1
|
Shamsnia HS, Peyrovinasab A, Amirlou D, Sirouskabiri S, Rostamian F, Basiri N, Shalmani LM, Hashemi M, Hushmandi K, Abdolghaffari AH. BDNF-TrkB Signaling Pathway in Spinal Cord Injury: Insights and Implications. Mol Neurobiol 2025; 62:1904-1944. [PMID: 39046702 DOI: 10.1007/s12035-024-04381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disorder that has critical impact on patient's life expectance and life span, and this disorder also leads to negative socioeconomic features. SCI is defined as a firm collision to the spinal cord which leads to the fracture and the dislocation of vertebrae. The current available treatment is surgery. However, it cannot fully treat SCI, and many consequences remain after the surgery. Accordingly, finding new therapeutics is critical. BDNF-TrkB signaling is a vital signaling in neuronal differentiation, survival, overgrowth, synaptic plasticity, etc. Hence, many studies evaluate its impact on various neurodegenerative disorders. There are several studies evaluating this signaling in SCI, and they show promising outcomes. It was shown that various exercises, chemical interventions, etc. had significant positive impact on SCI by affecting BDNF-TrkB signaling pathway. This study aims to accumulate and evaluate these data and inspect whether this signaling is effective or not.
Collapse
Affiliation(s)
- Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Dorsa Amirlou
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shirin Sirouskabiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Rostamian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasim Basiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Engeln M, Song Y, Chandra R, La A, Fox ME, Evans B, Turner MD, Thomas S, Francis TC, Hertzano R, Lobo MK. Individual differences in stereotypy and neuron subtype translatome with TrkB deletion. Mol Psychiatry 2021; 26:1846-1859. [PMID: 32366954 PMCID: PMC8480032 DOI: 10.1038/s41380-020-0746-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Motor stereotypies occurring in early-onset neuropsychiatric diseases are associated with dysregulated basal ganglia direct-pathway activity. Disruptions in network connectivity through impaired neuronal structure have been implicated in both rodents and humans. However, the neurobiological mechanisms leading to direct-pathway neuron disconnectivity in stereotypy remain poorly understood. We have a mouse line with Tropomyosin receptor kinase B (TrkB) receptor deletion from D1-expressing cells (D1-Cre-flTrkB) in which a subset of animals shows repetitive rotations and head tics with juvenile onset. Here we demonstrate these behaviors may be associated with abnormal direct-pathway activity by reducing rotations using chemogenetic inhibition of dorsal striatum D1-medium spiny neurons (D1-MSNs) in both juvenile and young-adult mice. Taking advantage of phenotypical differences in animals with similar genotypes, we then interrogated the D1-MSN specific translatome associated with repetitive behavior by using RNA sequencing of ribosome-associated mRNA. Detailed translatome analysis followed by multiplexed gene expression assessment revealed profound alterations in neuronal projection and synaptic structure related genes in stereotypy mice. Examination of neuronal morphology demonstrated dendritic atrophy and dendritic spine loss in dorsal striatum D1-MSNs from mice with repetitive behavior. Together, our results uncover phenotype-specific molecular alterations in D1-MSNs that relate to morphological adaptations in mice displaying stereotypy behavior.
Collapse
Affiliation(s)
- Michel Engeln
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley La
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Megan E. Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brianna Evans
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Makeda D. Turner
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shavin Thomas
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - T. Chase Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ronna Hertzano
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA., Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA., Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Paris AJ, Hayer KE, Oved JH, Avgousti DC, Toulmin SA, Zepp JA, Zacharias WJ, Katzen JB, Basil MC, Kremp MM, Slamowitz AR, Jayachandran S, Sivakumar A, Dai N, Wang P, Frank DB, Eisenlohr LC, Cantu E, Beers MF, Weitzman MD, Morrisey EE, Worthen GS. STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nat Cell Biol 2020; 22:1197-1210. [PMID: 32989251 PMCID: PMC8167437 DOI: 10.1038/s41556-020-0569-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/03/2020] [Indexed: 01/13/2023]
Abstract
Alveolar epithelial regeneration is essential for recovery from devastating lung diseases. This process occurs when type II alveolar pneumocytes (AT2 cells) proliferate and transdifferentiate into type I alveolar pneumocytes (AT1 cells). We used genome-wide analysis of chromatin accessibility and gene expression following acute lung injury to elucidate repair mechanisms. AT2 chromatin accessibility changed substantially following injury to reveal STAT3 binding motifs adjacent to genes that regulate essential regenerative pathways. Single-cell transcriptome analysis identified brain-derived neurotrophic factor (Bdnf) as a STAT3 target gene with newly accessible chromatin in a unique population of regenerating AT2 cells. Furthermore, the BDNF receptor tropomyosin receptor kinase B (TrkB) was enriched on mesenchymal alveolar niche cells (MANCs). Loss or blockade of AT2-specific Stat3, Bdnf or mesenchyme-specific TrkB compromised repair and reduced Fgf7 expression by niche cells. A TrkB agonist improved outcomes in vivo following lung injury. These data highlight the biological and therapeutic importance of the STAT3-BDNF-TrkB axis in orchestrating alveolar epithelial regeneration.
Collapse
Affiliation(s)
- Andrew J Paris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph H Oved
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daphne C Avgousti
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sushila A Toulmin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jarod A Zepp
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William J Zacharias
- Division of Pulmonary Biology, Perinatal Institute, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeremy B Katzen
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Basil
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison M Kremp
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sowmya Jayachandran
- Division of Cardiology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aravind Sivakumar
- Division of Cardiology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ning Dai
- Division of Neonatology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ping Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward Cantu
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael F Beers
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward E Morrisey
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Regenerative Medicine, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G Scott Worthen
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Neonatology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Shang Y, Wang X, Li F, Yin T, Zhang J, Zhang T. rTMS Ameliorates Prenatal Stress-Induced Cognitive Deficits in Male-Offspring Rats Associated With BDNF/TrkB Signaling Pathway. Neurorehabil Neural Repair 2019; 33:271-283. [PMID: 30979358 DOI: 10.1177/1545968319834898] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Growing evidences suggest that brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) plays a key role in the regulation of hippocampal synaptic plasticity in a prenatal stress (PNS) rat model. Repetitive transcranial magnetic stimulation (rTMS) is currently being acknowledged to affect attention and memory in both preclinical and clinical studies, although the mechanism is still unclear. OBJECTIVE The current study aimed to explore whether a whole brain rTMS (5 Hz, 14 days) could ameliorate cognitive dysfunction-induced PNS in male offspring, and examine if the positive effect of rTMS was associated with the BDNF/TrkB signaling in the hippocampus. METHODS The rats were randomly divided into 5 groups: CON, PNS, PNS + rTMS, PNS + rTMS + DMSO (dimethyl sulfoxide), and PNS + rTMS + K252a. Spatial cognition was evaluated by using Morris water maze test. Following behavioral assessment, both paired-pulse facilitation and long-term potentiation were recorded from Schaffer collaterals to CA1 region in the hippocampus. Synaptic, apoptotic, and BDNF/TrkB signaling proteins were measured by Western blot. RESULTS PNS-exposed offspring exhibited cognitive deficits, long-term potentiation inhibition in the hippocampus, the decrease of synaptic and BDNF/TrkB signaling proteins expression, apoptosis, and reduced number of cells in the CA1 region. Five-hertz rTMS significantly alleviated the PNS-induced abnormalities. However, the effect of rTMS was antagonized by intracerebroventricular infusion of K252a (a TrkB inhibitor). CONCLUSIONS The findings suggest that 5-Hz rTMS significantly improves the impairment of spatial cognition and hippocampal synaptic plasticity, which is possibly associated with the activation of BDNF/TrkB signaling.
