principle regarding the utility of open-loop brain stimulation for clinical management of the condition.
Collapse
Affiliation(s)
- Robert T Graham
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - R Ryley Parrish
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Alberio
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Emily L Johnson
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Owens
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew J Trevelyan
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
3
|
Magloire V, Savtchenko LP, Jensen TP, Sylantyev S, Kopach O, Cole N, Tyurikova O, Kullmann DM, Walker MC, Marvin JS, Looger LL, Hasseman JP, Kolb I, Pavlov I, Rusakov DA. Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network. Curr Biol 2023; 33:1249-1264.e7. [PMID: 36921605 PMCID: PMC10615848 DOI: 10.1016/j.cub.2023.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (Gtonic) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks.
Collapse
Affiliation(s)
- Vincent Magloire
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Leonid P Savtchenko
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Thomas P Jensen
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sergyi Sylantyev
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Nicholas Cole
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Olga Tyurikova
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ivan Pavlov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
4
|
Shao Y, Ge Q, Yang J, Wang M, Zhou Y, Guo JX, Zhu M, Shi J, Hu Y, Shen L, Chen Z, Li XM, Zhu JM, Zhang J, Duan S, Chen J. Pathological Networks Involving Dysmorphic Neurons in Type II Focal Cortical Dysplasia. Neurosci Bull 2022; 38:1007-1024. [PMID: 35235180 PMCID: PMC9468210 DOI: 10.1007/s12264-022-00828-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. Dysmorphic neurons are the major histopathological feature of type II FCD, but their role in seizure genesis in FCD is unclear. Here we performed whole-cell patch-clamp recording and morphological reconstruction of cortical principal neurons in postsurgical brain tissue from drug-resistant epilepsy patients. Quantitative analyses revealed distinct morphological and electrophysiological characteristics of the upper layer dysmorphic neurons in type II FCD, including an enlarged soma, aberrant dendritic arbors, increased current injection for rheobase action potential firing, and reduced action potential firing frequency. Intriguingly, the upper layer dysmorphic neurons received decreased glutamatergic and increased GABAergic synaptic inputs that were coupled with upregulation of the Na+-K+-Cl- cotransporter. In addition, we found a depolarizing shift of the GABA reversal potential in the CamKII-cre::PTENflox/flox mouse model of drug-resistant epilepsy, suggesting that enhanced GABAergic inputs might depolarize dysmorphic neurons. Thus, imbalance of synaptic excitation and inhibition of dysmorphic neurons may contribute to seizure genesis in type II FCD.
Collapse
Affiliation(s)
- Yijie Shao
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qianqian Ge
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiachao Yang
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mi Wang
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu Zhou
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jin-Xin Guo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengyue Zhu
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiachen Shi
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiqi Hu
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedic Surgery, School of Medicine, the Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
- Hangzhou Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Joint Institute for Genetics and Genome Medicine between, Guangdong Hong Kong Macao Greater Bay Area, Zhejiang University and the University of Toronto, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun-Ming Zhu
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Shumin Duan
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jiadong Chen
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Lado WE, Xu X, Hablitz JJ. Modulation of Epileptiform Activity by Three Subgroups of GABAergic Interneurons in Mouse Somatosensory Cortex. Epilepsy Res 2022; 183:106937. [DOI: 10.1016/j.eplepsyres.2022.106937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
|
6
|
Lodovichi C, Ratto GM, Trevelyan AJ, Arosio D. Genetically encoded sensors for Chloride concentration. J Neurosci Methods 2022; 368:109455. [PMID: 34952088 DOI: 10.1016/j.jneumeth.2021.109455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
Insights into chloride regulation in neurons have come slowly, but they are likely to be critical for our understanding of how the brain works. The reason is that the intracellular Cl- level ([Cl-]i) is the key determinant of synaptic inhibitory function, and this in turn dictates all manner of neuronal network function. The true impact on the network will only be apparent, however, if Cl- is measured at many locations at once (multiple neurons, and also across the subcellular compartments of single neurons), which realistically, can only be achieved using imaging. The development of genetically-encoded anion biosensors (GABs) brings the additional benefit that Cl- imaging may be done in identified cell-classes and hopefully in subcellular compartments. Here, we describe the historical background and motivation behind the development of these sensors and how they have been used so far. There are, however, still major limitations for their use, the most important being the fact that all GABs are sensitive to both pH and Cl-. Disambiguating the two signals has proved a major challenge, but there are potential solutions; notable among these is ClopHensor, which has now been developed for in vivo measurements of both ion species. We also speculate on how these biosensors may yet be improved, and how this could advance our understanding of Cl- regulation and its impact on brain function.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute-CNR, Depart. Biomedical Sciences, Unipd, Padova, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| | - Gian Michele Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniele Arosio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biofisica, 38123 Trento, Italy.
| |
Collapse
|
7
|
Köksal Ersöz E, Wendling F. Canard solutions in neural mass models: consequences on critical regimes. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2021; 11:11. [PMID: 34529192 PMCID: PMC8446153 DOI: 10.1186/s13408-021-00109-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 08/17/2021] [Indexed: 05/06/2023]
Abstract
Mathematical models at multiple temporal and spatial scales can unveil the fundamental mechanisms of critical transitions in brain activities. Neural mass models (NMMs) consider the average temporal dynamics of interconnected neuronal subpopulations without explicitly representing the underlying cellular activity. The mesoscopic level offered by the neural mass formulation has been used to model electroencephalographic (EEG) recordings and to investigate various cerebral mechanisms, such as the generation of physiological and pathological brain activities. In this work, we consider a NMM widely accepted in the context of epilepsy, which includes four interacting neuronal subpopulations with different synaptic kinetics. Due to the resulting three-time-scale structure, the model yields complex oscillations of relaxation and bursting types. By applying the principles of geometric singular perturbation theory, we unveil the existence of the canard solutions and detail how they organize the complex oscillations and excitability properties of the model. In particular, we show that boundaries between pathological epileptic discharges and physiological background activity are determined by the canard solutions. Finally we report the existence of canard-mediated small-amplitude frequency-specific oscillations in simulated local field potentials for decreased inhibition conditions. Interestingly, such oscillations are actually observed in intracerebral EEG signals recorded in epileptic patients during pre-ictal periods, close to seizure onsets.
Collapse
Affiliation(s)
- Elif Köksal Ersöz
- Univ Rennes, INSERM, LTSI-U1099, Campus de Beaulieu, F - 35000, Rennes, France
| | - Fabrice Wendling
- Univ Rennes, INSERM, LTSI-U1099, Campus de Beaulieu, F - 35000, Rennes, France.
| |
Collapse
|
8
|
Regulation of GABA A Receptors Induced by the Activation of L-Type Voltage-Gated Calcium Channels. MEMBRANES 2021; 11:membranes11070486. [PMID: 34209589 PMCID: PMC8304739 DOI: 10.3390/membranes11070486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
GABAA receptors are pentameric ion channels that mediate most synaptic and tonic extrasynaptic inhibitory transmissions in the central nervous system. There are multiple GABAA receptor subtypes constructed from 19 different subunits in mammals that exhibit different regional and subcellular distributions and distinct pharmacological properties. Dysfunctional alterations of GABAA receptors are associated with various neuropsychiatric disorders. Short- and long-term plastic changes in GABAA receptors can be induced by the activation of different intracellular signaling pathways that are triggered, under physiological and pathological conditions, by calcium entering through voltage-gated calcium channels. This review discusses several mechanisms of regulation of GABAA receptor function that result from the activation of L-type voltage gated calcium channels. Calcium influx via these channels activates different signaling cascades that lead to changes in GABAA receptor transcription, phosphorylation, trafficking, and synaptic clustering, thus regulating the inhibitory synaptic strength. These plastic mechanisms regulate the interplay of synaptic excitation and inhibition that is crucial for the normal function of neuronal circuits.
