1
|
Pennacchietti V, Pagano L, Malagrinò F, Diop A, Di Felice M, Di Matteo S, Marcocci L, Pietrangeli P, Toto A, Gianni S. Characterization of the folding and binding properties of the PTB domain of FRS2 with phosphorylated and unphosphorylated ligands. Arch Biochem Biophys 2023; 745:109703. [PMID: 37543351 DOI: 10.1016/j.abb.2023.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
PTB (PhosphoTyrosine Binding) domains are protein domains that exert their function by binding phosphotyrosine residues on other proteins. They are commonly found in a variety of signaling proteins and are important for mediating protein-protein interactions in numerous cellular processes. PTB domains can also exhibit binding to unphosphorylated ligands, suggesting that they have additional binding specificities beyond phosphotyrosine recognition. Structural studies have reported that the PTB domain from FRS2 possesses this peculiar feature, allowing it to interact with both phosphorylated and unphosphorylated ligands, such as TrkB and FGFR1, through different topologies and orientations. In an effort to elucidate the dynamic and functional properties of these protein-protein interactions, we provide a complete characterization of the folding mechanism of the PTB domain of FRS2 and the binding process to peptides mimicking specific regions of TrkB and FGFR1. By analyzing the equilibrium and kinetics of PTB folding, we propose a mechanism implying the presence of an intermediate along the folding pathway. Kinetic binding experiments performed at different ionic strengths highlighted the electrostatic nature of the interaction with both peptides. The specific role of single amino acids in early and late events of binding was pinpointed by site-directed mutagenesis. These results are discussed in light of previous experimental works on these protein systems.
Collapse
Affiliation(s)
- Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Malagrinò
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Awa Diop
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Mariana Di Felice
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Sara Di Matteo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Lucia Marcocci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Paola Pietrangeli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
2
|
Jeong A, Auger SA, Maity S, Fredriksen K, Zhong R, Li L, Distefano MD. In Vivo Prenylomic Profiling in the Brain of a Transgenic Mouse Model of Alzheimer's Disease Reveals Increased Prenylation of a Key Set of Proteins. ACS Chem Biol 2022; 17:2863-2876. [PMID: 36109170 PMCID: PMC9799064 DOI: 10.1021/acschembio.2c00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of protein prenylation has been implicated in many diseases, including Alzheimer's disease (AD). Prenylomic analysis, the combination of metabolic incorporation of an isoprenoid analogue (C15AlkOPP) into prenylated proteins with a bottom-up proteomic analysis, has allowed the identification of prenylated proteins in various cellular models. Here, transgenic AD mice were administered with C15AlkOPP through intracerebroventricular (ICV) infusion over 13 days. Using prenylomic analysis, 36 prenylated proteins were enriched in the brains of AD mice. Importantly, the prenylated forms of 15 proteins were consistently upregulated in AD mice compared to nontransgenic wild-type controls. These results highlight the power of this in vivo metabolic labeling approach to identify multiple post-translationally modified proteins that may serve as potential therapeutic targets for a disease that has proved refractory to treatment thus far. Moreover, this method should be applicable to many other types of protein modifications, significantly broadening its scope.
Collapse
Affiliation(s)
- Angela Jeong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Sanjay Maity
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Rui Zhong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | - Ling Li
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | |
Collapse
|
3
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
4
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
5
|
Bartling CRO, Jensen TMT, Henry SM, Colliander AL, Sereikaite V, Wenzler M, Jain P, Maric HM, Harpsøe K, Pedersen SW, Clemmensen LS, Haugaard-Kedström LM, Gloriam DE, Ho A, Strømgaard K. Targeting the APP-Mint2 Protein-Protein Interaction with a Peptide-Based Inhibitor Reduces Amyloid-β Formation. J Am Chem Soc 2021; 143:891-901. [PMID: 33398998 DOI: 10.1021/jacs.0c10696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is an urgent need for novel therapeutic approaches to treat Alzheimer's disease (AD) with the ability to both alleviate the clinical symptoms and halt the progression of the disease. AD is characterized by the accumulation of amyloid-β (Aβ) peptides which are generated through the sequential proteolytic cleavage of the amyloid precursor protein (APP). Previous studies reported that Mint2, a neuronal adaptor protein binding both APP and the γ-secretase complex, affects APP processing and formation of pathogenic Aβ. However, there have been contradicting results concerning whether Mint2 has a facilitative or suppressive effect on Aβ generation. Herein, we deciphered the APP-Mint2 protein-protein interaction (PPI) via extensive probing of both backbone H-bond and side-chain interactions. We also developed a proteolytically stable, high-affinity peptide targeting the APP-Mint2 interaction. We found that both an APP binding-deficient Mint2 variant and a cell-permeable PPI inhibitor significantly reduced Aβ42 levels in a neuronal in vitro model of AD. Together, these findings demonstrate a facilitative role of Mint2 in Aβ formation, and the combination of genetic and pharmacological approaches suggests that targeting Mint2 is a promising therapeutic strategy to reduce pathogenic Aβ levels.
Collapse
Affiliation(s)
- Christian R O Bartling
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.,Department of Biology, Boston University, 24 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Thomas M T Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Shawna M Henry
- Department of Biology, Boston University, 24 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Anna L Colliander
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Marcella Wenzler
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Palash Jain
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Hans M Maric
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Søren W Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Louise S Clemmensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Linda M Haugaard-Kedström
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Angela Ho
- Department of Biology, Boston University, 24 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Wang N, Wang DD, Hou X, Li X, Shen Y. Different roles of Numb-p72 and Numb-p65 on the trafficking of metabotropic glutamate receptor 5. Mol Biol Rep 2021; 48:595-600. [PMID: 33394235 DOI: 10.1007/s11033-020-06103-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
We previously reported that Numb, a protein localized to clathrin-coated vesicles, regulates the membrane expression of metabotropic glutamate receptor 5 (mGluR5) and is critical to social behaviors. However, the distinct actions of Numb isoforms on mGluR5 have not been investigated. Here, we showed that the expression patterns of Numb-p72 and Numb-p65, two important isoforms of Numb, were distinct in HEK293T cells. Numb-p72, but not Numb-p65, bound to mGluR5α, and enhanced mGluR5 membrane expression by inhibiting its internalization. Our results suggest that a complete structure is required for Numb to bind to mGluR5 and to modulate mGluR5 trafficking.