Collapse
Affiliation(s)
- Yingchun Shang
- 1 Nankai University, Tianjin, People's Republic of China
| | - Xin Wang
- 2 Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Fangjuan Li
- 1 Nankai University, Tianjin, People's Republic of China
| | - Tao Yin
- 2 Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Jianhai Zhang
- 3 Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Tao Zhang
- 1 Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
5
|
Xenos D, Kamceva M, Tomasi S, Cardin JA, Schwartz ML, Vaccarino FM. Loss of TrkB Signaling in Parvalbumin-Expressing Basket Cells Results in Network Activity Disruption and Abnormal Behavior. Cereb Cortex 2019; 28:3399-3413. [PMID: 28968898 DOI: 10.1093/cercor/bhx173] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 12/11/2022] Open
Abstract
The GABAergic system is regulated by the brain-derived neurotrophic factor (BDNF)/Tropomyosin-related kinase B (TrkB) pathway, but the cell-intrinsic role of TrkB signaling in parvalbumin cortical interneuron development and function is unclear. We performed conditional ablation of the TrkB receptor in parvalbumin-expressing (PV) interneurons to study whether postnatal loss of TrkB in parvalbumin cells affects their survival, connectivity, spontaneous and evoked neuronal activity and behavior. Using in vivo recordings of local field potentials, we found reduced gamma oscillations in the sensory cortex of PVcre+; TrkBF/F conditional knockout mice (TrkB cKO), along with increased firing of putative excitatory neurons. There was a significant downregulation in parvalbumin neuron number in cerebral and cerebellar cortices of TrkB cKO mice. In addition, inhibitory synaptic connections between basket cells and pyramidal neurons were profoundly reduced in the neocortex of TrkB cKO mice and there was a loss of cortical volume. TrkB cKO mice also showed profound hyperactivity, stereotypies, motor deficits and learning/memory defects. Our findings demonstrate that the targeting and/or synapse formation of PV-expressing basket cells with principal excitatory neurons require TrkB signaling in parvalbumin cells. Disruption of this signaling has major consequences for parvalbumin interneuron connectivity, network dynamics, cognitive and motor behavior.
Collapse
Affiliation(s)
| | | | | | - Jessica A Cardin
- Department of Neuroscience.,Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | | | - Flora M Vaccarino
- Child Study Center.,Department of Neuroscience.,Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
| |
Collapse
|
6
|
TrkB-dependent disinhibition of the nucleus accumbens is enhanced by ethanol. Neuropsychopharmacology 2019; 44:1114-1122. [PMID: 30758322 PMCID: PMC6461768 DOI: 10.1038/s41386-019-0341-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 01/12/2023]
Abstract
The nucleus accumbens is a critical integration center for reward-related circuitry and is comprised primarily of medium spiny projection neurons. The dynamic balance of excitation and inhibition onto medium spiny neurons determines the output of this structure. While nucleus accumbens excitatory synaptic plasticity is well-characterized, inhibitory synaptic plasticity mechanisms and their potential relevance to shaping motivated behaviors is poorly understood. Here we report the discovery of long-term depression of inhibitory synaptic transmission in the mouse nucleus accumbens core. This long-term depression is postsynaptically expressed, tropomyosin kinase B (TrkB) receptor-mediated, and augmented in the presence of ethanol. Our findings support the emerging view that TrkB signaling regulates inhibitory synaptic plasticity and suggest this mechanism in the nucleus accumbens as a target for ethanol modulation of reward.
Collapse
|
7
|
Postnatal TrkB ablation in corticolimbic interneurons induces social dominance in male mice. Proc Natl Acad Sci U S A 2018; 115:E9909-E9915. [PMID: 30282736 DOI: 10.1073/pnas.1812083115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The tight balance between synaptic excitation and inhibition (E/I) within neocortical circuits in the mammalian brain is important for complex behavior. Many loss-of-function studies have demonstrated that brain-derived neurotrophic factor (BDNF) and its cognate receptor tropomyosin receptor kinase B (TrkB) are essential for the development of inhibitory GABAergic neurons. However, behavioral consequences of impaired BDNF/TrkB signaling in GABAergic neurons remain unclear, largely due to confounding motor function deficits observed in previous animal models. In this study, we generated conditional knockout mice (TrkB cKO) in which TrkB was ablated from a majority of corticolimbic GABAergic interneurons postnatally. These mice showed intact motor coordination and movement, but exhibited enhanced dominance over other mice in a group-housed setting. In addition, immature fast-spiking GABAergic neurons of TrkB cKO mice resulted in an E/I imbalance in layer 5 microcircuits within the medial prefrontal cortex (mPFC), a key region regulating social dominance. Restoring the E/I imbalance via optogenetic modulation in the mPFC of TrkB cKO mice normalized their social dominance behavior. Taken together, our results provide strong evidence for a role of BDNF/TrkB signaling in inhibitory synaptic modulation and social dominance behavior in mice.
Collapse
|
8
|
BDNF-TrkB controls cocaine-induced dendritic spines in rodent nucleus accumbens dissociated from increases in addictive behaviors. Proc Natl Acad Sci U S A 2017; 114:9469-9474. [PMID: 28808012 DOI: 10.1073/pnas.1702441114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic cocaine use is associated with prominent morphological changes in nucleus accumbens shell (NACsh) neurons, including increases in dendritic spine density along with enhanced motivation for cocaine, but a functional relationship between these morphological and behavioral phenomena has not been shown. Here we show that brain-derived neurotrophic factor (BDNF) signaling through tyrosine kinase B (TrkB) receptors in NACsh neurons is necessary for cocaine-induced dendritic spine formation by using either localized TrkB knockout or viral-mediated expression of a dominant negative, kinase-dead TrkB mutant. Interestingly, augmenting wild-type TrkB expression after chronic cocaine self-administration reverses the sustained increase in dendritic spine density, an effect mediated by TrkB signaling pathways that converge on extracellular regulated kinase. Loss of TrkB function after cocaine self-administration, however, leaves spine density intact but markedly enhances the motivation for cocaine, an effect mediated by specific loss of TrkB signaling through phospholipase Cgamma1 (PLCγ1). Conversely, overexpression of PLCγ1 both reduces the motivation for cocaine and reverses dendritic spine density, suggesting a potential target for the treatment of addiction in chronic users. Together, these findings indicate that BDNF-TrkB signaling both mediates and reverses cocaine-induced increases in dendritic spine density in NACsh neurons, and these morphological changes are entirely dissociable from changes in addictive behavior.
Collapse
|
9
|
Wu KL, Wu CW, Tain YL, Huang LT, Chao YM, Hung CY, Wu JC, Chen SR, Tsai PC, Chan JY. Environmental stimulation rescues maternal high fructose intake-impaired learning and memory in female offspring: Its correlation with redistribution of histone deacetylase 4. Neurobiol Learn Mem 2016; 130:105-17. [DOI: 10.1016/j.nlm.2016.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
|
10
|
Nakagomi A, Okada S, Yokoyama M, Yoshida Y, Shimizu I, Miki T, Kobayashi Y, Minamino T. Role of the central nervous system and adipose tissue BDNF/TrkB axes in metabolic regulation. NPJ Aging Mech Dis 2015; 1:15009. [PMID: 28721258 PMCID: PMC5514989 DOI: 10.1038/npjamd.2015.9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/11/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022] Open
Abstract
Background/Objectives: Brain-derived neurotrophic factor (BDNF) and its receptor (tropomyosin-related kinase B: TrkB, also known as Ntrk2) have a key role in central regulation of the energy balance. BDNF and TrkB are also expressed in the peripheral tissues, including adipose tissue, but their peripheral role has been unclear. Here we report on the functional significance of the adipose tissue BDNF/TrkB axis in metabolic homeostasis. Materials and Methods: To examine the role of the BDNF/TrkB axis in the central nervous system and in adipose tissue, we generated adipocyte-specific or neuron-specific BDNF/TrkB conditional knockout (CKO) mice. Then we compared the feeding behavior and metabolic profile between each type of CKO mouse and their littermates. Results: Bdnf expression was significantly increased in the adipose tissue of mice receiving a high-calorie diet, whereas Ntrk2 expression was decreased. The Bdnf/Ntrk2 expression ratio of adipose tissue was higher in female mice than male mice. Fabp4-Cre mice are widely used to establish adipocyte-specific CKO mice. However, we found that Fabp4-Cre-induced deletion of Bdnf or Ntrk2 led to hyperphagia, obesity, and aggressiveness, presumably due to ectopic Fabp4-Cre mediated gene recombination in the brain. Next, we attempted to more specifically delete Bdnf or Ntrk2 in adipocytes using Adipoq-Cre mice. Expression of Ntrk2, but not Bdnf, in the adipose tissue was reduced by Adipoq-Cre mediated gene recombination, indicating that adipocytes only expressed TrkB. No phenotypic changes were detected when Adipoq-Cre TrkB CKO mice were fed a normal diet, whereas female CKO mice receiving a high-calorie diet showed a decrease in food intake and resistance to obesity. Conclusions: The adipose tissue BDNF/TrkB axis has a substantial influence on the feeding behavior and obesity in female mice.