Collapse
|
9
|
Lévesque M, Ragsdale D, Avoli M. Evolving Mechanistic Concepts of Epileptiform Synchronization and their Relevance in Curing Focal Epileptic Disorders. Curr Neuropharmacol 2020; 17:830-842. [PMID: 30479217 PMCID: PMC7052840 DOI: 10.2174/1570159x17666181127124803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023] Open
Abstract
The synchronized activity of neuronal networks under physiological conditions is mirrored by specific oscillatory patterns of the EEG that are associated with different behavioral states and cognitive functions. Excessive synchronization can, however, lead to focal epileptiform activity characterized by interictal and ictal discharges in epileptic patients and animal models. This review focusses on studies that have addressed epileptiform synchronization in temporal lobe regions by employing in vitro and in vivo recording techniques. First, we consider the role of ionotropic and metabotropic excitatory glutamatergic transmission in seizure generation as well as the paradoxical role of GABAA signaling in initiating and perhaps maintaining focal seizure activity. Second, we address non-synaptic mechanisms (which include voltage-gated ionic currents and gap junctions) in the generation of epileptiform synchronization. For each mechanism, we discuss the actions of antiepileptic drugs that are presumably modulating excitatory or inhibitory signaling and voltage-gated currents to prevent seizures in epileptic patients. These findings provide insights into the mechanisms of seizure initiation and maintenance, thus leading to the development of specific pharmacological treatments for focal epileptic disorders.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - David Ragsdale
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - Massimo Avoli
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada.,Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada.,Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
10
|
Wenzel M, Hamm JP, Peterka DS, Yuste R. Acute Focal Seizures Start As Local Synchronizations of Neuronal Ensembles. J Neurosci 2019; 39:8562-8575. [PMID: 31427393 PMCID: PMC6807279 DOI: 10.1523/jneurosci.3176-18.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/27/2019] [Accepted: 08/09/2019] [Indexed: 11/21/2022] Open
Abstract
Understanding seizure formation and spread remains a critical goal of epilepsy research. We used fast in vivo two-photon calcium imaging in male mouse neocortex to reconstruct, with single-cell resolution, the dynamics of acute (4-aminopyridine) focal cortical seizures as they originate within a spatially confined seizure initiation site (intrafocal region), and subsequently propagate into neighboring cortical areas (extrafocal region). We find that seizures originate as local neuronal ensembles within the initiation site. This abnormal hyperactivity engages increasingly larger areas in a saltatory fashion until it breaks into neighboring cortex, where it proceeds smoothly and is then detected electrophysiologically (LFP). Interestingly, PV inhibitory interneurons have spatially heterogeneous activity in intrafocal and extrafocal territories, ruling out a simple role of inhibition in seizure formation and spread. We propose a two-step model for the progression of focal seizures, where neuronal ensembles activate first, generating a microseizure, followed by widespread neural activation in a traveling wave through neighboring cortex during macroseizures.SIGNIFICANCE STATEMENT We have used calcium imaging in mouse sensory cortex in vivo to reconstruct the onset of focal seizures elicited by local injection of the chemoconvulsant 4-aminopyridine. We demonstrate at cellular resolution that acute focal seizures originate as increasingly synchronized local neuronal ensembles. Because of its spatial confinement, this process may at first be undetectable even by nearby LFP electrodes. Further, we establish spatial footprints of local neural subtype activity that correspond to consecutive steps of seizure microprogression. Such footprints could facilitate determining the recording location (e.g., inside/outside an epileptogenic focus) in high-resolution studies, even in the absence of a priori knowledge about where exactly a seizure started.
Collapse
Affiliation(s)
- Michael Wenzel
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Jordan P Hamm
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Darcy S Peterka
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
11
|
Cela E, Sjöström PJ. Novel Optogenetic Approaches in Epilepsy Research. Front Neurosci 2019; 13:947. [PMID: 31551699 PMCID: PMC6743373 DOI: 10.3389/fnins.2019.00947] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a major neurological disorder characterized by repeated seizures afflicting 1% of the global population. The emergence of seizures is associated with several comorbidities and severely decreases the quality of life of patients. Unfortunately, around 30% of patients do not respond to first-line treatment using anti-seizure drugs (ASDs). Furthermore, it is still unclear how seizures arise in the healthy brain. Therefore, it is critical to have well developed models where a causal understanding of epilepsy can be investigated. While the development of seizures has been studied in several animal models, using chemical or electrical induction, deciphering the results of such studies has been difficult due to the uncertainty of the cell population being targeted as well as potential confounds such as brain damage from the procedure itself. Here we describe novel approaches using combinations of optical and genetic methods for studying epileptogenesis. These approaches can circumvent some shortcomings associated with the classical animal models and may thus increase the likelihood of developing new treatment options.
Collapse
Affiliation(s)
- Elvis Cela
- Brain Repair and Integrative Neuroscience Program, Centre for Research in Neuroscience, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Per Jesper Sjöström
- Brain Repair and Integrative Neuroscience Program, Centre for Research in Neuroscience, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
12
|
Fathi Moghadam H, Yar T, Qazzaz MM, Ahmed IA, Winlow W. A Comparative Study of Cell Specific Effects of Systemic and Volatile Anesthetics on Identified Motor Neurons and Interneurons of Lymnaea stagnalis (L.), Both in the Isolated Brain and in Single Cell Culture. Front Physiol 2019; 10:583. [PMID: 31214039 PMCID: PMC6555191 DOI: 10.3389/fphys.2019.00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/25/2019] [Indexed: 11/25/2022] Open
Abstract
1. A comparative descriptive analysis of systemic (sodium pentobarbital, sodium thiopentone, ketamine) and volatile (halothane, isoflurane, enflurane) general anesthetics revealed important differences in the neuronal responses of identified motor neurons and interneurons in the isolated central nervous system (CNS) and cultured identified neurons in single cell culture of Lymnaea stagnalis (L.). 2. At high enough concentrations all anesthetics eventually caused cessation of spontaneous or evoked action potentials, but volatile anesthetics were much faster acting. Halothane at low concentrations caused excitation, thought to be equivalent to the early excitatory phase of anesthesia. Strong synaptic inputs were not always abolished by pentobarbital. 3. There were cell specific concentration-dependent responses to halothane and pentobarbital in terms of membrane potential, action potential characteristics, the after hyperpolarization and patterned activity. Individual neurons generated specific responses to the applied anesthetics. 4. The inhalation anesthetics, enflurane, and isoflurane, showed little concentration dependence of effect, in contrast to results obtained with halothane. Enflurane was faster acting than halothane and isoflurane was particularly different, producing quiescence in all cells types studied at all concentrations studied. 5. Halothane, enflurane, the barbiturate general anesthetics, pentobarbital, and sodium thiopentone and the dissociative anesthetic ketamine, produced two distinctly different effects which could be correlated with cell type and their location in the isolated brain: either a decline in spontaneous and evoked activity prior to quiescence in interneurons or paroxysmal depolarizing shifts (PDS) in motor neurons, again prior to quiescence, which were reversed when the anesthetic was eliminated from the bath. In the strongly electrically coupled motor neurons, VD1 and RPD2, both types of response were observed, depending on the anesthetic used. Thus, with the exception isoflurane, all the motor neurons subjected to the anesthetic agents studied here were capable of generating PDS in situ, but the interneurons did not do so. 6. The effects of halothane on isolated cultured neurons indicates that PDS can be generated by single identified neurons in the absence of synaptic inputs. Further, many instances of PDS in neurons that do not generate it in situ have been found in cultured neurons. The nature of PDS is discussed.
Collapse
Affiliation(s)
- Hadi Fathi Moghadam
- Department of Physiology, Physiology Research Centre, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Talay Yar
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Munir M. Qazzaz
- Faculty of Pharmacy, Nursing, and Health Professions, University of Birzeit, Birzeit, Palestine
| | | | - William Winlow
- Department of Biology, University of Naples Federico II, Naples, Italy
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
- NPC Newton, Preston, United Kingdom
| |
Collapse
|
13
|
González OC, Krishnan GP, Timofeev I, Bazhenov M. Ionic and synaptic mechanisms of seizure generation and epileptogenesis. Neurobiol Dis 2019; 130:104485. [PMID: 31150792 DOI: 10.1016/j.nbd.2019.104485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
The biophysical mechanisms underlying epileptogenesis and the generation of seizures remain to be better understood. Among many factors triggering epileptogenesis are traumatic brain injury breaking normal synaptic homeostasis and genetic mutations disrupting ionic concentration homeostasis. Impairments in these mechanisms, as seen in various brain diseases, may push the brain network to a pathological state characterized by increased susceptibility to unprovoked seizures. Here, we review recent computational studies exploring the roles of ionic concentration dynamics in the generation, maintenance, and termination of seizures. We further discuss how ionic and synaptic homeostatic mechanisms may give rise to conditions which prime brain networks to exhibit recurrent spontaneous seizures and epilepsy.