Collapse
Affiliation(s)
- Na Wang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, People's Republic of China.
| | - Dan-Dan Wang
- General Hospital of NingXia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xiaolin Hou
- General Hospital of NingXia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Matrone C, Iannuzzi F, Annunziato L. The Y 682ENPTY 687 motif of APP: Progress and insights toward a targeted therapy for Alzheimer's disease patients. Ageing Res Rev 2019; 52:120-128. [PMID: 31039414 DOI: 10.1016/j.arr.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder for which no curative treatments, disease modifying strategies or effective symptomatic therapies exist. Current pharmacologic treatments for AD can only decelerate the progression of the disease for a short time, often at the cost of severe side effects. Therefore, there is an urgent need for biomarkers able to diagnose AD at its earliest stages, to conclusively track disease progression, and to accelerate the clinical development of innovative therapies. Scientific research and economic efforts for the development of pharmacotherapies have recently homed in on the hypothesis that neurotoxic β-amyloid (Aβ) peptides in their oligomeric or fibrillary forms are primarily responsible for the cognitive impairment and neuronal death seen in AD. As such, modern pharmacologic approaches are largely based on reducing production by inhibiting β and γ secretase cleavage of the amyloid precursor protein (APP) or on dissolving existing cerebral Aβ plaques or to favor Aβ clearance from the brain. The following short review aims to persuade the reader of the idea that APP plays a much larger role in AD pathogenesis. APP plays a greater role in AD pathogenesis than its role as the precursor for Aβ peptides: both the abnormal cleavage of APP leading to Aβ peptide accumulation and the disruption of APP physiological functions contribute to AD pathogenesis. We summarize our recent results on the role played by the C-terminal APP motif -the Y682ENPTY68 motif- in APP function and dysfunction, and we provide insights into targeting the Tyr682 residue of APP as putative novel strategy in AD.
Collapse
|
8
|
Zhang X, Huang TY, Yancey J, Luo H, Zhang YW. Role of Rab GTPases in Alzheimer's Disease. ACS Chem Neurosci 2019; 10:828-838. [PMID: 30261139 DOI: 10.1021/acschemneuro.8b00387] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) comprises two major pathological hallmarks: extraneuronal deposition of β-amyloid (Aβ) peptides ("senile plaques") and intraneuronal aggregation of the microtubule-associated protein tau ("neurofibrillary tangles"). Aβ is derived from sequential cleavage of the β-amyloid precursor protein by β- and γ-secretases, while aggregated tau is hyperphosphorylated in AD. Mounting evidence suggests that dysregulated trafficking of these AD-related proteins contributes to AD pathogenesis. Rab proteins are small GTPases that function as master regulators of vesicular transport and membrane trafficking. Multiple Rab GTPases have been implicated in AD-related protein trafficking, and their expression has been observed to be altered in postmortem AD brain. Here we review current implicated roles of Rab GTPase dysregulation in AD pathogenesis. Further elucidation of the pathophysiological role of Rab GTPases will likely reveal novel targets for AD therapeutics.
Collapse
Affiliation(s)
- Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Joel Yancey
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
9
|
Wang N, Cai XY, Gao W, Shen Y. Numb-p72, but not Numb-p65, contributes to the trafficking of group I metabotropic glutamate receptors. Neuroreport 2018; 29:902-906. [PMID: 29762249 DOI: 10.1097/wnr.0000000000001051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The protein Numb localizes to clathrin-coated vesicles and participates in the trafficking of transmembrane receptors. We previous reported that Numb promotes the presence of metabotropic glutamate receptor 1 (mGlu1) on neuronal membrane, and Numb deficiency impairs synaptic expression of mGlu1. However, the actions of different Numb isoforms on mGlu1 trafficking are unknown. Here, we found that Numb-p72 and Numb-p65 are distinctly expressed in HEK293T cells. Interestingly, Numb-p72, but not Numb-p65, binds to mGlu1α and promotes the membrane expression of mGlu1α by antagonizing its internalization. We hypothesize that the incomplete structure of Numb-p65 does not act in the same way as Numb-p72 on mGlu1 trafficking.
Collapse
Affiliation(s)
- Na Wang
- School of Medicine, Zhejiang University City College
| | - Xin-Yu Cai
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Gao
- School of Medicine, Zhejiang University City College
| | - Ying Shen
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
11
|
Khanna S, Domingo-Fernández D, Iyappan A, Emon MA, Hofmann-Apitius M, Fröhlich H. Using Multi-Scale Genetic, Neuroimaging and Clinical Data for Predicting Alzheimer's Disease and Reconstruction of Relevant Biological Mechanisms. Sci Rep 2018; 8:11173. [PMID: 30042519 PMCID: PMC6057884 DOI: 10.1038/s41598-018-29433-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/29/2018] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's Disease (AD) is among the most frequent neuro-degenerative diseases. Early diagnosis is essential for successful disease management and chance to attenuate symptoms by disease modifying drugs. In the past, a number of cerebrospinal fluid (CSF), plasma and neuro-imaging based biomarkers have been proposed. Still, in current clinical practice, AD diagnosis cannot be made until the patient shows clear signs of cognitive decline, which can partially be attributed to the multi-factorial nature of AD. In this work, we integrated genotype information, neuro-imaging as well as clinical data (including neuro-psychological measures) from ~900 normal and mild cognitively impaired (MCI) individuals and developed a highly accurate machine learning model to predict the time until AD is diagnosed. We performed an in-depth investigation of the relevant baseline characteristics that contributed to the AD risk prediction. More specifically, we used Bayesian Networks to uncover the interplay across biological scales between neuro-psychological assessment scores, single genetic variants, pathways and neuro-imaging related features. Together with information extracted from the literature, this allowed us to partially reconstruct biological mechanisms that could play a role in the conversion of normal/MCI into AD pathology. This in turn may open the door to novel therapeutic options in the future.
Collapse
Affiliation(s)
- Shashank Khanna
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
| | - Anandhi Iyappan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
| | - Mohammad Asif Emon
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany
| | - Holger Fröhlich
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113, Bonn, Germany. .,UCB Biosciences GmbH, Alfred-Nobel Str. 10, 40789, Monheim, Germany.
| |
Collapse
|
12
|
Mañucat-Tan NB, Saadipour K, Wang YJ, Bobrovskaya L, Zhou XF. Cellular Trafficking of Amyloid Precursor Protein in Amyloidogenesis Physiological and Pathological Significance. Mol Neurobiol 2018; 56:812-830. [PMID: 29797184 DOI: 10.1007/s12035-018-1106-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 12/26/2022]
Abstract
The accumulation of excess intracellular or extracellular amyloid beta (Aβ) is one of the key pathological events in Alzheimer's disease (AD). Aβ is generated from the cleavage of amyloid precursor protein (APP) by beta secretase-1 (BACE1) and gamma secretase (γ-secretase) within the cells. The endocytic trafficking of APP facilitates amyloidogenesis while at the cell surface, APP is predominantly processed in a non-amyloidogenic manner. Several adaptor proteins bind to both APP and BACE1, regulating their trafficking and recycling along the secretory and endocytic pathways. The phosphorylation of APP at Thr668 and BACE1 at Ser498, also influence their trafficking. Neurotrophins and proneurotrophins also influence APP trafficking through their receptors. In this review, we describe the molecular trafficking pathways of APP and BACE1 that lead to Aβ generation, the involvement of different signaling molecules or adaptor proteins regulating APP and BACE1 subcellular localization. We have also discussed how neurotrophins could modulate amyloidogenesis through their receptors.