Collapse
Affiliation(s)
- Atsushi Nakagomi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sho Okada
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masataka Yokoyama
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Miki
- Department of Medical Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
11
|
Fantauzzo KA, Soriano P. Receptor tyrosine kinase signaling: regulating neural crest development one phosphate at a time. Curr Top Dev Biol 2015; 111:135-82. [PMID: 25662260 PMCID: PMC4363133 DOI: 10.1016/bs.ctdb.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or by various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal, and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic, and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development.
Collapse
Affiliation(s)
- Katherine A Fantauzzo
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
12
|
Koo JW, Lobo MK, Chaudhury D, Labonté B, Friedman A, Heller E, Peña CJ, Han MH, Nestler EJ. Loss of BDNF signaling in D1R-expressing NAc neurons enhances morphine reward by reducing GABA inhibition. Neuropsychopharmacology 2014; 39:2646-53. [PMID: 24853771 PMCID: PMC4207344 DOI: 10.1038/npp.2014.118] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 12/23/2022]
Abstract
The nucleus accumbens (NAc) has a central role in the mechanism of action of drugs of abuse. The major neuronal type within the NAc is the GABAergic medium spiny neuron (MSN), with two major subpopulations defined-termed D1-type and D2-type MSNs-based on the predominant dopamine receptor expressed. However, very little is known about the contribution of altered GABAergic function in NAc MSNs to the neural and behavioral plasticity that contributes to the lasting actions of drugs of abuse. In the present study, we show that GABAergic activity is selectively modulated in D1-type MSNs of the NAc by signaling of brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine receptor kinase B (TrkB), and that such adaptations control rewarding responses to morphine. Optical activation of D1-type MSNs, or the knockout of TrkB from D1-type MSNs (D1-TrkB KO), enhances morphine reward, effects not seen for D2-type MSNs. In addition, D1-TrkB KO mice, but not D2-TrkB KO mice, display decreased GABAA receptor (GABAAR) subunit expression and reduced spontaneous inhibitory postsynaptic currents (sIPSCs) in D1-type, but not D2-type, MSNs in the NAc. Furthermore, we found that GABAAR antagonism in the NAc enhances morphine reward and that morphine exposure decreases TrkB expression as well as GABAergic activity in D1-type MSNs. Together, these data provide evidence for the enhancement of morphine reward through reduction of inhibitory GABAAR responses, an adaptation mediated by morphine-induced reduction of BDNF-TrkB signaling in D1-type MSNs.
Collapse
Affiliation(s)
- Ja Wook Koo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dipesh Chaudhury
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Departments of Psychiatry and of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benoit Labonté
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allyson Friedman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Departments of Psychiatry and of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth Heller
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine Jensen Peña
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Departments of Psychiatry and of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, PO Box 1065, New York, NY 10029, USA, Tel: +1 212 659 5656, Fax: +1 212 659 8510, E-mail:
| |
Collapse
|
13
|
Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol 2014; 50:945-70. [PMID: 24752592 DOI: 10.1007/s12035-014-8706-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75(NTR) and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.
Collapse
Affiliation(s)
- Mette Richner
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic EMBL Partnership, and Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
14
|
The candidate splicing factor Sfswap regulates growth and patterning of inner ear sensory organs. PLoS Genet 2014; 10:e1004055. [PMID: 24391519 PMCID: PMC3879212 DOI: 10.1371/journal.pgen.1004055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 11/08/2013] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway is thought to regulate multiple stages of inner ear development. Mutations in the Notch signaling pathway cause disruptions in the number and arrangement of hair cells and supporting cells in sensory regions of the ear. In this study we identify an insertional mutation in the mouse Sfswap gene, a putative splicing factor, that results in mice with vestibular and cochlear defects that are consistent with disrupted Notch signaling. Homozygous Sfswap mutants display hyperactivity and circling behavior consistent with vestibular defects, and significantly impaired hearing. The cochlea of newborn Sfswap mutant mice shows a significant reduction in outer hair cells and supporting cells and ectopic inner hair cells. This phenotype most closely resembles that seen in hypomorphic alleles of the Notch ligand Jagged1 (Jag1). We show that Jag1; Sfswap compound mutants have inner ear defects that are more severe than expected from simple additive effects of the single mutants, indicating a genetic interaction between Sfswap and Jag1. In addition, expression of genes involved in Notch signaling in the inner ear are reduced in Sfswap mutants. There is increased interest in how splicing affects inner ear development and function. Our work is one of the first studies to suggest that a putative splicing factor has specific effects on Notch signaling pathway members and inner ear development.
Collapse
|
15
|
Taste neurons consist of both a large TrkB-receptor-dependent and a small TrkB-receptor-independent subpopulation. PLoS One 2013; 8:e83460. [PMID: 24386206 PMCID: PMC3873951 DOI: 10.1371/journal.pone.0083460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/04/2013] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) are two neurotrophins that play distinct roles in geniculate (taste) neuron survival, target innervation, and taste bud formation. These two neurotrophins both activate the tropomyosin-related kinase B (TrkB) receptor and the pan-neurotrophin receptor p75. Although the roles of these neurotrophins have been well studied, the degree to which BDNF and NT-4 act via TrkB to regulate taste development in vivo remains unclear. In this study, we compared taste development in TrkB−/− and Bdnf−/−/Ntf4−/− mice to determine if these deficits were similar. If so, this would indicate that the functions of both BDNF and NT-4 can be accounted for by TrkB-signaling. We found that TrkB−/− and Bdnf−/−/Ntf4−/− mice lose a similar number of geniculate neurons by E13.5, which indicates that both BDNF and NT-4 act primarily via TrkB to regulate geniculate neuron survival. Surprisingly, the few geniculate neurons that remain in TrkB−/− mice are more successful at innervating the tongue and taste buds compared with those neurons that remain in Bdnf−/−/Ntf4−/− mice. The remaining neurons in TrkB−/− mice support a significant number of taste buds. In addition, these remaining neurons do not express the TrkB receptor, which indicates that either BDNF or NT-4 must act via additional receptors to influence tongue innervation and/or targeting.
Collapse
|
16
|
Schettino AE, Lauer AM. The efficiency of design-based stereology in estimating spiral ganglion populations in mice. Hear Res 2013; 304:153-8. [PMID: 23876522 DOI: 10.1016/j.heares.2013.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/18/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Accurate quantification of cell populations is essential in assessing and evaluating neural survival and degeneration in experimental groups. Estimates obtained through traditional two-dimensional counting methods are heavily biased by the counting parameters in relation to the size and shape of the neurons to be counted, resulting in a large range of inaccurate counts. In contrast, counting every cell in a population can be extremely labor-intensive. The present study hypothesizes that design-based stereology provides estimates of the total number of cochlear spiral ganglion neurons (SGNs) in mice that are comparable to those obtained by other accurate cell-counting methods, such as a serial reconstruction, while being a more efficient method. SGNs are indispensable for relaying auditory information from hair cells to the auditory brainstem, and investigating factors affecting their degeneration provides insight into the physiological basis for the progression of hearing dysfunction. Stereological quantification techniques offer the benefits of efficient sampling that is independent of the size and shape of the SGNs. Population estimates of SGNs in cochleae from young C57 mice with normal-hearing and C57 mice with age-related hearing loss were obtained using the optical fractionator probe and traditional two-dimensional counting methods. The average estimated population of SGNs in normal-hearing mice was 7009, whereas the average estimated population in mice with age-related hearing loss was 5096. The estimated population of SGNs in normal-hearing mice fell within the range of values previously reported in the literature. The reduction in the SGN population in animals with age-related hearing loss was statistically significant. Stereological measurements required less time per section compared to two-dimensional methods while optimizing the amount of cochlear tissue analyzed. These findings demonstrate that design-based stereology provides a practical alternative to other counting methods such as the Abercrombie correction method, which has been shown to notably underestimate cell populations, and labor-intensive protocols that account for every cell individually.