Collapse
Affiliation(s)
- Oscar C González
- Neurosciences Graduate Program, University of California, San Diego, CA 92093, United States of America; Department of Medicine, University of California, San Diego, CA 92093, United States of America
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, CA 92093, United States of America
| | - Igor Timofeev
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601 de la Canardière, Québec, QC, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Maxim Bazhenov
- Neurosciences Graduate Program, University of California, San Diego, CA 92093, United States of America; Department of Medicine, University of California, San Diego, CA 92093, United States of America.
| |
Collapse
|
14
|
Avoli M. Inhibition, oscillations and focal seizures: An overview inspired by some historical notes. Neurobiol Dis 2019; 130:104478. [PMID: 31125597 DOI: 10.1016/j.nbd.2019.104478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GABA (i.e., γ-amino-butyric acid) is the main inhibitory neurotransmitter in the adult mammalian brain. Once released from inhibitory cells, it activates pre- and post-synaptic GABA receptors that have been categorized into type A and type B. GABAA receptors open ionotropic anionic channels while GABAB receptors are metabotropic, acting through second messengers. In the 1980s, decreased GABA receptor signaling was considered an appealing factor in making cortical neurons generate synchronous epileptiform oscillations and thus a good, perhaps obvious, candidate for causing focal epileptic disorders. However, studies published during the last four decades have demonstrated that interneuron firing - which causes GABA release and thus GABAA receptor activation - can lead to the generation of both physiological (e.g., theta and gamma oscillations or sharp wave-ripples) and pathological oscillations including focal interictal spikes, high frequency oscillations and seizures. Taken together, the reviews published in this special issue of Neurobiology of Disease highlight the key role of inhibition, and in particular of GABAA receptor signaling, in neuronal network functions under physiological and pathological conditions that include epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, H3A 2B4, QC, Canada; Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy; Department of Physiology, McGill University, Montreal, H3A 2B4, QC, Canada.
| |
Collapse
|
15
|
Parrish RR, Codadu NK, Mackenzie-Gray Scott C, Trevelyan AJ. Feedforward inhibition ahead of ictal wavefronts is provided by both parvalbumin- and somatostatin-expressing interneurons. J Physiol 2019; 597:2297-2314. [PMID: 30784081 PMCID: PMC6462485 DOI: 10.1113/jp277749] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022] Open
Abstract
Key points There is a rapid interneuronal response to focal activity in cortex, which restrains laterally propagating activity, including spreading epileptiform activity. The interneuronal response involves intense activation of both parvalbumin‐ and somatostatin‐expressing interneurons. Interneuronal bursting is time‐locked to glutamatergic barrages in the pre‐ictal period. Ca2+ imaging using conditional expression of GCaMP6f provides an accurate readout of the evolving firing patterns in both types of interneuron. The activation profiles of the two interneuronal classes are temporally offset, with the parvalbumin population being activated first, and typically, at higher rates.
Abstract Previous work has described powerful restraints on laterally spreading activity in cortical networks, arising from a rapid feedforward interneuronal response to focal activity. This response is particularly prominent ahead of an ictal wavefront. Parvalbumin‐positive interneurons are considered to be critically involved in this feedforward inhibition, but it is not known what role, if any, is provided by somatostatin‐expressing interneurons, which target the distal dendrites of pyramidal cells. We used a combination of electrophysiology and cell class‐specific Ca2+ imaging in mouse brain slices bathed in 0 Mg2+ medium to characterize the activity profiles of pyramidal cells and parvalbumin‐ and somatostatin‐expressing interneurons during epileptiform activation. The GCaMP6f signal strongly correlates with the level of activity for both interneuronal classes. Both interneuronal classes participate in the feedfoward inhibition. This contrasts starkly with the pattern of pyramidal recruitment, which is greatly delayed. During these barrages, both sets of interneurons show intense bursting, at rates up to 300Hz, which is time‐locked to the glutamatergic barrages. The activity of parvalbumin‐expressing interneurons appears to peak early in the pre‐ictal period, and can display depolarizing block during the ictal event. In contrast, somatostatin‐expressing interneuronal activity peaks significantly later, and firing persists throughout the ictal events. Interictal events appear to be very similar to the pre‐ictal period, albeit with slightly lower firing rates. Thus, the inhibitory restraint arises from a coordinated pattern of activity in the two main classes of cortical interneurons. There is a rapid interneuronal response to focal activity in cortex, which restrains laterally propagating activity, including spreading epileptiform activity. The interneuronal response involves intense activation of both parvalbumin‐ and somatostatin‐expressing interneurons. Interneuronal bursting is time‐locked to glutamatergic barrages in the pre‐ictal period. Ca2+ imaging using conditional expression of GCaMP6f provides an accurate readout of the evolving firing patterns in both types of interneuron. The activation profiles of the two interneuronal classes are temporally offset, with the parvalbumin population being activated first, and typically, at higher rates.
Collapse
Affiliation(s)
- R Ryley Parrish
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Neela K Codadu
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Andrew J Trevelyan
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
16
|
Moxon KA, Shahlaie K, Girgis F, Saez I, Kennedy J, Gurkoff GG. From adagio to allegretto: The changing tempo of theta frequencies in epilepsy and its relation to interneuron function. Neurobiol Dis 2019; 129:169-181. [PMID: 30798003 DOI: 10.1016/j.nbd.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Despite decades of research, our understanding of epilepsy, including how seizures are generated and propagate, is incomplete. However, there is growing recognition that epilepsy is more than just the occurrence of seizures, with patients often experiencing comorbid deficits in cognition that are poorly understood. In addition, the available therapies for treatment of epilepsy, from pharmaceutical treatment to surgical resection and seizure prevention devices, often exacerbate deficits in cognitive function. In this review, we discuss the hypothesis that seizure generation and cognitive deficits have a similar pathological source characterized by, but not limited to, deficits in theta oscillations and their influence on interneurons. We present a new framework that describes oscillatory states in epilepsy as alternating between hyper- and hypo-synchrony rather than solely the spontaneous transition to hyper-excitability characterized by the seizures. This framework suggests that as neural oscillations, specifically in the theta range, vary their tempo from a slowed almost adagio tempo during interictal periods to faster, more rhythmic allegretto tempo preictally, they impact the function of interneurons, modulating their ability to control seizures and their role in cognitive processing. This slow wave oscillatory framework may help explain why current therapies that work to reduce hyper-excitability do not completely eliminate seizures and often lead to exacerbated cognitive deficits.
Collapse
Affiliation(s)
- Karen A Moxon
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Fady Girgis
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America
| | - Ignacio Saez
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Jeffrey Kennedy
- Department of Neurology, University of California Davis, Sacramento, CA 95817, United States of America
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| |
Collapse
|
17
|
Miri ML, Vinck M, Pant R, Cardin JA. Altered hippocampal interneuron activity precedes ictal onset. eLife 2018; 7:40750. [PMID: 30387711 PMCID: PMC6245730 DOI: 10.7554/elife.40750] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Although failure of GABAergic inhibition is a commonly hypothesized mechanism underlying seizure disorders, the series of events that precipitate a rapid shift from healthy to ictal activity remain unclear. Furthermore, the diversity of inhibitory interneuron populations poses a challenge for understanding local circuit interactions during seizure initiation. Using a combined optogenetic and electrophysiological approach, we examined the activity of identified mouse hippocampal interneuron classes during chemoconvulsant seizure induction in vivo. Surprisingly, synaptic inhibition from parvalbumin- (PV) and somatostatin-expressing (SST) interneurons remained intact throughout the preictal period and early ictal phase. However, these two sources of inhibition exhibited cell-type-specific differences in their preictal firing patterns and sensitivity to input. Our findings suggest that the onset of ictal activity is not associated with loss of firing by these interneurons or a failure of synaptic inhibition but is instead linked with disruptions of the respective roles these interneurons play in the hippocampal circuit.
Collapse
Affiliation(s)
- Mitra L Miri
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Martin Vinck
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Rima Pant
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University, New Haven, United States
| |
Collapse
|
18
|
Moore YE, Kelley MR, Brandon NJ, Deeb TZ, Moss SJ. Seizing Control of KCC2: A New Therapeutic Target for Epilepsy. Trends Neurosci 2017; 40:555-571. [PMID: 28803659 DOI: 10.1016/j.tins.2017.06.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022]
Abstract
Deficits in GABAergic inhibition result in the abnormal neuronal activation and synchronization that underlies seizures. However, the molecular mechanisms responsible for transforming a normal brain into an epileptic one remain largely unknown. Hyperpolarizing inhibition mediated by type A GABA (GABAA) receptors is dependent on chloride extrusion by the neuron-specific type 2K+-Cl- cotransporter (KCC2). Loss-of-function mutations in KCC2 are a known cause of infantile epilepsy in humans and KCC2 dysfunction is present in patients with both idiopathic and acquired epilepsy. Here we discuss the growing evidence that KCC2 dysfunction has a central role in the development and severity of the epilepsies.
Collapse
Affiliation(s)
- Yvonne E Moore
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Matt R Kelley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA; AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, R&D Boston, Waltham, MA 024515, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA.
| |
Collapse
|
19
|
Karunakaran S, Grasse DW, Moxon KA. Role of CA3 theta-modulated interneurons during the transition to spontaneous seizures. Exp Neurol 2016; 283:341-52. [DOI: 10.1016/j.expneurol.2016.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/27/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
|
20
|
Trevelyan AJ. Do Cortical Circuits Need Protecting from Themselves? Trends Neurosci 2016; 39:502-511. [PMID: 27378547 DOI: 10.1016/j.tins.2016.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/09/2016] [Accepted: 06/09/2016] [Indexed: 01/27/2023]
Abstract
All hippocampal and neocortical networks can be driven to seize quite easily. This can be done using drugs, by altering the ionic constituency of the bathing medium [cerebrospinal fluid (CSF)], or by electrical stimulation (both experimentally and clinically, as in electroconvulsive therapy). It is worth asking why this is so, because this will both tell us more about potentially devastating neurological disorders and extend our understanding of cortical function and architecture. Here I review work examining the features of cortical networks that bias activity towards and away from hyperexcitability. I suggest that several cellular- and circuit-level features of rapidly responsive interneuron networks tip the balance away from seizure in the healthy brain.