Collapse
Affiliation(s)
- Noralyn Basco Mañucat-Tan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Khalil Saadipour
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
13
|
Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Prog Neurobiol 2017; 156:189-213. [DOI: 10.1016/j.pneurobio.2017.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
|
14
|
Dysregulation of intracellular trafficking and endosomal sorting in Alzheimer's disease: controversies and unanswered questions. Biochem J 2017; 473:1977-93. [PMID: 27407168 DOI: 10.1042/bcj20160147] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid plaques in the brain consisting of an aggregated form of amyloid β-peptide (Aβ) derived from sequential amyloidogenic processing of the amyloid precursor protein (APP) by membrane-bound proteases β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase. The initial processing of APP by BACE1 is re-gulated by intracellular sorting events of the enzyme, which is a prime target for therapeutic intervention. GWAS (genome-wide sequencing studies) have identified several AD-susceptibility genes that are associated with the regulation of membrane trafficking, and substantial evidence now indicates that AD is likely to arise from defective membrane trafficking in either or both of the secretory and endocytic pathways. Considerable progress has been made in defining the intracellular trafficking pathways of BACE1 and APP and the sorting signals of these membrane proteins that define their itineraries. In this review we highlight recent advances in understanding the regulation of the intracellular sorting of BACE1 and APP, discuss how dysregulation of these trafficking events may lead to enhanced generation of the neurotoxic Aβ products in AD and highlight the unresolved questions in the field.
Collapse
|
15
|
The effects of the cellular and infectious prion protein on the neuronal adaptor protein X11α. Biochim Biophys Acta Gen Subj 2015; 1850:2213-21. [PMID: 26297964 DOI: 10.1016/j.bbagen.2015.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND The neuronal adaptor protein X11α is a multidomain protein with a phosphotyrosine binding (PTB) domain, two PDZ (PSD_95, Drosophila disks-large, ZO-1) domains, a Munc Interacting (MI) domain and a CASK interacting region. Amongst its functions is a role in the regulation of the abnormal processing of the amyloid precursor protein (APP). It also regulates the activity of Cu/Zn Superoxide dismutase (SOD1) through binding with its chaperone the copper chaperone for SOD1. How X11α production is controlled has remained unclear. METHODS Using the neuroblastoma cell line, N2a, and knockdown studies, the effect of the cellular and infectious prion protein, PrP(C) and PrP(Sc), on X11α is examined. RESULTS We show that X11α expression is directly proportional to the expression of PrP(C), whereas its levels are reduced by PrP(Sc). We also show PrP(Sc) to affect X11α at a functional level. One of the effects of prion infection is lowered cellular SOD1 levels, here by knockdown of X11α we identify that the effect of PrP(Sc) on SOD1 can be reversed indicating that X11α is involved in prion disease pathogenesis. CONCLUSIONS A role for the cellular and infectious prion protein, PrP(C) and PrP(Sc), respectively, in regulating X11α is identified in this work. GENERAL SIGNIFICANCE Due to the multiple interacting partners of X11α, dysfunction or alteration in X11α will have a significant cellular effect. This work highlights the role of PrP(C) and PrP(Sc) in the regulation of X11α, and provides a new target pathway to control X11α and its related functions.
Collapse
|
16
|
Jones KA, Eng AG, Raval P, Srivastava DP, Penzes P. Scaffold protein X11α interacts with kalirin-7 in dendrites and recruits it to Golgi outposts. J Biol Chem 2014; 289:35517-29. [PMID: 25378388 PMCID: PMC4271236 DOI: 10.1074/jbc.m114.587709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pyramidal neurons in the mammalian forebrain receive their synaptic inputs through their dendritic trees, and dendritic spines are the sites of most excitatory synapses. Dendritic spine structure is important for brain development and plasticity. Kalirin-7 is a guanine nucleotide-exchange factor for the small GTPase Rac1 and is a critical regulator of dendritic spine remodeling. The subcellular localization of kalirin-7 is thought to be important for regulating its function in neurons. A yeast two-hybrid screen has identified the adaptor protein X11α as an interacting partner of kalirin-7. Here, we show that kalirin-7 and X11α form a complex in the brain, and this interaction is mediated by the C terminus of kalirin-7. Kalirin-7 and X11α co-localize at excitatory synapses in cultured cortical neurons. Using time-lapse imaging of fluorescence recovery after photobleaching, we show that X11α is present in a mobile fraction of the postsynaptic density. X11α also localizes to Golgi outposts in dendrites, and its overexpression induces the removal of kalirin-7 from spines and accumulation of kalirin-7 in Golgi outposts. In addition, neurons overexpressing X11α displayed thinner spines. These data support a novel mechanism of regulation of kalirin-7 localization and function in dendrites, providing insight into signaling pathways underlying neuronal plasticity. Dissecting the molecular mechanisms of synaptic structural plasticity will improve our understanding of neuropsychiatric and neurodegenerative disorders, as kalirin-7 has been associated with schizophrenia and Alzheimer disease.
Collapse
Affiliation(s)
| | - Andrew G Eng
- the Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, Illinois 60611, and
| | - Pooja Raval
- the Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London SE5 9NU, United Kingdom
| | - Deepak P Srivastava
- From the Departments of Physiology and the Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London SE5 9NU, United Kingdom
| | - Peter Penzes
- From the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611,
| |
Collapse
|
17
|
Wang X, Huang T, Bu G, Xu H. Dysregulation of protein trafficking in neurodegeneration. Mol Neurodegener 2014; 9:31. [PMID: 25152012 PMCID: PMC4237948 DOI: 10.1186/1750-1326-9-31] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 02/02/2023] Open
Abstract
Intracellular protein trafficking plays an important role in neuronal function and survival. Protein misfolding is a common theme found in many neurodegenerative diseases, and intracellular trafficking machinery contributes to the pathological accumulation and clearance of misfolded proteins. Although neurodegenerative diseases exhibit distinct pathological features, abnormal endocytic trafficking is apparent in several neurodegenerative diseases, such as Alzheimer’s disease (AD), Down syndrome (DS) and Parkinson’s disease (PD). In this review, we will focus on protein sorting defects in three major neurodegenerative diseases, including AD, DS and PD. An important pathological feature of AD is the presence of extracellular senile plaques in the brain. Senile plaques are composed of β-amyloid (Aβ) peptide aggregates. Multiple lines of evidence demonstrate that over-production/aggregation of Aβ in the brain is a primary cause of AD and attenuation of Aβ generation has become a topic of extreme interest in AD research. Aβ is generated from β-amyloid precursor protein (APP) through sequential cleavage by β-secretase and the γ-secretase complex. Alternatively, APP can be cleaved by α-secretase within the Aβ domain to release soluble APPα which precludes Aβ generation. DS patients display a strikingly similar pathology to AD patients, including the generation of neuronal amyloid plaques. Moreover, all DS patients develop an AD-like neuropathology by their 40 s. Therefore, understanding the metabolism/processing of APP and how these underlying mechanisms may be pathologically compromised is crucial for future AD and DS therapeutic strategies. Evidence accumulated thus far reveals that synaptic vesicle regulation, endocytic trafficking, and lysosome-mediated autophagy are involved in increased susceptibility to PD. Here we review current knowledge of endosomal trafficking regulation in AD, DS and PD.