Collapse
Affiliation(s)
- Amy E Schettino
- Center for Hearing and Balance, Dept. of Otolaryngology-Head & Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Undergraduate Program in Neuroscience, Zanvyl Kreiger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
17
|
Hutchison MR. Mice with a conditional deletion of the neurotrophin receptor TrkB are dwarfed, and are similar to mice with a MAPK14 deletion. PLoS One 2013; 8:e66206. [PMID: 23776632 PMCID: PMC3679073 DOI: 10.1371/journal.pone.0066206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 05/05/2013] [Indexed: 12/21/2022] Open
Abstract
Long bone growth results from ordered chondrocyte development within the cartilagenous growth plate. Chondrocytes are recruited from a resting pool to proliferate along the long axis of the bone, until various signals trigger differentiation and hypertrophy. We have shown previously that the neurotrophin receptor TrkB is expressed in growth plate chondrocytes, where the tyrosine kinase receptor regulates the pace of hypertrophic differentiation by modulating the activities of ERK and p38 MAP kinases. To investigate the physiological relevance of TrkB to bone growth in vivo, we generated mice with a targeted disruption of the receptor, and compared them to mice targeted for MAPK14, the gene for p38α. The TrkB mutant and p38α mutant mice showed a similar degree of dwarfism and delayed hypertrophic differentiation. To extend these findings, we showed that both the TrkB and p38α mutant mice have altered expression of Runx2 and Sox9, two key transcription factors required for skeletogenesis. The data provides in vivo evidence for the role of TrkB in bone growth, supports the role of p38 downstream of TrkB, and suggests that Runx2 and Sox9 expression is regulated by this pathway at the growth plate.
Collapse
Affiliation(s)
- Michele R Hutchison
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
| |
Collapse
|
18
|
Scharfman HE, MacLusky NJ. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats. Neuropharmacology 2013; 76 Pt C:696-708. [PMID: 23660230 DOI: 10.1016/j.neuropharm.2013.04.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult female rat, while testosterone exerts a tonic suppression of mossy fiber BDNF levels in the adult male rat. The consequences are interesting to consider: in females, increased excitability associated with high levels of BDNF in mossy fibers could improve normal functions of area CA3, such as the ability to perform pattern completion. However, memory retrieval may lead to anxiety if stressful events are recalled. Therefore, the actions of 17β-estradiol on the mossy fiber pathway in females may provide a potential explanation for the greater incidence of anxiety-related disorders and post-traumatic stress syndrome (PTSD) in women relative to men. In males, suppression of BDNF-dependent plasticity in the mossy fibers may be protective, but at the 'price' of reduced synaptic plasticity in CA3. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| | | |
Collapse
|
19
|
Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 2012; 239:46-66. [PMID: 23276673 DOI: 10.1016/j.neuroscience.2012.12.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in the hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences the hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction.
Collapse
|
20
|
Sakharnova TA, Vedunova MV, Mukhina IV. Brain-derived neurotrophic factor (BDNF) and its role in the functioning of the central nervous system. NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712412030129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proc Natl Acad Sci U S A 2012; 109:15491-6. [PMID: 22949667 DOI: 10.1073/pnas.1212899109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), are associated with the physiology of the striatum and the loss of its normal functioning under pathological conditions. The role of BDNF and its downstream signaling in regulating the development of the striatum has not been fully investigated, however. Here we report that ablation of Bdnf in both the cortex and substantia nigra depletes BDNF in the striatum, and leads to impaired striatal development, severe motor deficits, and postnatal lethality. Furthermore, striatal-specific ablation of TrkB, the gene encoding the high-affinity receptor for BDNF, is sufficient to elicit an array of striatal developmental abnormalities, including decreased anatomical volume, smaller neuronal nucleus size, loss of dendritic spines, reduced enkephalin expression, diminished nigral dopaminergic projections, and severe deficits in striatal dopamine signaling through DARPP32. In addition, TrkB ablation in striatal neurons elicits a non-cell-autonomous reduction of tyrosine hydroxylase protein level in the axonal projections of substantia nigral dopaminergic neurons. Thus, our results establish an essential function for TrkB in regulating the development of striatal neurons.
Collapse
|
22
|
Gomes JR, Costa JT, Melo CV, Felizzi F, Monteiro P, Pinto MJ, Inácio AR, Wieloch T, Almeida RD, Grãos M, Duarte CB. Excitotoxicity downregulates TrkB.FL signaling and upregulates the neuroprotective truncated TrkB receptors in cultured hippocampal and striatal neurons. J Neurosci 2012; 32:4610-22. [PMID: 22457507 PMCID: PMC6622054 DOI: 10.1523/jneurosci.0374-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival through activation of TrkB receptors. The trkB gene encodes a full-length receptor tyrosine kinase (TrkB.FL) and its truncated (T1/T2) isoforms. We investigated the changes in TrkB protein levels and signaling activity under excitotoxic conditions, which are characteristic of brain ischemia, traumatic brain injury, and neurodegenerative disorders. Excitotoxic stimulation of cultured rat hippocampal or striatal neurons downregulated TrkB.FL and upregulated a truncated form of the receptor (TrkB.T). Downregulation of TrkB.FL was mediated by calpains, whereas the increase in TrkB.T protein levels required transcription and translation activities. Downregulation of TrkB.FL receptors in hippocampal neurons correlated with a decrease in BDNF-induced activation of the Ras/ERK and PLCγ pathways. However, calpain inhibition, which prevents TrkB.FL degradation, did not preclude the decrease in signaling activity of these receptors. On the other hand, incubation with anisomycin, to prevent the upregulation of TrkB.T, protected to a large extent the TrkB.FL signaling activity, suggesting that truncated receptors may act as dominant-negatives. The upregulation of TrkB.T under excitotoxic conditions was correlated with an increase in BDNF-induced inhibition of RhoA, a mediator of excitotoxic neuronal death. BDNF fully protected hippocampal neurons transduced with TrkB.T when present during excitotoxic stimulation with glutamate, in contrast with the partial protection observed in cells overexpressing TrkB.FL or expressing GFP. These results indicate that BDNF protects hippocampal neurons by two distinct mechanisms: through the neurotrophic effects of TrkB.FL receptors and by activation of TrkB.T receptors coupled to inhibition of the excitotoxic signaling.