Collapse
Affiliation(s)
- Andrew J Trevelyan
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
21
|
Multiscale Aspects of Generation of High-Gamma Activity during Seizures in Human Neocortex. eNeuro 2016; 3:eN-NWR-0141-15. [PMID: 27257623 PMCID: PMC4876490 DOI: 10.1523/eneuro.0141-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/14/2023] Open
Abstract
High-gamma (HG; 80-150 Hz) activity in macroscopic clinical records is considered a marker for critical brain regions involved in seizure initiation; it is correlated with pathological multiunit firing during neocortical seizures in the seizure core, an area identified by correlated multiunit spiking and low frequency seizure activity. High-gamma (HG; 80-150 Hz) activity in macroscopic clinical records is considered a marker for critical brain regions involved in seizure initiation; it is correlated with pathological multiunit firing during neocortical seizures in the seizure core, an area identified by correlated multiunit spiking and low frequency seizure activity. However, the effects of the spatiotemporal dynamics of seizure on HG power generation are not well understood. Here, we studied HG generation and propagation, using a three-step, multiscale signal analysis and modeling approach. First, we analyzed concurrent neuronal and microscopic network HG activity in neocortical slices from seven intractable epilepsy patients. We found HG activity in these networks, especially when neurons displayed paroxysmal depolarization shifts and network activity was highly synchronized. Second, we examined HG activity acquired with microelectrode arrays recorded during human seizures (n = 8). We confirmed the presence of synchronized HG power across microelectrode records and the macroscale, both specifically associated with the core region of the seizure. Third, we used volume conduction-based modeling to relate HG activity and network synchrony at different network scales. We showed that local HG oscillations require high levels of synchrony to cross scales, and that this requirement is met at the microscopic scale, but not within macroscopic networks. Instead, we present evidence that HG power at the macroscale may result from harmonics of ongoing seizure activity. Ictal HG power marks the seizure core, but the generating mechanism can differ across spatial scales.
Collapse
|
22
|
Avoli M, de Curtis M, Gnatkovsky V, Gotman J, Köhling R, Lévesque M, Manseau F, Shiri Z, Williams S. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy. J Neurophysiol 2016; 115:3229-37. [PMID: 27075542 DOI: 10.1152/jn.01128.2015] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/06/2016] [Indexed: 11/22/2022] Open
Abstract
Low-voltage fast (LVF) and hypersynchronous (HYP) patterns are the seizure-onset patterns most frequently observed in intracranial EEG recordings from mesial temporal lobe epilepsy (MTLE) patients. Both patterns also occur in models of MTLE in vivo and in vitro, and these studies have highlighted the predominant involvement of distinct neuronal network/neurotransmitter receptor signaling in each of them. First, LVF-onset seizures in epileptic rodents can originate from several limbic structures, frequently spread, and are associated with high-frequency oscillations in the ripple band (80-200 Hz), whereas HYP onset seizures initiate in the hippocampus and tend to remain focal with predominant fast ripples (250-500 Hz). Second, in vitro intracellular recordings from principal cells in limbic areas indicate that pharmacologically induced seizure-like discharges with LVF onset are initiated by a synchronous inhibitory event or by a hyperpolarizing inhibitory postsynaptic potential barrage; in contrast, HYP onset is associated with a progressive impairment of inhibition and concomitant unrestrained enhancement of excitation. Finally, in vitro optogenetic experiments show that, under comparable experimental conditions (i.e., 4-aminopyridine application), the initiation of LVF- or HYP-onset seizures depends on the preponderant involvement of interneuronal or principal cell networks, respectively. Overall, these data may provide insight to delineate better therapeutic targets in the treatment of patients presenting with MTLE and, perhaps, with other epileptic disorders as well.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, Québec, Canada; Facoltà di Medicina e Odontoiatria, Sapienza Università di Roma, Rome, Italy;
| | - Marco de Curtis
- Epilepsy Unit, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vadym Gnatkovsky
- Epilepsy Unit, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jean Gotman
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, Québec, Canada
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany; and
| | - Maxime Lévesque
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, Québec, Canada
| | - Frédéric Manseau
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Zahra Shiri
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, Québec, Canada
| | - Sylvain Williams
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
23
|
de Curtis M, Avoli M. GABAergic networks jump-start focal seizures. Epilepsia 2016; 57:679-87. [PMID: 27061793 DOI: 10.1111/epi.13370] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 01/20/2023]
Abstract
Abnormally enhanced glutamatergic excitation is commonly believed to mark the onset of a focal seizure. This notion, however, is not supported by firm evidence, and it will be challenged here. A general reduction of unit firing has been indeed observed in association with low-voltage fast activity at the onset of seizures recorded during presurgical intracranial monitoring in patients with focal, drug-resistant epilepsies. Moreover, focal seizures in animal models start with increased γ-aminobutyric acid (GABA)ergic interneuronal activity that silences principal cells. In vitro studies have shown that synchronous activation of GABAA receptors occurs at seizure onset and causes sizeable elevations in extracellular potassium, thus facilitating neuronal recruitment and seizure progression. A paradoxical involvement of GABAergic networks is required for the initiation of focal seizures characterized by low-voltage fast activity, which represents the most common seizure-onset pattern in focal epilepsies.
Collapse
Affiliation(s)
| | - Massimo Avoli
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.,Faculty of Medicine and Dentistry, La Sapienza University, Rome, Italy
| |
Collapse
|
24
|
Chauvette S, Soltani S, Seigneur J, Timofeev I. In vivo models of cortical acquired epilepsy. J Neurosci Methods 2016; 260:185-201. [PMID: 26343530 PMCID: PMC4744568 DOI: 10.1016/j.jneumeth.2015.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
The neocortex is the site of origin of several forms of acquired epilepsy. Here we provide a brief review of experimental models that were recently developed to study neocortical epileptogenesis as well as some major results obtained with these methods. Most of neocortical seizures appear to be nocturnal and it is known that neuronal activities reveal high levels of synchrony during slow-wave sleep. Therefore, we start the review with a description of mechanisms of neuronal synchronization and major forms of synchronized normal and pathological activities. Then, we describe three experimental models of seizures and epileptogenesis: ketamine-xylazine anesthesia as feline seizure triggered factor, cortical undercut as cortical penetrating wound model and neocortical kindling. Besides specific technical details describing these models we also provide major features of pathological brain activities recorded during epileptogenesis and seizures. The most common feature of all models of neocortical epileptogenesis is the increased duration of network silent states that up-regulates neuronal excitability and eventually leads to epilepsy.
Collapse
Affiliation(s)
- Sylvain Chauvette
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3
| | - Sara Soltani
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Josée Seigneur
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3
| | - Igor Timofeev
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada.
| |
Collapse
|
25
|
Wykes RC, Kullmann DM, Pavlov I, Magloire V. Optogenetic approaches to treat epilepsy. J Neurosci Methods 2016; 260:215-20. [DOI: 10.1016/j.jneumeth.2015.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 02/06/2023]
|
26
|
De Stasi AM, Farisello P, Marcon I, Cavallari S, Forli A, Vecchia D, Losi G, Mantegazza M, Panzeri S, Carmignoto G, Bacci A, Fellin T. Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy. Cereb Cortex 2016; 26:1778-94. [PMID: 26819275 PMCID: PMC4785957 DOI: 10.1093/cercor/bhw002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Severe myoclonic epilepsy of infancy (SMEI) is associated with loss of function of the SCN1A gene encoding the NaV1.1 sodium channel isoform. Previous studies in Scn1a−/+ mice during the pre-epileptic period reported selective reduction in interneuron excitability and proposed this as the main pathological mechanism underlying SMEI. Yet, the functional consequences of this interneuronal dysfunction at the circuit level in vivo are unknown. Here, we investigated whether Scn1a−/+ mice showed alterations in cortical network function. We found that various forms of spontaneous network activity were similar in Scn1a−/+ during the pre-epileptic period compared with wild-type (WT) in vivo. Importantly, in brain slices from Scn1a−/+ mice, the excitability of parvalbumin (PV) and somatostatin (SST) interneurons was reduced, epileptiform activity propagated more rapidly, and complex synaptic changes were observed. However, in vivo, optogenetic reduction of firing in PV or SST cells in WT mice modified ongoing network activities, and juxtasomal recordings from identified PV and SST interneurons showed unaffected interneuronal firing during spontaneous cortical dynamics in Scn1a−/+ compared with WT. These results demonstrate that interneuronal hypoexcitability is not observed in Scn1a−/+ mice during spontaneous activities in vivo and suggest that additional mechanisms may contribute to homeostatic rearrangements and the pathogenesis of SMEI.