Collapse
Affiliation(s)
| | | | | | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
18
|
Tam JHK, Seah C, Pasternak SH. The Amyloid Precursor Protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid. Mol Brain 2014; 7:54. [PMID: 25085554 PMCID: PMC4237969 DOI: 10.1186/s13041-014-0054-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/23/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cerebral deposition of β-amyloid peptide (Aβ). Aβ is produced by sequential cleavage of the Amyloid Precursor Protein (APP) by β- and γ-secretases. Many studies have demonstrated that the internalization of APP from the cell surface can regulate Aβ production, although the exact organelle in which Aβ is produced remains contentious. A number of recent studies suggest that intracellular trafficking also plays a role in regulating Aβ production, but these pathways are relatively under-studied. The goal of this study was to elucidate the intracellular trafficking of APP, and to examine the site of intracellular APP processing. RESULTS We have tagged APP on its C-terminal cytoplasmic tail with photoactivatable Green Fluorescent Protein (paGFP). By photoactivating APP-paGFP in the Golgi, using the Golgi marker Galactosyltranferase fused to Cyan Fluorescent Protein (GalT-CFP) as a target, we are able to follow a population of nascent APP molecules from the Golgi to downstream compartments identified with compartment markers tagged with red fluorescent protein (mRFP or mCherry); including rab5 (early endosomes) rab9 (late endosomes) and LAMP1 (lysosomes). Because γ-cleavage of APP releases the cytoplasmic tail of APP including the photoactivated GFP, resulting in loss of fluorescence, we are able to visualize the cleavage of APP in these compartments. Using APP-paGFP, we show that APP is rapidly trafficked from the Golgi apparatus to the lysosome; where it is rapidly cleared. Chloroquine and the highly selective γ-secretase inhibitor, L685, 458, cause the accumulation of APP in lysosomes implying that APP is being cleaved by secretases in the lysosome. The Swedish mutation dramatically increases the rate of lysosomal APP processing, which is also inhibited by chloroquine and L685, 458. By knocking down adaptor protein 3 (AP-3; a heterotetrameric protein complex required for trafficking many proteins to the lysosome) using siRNA, we are able to reduce this lysosomal transport. Blocking lysosomal transport of APP reduces Aβ production by more than a third. CONCLUSION These data suggests that AP-3 mediates rapid delivery of APP to lysosomes, and that the lysosome is a likely site of Aβ production.
Collapse
Affiliation(s)
- Joshua HK Tam
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London N6A 5K8, Ontario, Canada
| | - Claudia Seah
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
| | - Stephen H Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London N6A 5K8, Ontario, Canada
- Department of Clinical Neurological Sciences, London N6A 5K8, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London N6A 5K8, Ontario, Canada
| |
Collapse
|
19
|
Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW. Trafficking regulation of proteins in Alzheimer's disease. Mol Neurodegener 2014; 9:6. [PMID: 24410826 PMCID: PMC3891995 DOI: 10.1186/1750-1326-9-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/15/2013] [Indexed: 12/12/2022] Open
Abstract
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun-wu Zhang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
20
|
Gassman A, Hao LT, Bhoite L, Bradford CL, Chien CB, Beattie CE, Manfredi JP. Small molecule suppressors of Drosophila kinesin deficiency rescue motor axon development in a zebrafish model of spinal muscular atrophy. PLoS One 2013; 8:e74325. [PMID: 24023935 PMCID: PMC3762770 DOI: 10.1371/journal.pone.0074325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/31/2013] [Indexed: 12/15/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA) is the most common inherited motor neuropathy and the leading hereditary cause of infant mortality. Currently there is no effective treatment for the disease, reflecting a need for pharmacologic interventions that restore performance of dysfunctional motor neurons or suppress the consequences of their dysfunction. In a series of assays relevant to motor neuron biology, we explored the activities of a collection of tetrahydroindoles that were reported to alter the metabolism of amyloid precursor protein (APP). In Drosophila larvae the compounds suppressed aberrant larval locomotion due to mutations in the Khc and Klc genes, which respectively encode the heavy and light chains of kinesin-1. A representative compound of this class also suppressed the appearance of axonal swellings (alternatively termed axonal spheroids or neuritic beads) in the segmental nerves of the kinesin-deficient Drosophila larvae. Given the importance of kinesin-dependent transport for extension and maintenance of axons and their growth cones, three members of the class were tested for neurotrophic effects on isolated rat spinal motor neurons. Each compound stimulated neurite outgrowth. In addition, consistent with SMA being an axonopathy of motor neurons, the three axonotrophic compounds rescued motor axon development in a zebrafish model of SMA. The results introduce a collection of small molecules as pharmacologic suppressors of SMA-associated phenotypes and nominate specific members of the collection for development as candidate SMA therapeutics. More generally, the results reinforce the perception of SMA as an axonopathy and suggest novel approaches to treating the disease.