Collapse
Affiliation(s)
- João R. Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - João T. Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos V. Melo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Federico Felizzi
- ETH Zurich, Department of Biosystems Science and Engineering (DBSSE), 4058 Basel, Switzerland
| | | | - Maria J. Pinto
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ana R. Inácio
- Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden, and
| | - Tadeusz Wieloch
- Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden, and
| | - Ramiro D. Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Biocant, 3060-197 Cantanhede, Portugal
- Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
23
|
Richter CP, Kumar G, Webster E, Banas S, Whitlon D. Unbiased counting of neurons in the cochlea of developing gerbils. Hear Res 2011; 278:43-51. [DOI: 10.1016/j.heares.2011.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/28/2011] [Accepted: 02/09/2011] [Indexed: 11/30/2022]
|
24
|
Johnson SB, Schmitz HM, Santi PA. TSLIM imaging and a morphometric analysis of the mouse spiral ganglion. Hear Res 2011; 278:34-42. [PMID: 21420476 DOI: 10.1016/j.heares.2011.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 11/16/2022]
Abstract
Thin-sheet laser imaging microscopy (TSLIM) was used to serially section five whole cochleas from 4-wk-old CBA/JCr mice. Three-dimensional reconstructions of Rosenthal's canal (RC) were produced in order to measure canal length and volume, to generate orthogonal cross sections for area measurements, and to determine spiral ganglion neuron (SGN) number. RC length averaged 2.0 mm ± 0.04 (SEM) as measured along the centroid of the canal compared to an average basilar membrane (BM) length of 5.9 ± 0.05 (SEM). RC volume averaged 0.036 mm(3) ± 0.009 (SEM). Significant increases in the radial area of RC were observed at the base (13%), middle (62%), and apex (90%) of its length. The total number of spiral ganglion neurons (SGNs) in RC in each of the five animals averaged 8626 ± 96 (SEM). SGN number increased at the expanded regions of RC. Increased area and cell number at the base and apex are likely related to extensions of the organ of Corti past the length of RC in these areas. The increase in area and cell number in the middle of the RC appears to be related to the most sensitive frequency region of the organ of Corti. Volume imaging or tomography of the cochlea as provided by TSLIM has the potential to be an efficient and accurate semi-automated method for the quantitative assessment of the number of SGNs and hair cells of the organ of Corti.
Collapse
Affiliation(s)
- Shane B Johnson
- Department of Otolaryngology, University of Minnesota, 2001 Sixth St. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
25
|
Jenks BG, Galas L, Kuribara M, Desrues L, Kidane AH, Vaudry H, Scheenen WJJM, Roubos EW, Tonon MC. Analysis of the melanotrope cell neuroendocrine interface in two amphibian species, Rana ridibunda and Xenopus laevis: a celebration of 35 years of collaborative research. Gen Comp Endocrinol 2011; 170:57-67. [PMID: 20888821 DOI: 10.1016/j.ygcen.2010.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/17/2010] [Accepted: 09/27/2010] [Indexed: 01/19/2023]
Abstract
This review gives an overview of the functioning of the hypothalamo-hypophyseal neuroendocrine interface in the pituitary neurointermediate lobe, as it relates to melanotrope cell function in two amphibian species, Rana ridibunda and Xenopus laevis. It primarily but not exclusively concerns the work of two collaborating laboratories, the Laboratory for Molecular and Cellular Neuroendocrinology (University of Rouen, France) and the Department of Cellular Animal Physiology (Radboud University Nijmegen, The Netherlands). In the course of this review it will become apparent that Rana and Xenopus have, for the most part, developed the same or similar strategies to regulate the release of α-melanophore-stimulating hormone (α-MSH). The review concludes by highlighting the molecular and cellular mechanisms utilized by thyrotropin-releasing hormone (TRH) to activate Rana melanotrope cells and the function of autocrine brain-derived neurotrophic factor (BDNF) in the regulation of Xenopus melanotrope cell function.
Collapse
Affiliation(s)
- Bruce G Jenks
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lobo MK, Covington HE, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 2010; 330:385-90. [PMID: 20947769 DOI: 10.1126/science.1188472] [Citation(s) in RCA: 674] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of TrkB in D2+ neurons increases their neuronal excitability, we next used optogenetic tools to control selectively the firing rate of D1+ and D2+ nucleus accumbens neurons and studied consequent effects on cocaine reward. Activation of D2+ neurons, mimicking the loss of TrkB, suppresses cocaine reward, with opposite effects induced by activation of D1+ neurons. These results provide insight into the molecular control of D1+ and D2+ neuronal activity as well as the circuit-level contribution of these cell types to cocaine reward.
Collapse
Affiliation(s)
- Mary Kay Lobo
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Murphy MC, Fox EA. Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. J Comp Neurol 2010; 518:2934-51. [PMID: 20533354 DOI: 10.1002/cne.22372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vagal sensory neurons are dependent on neurotrophins for survival during development. Here, the contribution of brain-derived neurotrophic factor (BDNF) to survival and other aspects of gastric vagal afferent development was investigated. Post-mortem anterograde tracing with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbo-cyanine perchlorate (DiI) was used to label selectively vagal projections to the stomach on postnatal days (P) 0, 3, 4, and 6 in wild types and heterozygous or homozygous BDNF mutants. Sampling sites distributed throughout the ventral stomach wall were scanned with a confocal microscope, and vagal axon bundles, single axons, putative mechanoreceptor precursors (intraganglionic laminar endings, IGLEs; intramuscular arrays, IMAs), and efferent terminals were quantified. Also, myenteric neurons, which are innervated by IGLEs, were stained with cuprolinic blue and counted. Quantitative comparisons across wild-type stomach compartments demonstrated that the adult distribution of IMAs was not present at P0 but began to form by P3-6. Among all the quantified elements, at P0, only IGLE density was significantly different in homozygous mutants compared with wild types, exhibiting a 50% reduction. Also, antrum innervation appeared disorganized, and some putative IMA precursors had truncated telodendria. At P3-6, the effect on IGLEs had recovered, the disorganization of antrum innervation had partially recovered, and some IMA telodendria were still truncated. The present results suggest that gastric IGLEs are among the vagal sensory neurons dependent on BDNF for survival or axon guidance. Alternatively, BDNF deficiency may delay gastric IGLE development. Also, BDNF may contribute to IMA differentiation and patterning of antral vagal innervation.
Collapse
Affiliation(s)
- Michelle C Murphy
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
28
|
Kotloski R, McNamara JO. Reduction of TrkB expression de novo in the adult mouse impairs epileptogenesis in the kindling model. Hippocampus 2010; 20:713-23. [PMID: 19603519 DOI: 10.1002/hipo.20673] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elucidating the mechanisms of epileptogenesis in molecular terms can identify targets for therapies aimed at preventing epileptogenesis or limiting its progression. Genetic perturbations have implicated signaling by the neurotrophin, BDNF, and its receptor, TrkB, in limbic epileptogenesis. Whether this signaling is critical to epileptogenesis in the adult brain is unclear. We sought to determine whether reduced expression of TrkB de novo in the mature brain is sufficient to impair epileptogenesis in the kindling model. Treatment of adult Act-CreER TrkB(flox/flox) mice with tamoxifen resulted in modest reductions of TrkB protein expression de novo in the adult that were detected in hippocampus but not other brain regions. Modest reduction of hippocampal TrkB content inhibited epileptogenesis induced by stimulation of hippocampus or amygdala. The data support the conclusion that reduction of TrkB expression in hippocampus de novo in the mature brain impairs epileptogenesis in the kindling model. These findings advance TrkB and its downstream signaling pathways as attractive targets for limiting the progression of epileptogenesis.
Collapse
Affiliation(s)
- Robert Kotloski
- Department of Neurology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
29
|
Germanà A, Laurà R, Montalbano G, Guerrera MC, Amato V, Zichichi R, Campo S, Ciriaco E, Vega JA. Expression of brain-derived neurotrophic factor and TrkB in the lateral line system of zebrafish during development. Cell Mol Neurobiol 2010; 30:787-93. [PMID: 20162349 DOI: 10.1007/s10571-010-9506-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/04/2010] [Indexed: 12/29/2022]
Abstract
The neuromasts of the lateral line system are regarded as a model to study the mechanisms of hearing, deafness, and ototoxicity. The neurotrophins (NTs), especially brain-derived neurotrophic factor (BDNF), and its signaling receptor TrkB are involved in the development and maintenance of neuromasts. To know the period in which the BDNF/TrkB complex has more effects in the neuromast biology, the age-related changes were studied. Normal zebrafish from 10 to 180 days post-fertilization (dpf), as well as transgenic ET4 zebrafish 10 and 20 dpf, was analyzed using qRT-PCR, western blot, and immunohistochemistry. BDNF and TrkB mRNAs followed a parallel course, peaking at 20 dpf, and thereafter progressively decreased. Specific immunoreactivity for BDNF and TrkB was found co-localized in all hairy cells of neuromasts in 20 and 30 dpf; then, the number of immunoreactive cells decreased, and by 180 dpf BDNF remains restricted to a subpopulation of hairy cells, and TrkB to a few number of sensory and non-sensory cells. At all ages examined, TrkB immunoreactivity was detected in sensory ganglia innervating the neuromasts. The present results demonstrate that there is a parallel time-related decline in the expression of BDNF and TrkB in zebrafish. Also, the patterns of cell expression suggest that autocrine/paracrine mechanisms for this NT system might occur within the neuromasts. Because TrkB in lateral line ganglia did not vary with age, their neurons are potentially capable to respond to BDNF during the entire lifespan of zebrafish.