Collapse
Affiliation(s)
- Angela Michela De Stasi
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Pasqualina Farisello
- Optical Approaches to Brain Function Laboratory Fondazione EBRI "Rita Levi-Montalcini", Roma, Italy
| | - Iacopo Marcon
- CNR Neuroscience Institute and University of Padova, Padova, Italy
| | - Stefano Cavallari
- Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Gabriele Losi
- CNR Neuroscience Institute and University of Padova, Padova, Italy
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275 and University of Nice-Sophia Antipolis, Valbonne, France
| | - Stefano Panzeri
- Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | - Alberto Bacci
- Fondazione EBRI "Rita Levi-Montalcini", Roma, Italy Sorbonne Universités UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France ICM-Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
27
|
Abstract
This review centers on the discoveries made during more than six decades of neuroscience research on the role of gamma-amino-butyric acid (GABA) as neurotransmitter. In doing so, special emphasis is directed to the significant involvement of Canadian scientists in these advances. Starting with the early studies that established GABA as an inhibitory neurotransmitter at central synapses, we summarize the results pointing at the GABA receptor as a drug target as well as more recent evidence showing that GABAA receptor signaling plays a surprisingly active role in neuronal network synchronization, both during development and in the adult brain. Finally, we briefly address the involvement of GABA in neurological conditions that encompass epileptic disorders and mental retardation.
Collapse
|
28
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 950] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
29
|
Akiyama T, Akiyama M, Kobayashi K, Okanishi T, Boelman CG, Nita DA, Ochi A, Go CY, Snead OC, Rutka JT, Drake JM, Chuang S, Otsubo H. Spatial relationship between fast and slow components of ictal activities and interictal epileptiform discharges in epileptic spasms. Clin Neurophysiol 2015; 126:1684-91. [DOI: 10.1016/j.clinph.2014.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 11/30/2022]
|
30
|
Muldoon SF, Villette V, Tressard T, Malvache A, Reichinnek S, Bartolomei F, Cossart R. GABAergic inhibition shapes interictal dynamics in awake epileptic mice. Brain 2015; 138:2875-90. [PMID: 26280596 DOI: 10.1093/brain/awv227] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/22/2015] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is characterized by recurrent seizures and brief, synchronous bursts called interictal spikes that are present in-between seizures and observed as transient events in EEG signals. While GABAergic transmission is known to play an important role in shaping healthy brain activity, the role of inhibition in these pathological epileptic dynamics remains unclear. Examining the microcircuits that participate in interictal spikes is thus an important first step towards addressing this issue, as the function of these transient synchronizations in either promoting or prohibiting seizures is currently under debate. To identify the microcircuits recruited in spontaneous interictal spikes in the absence of any proconvulsive drug or anaesthetic agent, we combine a chronic model of epilepsy with in vivo two-photon calcium imaging and multiunit extracellular recordings to map cellular recruitment within large populations of CA1 neurons in mice free to run on a self-paced treadmill. We show that GABAergic neurons, as opposed to their glutamatergic counterparts, are preferentially recruited during spontaneous interictal activity in the CA1 region of the epileptic mouse hippocampus. Although the specific cellular dynamics of interictal spikes are found to be highly variable, they are consistently associated with the activation of GABAergic neurons, resulting in a perisomatic inhibitory restraint that reduces neuronal spiking in the principal cell layer. Given the role of GABAergic neurons in shaping brain activity during normal cognitive function, their aberrant unbalanced recruitment during these transient events could have important downstream effects with clinical implications.
Collapse
Affiliation(s)
- Sarah Feldt Muldoon
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Vincent Villette
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Thomas Tressard
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Arnaud Malvache
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Susanne Reichinnek
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Fabrice Bartolomei
- 4 Institut des Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale Unité 1106, 13005 Marseille, France
| | - Rosa Cossart
- 1 Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France 2 Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France 3 Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| |
Collapse
|
31
|
Merricks EM, Smith EH, McKhann GM, Goodman RR, Bateman LM, Emerson RG, Schevon CA, Trevelyan AJ. Single unit action potentials in humans and the effect of seizure activity. Brain 2015; 138:2891-906. [PMID: 26187332 PMCID: PMC4671476 DOI: 10.1093/brain/awv208] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/25/2015] [Indexed: 11/12/2022] Open
Abstract
Spike-sorting algorithms have been used to identify the firing patterns of isolated neurons ('single units') from implanted electrode recordings in patients undergoing assessment for epilepsy surgery, but we do not know their potential for providing helpful clinical information. It is important therefore to characterize both the stability of these recordings and also their context. A critical consideration is where the units are located with respect to the focus of the pathology. Recent analyses of neuronal spiking activity, recorded over extended spatial areas using microelectrode arrays, have demonstrated the importance of considering seizure activity in terms of two distinct spatial territories: the ictal core and penumbral territories. The pathological information in these two areas, however, is likely to be very different. We investigated, therefore, whether units could be followed reliably over prolonged periods of times in these two areas, including during seizure epochs. We isolated unit recordings from several hundred neurons from four patients undergoing video-telemetry monitoring for surgical evaluation of focal neocortical epilepsies. Unit stability could last in excess of 40 h, and across multiple seizures. A key finding was that in the penumbra, spike stereotypy was maintained even during the seizure. There was a net tendency towards increased penumbral firing during the seizure, although only a minority of units (10-20%) showed significant changes over the baseline period, and notably, these also included neurons showing significant reductions in firing. In contrast, within the ictal core territories, regions characterized by intense hypersynchronous multi-unit firing, our spike sorting algorithms failed as the units were incorporated into the seizure activity. No spike sorting was possible from that moment until the end of the seizure, but recovery of the spike shape was rapid following seizure termination: some units reappeared within tens of seconds of the end of the seizure, and over 80% reappeared within 3 min (τrecov = 104 ± 22 s). The recovery of the mean firing rate was close to pre-ictal levels also within this time frame, suggesting that the more protracted post-ictal state cannot be explained by persistent cellular neurophysiological dysfunction in either the penumbral or the core territories. These studies lay the foundation for future investigations of how these recordings may inform clinical practice.See Kimchi and Cash (doi:10.1093/awv264) for a scientific commentary on this article.
Collapse
Affiliation(s)
- Edward M Merricks
- 1 Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Elliot H Smith
- 2 Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Guy M McKhann
- 2 Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Robert R Goodman
- 3 Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Bateman
- 4 Department of Neurology, Columbia University, New York, NY, USA
| | - Ronald G Emerson
- 5 Department of Neurology, Cornell University Medical Center, New York, NY, USA
| | | | - Andrew J Trevelyan
- 1 Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
32
|
Unit Activity of Hippocampal Interneurons before Spontaneous Seizures in an Animal Model of Temporal Lobe Epilepsy. J Neurosci 2015; 35:6600-18. [PMID: 25904809 DOI: 10.1523/jneurosci.4786-14.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanisms of seizure initiation are unclear. To evaluate the possible roles of inhibitory neurons, unit recordings were obtained in the dentate gyrus, CA3, CA1, and subiculum of epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Most interneurons in the dentate gyrus, CA1, and subiculum increased their firing rate before seizures, and did so with significant consistency from seizure to seizure. Identification of CA1 interneuron subtypes based on firing characteristics during theta and sharp waves suggested that a parvalbumin-positive basket cell and putative bistratified cells, but not oriens lacunosum moleculare cells, were activated preictally. Preictal changes occurred much earlier than those described by most previous in vitro studies. Preictal activation of interneurons began earliest (>4 min before seizure onset), increased most, was most prevalent in the subiculum, and was minimal in CA3. Preictal inactivation of interneurons was most common in CA1 (27% of interneurons) and included a putative ivy cell and parvalbumin-positive basket cell. Increased or decreased preictal activity correlated with whether interneurons fired faster or slower, respectively, during theta activity. Theta waves were more likely to occur before seizure onset, and increased preictal firing of subicular interneurons correlated with theta activity. Preictal changes by other hippocampal interneurons were largely independent of theta waves. Within seconds of seizure onset, many interneurons displayed a brief pause in firing and a later, longer drop that was associated with reduced action potential amplitude. These findings suggest that many interneurons inactivate during seizures, most increase their activity preictally, but some fail to do so at the critical time before seizure onset.
Collapse
|
33
|
Abstract
All brain normal or pathological activities occur in one of the states of vigilance: wake, slow-wave sleep, or REM sleep. Neocortical seizures preferentially occur during slow-wave sleep. We provide a description of neuronal behavior and mechanisms mediating such a behavior within neocortex taking place in natural states of vigilance as well as during seizures pointing to similarities and differences exhibited during sleep and seizures. A concept of epileptic focus is described using a model of cortical undercut, because in that model, the borders of the focus are well defined. In this model, as in other models of acquired epilepsy, the main factor altering excitability is deafferentation, which upregulates neuronal excitability that promotes generation of seizures. Periods of disfacilitation recorded during slow-wave sleep further upregulate neuronal excitability. It appears that the state of neurons and neuronal network in the epileptic focus produced by deafferentation are such that seizures cannot be generated there. Instead, seizures always start around the perimeter of the undercut cortex. Therefore, we define these areas as the seizure focus. In this zone, neuronal connectivity and excitability are moderately enhanced, lowering the threshold for seizure generation.