Collapse
Affiliation(s)
- Andrew Gassman
- Sera Prognostics, Inc., Salt Lake City, Utah, United States of America
| | - Le T. Hao
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, United States of America
| | - Leena Bhoite
- Technology Commercialization Office, University of Utah, Salt Lake City, Utah, United States of America
| | - Chad L. Bradford
- Sera Prognostics, Inc., Salt Lake City, Utah, United States of America
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Christine E. Beattie
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, United States of America
| | - John P. Manfredi
- Sfida BioLogic, Inc., Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
21
|
El Ayadi A, Stieren ES, Barral JM, Boehning D. Ubiquilin-1 and protein quality control in Alzheimer disease. Prion 2013; 7:164-9. [PMID: 23360761 PMCID: PMC3609125 DOI: 10.4161/pri.23711] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Single nucleotide polymorphisms in the ubiquilin-1 gene may confer risk for late-onset Alzheimer disease (AD). We have shown previously that ubiquilin-1 functions as a molecular chaperone for the amyloid precursor protein (APP) and that protein levels of ubiquilin-1 are decreased in the brains of AD patients. We have recently found that ubiquilin-1 regulates APP trafficking and subsequent secretase processing by stimulating non-degradative ubiquitination of a single lysine residue in the cytosolic domain of APP. Thus, ubiquilin-1 plays a central role in regulating APP biosynthesis, trafficking and ultimately toxicity. As ubiquilin-1 and other ubiquilin family members have now been implicated in the pathogenesis of numerous neurodegenerative diseases, these findings provide mechanistic insights into the central role of ubiquilin proteins in maintaining neuronal proteostasis.
Collapse
Affiliation(s)
- Amina El Ayadi
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| | | | | | | |
Collapse
|
22
|
Ntelios D, Berninger B, Tzimagiorgis G. Numb and Alzheimer's disease: the current picture. Front Neurosci 2012; 6:145. [PMID: 23060745 PMCID: PMC3463830 DOI: 10.3389/fnins.2012.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/14/2012] [Indexed: 11/23/2022] Open
Abstract
Twenty-three years ago, numb was identified as a critical regulator in Drosophila sensory organ precursor cell asymmetric divisions. Beyond the recently recognized role in carcinogenesis, Numb seems to be important in Alzheimer’s disease. This assertion comes from the involvement in various processes such as synapse morphogenesis, amyloid precursor protein trafficking, notch signaling, and neurogenesis. The purpose of the present mini-review is to provide the current picture of Numb’s participation in mechanisms underlying Alzheimer’s disease pathogenesis and emphasize potential aspects for future research.
Collapse
Affiliation(s)
- Dimitrios Ntelios
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece
| | | | | |
Collapse
|
23
|
Xie Z, Dong Y, Maeda U, Xia W, Tanzi RE. RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing. Transl Neurodegener 2012; 1:8. [PMID: 23211096 PMCID: PMC3514095 DOI: 10.1186/2047-9158-1-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 03/22/2012] [Indexed: 11/24/2022] Open
Abstract
Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided.
Collapse
Affiliation(s)
- Zhongcong Xie
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060, USA.
| | | | | | | | | |
Collapse
|
24
|
Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role. PLoS Comput Biol 2012; 8:e1002356. [PMID: 22319430 PMCID: PMC3271017 DOI: 10.1371/journal.pcbi.1002356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022] Open
Abstract
HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs. HD amino acid duplex can be found in the active center of different metallo-enzymes. An HD motif is positioned directly on the amyloid beta (Aβ) fragment and on the carboxy-terminal region of the extracellular domain of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). The conservation of the HD dyad is not position specific and it cannot be seen in a multiple alignment. Yet we show with a novel statistical method using evolutionary modeling that HD motif is positively selected by evolution on APPOs, despite the fact that HD dyad is underrepresented in the proteomes of all species of the animal kingdom. CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the APPOs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R)) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs.
Collapse
|
25
|
Abstract
Altered production of Aβ (amyloid-β peptide), derived from the proteolytic cleavage of APP (amyloid precursor protein), is believed to be central to the pathogenesis of AD (Alzheimer's disease). Accumulating evidence reveals that APPc (APP C-terminal domain)-interacting proteins can influence APP processing. There is also evidence to suggest that APPc-interacting proteins work co-operatively and competitively to maintain normal APP functions and processing. Hence, identification of the full complement of APPc-interacting proteins is an important step for improving our understanding of APP processing. Using the yeast two-hybrid system, in the present study we identified GULP1 (engulfment adaptor protein 1) as a novel APPc-interacting protein. We found that the GULP1–APP interaction is mediated by the NPTY motif of APP and the GULP1 PTB (phosphotyrosine-binding) domain. Confocal microscopy revealed that a proportion of APP and GULP1 co-localized in neurons. In an APP–GAL4 reporter assay, we demonstrated that GULP1 altered the processing of APP. Moreover, overexpression of GULP1 enhanced the generation of APP CTFs (C-terminal fragments) and Aβ, whereas knockdown of GULP1 suppressed APP CTFs and Aβ production. The results of the present study reveal that GULP1 is a novel APP/APPc-interacting protein that influences APP processing and Aβ production.
Collapse
|
26
|
Willnow TE, Carlo AS, Rohe M, Schmidt V. SORLA/SORL1, a neuronal sorting receptor implicated in Alzheimer's disease. Rev Neurosci 2010; 21:315-29. [PMID: 21086763 DOI: 10.1515/revneuro.2010.21.4.315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid-beta peptides in the brain has been recognized as a major pathological pathway in Alzheimer's disease (AD). Yet, the factors that control the processing of APP and their potential contribution to the common sporadic form of AD remain poorly understood. Here, we review recent findings from studies in patients and in animal models that led to the identification of a unique sorting receptor for APP in neurons, designated SORLA/SORL1, that emerges as a key player in amyloidogenic processing and as major genetic risk factor for AD.
Collapse
Affiliation(s)
- Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, D-13125 Berlin, Germany.
| | | | | | | |
Collapse
|
27
|
Jäger S, Leuchtenberger S, Martin A, Czirr E, Wesselowski J, Dieckmann M, Waldron E, Korth C, Koo EH, Heneka M, Weggen S, Pietrzik CU. alpha-secretase mediated conversion of the amyloid precursor protein derived membrane stub C99 to C83 limits Abeta generation. J Neurochem 2010; 111:1369-82. [PMID: 19804379 DOI: 10.1111/j.1471-4159.2009.06420.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Swedish mutation within the amyloid precursor protein (APP) causes early-onset Alzheimer's disease due to increased cleavage of APP by BACE1. While beta-secretase shedding of Swedish APP (APPswe) largely results from an activity localized in the late secretory pathway, cleavage of wild-type APP occurs mainly in endocytic compartments. However, we show that liberation of Abeta from APPswe is still dependent on functional internalization from the cell surface. Inspite the unchanged overall beta-secretase cleaved soluble APP released from APP(swe) secretion, mutations of the APPswe internalization motif strongly reduced C99 levels and substantially decreased Abeta secretion. We point out that alpha-secretase activity-mediated conversion of C99 to C83 is the main cause of this Abeta reduction. Furthermore, we demonstrate that alpha-secretase cleavage of C99 even contributes to the reduction of Abeta secretion of internalization deficient wild-type APP. Therefore, inhibition of alpha-secretase cleavage increased Abeta secretion through diminished conversion of C99 to C83 in APP695, APP695swe or C99 expressing cells.