Collapse
Affiliation(s)
- A Germanà
- Dipartmento di Morfologia, Biochimica, Fisiologia e Produzione Animale, Sezione di Morfologia, Università di Messina, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 2010; 70:271-88. [PMID: 20186709 DOI: 10.1002/dneu.20774] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development, neural networks are established in a highly organized manner, which persists throughout life. Neurotrophins play crucial roles in the developing nervous system. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) is highly conserved in gene structure and function during vertebrate evolution, and serves an important role during brain development and in synaptic plasticity. BDNF participates in the formation of appropriate synaptic connections in the brain, and disruptions in this process contribute to disorders of cognitive function. In this review, we first briefly highlight current knowledge on the expression, regulation, and secretion of BDNF. Further, we provide an overview of the possible actions of BDNF in the development of neural circuits, with an emphasis on presynaptic actions of BDNF during the structural development of central neurons.
Collapse
Affiliation(s)
- Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
31
|
Renn CL, Leitch CC, Dorsey SG. In vivo evidence that truncated trkB.T1 participates in nociception. Mol Pain 2009; 5:61. [PMID: 19874592 PMCID: PMC2777863 DOI: 10.1186/1744-8069-5-61] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/29/2009] [Indexed: 01/16/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is a central nervous system modulator of nociception. In animal models of chronic pain, BDNF exerts its effects on nociceptive processing by binding to the full-length receptor tropomyosin-related kinase B (trkB.FL) and transducing intracellular signaling to produce nocifensive behaviors. In addition to trkB.FL, the trkB locus also produces a widely-expressed alternatively-spliced truncated isoform, trkB.T1. TrkB.T1 binds BDNF with high affinity; however the unique 11 amino acid intracellular cytoplasmic tail lacks the kinase domain of trkB.FL. Recently, trkB.T1 was shown to be specifically up-regulated in a model of HIV-associated neuropathic pain, potentially implicating trkB.T1 as a modulator of nociception. Here, we report that trkB.T1 mRNA and protein is up-regulated in the spinal dorsal horn at times following antiretroviral drug treatment and hind paw inflammation in which nocifensive behaviors develop. While genetic depletion of trkB.T1 did not affect baseline mechanical and thermal thresholds, the absence of trkB.T1 resulted in significant attenuation of inflammation- and antiretroviral-induced nocifensive behaviors. Our results suggest that trkB.T1 up-regulation following antiretroviral treatment and tissue inflammation participates in the development and maintenance of nocifensive behavior and may represent a novel therapeutic target for pain treatment.
Collapse
Affiliation(s)
- Cynthia L Renn
- School of Nursing, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
32
|
Graham DL, Krishnan V, Larson EB, Graham A, Edwards S, Bachtell RK, Simmons D, Gent LM, Berton O, Bolanos CA, DiLeone RJ, Parada LF, Nestler EJ, Self DW. Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiatry 2009; 65:696-701. [PMID: 18990365 PMCID: PMC2738869 DOI: 10.1016/j.biopsych.2008.09.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/25/2008] [Accepted: 09/30/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous studies found that brain-derived neurotrophic factor (BDNF) derived from nucleus accumbens (NAc) neurons can mediate persistent behavioral changes that contribute to cocaine addiction. METHODS To further investigate BDNF signaling in the mesolimbic dopamine system, we analyzed tropomyosin-related kinase B (TrkB) messenger RNA (mRNA) and protein changes in the NAc and ventral tegmental area (VTA) in rats following 3 weeks of cocaine self-administration. To study the role of BDNF-TrkB activity in the VTA and NAc in cocaine reward, we used localized viral-mediated Cre recombinase expression in floxed BDNF and floxed TrkB mice to knockdown BDNF or TrkB in the VTA and NAc in cocaine place conditioning tests and TrkB in the NAc in cocaine self-administration tests. RESULTS We found that 3 weeks of active cocaine self-administration significantly increased TrkB protein levels in the NAc shell, while yoked (passive) cocaine exposure produced a similar increase in the VTA. Localized BDNF knockdown in either region reduced cocaine reward in place conditioning, whereas only TrkB knockdown in the NAc reduced cocaine reward. In mice self-administering cocaine, TrkB knockdown in the NAc produced a downward shift in the cocaine self-administration dose-response curve but had no effect on the acquisition of cocaine or sucrose self-administration. CONCLUSIONS Together, these data suggest that BDNF synthesized in either VTA or NAc neurons is important for maintaining sensitivity to cocaine reward but only BDNF activation of TrkB receptors in the NAc mediates this effect. In addition, up-regulation of NAc TrkB with chronic cocaine use could promote the transition to more addicted biological states.
Collapse
|
33
|
Balanced expression of various TrkB receptor isoforms from the Ntrk2 gene locus in the mouse nervous system. Mol Cell Neurosci 2008; 39:465-77. [DOI: 10.1016/j.mcn.2008.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/23/2008] [Accepted: 07/30/2008] [Indexed: 11/18/2022] Open
|
34
|
Retinal TrkB receptors regulate neural development in the inner, but not outer, retina. Mol Cell Neurosci 2008; 38:431-43. [PMID: 18511296 DOI: 10.1016/j.mcn.2008.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 04/05/2008] [Accepted: 04/09/2008] [Indexed: 01/19/2023] Open
Abstract
BDNF signaling through its TrkB receptor plays a pivotal role in activity-dependent refinement of synaptic connectivity of retinal ganglion cells. Additionally, studies using TrkB knockout mice have suggested that BDNF/TrkB signaling is essential for the development of photoreceptors and for synaptic communication between photoreceptors and second order retinal neurons. Thus the action of BDNF on refinement of synaptic connectivity of retinal ganglion cells could be a direct effect in the inner retina, or it could be secondary to its proposed role in rod maturation and in the formation of rod to bipolar cell synaptic transmission. To address this matter we have conditionally eliminated TrkB within the retina. We find that rod function and synaptic transmission to bipolar cells is not compromised in these conditional knockout mice. Consistent with previous work, we find that inner retina neural development is regulated by retinal BDNF/TrkB signaling. Specifically we show here also that the complexity of neuronal processes of dopaminergic cells is reduced in conditional TrkB knockout mice. We conclude that retinal BDNF/TrkB signaling has its primary role in the development of inner retinal neuronal circuits, and that this action is not a secondary effect due to the loss of visual signaling in the outer retina.
Collapse
|
35
|
Kidane AH, van Dooren SHJ, Roubos EW, Jenks BG. Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis. Gen Comp Endocrinol 2007; 153:176-81. [PMID: 17502112 DOI: 10.1016/j.ygcen.2007.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 03/28/2007] [Accepted: 04/01/2007] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and alpha-melanophore-stimulating hormone (alpha-MSH) are co-sequestered in secretory granules in melanotrope cells of the pituitary pars intermedia of the amphibian Xenopus laevis. alpha-MSH is responsible for pigment dispersion in dermal melanophores during the process of black-background adaptation. BDNF-production in melanotrope cells is increased by placing animals on a black background, and BDNF acts as an autocrine stimulatory factor on the melanotrope cells. However, the repertoire of possible neurotrophin receptors of the melanotrope is unknown. In this study we have established the expression of full length TrkB (TrkB.FL), truncated TrkB (TrkB.T) and p75(NTR) receptors in the Xenopus neurointermediate lobe by RT-PCR. In situ hybridization reveals the presence of TrkB.FL mRNA and p75(NTR) mRNA in melanotrope cells. Quantitative RT-PCR shows that in animals on a black background the amounts of TrkB.T and p75(NTR) mRNA are about three times higher than in white background-adapted animals. We suggest that the amount of p75(NTR) sets the sensitivity of the melanotrope cells for the stimulatory action of BDNF during physiological adaptation to background light intensity.