Collapse
|
34
|
Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges. J Neurosci 2015; 34:15208-22. [PMID: 25392490 DOI: 10.1523/jneurosci.1747-14.2014] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epileptic seizures are characterized by periods of hypersynchronous, hyperexcitability within brain networks. Most seizures involve two stages: an initial tonic phase, followed by a longer clonic phase that is characterized by rhythmic bouts of synchronized network activity called afterdischarges (ADs). Here we investigate the cellular and network mechanisms underlying hippocampal ADs in an effort to understand how they maintain seizure activity. Using in vitro hippocampal slice models from rats and mice, we performed electrophysiological recordings from CA3 pyramidal neurons to monitor network activity and changes in GABAergic signaling during epileptiform activity. First, we show that the highest synchrony occurs during clonic ADs, consistent with the idea that specific circuit dynamics underlie this phase of the epileptiform activity. We then show that ADs require intact GABAergic synaptic transmission, which becomes excitatory as a result of a transient collapse in the chloride (Cl(-)) reversal potential. The depolarizing effects of GABA are strongest at the soma of pyramidal neurons, which implicates somatic-targeting interneurons in AD activity. To test this, we used optogenetic techniques to selectively control the activity of somatic-targeting parvalbumin-expressing (PV(+)) interneurons. Channelrhodopsin-2-mediated activation of PV(+) interneurons during the clonic phase generated excitatory GABAergic responses in pyramidal neurons, which were sufficient to elicit and entrain synchronous AD activity across the network. Finally, archaerhodopsin-mediated selective silencing of PV(+) interneurons reduced the occurrence of ADs during the clonic phase. Therefore, we propose that activity-dependent Cl(-) accumulation subverts the actions of PV(+) interneurons to perpetuate rather than terminate pathological network hyperexcitability during the clonic phase of seizures.
Collapse
|
35
|
González-Ramírez LR, Ahmed OJ, Cash SS, Wayne CE, Kramer MA. A biologically constrained, mathematical model of cortical wave propagation preceding seizure termination. PLoS Comput Biol 2015; 11:e1004065. [PMID: 25689136 PMCID: PMC4331426 DOI: 10.1371/journal.pcbi.1004065] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/29/2014] [Indexed: 11/18/2022] Open
Abstract
Epilepsy--the condition of recurrent, unprovoked seizures--manifests in brain voltage activity with characteristic spatiotemporal patterns. These patterns include stereotyped semi-rhythmic activity produced by aggregate neuronal populations, and organized spatiotemporal phenomena, including waves. To assess these spatiotemporal patterns, we develop a mathematical model consistent with the observed neuronal population activity and determine analytically the parameter configurations that support traveling wave solutions. We then utilize high-density local field potential data recorded in vivo from human cortex preceding seizure termination from three patients to constrain the model parameters, and propose basic mechanisms that contribute to the observed traveling waves. We conclude that a relatively simple and abstract mathematical model consisting of localized interactions between excitatory cells with slow adaptation captures the quantitative features of wave propagation observed in the human local field potential preceding seizure termination.
Collapse
Affiliation(s)
- Laura R. González-Ramírez
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Omar J. Ahmed
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - C. Eugene Wayne
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Mark A. Kramer
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
36
|
Musto AE, Walker CP, Petasis NA, Bazan NG. Hippocampal neuro-networks and dendritic spine perturbations in epileptogenesis are attenuated by neuroprotectin d1. PLoS One 2015; 10:e0116543. [PMID: 25617763 PMCID: PMC4305283 DOI: 10.1371/journal.pone.0116543] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Purpose Limbic epileptogenesis triggers molecular and cellular events that foster the establishment of aberrant neuronal networks that, in turn, contribute to temporal lobe epilepsy (TLE). Here we have examined hippocampal neuronal network activities in the pilocarpine post-status epilepticus model of limbic epileptogenesis and asked whether or not the docosahexaenoic acid (DHA)-derived lipid mediator, neuroprotectin D1 (NPD1), modulates epileptogenesis. Methods Status epilepticus (SE) was induced by intraperitoneal administration of pilocarpine in adult male C57BL/6 mice. To evaluate simultaneous hippocampal neuronal networks, local field potentials were recorded from multi-microelectrode arrays (silicon probe) chronically implanted in the dorsal hippocampus. NPD1 (570 μg/kg) or vehicle was administered intraperitoneally daily for five consecutive days 24 hours after termination of SE. Seizures and epileptiform activity were analyzed in freely-moving control and treated mice during epileptogenesis and epileptic periods. Then hippocampal dendritic spines were evaluated using Golgi-staining. Results We found brief spontaneous microepileptiform activity with high amplitudes in the CA1 pyramidal and stratum radiatum in epileptogenesis. These aberrant activities were attenuated following systemic NPD1 administration, with concomitant hippocampal dendritic spine protection. Moreover, NPD1 treatment led to a reduction in spontaneous recurrent seizures. Conclusions Our results indicate that NPD1 displays neuroprotective bioactivity on the hippocampal neuronal network ensemble that mediates aberrant circuit activity during epileptogenesis. Insight into the molecular signaling mediated by neuroprotective bioactivity of NPD1 on neuronal network dysfunction may contribute to the development of anti-epileptogenic therapeutic strategies.
Collapse
Affiliation(s)
- Alberto E. Musto
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail: (NGB); (AEM)
| | - Chelsey P. Walker
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Nicos A. Petasis
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California, United States of America
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail: (NGB); (AEM)
| |
Collapse
|
37
|
Richard CD, Tanenbaum A, Audit B, Arneodo A, Khalil A, Frankel WN. SWDreader: a wavelet-based algorithm using spectral phase to characterize spike-wave morphological variation in genetic models of absence epilepsy. J Neurosci Methods 2014; 242:127-40. [PMID: 25549550 DOI: 10.1016/j.jneumeth.2014.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spike-wave discharges (SWD) found in neuroelectrical recordings are pathognomonic to absence epilepsy. The characteristic spike-wave morphology of the spike-wave complex (SWC) constituents of SWDs can be mathematically described by a subset of possible spectral power and phase values. Morlet wavelet transform (MWT) generates time-frequency representations well-suited to identifying this SWC-associated subset. NEW METHOD MWT decompositions of SWDs reveal spectral power concentrated at harmonic frequencies. The phase relationships underlying SWC morphology were identified by calculating the differences between phase values at SWD fundamental frequency from the 2nd, 3rd, and 4th harmonics, then using the three phase differences as coordinates to generate a density distribution in a {360°×360°×360°} phase difference space. Strain-specific density distributions were generated from SWDs of mice carrying the Gria4, Gabrg2, or Scn8a mutations to determine whether SWC morphological variants reliably mapped to the same regions of the distribution, and if distribution values could be used to detect SWD. COMPARISON WITH EXISTING METHODS To the best of our knowledge, this algorithm is the first to employ spectral phase to quantify SWC morphology, making it possible to computationally distinguish SWC morphological subtypes and detect SWDs. RESULTS/CONCLUSIONS Proof-of-concept testing of the SWDfinder algorithm shows: (1) a major pattern of variation in SWC morphology maps to one axis of the phase difference distribution, (2) variability between the strain-specific distributions reflects differences in the proportions of SWC subtypes generated during SWD, and (3) regularities in the spectral power and phase profiles of SWCs can be used to detect waveforms possessing SWC-like morphology.