Collapse
Affiliation(s)
- Sebastian Jäger
- Molecular Neurodegeneration Group, Institute of Physiological Chemistry and Pathobiochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yamakawa H, Yagishita S, Futai E, Ishiura S. beta-Secretase inhibitor potency is decreased by aberrant beta-cleavage location of the "Swedish mutant" amyloid precursor protein. J Biol Chem 2009; 285:1634-42. [PMID: 19926793 DOI: 10.1074/jbc.m109.066753] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The amyloid-beta (Abeta) peptide, widely known as the causative molecule of Alzheimer disease (AD), is generated by the sequential cleavage of amyloid precursor protein (APP) by the aspartyl proteases BACE1/beta-secretase and presenilin/gamma-secretase. Inhibition of BACE1, therefore, is a promising strategy for preventing the progression of AD. However, beta-secretase inhibitors (BSIs) exhibit unexpectedly low potency in cells expressing "Swedish mutant" APP (APPswe) and in the transgenic mouse Tg2576, an AD model overexpressing APPswe. The Swedish mutation dramatically accelerates beta-cleavage of APP and hence the generation of Abeta; this acceleration has been assumed to underlie the poor inhibitory activity of BSI against APPswe processing. Here, we studied the mechanism by which the Swedish mutation causes this BSI potency decrease. Surprisingly, decreased BSI potency was not observed in an in vitro assay using purified BACE1 and substrates, indicating that the accelerated beta-cleavage resulting from the Swedish mutation is not its underlying cause. By focusing on differences between the cell-based and in vitro assays, we have demonstrated here that the potency decrease is caused by the aberrant subcellular localization of APPswe processing and not by accelerated beta-cleavage or the accumulation of the C-terminal fragment of beta-cleaved APP. Because most patients with sporadic AD express wild type APP, our findings suggest that the wild type mouse is superior to the Tg2576 mouse as a model for determining the effective dose of BSI for AD patients. This work provides novel insights into the potency decrease of BSI and valuable suggestions for its development as a disease-modifying agent.
Collapse
Affiliation(s)
- Hidekuni Yamakawa
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
29
|
Joshi P, Liang JO, DiMonte K, Sullivan J, Pimplikar SW. Amyloid precursor protein is required for convergent-extension movements during Zebrafish development. Dev Biol 2009; 335:1-11. [PMID: 19664615 DOI: 10.1016/j.ydbio.2009.07.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 06/19/2009] [Accepted: 07/30/2009] [Indexed: 11/29/2022]
Abstract
Amyloid precursor protein (APP) has been a focus of intense investigation because of its role in Alzheimer's disease (AD), however, its biological function remains uncertain. Loss of APP and APP-like proteins results in postnatal lethality in mice, suggesting a role during embryogenesis. Here we show that in a zebrafish model system, knock down of APP results in the generation of fish with dramatically reduced body length and a short, curly tail. In situ examination of gene expression suggests that the APP morphant embryos have defective convergent-extension movements. We also show that wild-type human APP rescues the morphant phenotype, but the Swedish mutant APP, which causes familial AD (fAD), does not rescue the developmental defects. Collectively, this work demonstrates that the zebrafish model is a powerful system to define the role of APP during embryonic development and to evaluate the functional activity of fAD mutant APP.
Collapse
Affiliation(s)
- Powrnima Joshi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic NC-30, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
30
|
Saluja I, Paulson H, Gupta A, Turner RS. X11alpha haploinsufficiency enhances Abeta amyloid deposition in Alzheimer's disease transgenic mice. Neurobiol Dis 2009; 36:162-8. [PMID: 19631749 DOI: 10.1016/j.nbd.2009.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 07/02/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022] Open
Abstract
The neuronal adaptor protein X11alpha/mint-1/APBA-1 binds to the cytoplasmic domain of the amyloid precursor protein (APP) to modulate its trafficking and metabolism. We investigated the consequences of reducing X11alpha in a mouse model of Alzheimer's disease (AD). We crossed hAPPswe/PS-1DeltaE9 transgenic (AD tg) mice with X11alpha heterozygous knockout mice in which X11alpha expression is reduced by approximately 50%. The APP C-terminal fragments C99 and C83, as well as soluble Abeta40 and Abeta42, were increased significantly in brain of X11alpha haploinsufficient mice. Abeta/amyloid plaque burden also increased significantly in the hippocampus and cortex of one year old AD tg/X11alpha (+/-) mice compared to AD tg mice. In contrast, the levels of sAPPalpha and sAPPbeta were not altered significantly in AD tg/X11alpha (+/-) mice. The increased neuropathological indices of AD in mice expressing reduced X11alpha suggest a normal suppressor role for X11alpha on CNS Abeta/amyloid deposition.
Collapse
|
31
|
Role of X11 and ubiquilin as in vivo regulators of the amyloid precursor protein in Drosophila. PLoS One 2008; 3:e2495. [PMID: 18575606 PMCID: PMC2429963 DOI: 10.1371/journal.pone.0002495] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/05/2008] [Indexed: 01/29/2023] Open
Abstract
The Amyloid Precursor Protein (APP) undergoes sequential proteolytic cleavages through the action of β- and γ-secretase, which result in the generation of toxic β-amyloid (Aβ) peptides and a C-terminal fragment consisting of the intracellular domain of APP (AICD). Mutations leading to increased APP levels or alterations in APP cleavage cause familial Alzheimer's disease (AD). Thus, identification of factors that regulate APP steady state levels and/or APP cleavage by γ-secretase is likely to provide insight into AD pathogenesis. Here, using transgenic flies that act as reporters for endogenous γ-secretase activity and/or APP levels (GAMAREP), and for the APP intracellular domain (AICDREP), we identified mutations in X11L and ubiquilin (ubqn) as genetic modifiers of APP. Human homologs of both X11L (X11/Mint) and Ubqn (UBQLN1) have been implicated in AD pathogenesis. In contrast to previous reports, we show that overexpression of X11L or human X11 does not alter γ-secretase cleavage of APP or Notch, another γ-secretase substrate. Instead, expression of either X11L or human X11 regulates APP at the level of the AICD, and this activity requires the phosphotyrosine binding (PTB) domain of X11. In contrast, Ubqn regulates the levels of APP: loss of ubqn function leads to a decrease in the steady state levels of APP, while increased ubqn expression results in an increase in APP levels. Ubqn physically binds to APP, an interaction that depends on its ubiquitin-associated (UBA) domain, suggesting that direct physical interactions may underlie Ubqn-dependent regulation of APP. Together, our studies identify X11L and Ubqn as in vivo regulators of APP. Since increased expression of X11 attenuates Aβ production and/or secretion in APP transgenic mice, but does not act on γ-secretase directly, X11 may represent an attractive therapeutic target for AD.