Collapse
Affiliation(s)
- Adhanet H Kidane
- Department of Cellular Animal Physiology, Integrative Physiology, EURON European Graduate School of Neuroscience, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
36
|
Abstract
Since the discovery of nerve growth factor (NGF) in the 1950s and brain-derived neurotrophic factor (BDNF) in the 1980s, a great deal of evidence has mounted for the roles of neurotrophins (NGF; BDNF; neurotrophin-3, NT-3; and neurotrophin-4/5, NT-4/5) in development, physiology, and pathology. BDNF in particular has important roles in neural development and cell survival, as well as appearing essential to molecular mechanisms of synaptic plasticity and larger scale structural rearrangements of axons and dendrites. Basic activity-related changes in the central nervous system (CNS) are thought to depend on BDNF modulation of synaptic transmission. Pathologic levels of BDNF-dependent synaptic plasticity may contribute to conditions such as epilepsy and chronic pain sensitization, whereas application of the trophic properties of BDNF may lead to novel therapeutic options in neurodegenerative diseases and perhaps even in neuropsychiatric disorders. In this chapter, I review neurotrophin structure, signal transduction mechanisms, localization and regulation within the nervous system, and various potential roles in disease. Modulation of neurotrophin action holds significant potential for novel therapies for a variety of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Devin K Binder
- Department of Neurological Surgery, University of California, Irvine, CA 92868, USA.
| |
Collapse
|
37
|
Cheng A, Coksaygan T, Tang H, Khatri R, Balice-Gordon RJ, Rao MS, Mattson MP. Truncated tyrosine kinase B brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism. J Neurochem 2006; 100:1515-30. [PMID: 17286628 DOI: 10.1111/j.1471-4159.2006.04337.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Lopez GF, Krimm RF. Epithelial overexpression of BDNF and NT4 produces distinct gustatory axon morphologies that disrupt initial targeting. Dev Biol 2006; 292:457-68. [PMID: 16500639 PMCID: PMC1939808 DOI: 10.1016/j.ydbio.2006.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 01/19/2006] [Accepted: 01/20/2006] [Indexed: 01/19/2023]
Abstract
Most fungiform taste buds fail to become innervated when BDNF or NT4 is overexpressed in the basal layer of tongue epithelium. Here, we examined when and how overexpression of BDNF and NT4 disrupt innervation to fungiform papillae. Overexpression of either factor disrupted chorda tympani innervation patterns either before or during the initial innervation of fungiform papillae. NT4 and BDNF overexpression each disrupted initial innervation by producing different gustatory axon morphologies that emerge at distinct times (E12.5 and E14.5, respectively). Chorda tympani nerve branching was reduced in NT4 overexpressing mice, and neuronal fibers in these mice were fasciculated and remained below the epithelial surface, as if repelled by NT4 overexpression. In contrast, many chorda tympani nerve branches were observed near the epithelial surface in mice overexpressing BDNF, and most were attracted to and invaded non-taste filiform papillae instead of gustatory papillae. These results suggest that BDNF, but not NT4, normally functions as a chemoattractant that allows chorda tympani fibers to distinguish their fungiform papillae targets from non-gustatory epithelium. Since BDNF and NT4 both signal through the p75 and TrkB receptors, trophin-specific activation of different internal signaling pathways must regulate the development of the distinct gustatory axon morphologies in neurotrophin-overexpressing mice.
Collapse
Affiliation(s)
| | - Robin F. Krimm
- * Corresponding author. Fax: +1 502 852 6228. E-mail address: (R.F. Krimm)
| |
Collapse
|
39
|
Luikart BW, Nef S, Virmani T, Lush ME, Liu Y, Kavalali ET, Parada LF. TrkB has a cell-autonomous role in the establishment of hippocampal Schaffer collateral synapses. J Neurosci 2006; 25:3774-86. [PMID: 15829629 PMCID: PMC6724922 DOI: 10.1523/jneurosci.0041-05.2005] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotrophin signaling has been implicated in the processes of synapse formation and plasticity. To gain additional insight into the mechanism of BDNF and TrkB influence on synapse formation and synaptic plasticity, we generated a conditional knock-out for TrkB using the cre/loxp system. Using three different cre-expressing transgenic mice, three unique spatial and temporal configurations of TrkB deletion were obtained with regard to the hippocampal Schaffer collateral synapse. We compare synapse formation in mutants in which TrkB is ablated either in presynaptic or in both presynaptic and postsynaptic cells at early developmental or postdevelopmental time points. Our results indicate a requirement for TrkB at both the presynaptic and postsynaptic sites during development. In the absence of TrkB, synapse numbers were significantly reduced. In vivo ablation of TrkB after synapse formation did not affect synapse numbers. In primary hippocampal cultures, deletion of TrkB in only the postsynaptic cell, before synapse formation, also resulted in deficits of synapse formation. We conclude that TrkB signaling has a cell-autonomous role required for normal development of both presynaptic and postsynaptic components of the Schaffer collateral synapse.
Collapse
Affiliation(s)
- Bryan W Luikart
- Center for Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Whitlon DS, Ketels KV, Coulson MT, Williams T, Grover M, Edpao W, Richter CP. Survival and morphology of auditory neurons in dissociated cultures of newborn mouse spiral ganglion. Neuroscience 2006; 138:653-62. [PMID: 16413120 DOI: 10.1016/j.neuroscience.2005.11.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/08/2005] [Accepted: 11/20/2005] [Indexed: 10/25/2022]
Abstract
We have systematically characterized neuronal survival and growth in cultures derived from newborn/postnatal day 1 mouse cochlea. Dissociated cultures of the cochlear spiral ganglion provide an experimental environment in which to examine molecular mechanisms of survival, development and physiology of auditory neurons. To relate survival to the total number of neurons present in the source tissue, three cochleas from different newborn CD-1 mice were embedded in Araldite resin and serially sectioned at 5 mum thickness. All neurons were counted. To avoid overcounting, each section served as a lookup section for the next, giving 8240+/-423 (S.D.) neurons per ganglion. Cultures maintained in the presence of adjacent non-neural tissue, brain-derived neurotrophic factor, neurotrophin 3, leukemia inhibitory factor (LIF) and 10% fetal bovine serum returned the best overall survival (30%) at 42 h post-plating. Best overall survival required the continuous presence of a serum component(s) larger than 100,000 MW. Plating efficiency (number of neurons that attach to the well after 4 h) was similar in the presence or absence of LIF. Inclusion of LIF maintained 100% survival of plated neurons over 42 h of culture; without LIF, a large fraction of the neurons did not survive. LIF appeared to maintain survival by preferentially preserving a population of bipolar neurons, while having little effect on the number of monopolar neurons. This work provides quantitative measures of survival and morphology of auditory neurons in vitro. The results support the idea that survival of spiral ganglion neurons in vivo may depend on interactions with adjacent, non-neural tissue and raise the possibility that maintenance of bipolar morphology after hair cell damage may require biochemical mechanisms in addition to those induced by neurotrophins.
Collapse
Affiliation(s)
- D S Whitlon
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lush ME, Ma L, Parada LF. TrkB signaling regulates the developmental maturation of the somatosensory cortex. Int J Dev Neurosci 2005; 23:523-36. [PMID: 16009525 DOI: 10.1016/j.ijdevneu.2005.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 04/14/2005] [Indexed: 02/07/2023] Open
Abstract
In the rodent central nervous system, the region of the cortex that responds to facial whisker stimulation is anatomically segregated into discrete regions called barrels. Each barrel is made up of layer IV cortical neurons that receive input from a separate whisker via innervation from the thalamus. It has been shown that neurotrophins play important roles in the development and plasticity of thalamic axon innervation into the visual and retrosplenial cortex. We now extend those findings to the investigation of the role of neurotrophin signaling in barrel cortex formation. We show that the neurotrophin receptor TrkB is expressed in the thalamus and cortex during the time of cortical innervation. The two TrkB ligands, brain derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4), are expressed in the cortex at this time. Mice lacking TrkB demonstrate a developmental delay in the segregation of thalamic axons within barrels. In TrkB mutants, thalamic axons are abnormally uniform within layer IV of the cortex at postnatal day 4 compared to their control littermates, but show clear segregation into barrels 2 days later. This phenotype is recapitulated in BDNF mutant mice, but not in NT-4 mutant mice. These results demonstrate that BDNF is the sole TrkB ligand responsible for this phenotype. Analysis of conditional knockout mice that lack TrkB within the cortex, and not the thalamus, does not show a delay in thalamic axon segregation. These results indicate that TrkB expression in thalamic axons is important for the appropriate timing of barrel cortex development.