Collapse
Affiliation(s)
- C D Richard
- The Jackson Laboratory, Bar Harbor, ME 04609 USA; Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA.
| | - A Tanenbaum
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO 63130 USA; CompuMAINE Lab, Department of Mathematics, University of Maine, Orono, ME 04469 USA
| | - B Audit
- Laboratoire de Physique, CNRS UMR 5672, Université de Lyon, École Normale Supérieure de Lyon, F-69007 Lyon, France
| | - A Arneodo
- Laboratoire de Physique, CNRS UMR 5672, Université de Lyon, École Normale Supérieure de Lyon, F-69007 Lyon, France
| | - A Khalil
- The Jackson Laboratory, Bar Harbor, ME 04609 USA; Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA; CompuMAINE Lab, Department of Mathematics, University of Maine, Orono, ME 04469 USA
| | - W N Frankel
- The Jackson Laboratory, Bar Harbor, ME 04609 USA; Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA; Tufts University School of Medicine, Sackler School, Boston, MA 02111 USA
| |
Collapse
|
38
|
Okanishi T, Akiyama T, Tanaka SI, Mayo E, Mitsutake A, Boelman C, Go C, Snead OC, Drake J, Rutka J, Ochi A, Otsubo H. Interictal high frequency oscillations correlating with seizure outcome in patients with widespread epileptic networks in tuberous sclerosis complex. Epilepsia 2014; 55:1602-10. [PMID: 25196064 DOI: 10.1111/epi.12761] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Multiple tubers in patients with tuberous sclerosis complex (TSC) often are responsible for drug-resistant epilepsy. The complexity of the epileptic network formed by multiple tubers complicates localization of the epileptogenic zone that is needed to design a surgical treatment strategy. High frequency oscillations (HFOs) on intracranial video-electroencephalography (IVEEG) may be a valuable surrogate marker for the localization of the epileptogenic zone. The purpose of this study was to test the hypothesis that high occurrence rate (OR) of interictal HFOs can guide the localization of the epileptogenic zone. METHODS We analyzed the OR of interictal HFOs at 80-200 Hz (ripples) and >200 Hz (fast ripples, FRs). We divided OR of interictal HFOs between high and low rates by thresholding. We analyzed the correlation between seizure outcomes using Engel classification and the resection ratio of the seizure onset zone (SOZ), and high-OR HFOs using ordinal logistic regression analysis. RESULTS We collected 10 patients. The seizure outcomes resulted in Engel classification I in three patients, II in four, III in one, and IV in two. High-OR ripples (5-57 [mean 29] channels, 1-4 [2.8] lobes) and high-OR FRs (9-66 [mean 27] channels, 1-4 [2.6] lobes) were widely distributed. The resection ratio of SOZ did not show statistically significant correlation with the seizure outcome. The resection ratio of high-OR ripples showed statistically significant correlation with the seizure outcome (p = 0.038). The resection ratio of high-OR FRs showed statistically significant correlation with the seizure outcome (p = 0.048). SIGNIFICANCE The multiple extensive zones with high-OR HFOs suggest a complex and widespread epileptic network in patients with TSC. In a subset of TSC patients with drug-resistant epilepsy, resection of cortex with both interictal high-OR FRs and ripples on IVEEG correlated with a good seizure outcome.
Collapse
Affiliation(s)
- Tohru Okanishi
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gutiérrez ML, Ferreri MC, Farb DH, Gravielle MC. GABA-induced uncoupling of GABA/benzodiazepine site interactions is associated with increased phosphorylation of the GABAA receptor. J Neurosci Res 2014; 92:1054-61. [PMID: 24723313 DOI: 10.1002/jnr.23387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/14/2014] [Accepted: 02/26/2014] [Indexed: 11/08/2022]
Abstract
The use-dependent regulation of the GABAA receptor occurs under physiological, pathological, and pharmacological conditions. Tolerance induced by prolonged administration of benzodiazepines is associated with changes in GABAA receptor function. Chronic exposure of neurons to GABA for 48 hr induces a downregulation of the GABAA receptor number and an uncoupling of the GABA/benzodiazepine site interactions. A single brief exposure ((t1/2) = 3 min) of rat neocortical neurons to the neurotransmitter initiates a process that results in uncoupling hours later (t(1/2) = 12 hr) without alterations in the number of GABAA receptors and provides a paradigm to study the uncoupling mechanism selectively. Here we report that uncoupling induced by a brief GABAA receptor activation is blocked by the coincubation with inhibitors of protein kinases A and C, indicating that the uncoupling is mediated by the activation of a phosphorylation cascade. GABA-induced uncoupling is accompanied by subunit-selective changes in the GABAA receptor mRNA levels. However, the GABA-induced downregulation of the α3 subunit mRNA level is not altered by the kinase inhibitors, suggesting that the uncoupling is the result of a posttranscriptional regulatory process. GABA exposure also produces an increase in the serine phosphorylation on the GABAA receptor γ2 subunit. Taken together, our results suggest that the GABA-induced uncoupling is mediated by a posttranscriptional mechanism involving an increase in the phosphorylation of GABAA receptors. The uncoupling of the GABAA receptor may represent a compensatory mechanism to control GABAergic neurotransmission under conditions in which receptors are persistently activated.
Collapse
Affiliation(s)
- María L Gutiérrez
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
40
|
Grasse DW, Karunakaran S, Moxon KA. Neuronal synchrony and the transition to spontaneous seizures. Exp Neurol 2013; 248:72-84. [DOI: 10.1016/j.expneurol.2013.05.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
|
41
|
Timofeev I, Sejnowski TJ, Bazhenov M, Chauvette S, Grand LB. Age dependency of trauma-induced neocortical epileptogenesis. Front Cell Neurosci 2013; 7:154. [PMID: 24065884 PMCID: PMC3776140 DOI: 10.3389/fncel.2013.00154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/26/2013] [Indexed: 11/13/2022] Open
Abstract
Trauma and brain infection are the primary sources of acquired epilepsy, which can occur at any age and may account for a high incidence of epilepsy in developing countries. We have explored the hypothesis that penetrating cortical wounds cause deafferentation of the neocortex, which triggers homeostatic plasticity and lead to epileptogenesis (Houweling etal., 2005). In partial deafferentation experiments of adult cats, acute seizures occurred in most preparations and chronic seizures occurred weeks to months after the operation in 65% of the animals (Nita etal., 2006,2007; Nita and Timofeev, 2007). Similar deafferentation of young cats (age 8-12 months) led to some acute seizures, but we never observed chronic seizure activity even though there was enhanced slow-wave activity in the partially deafferented hemisphere during quiet wakefulness. This suggests that despite a major trauma, the homeostatic plasticity in young animals was able to restore normal levels of cortical excitability, but in fully adult cats the mechanisms underlying homeostatic plasticity may lead to an unstable cortical state. To test this hypothesis we made an undercut in the cortex of an elderly cat. After several weeks this animal developed seizure activity. These observations may lead to an intervention after brain trauma that prevents epileptogenesis from occurring in adults.
Collapse
Affiliation(s)
- Igor Timofeev
- Department of Psychiatry and Neuroscience, Université LavalQuébec, QC, Canada
- Le Centre de Recherche de l’Institut Universitaire en santé Mentale de QuébecQuébec, QC, Canada
| | - Terrence J. Sejnowski
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological StudiesLa Jolla, CA, USA
- Division of Biological Sciences, University of California at San DiegoLa Jolla, CA, USA
| | - Maxim Bazhenov
- Department of Cell Biology and Neuroscience, University of California at RiversideRiverside, CA, USA
| | - Sylvain Chauvette
- Le Centre de Recherche de l’Institut Universitaire en santé Mentale de QuébecQuébec, QC, Canada
| | - Laszlo B. Grand
- Le Centre de Recherche de l’Institut Universitaire en santé Mentale de QuébecQuébec, QC, Canada
| |
Collapse
|
42
|
Trevelyan A. Why do some brains seize? Molecular, cellular and network mechanisms. J Physiol 2013; 591:751-2. [PMID: 23418372 DOI: 10.1113/jphysiol.2012.248914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Andrew Trevelyan
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
43
|
Cammarota M, Losi G, Chiavegato A, Zonta M, Carmignoto G. Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy. J Physiol 2012. [PMID: 23207591 DOI: 10.1113/jphysiol.2012.238154] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In different animal models of focal epilepsy, seizure-like ictal discharge propagation is transiently opposed by feedforward inhibition. The specific cellular source of this signal and the mechanism by which inhibition ultimately becomes ineffective are, however, undefined. We used a brain slice model to study how focal ictal discharges that were repetitively evoked from the same site, and at precise times, propagate across the cortex. We used Ca(2+) imaging and simultaneous single/dual cell recordings from pyramidal neurons (PyNs) and different classes of interneurons in rodents, including G42 and GIN transgenic mice expressing the green fluorescence protein in parvalbumin (Pv)-fast spiking (FS) and somatostatin (Som) interneurons, respectively. We found that these two classes of interneurons fired intensively shortly after ictal discharge generation at the focus. The inhibitory barrages that were recorded in PyNs occurred in coincidence with Pv-FS, but not with Som interneuron burst discharges. Furthermore, the strength of inhibitory barrages increased or decreased in parallel with increased or decreased firing in Pv-FS interneurons but not in Som interneurons. A firing impairment of Pv-FS interneurons caused by a membrane depolarization was found to precede ictal discharge onset in neighbouring pyramidal neurons. This event may account for the collapse of local inhibition that allows spatially defined clusters of PyNs to be recruited into propagating ictal discharges. Our study demonstrates that Pv-FS interneurons are a major source of the inhibitory barrages that oppose ictal discharge propagation and raises the possibility that targeting Pv-FS interneurons represents a new therapeutic strategy to prevent the generalization of human focal seizures.