Collapse
|
32
|
Shrivastava-Ranjan P, Faundez V, Fang G, Rees H, Lah JJ, Levey AI, Kahn RA. Mint3/X11gamma is an ADP-ribosylation factor-dependent adaptor that regulates the traffic of the Alzheimer's Precursor protein from the trans-Golgi network. Mol Biol Cell 2008; 19:51-64. [PMID: 17959829 PMCID: PMC2174186 DOI: 10.1091/mbc.e07-05-0465] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/04/2007] [Accepted: 10/12/2007] [Indexed: 11/11/2022] Open
Abstract
Beta-amyloid peptides (Abeta) are the major component of plaques in brains of Alzheimer's patients, and are they derived from the proteolytic processing of the beta-amyloid precursor protein (APP). The movement of APP between organelles is highly regulated, and it is tightly connected to its processing by secretases. We proposed previously that transport of APP within the cell is mediated in part through its sorting into Mint/X11-containing carriers. To test our hypothesis, we purified APP-containing vesicles from human neuroblastoma SH-SY5Y cells, and we showed that Mint2/3 are specifically enriched and that Mint3 and APP are present in the same vesicles. Increasing cellular APP levels increased the amounts of both APP and Mint3 in purified vesicles. Additional evidence supporting an obligate role for Mint3 in traffic of APP from the trans-Golgi network to the plasma membrane include the observations that depletion of Mint3 by small interference RNA (siRNA) or mutation of the Mint binding domain of APP changes the export route of APP from the basolateral to the endosomal/lysosomal sorting route. Finally, we show that increased expression of Mint3 decreased and siRNA-mediated knockdowns increased the secretion of the neurotoxic beta-amyloid peptide, Abeta(1-40). Together, our data implicate Mint3 activity as a critical determinant of post-Golgi APP traffic.
Collapse
Affiliation(s)
- Punya Shrivastava-Ranjan
- Departments of *Biochemistry
- the Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322-3050
| | - Victor Faundez
- Cell Biology, and
- the Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322-3050
| | - Guofu Fang
- Neurology and
- the Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322-3050
| | - Howard Rees
- Neurology and
- the Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322-3050
| | - James J. Lah
- Neurology and
- the Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322-3050
| | - Allan I. Levey
- Neurology and
- the Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322-3050
| | - Richard A. Kahn
- Departments of *Biochemistry
- the Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322-3050
| |
Collapse
|
33
|
Lee MR, Lee D, Shin SK, Kim YH, Choi CY. Inhibition of APP intracellular domain (AICD) transcriptional activity via covalent conjugation with Nedd8. Biochem Biophys Res Commun 2007; 366:976-81. [PMID: 18096514 DOI: 10.1016/j.bbrc.2007.12.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
The processing of amyloid precursor protein (APP) by gamma-secretase generates the APP intracellular domain (AICD), which functions as a transcriptional factor for target gene activation following localization into the nucleus. In this study, we demonstrate that AICD could be modified via covalent conjugation with Nedd8, a ubiquitin-like protein. Domain analysis and site-directed substitution of neddylation sites showed that multiple lysine residues of the APP C-terminal C99 fragment including AICD were acceptor sequences for Nedd8 conjugation. AICD-mediated transcriptional activation was inhibited by Nedd8 conjugation. Furthermore, the transcriptional activity of the neddylation-defective AICD mutant was not altered by Nedd8 expression. Nedd8 conjugation of AICD inhibited its interaction with Fe65, and consequently resulted in the impairment of AICD-Fe65-Tip60 complex formation for the transcriptional activation of the target gene. These results illustrate the regulatory mechanisms by which AICD transcriptional activity might be regulated via covalent conjugation with Nedd8.
Collapse
Affiliation(s)
- Mi-Ra Lee
- Department of Biological Science, Sungkyunkwan University, 300 Chunchundong, Suwon 440-746, Republic of Korea
| | | | | | | | | |
Collapse
|
34
|
Ikin AF, Causevic M, Pedrini S, Benson LS, Buxbaum JD, Suzuki T, Lovestone S, Higashiyama S, Mustelin T, Burgoyne RD, Gandy S. Evidence against roles for phorbol binding protein Munc13-1, ADAM adaptor Eve-1, or vesicle trafficking phosphoproteins Munc18 or NSF as phospho-state-sensitive modulators of phorbol/PKC-activated Alzheimer APP ectodomain shedding. Mol Neurodegener 2007; 2:23. [PMID: 18067682 PMCID: PMC2211485 DOI: 10.1186/1750-1326-2-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/09/2007] [Indexed: 11/18/2022] Open
Abstract
Background Shedding of the Alzheimer amyloid precursor protein (APP) ectodomain can be accelerated by phorbol esters, compounds that act via protein kinase C (PKC) or through unconventional phorbol-binding proteins such as Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of APP-bearing secretory vesicles at the trans-Golgi network (TGN) and toward the plasma membrane where APP becomes a substrate for enzymes responsible for shedding, known collectively as α-secretase(s). However, molecular identification of the presumptive "phospho-state-sensitive modulators of ectodomain shedding" (PMES) responsible for regulated shedding has been challenging. Here, we examined the effects on APP ectodomain shedding of four phorbol-sensitive proteins involved in regulation of vesicular membrane trafficking of APP: Munc13-1, Munc18, NSF, and Eve-1. Results Overexpression of either phorbol-sensitive wildtype Munc13-1 or phorbol-insensitive Munc13-1 H567K resulted in increased basal APP ectodomain shedding. However, in contrast to the report of Roßner et al (2004), phorbol ester-dependent APP ectodomain shedding from cells overexpressing APP and Munc13-1 wildtype was indistinguishable from that observed following application of phorbol to cells overexpressing APP and Munc13-1 H567K mutant. This pattern of similar effects on basal and stimulated APP shedding was also observed for Munc18 and NSF. Eve-1, an ADAM adaptor protein reported to be essential for PKC-regulated shedding of pro-EGF, was found to play no obvious role in regulated shedding of sAPPα. Conclusion Our results indicate that, in the HEK293 system, Munc13-1, Munc18, NSF, and EVE-1 fail to meet essential criteria for identity as PMES for APP.