Collapse
Affiliation(s)
- Mark E Lush
- Center for Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience, Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | | | | |
Collapse
|
42
|
Chen X, Agate RJ, Itoh Y, Arnold AP. Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc Natl Acad Sci U S A 2005; 102:7730-5. [PMID: 15894627 PMCID: PMC1140405 DOI: 10.1073/pnas.0408350102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Indexed: 12/23/2022] Open
Abstract
Sexual differentiation of the zebra finch (Taeniopygia guttata) neural song circuit is thought to be initiated by sex differences in sex chromosome gene expression in brain cells. One theory is that Z-linked genes, present in the male's ZZ genome at double the dose of females' (ZW), are expressed at higher levels and trigger masculine patterns of development. We report here that trkB (tyrosine kinase receptor B) is Z-linked in zebra finches. trkB is the receptor for neurotrophic factors BDNF and neurotrophin 4, and mediates their influence on neuronal survival, migration, and specification. trkB mRNA is expressed at a higher level in the male telencephalon or whole brain than in corresponding regions of the female in adulthood, and at posthatch day (P) 6, when the song circuit is undergoing sexual differentiation. Moreover, this expression is higher in the song nucleus high vocal center (HVC) than in the surrounding telencephalon at P6, and in males relative to females. In addition, trkB protein is expressed more highly in male than female whole brain at P6. These results establish trkB as a candidate factor that contributes to masculine differentiation of HVC because of its Z-linkage, which leads to sex differences in expression. BDNF is known to be stimulated by estrogen and to be expressed at higher levels in males than females at later ages in HVC. Thus, the trkB-BDNF system may be a focal point for convergent masculinizing influences of Z-linked factors and hormones.
Collapse
Affiliation(s)
- Xuqi Chen
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
43
|
Lambert WS, Clark AF, Wordinger RJ. Neurotrophin and Trk expression by cells of the human lamina cribrosa following oxygen-glucose deprivation. BMC Neurosci 2004; 5:51. [PMID: 15579199 PMCID: PMC539236 DOI: 10.1186/1471-2202-5-51] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 12/03/2004] [Indexed: 11/13/2022] Open
Abstract
Background Ischemia within the optic nerve head (ONH) may contribute to retinal ganglion cell (RGC) loss in primary open angle glaucoma (POAG). Ischemia has been reported to increase neurotrophin and high affinity Trk receptor expression by CNS neurons and glial cells. We have previously demonstrated neurotrophin and Trk expression within the lamina cribrosa (LC) region of the ONH. To determine if ischemia alters neurotrophin and Trk protein expression in cells from the human LC, cultured LC cells and ONH astrocytes were exposed to 48 hours of oxygen-glucose deprivation (OGD). Also cells were exposed to 48 hours of OGD followed by 24 hours of recovery in normal growth conditions. Cell number, neurotrophin and Trk receptor protein expression, neurotrophin secretion, and Trk receptor activation were examined. Results Cell number was estimated using an assay for cell metabolism following 24, 48 and 72 hours of OGD. A statistically significant decrease in LC and ONH astrocyte cell number did not occur until 72 hours of OGD, therefore cellular protein and conditioned media were collected at 48 hours OGD. Protein expression of NGF, BDNF and NT-3 by LC cells and ONH astrocytes increased following OGD, as did NGF secretion. Recovery from OGD increased BDNF protein expression in LC cells. In ONH astrocytes, recovery from OGD increased NGF protein expression, and decreased BDNF secretion. Trk A expression and activation in LC cells was increased following OGD while expression and activation of all other Trk receptors was decreased. A similar increase in Trk A expression and activation was observed in ONH astrocytes following recovery from OGD. Conclusions In vitro conditions that mimic ischemia increase the expression and secretion of neurotrophins by cells from the ONH. Increased Trk A expression and activation in LC cells following OGD and in ONH astrocytes following recovery from OGD suggest autocrine/paracrine neurotrophin signaling could be a response to ONH ischemia in POAG. Also, the increase in NGF, BDNF and NT-3 protein expression and NGF secretion following OGD also suggest LC cells and ONH astrocytes may be a paracrine source of neurotrophins for RGCs.
Collapse
Affiliation(s)
- Wendi S Lambert
- Department of Cell Biology and Genetics, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | - Abbot F Clark
- Department of Cell Biology and Genetics, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
- Glaucoma Research, Alcon Research, Ltd., Fort Worth, TX, USA
| | - Robert J Wordinger
- Department of Cell Biology and Genetics, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| |
Collapse
|
44
|
Farbman AI, Guagliardo N, Sollars SI, Hill DL. Each sensory nerve arising from the geniculate ganglion expresses a unique fingerprint of neurotrophin and neurotrophin receptor genes. J Neurosci Res 2004; 78:659-67. [PMID: 15495212 PMCID: PMC2804271 DOI: 10.1002/jnr.20297] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurons in the geniculate ganglion, like those in other sensory ganglia, are dependent on neurotrophins for survival. Most geniculate ganglion neurons innervate taste buds in two regions of the tongue and two regions of the palate; the rest are cutaneous nerves to the skin of the ear. We investigated the expression of four neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and NT-4, and five neurotrophin receptors, trkA, trkB, trkC, p75, and truncated trkB (Trn-B) in single sensory neurons of the adult rat geniculate ganglion associated with the five innervation fields. For fungiform papillae, a glass pipette containing biotinylated dextran was placed over the target papilla and the tracer was iontophoresed into the target papilla. For the other target fields, Fluoro-Gold was microinjected. After 3 days, geniculate ganglia were harvested, sectioned, and treated histochemically (for biotinylated dextran) or immunohistochemically (for Fluoro-Gold) to reveal the neurons containing the tracer. Single labeled neurons were harvested from the slides and subjected to RNA amplification and RT-PCR to reveal the neurotrophin or neurotrophin receptor genes that were expressed. Neurons projecting from the geniculate ganglion to each of the five target fields had a unique expression profile of neurotrophin and neurotrophic receptor genes. Several individual neurons expressed more than one neurotrophin receptor or more than one neurotrophin gene. Although BDNF is significantly expressed in taste buds, its primary high affinity receptor, trkB, was not prominently expressed in the neurons. The results are consistent with the interpretation that at least some, perhaps most, of the trophic influence on the sensory neurons is derived from the neuronal somata, and the trophic effect is paracrine or autocrine, rather than target derived. The BDNF in the taste bud may also act in a paracrine or autocrine manner on the trkB expressed in taste buds, as shown by others.
Collapse
Affiliation(s)
- Albert I Farbman
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60202-3520, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Since the purification of BDNF in 1982, a great deal of evidence has mounted for its central roles in brain development, physiology, and pathology. Aside from its importance in neural development and cell survival, BDNF appears essential to molecular mechanisms of synaptic plasticity. Basic activity-related changes in the central nervous system are thought to depend on BDNF modification of synaptic transmission, especially in the hippocampus and neocortex. Pathologic levels of BDNF-dependent synaptic plasticity may contribute to conditions such as epilepsy and chronic pain sensitization, whereas application of the trophic properties of BDNF may lead to novel therapeutic options in neurodegenerative diseases and perhaps even in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Devin K Binder
- Department of Neurological Surgery, M779 Moffitt Hospital, Box 0112, University of California, San Francisco, CA 94143-0112, USA.
| | | |
Collapse
|