Collapse
Affiliation(s)
- Mario Cammarota
- Institute of Neuroscience, National Research Council and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
44
|
Bragin A, Benassi SK, Engel J. Patterns of the UP-Down state in normal and epileptic mice. Neuroscience 2012; 225:76-87. [PMID: 22960310 DOI: 10.1016/j.neuroscience.2012.08.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/13/2012] [Accepted: 08/25/2012] [Indexed: 11/15/2022]
Abstract
Goal of this manuscript is to investigate whether changes that exist in epileptic brain generating spontaneous seizures are reflected in the pattern of the UP-Down state (UDS) recorded from the neocortex and dentate gyrus. Experiments were carried out on naive and epileptic mice under urethane anesthesia. Local field potentials were recorded with chronically implanted microelectrodes and single unit activity was recorded with glass microelectrodes. Recorded neurons were labeled by neurobiotin and identified later as granular cells or interneurons in histological sections. The following major features differentiate the pattern of UDS in epilepsy from normal. (1) The duration of UP and Down phases is significantly longer. (2) Recovery of network excitability after termination of the UP phase is longer. (3) UP-spikes occur during the UP phase, which transiently interrupt the development of the normal electrographic pattern of UP phase. Our data provide evidence that UP-spikes result from gigantic EPSPs generated in response to afferent activity. UP-spikes in the neocortex and dentate gyrus occur in close temporal relationship indicating the existence of direct or indirect pathological functional connections between these areas. Changes in the duration of UP and Down phases as well increased time of recovery of excitability of epileptic brain after termination of UP phase suggest alterations in the homeostatic properties of neuronal network in epileptic brain. We suggest that the existence of UP-spikes in epileptic brain may be an additional electrographic pattern indicating epileptogenicity. Unraveling the neuronal substrates of UP-spikes may further improve our understanding of the mechanisms of epilepsy.
Collapse
Affiliation(s)
- A Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | |
Collapse
|
45
|
Trevelyan AJ, Schevon CA. How inhibition influences seizure propagation. Neuropharmacology 2012; 69:45-54. [PMID: 22722026 DOI: 10.1016/j.neuropharm.2012.06.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Inhibitory neuron behaviour is of fundamental importance to epileptic pathophysiology. When inhibition is compromised, such as by GABAergic blockade (Curtis et al., 1970; Connors, 1984; Traub and Miles, 1991) or by shifts in GABAergic reversal potential (Huberfeld et al., 2007), epileptiform discharges occur far more readily. Other studies have shown enhanced inhibition in vivo in the surrounding cortical territories associated with both focal pathological and physiological activity (Prince and Wilder, 1967; Dichter and Spencer, 1969a,b; Goldensohn and Salazar, 1986; Traub and Miles, 1991; Liang and Jones, 1997; Liang et al., 1998; Schwartz and Bonhoeffer, 2001). This gave rise to the concept of an "inhibitory restraint". This concept can explain the often confusing anatomical reorganizations seen in chronically epileptic brains (Sloviter, 1987; Cossart et al., 2001), indicating which changes might be pro-epileptic, and which oppose the epileptic state. It also may explain key electrophysiological features of epileptic seizures. Here we describe current knowledge about the restraint, gleaned mainly from acute pharmacological experiments in animals, both in vivo and in vitro, and speculate how this may alter our understanding of human seizure activity in clinical practice. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Andrew J Trevelyan
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | |
Collapse
|
46
|
Jefferys JGR, Menendez de la Prida L, Wendling F, Bragin A, Avoli M, Timofeev I, Lopes da Silva FH. Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol 2012; 98:250-64. [PMID: 22420980 DOI: 10.1016/j.pneurobio.2012.02.005] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs.
Collapse
Affiliation(s)
- John G R Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang ZJ, Valiante TA, Carlen PL. Transition to seizure: from "macro"- to "micro"-mysteries. Epilepsy Res 2011; 97:290-9. [PMID: 22075227 DOI: 10.1016/j.eplepsyres.2011.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 01/25/2023]
Abstract
One of the most terrifying aspects of epilepsy is the sudden and apparently unpredictable transition of the brain into the pathological state of an epileptic seizure. The pathophysiology of the transition to seizure still remains mysterious. Herein we review some of the key concepts and relevant literatures dealing with this enigmatic transitioning of brain states. At the "MACRO" level, electroencephalographic (EEG) recordings at time display preictal phenomena followed by pathological high-frequency oscillations at the seizure onset. Numerous seizure prediction algorithms predicated on identifying changes prior to seizure onset have met with little success, underscoring our lack of understanding of the dynamics of transition to seizure, amongst other inherent limitation. We then discuss the concept of synchronized hyperexcited oscillatory networks underlying seizure generation. We consider these networks as weakly coupled oscillators, a concept which forms the basis of some relevant mathematical modeling of seizure transitions. Next, the underlying "MICRO" processes involved in seizure generation are discussed. The depolarization of the GABA(A) chloride reversal potential is a major concept, facilitating epileptogenesis, particularly in immature brain. Also the balance of inhibitory and excitatory local neuronal networks plays an important role in the process of transitioning to seizure. Gap junctional communication, including that which occurs between glia, as well as ephaptic interactions are increasingly recognized as critical for seizure generation. In brief, this review examines the evidence regarding the characterization of the transition to seizure at both the "MACRO" and "MICRO" levels, trying to characterize this mysterious yet critical problem of the brain state transitioning into a seizure.
Collapse
Affiliation(s)
- Z J Zhang
- Division of Fundamental Neurobiology, Toronto Western Research Institute, Toronto Western Hospital, Toronto, ON, Canada.
| | | | | |
Collapse
|
48
|
Chloride-mediated inhibition of the ictogenic neurones initiating genetically-determined absence seizures. Neuroscience 2011; 192:642-51. [DOI: 10.1016/j.neuroscience.2011.06.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/13/2011] [Accepted: 06/11/2011] [Indexed: 11/20/2022]
|
49
|
Krishnan GP, Bazhenov M. Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. J Neurosci 2011; 31:8870-82. [PMID: 21677171 PMCID: PMC3163257 DOI: 10.1523/jneurosci.6200-10.2011] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/30/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022] Open
Abstract
Epileptic seizures are characterized by periods of recurrent, highly synchronized activity that spontaneously terminates, followed by postictal state when neuronal activity is generally depressed. The mechanisms for spontaneous seizure termination and postictal depression remain poorly understood. Using a realistic computational model, we demonstrate that termination of seizure and postictal depression state may be mediated by dynamics of the intracellular and extracellular ion concentrations. Spontaneous termination was linked to progressive increase of intracellular sodium concentration mediated by activation of sodium channels during highly active epileptic state. In contrast, an increase of intracellular chloride concentration extended seizure duration making possible long-lasting epileptic activity characterized by multiple transitions between tonic and clonic states. After seizure termination, the extracellular potassium was reduced below baseline, resulting in postictal depression. Our study suggests that the coupled dynamics of sodium, potassium, and chloride ions play a critical role in the development and termination of seizures. Findings from this study could help identify novel therapeutics for seizure disorder.
Collapse
Affiliation(s)
- Giri P. Krishnan
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California 92521
| | - Maxim Bazhenov
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
50
|
Abstract
PURPOSE Seizures are associated with a reduction in extracellular Ca²(+) concentration ([Ca²(+) ](o) ) and an increase in extracellular K(+) concentration ([K(+) ](o) ). The long-range synchrony observed between distant electrodes during seizures is weak. We hypothesized that changes in extracellular ionic conditions during seizures are sufficient to alter synaptic neuronal responses and synchrony in the neocortex. METHODS We obtained in vivo and in vitro electrophysiologic recordings combined with microstimulation from cat/rat neocortical neurons during seizures and seizure-like ionic conditions. In vitro the [K(+) ](o) was 2.8, 6.25, 8.0, and 12 mm and the [Ca²(+) ](o) was 1.2 and 0.6 mm. KEY FINDINGS During seizures recorded in vivo, we observed abolition of evoked synaptic responses. In vitro, the membrane potential of both regular-spiking and fast-spiking neurons was depolarized in high [K(+) ](o) conditions and hyperpolarized in high [Ca²(+) ](o) conditions. During high [K(+) ](o) conditions, changes in [Ca²(+) ](o) did not affect membrane potential. The synaptic responsiveness of both regular-spiking and fast-spiking neurons was reduced during seizure-like ionic conditions. A reduction in [Ca²(+) ](o) to 0.6 mm increased failure rates but did not abolish responses. However, an increase in [K(+) ](o) to 12 mm abolished postsynaptic responses, which depended on a blockade in axonal spike propagation. SIGNIFICANCE We conclude that concomitant changes in [K(+) ](o) and [Ca²(+) ](o) observed during seizures contribute largely to the alterations of synaptic neuronal responses and to the decrease in long-range synchrony during neocortical seizures.
Collapse
Affiliation(s)
- Josée Seigneur
- Robert-Giffard Research Center, Laval University, Québec, Canada
| | | |
Collapse
|