Collapse
Affiliation(s)
- Annat F Ikin
- Farber Institute for Neurosciences of Thomas Jefferson University, 900 Walnut Street, Philadelphia, 19107, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Grimm MOW, Grimm HS, Hartmann T. Amyloid beta as a regulator of lipid homeostasis. Trends Mol Med 2007; 13:337-44. [PMID: 17644432 DOI: 10.1016/j.molmed.2007.06.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 05/25/2007] [Accepted: 06/28/2007] [Indexed: 11/18/2022]
Abstract
The beta-amyloid peptide (A beta) is widely considered to be the molecule that causes Alzheimer's disease (AD). Besides this pathological function of A beta, recently published data reveal that A beta also has an essential physiological role in lipid homeostasis. Cholesterol increases A beta production, and conversely A beta production causes a decrease in cholesterol synthesis. The latter appears to be mediated by the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), a key enzyme in cholesterol synthesis, in an action similar to that of statins. Moreover, A beta regulates sphingolipid metabolism by directly activating sphingomyelinases (SMases). This review summarizes the molecular basis for the known physiological functions of A beta and amyloid precursor protein (APP), the roles of A beta and APP in lipid homeostasis and the medical implications of addressing lipid homeostasis in respect to AD. This knowledge might provide new insights for current and future therapeutic approaches to AD.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Universität des Saarlandes, Kirrberger Str. 61.4, D-66421 Homburg, Germany
| | | | | |
Collapse
|
36
|
Xie Z, Dong Y, Maeda U, Xia W, Tanzi RE. RNA Interference Silencing of the Adaptor Molecules ShcC and Fe65 Differentially Affect Amyloid Precursor Protein Processing and Aβ Generation. J Biol Chem 2007; 282:4318-4325. [PMID: 17170108 DOI: 10.1074/jbc.m609293200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) and its pathogenic by-product amyloid-beta protein (Abeta) play central roles in Alzheimer disease (AD) neuropathogenesis. APP can be cleaved by beta-secretase (BACE) and alpha-secretase to produce APP-C99 and APP-C83. These C-terminal fragments can then be cleaved by gamma-secretase to produce Abeta and p3, respectively. p3 has been reported to promote apoptosis, and Abeta is the key component of senile plaques in AD brain. APP adaptor proteins with phosphotyrosine-binding domains, including ShcA (SHC1), ShcC (SHC3), and Fe65 (APBB1), can bind to and interact with the conserved YENPTY motif in the APP-C terminus. Here we have described for the first time the effects of RNA interference (RNAi) silencing of ShcA, ShcC, and Fe65 expression on APP processing and Abeta production. RNAi silencing of ShcC led to reductions in the levels of APP-C-terminal fragments (APP-CTFs) and Abeta in H4 human neuroglioma cells stably overexpressing full-length APP (H4-FL-APP cells) but not in those expressing APP-C99 (H4-APP-C99 cells). RNAi silencing of ShcC also led to reductions in BACE levels in H4-FL-APP cells. In contrast, RNAi silencing of the homologue ShcA had no effect on APP processing or Abeta levels. RNAi silencing of Fe65 increased APP-CTF levels, although also decreasing Abeta levels in H4-FL-APP cells. These findings suggest that pharmacologically blocking interaction of APP with ShcC and Fe65 may provide novel therapeutic strategies against AD.
Collapse
Affiliation(s)
- Zhongcong Xie
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Charlestown, Massachusetts 02129-2060; Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129-2060, and
| | - Yuanlin Dong
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Charlestown, Massachusetts 02129-2060; Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129-2060, and
| | - Uta Maeda
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Charlestown, Massachusetts 02129-2060; Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129-2060, and
| | - Weiming Xia
- Center for Neurologic Diseases, Harvard Institute of Medicine and Harvard Medical School, Boston, Massachusetts 02115
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Charlestown, Massachusetts 02129-2060.
| |
Collapse
|
37
|
Rogelj B, Mitchell JC, Miller CCJ, McLoughlin DM. The X11/Mint family of adaptor proteins. ACTA ACUST UNITED AC 2006; 52:305-15. [PMID: 16764936 DOI: 10.1016/j.brainresrev.2006.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/27/2006] [Accepted: 04/16/2006] [Indexed: 12/25/2022]
Abstract
The X11 protein family are multidomain proteins composed of a conserved PTB domain and two C-terminal PDZ domains. They are involved in formation of multiprotein complexes and two of the family members, X11alpha and X11beta, are expressed primarily in neurones. Not much is known about the principal function of X11s, but through interactions with other neuronal proteins, they are believed to be involved in regulating neuronal signaling, trafficking and plasticity. Furthermore, they have been shown to modulate processing of APP and accumulation of Abeta, making them potential therapeutic targets for Alzheimer's disease. This article reviews the known interactions of the different X11s and their involvement in Alzheimer's disease.
Collapse
Affiliation(s)
- Boris Rogelj
- King's College London, MRC Centre for Neurodegeneration Research, Department of Neuroscience, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | | | | | | |
Collapse
|
38
|
Parisiadou L, Efthimiopoulos S. Expression of mDab1 promotes the stability and processing of amyloid precursor protein and this effect is counteracted by X11alpha. Neurobiol Aging 2006; 28:377-88. [PMID: 16458391 DOI: 10.1016/j.neurobiolaging.2005.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
The cytoplasmic tail of amyloid precursor protein (APP) possesses the NPTY motif to which several phosphotyrosine-binding domain-containing proteins bind, including X11alpha and mDab1. X11alpha has been shown to slow cellular APP processing and reduce secretion of Abeta peptides. However, the effect of mDab1 on APP processing has not been determined. Here, we show that mDab1 increases the levels of cellular mature APP and promotes its processing by the secretases in both transiently transfected HEK 293 cells and in neuroglioma U251 cells. These effects derive specifically from the interaction of APP with mDab1 since they are not observed in APP deletion mutants lacking the interaction module NPTY. We further demonstrate that mDab1 enhances cell surface expression of APP, possibly by interfering with its endocytosis. Interestingly, X11alpha and mDab1 exert opposing effects on APP processing. However, when both proteins are co-expressed the effect of X11alpha overrides that of mDab1. Taken together, these results suggest that the relative stoichiometry and binding affinity of the adaptor proteins determines the final outcome on APP metabolism.
Collapse
Affiliation(s)
- Loukia Parisiadou
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, 157 84 Panepistimiopolis, Ilisia, Athens, Greece
| | | |
Collapse
|
39
|
Jacobs EH, Williams RJ, Francis PT. Cyclin-dependent kinase 5, Munc18a and Munc18-interacting protein 1/X11α protein up-regulation in Alzheimer’s disease. Neuroscience 2006; 138:511-22. [PMID: 16413130 DOI: 10.1016/j.neuroscience.2005.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 11/11/2005] [Accepted: 11/15/2005] [Indexed: 12/01/2022]
Abstract
Besides formation of neurofibrillary tangles and neuron loss, the Alzheimer's disease brain is characterized by neuritic plaques consisting of beta-amyloid peptide deposits and impaired neurotransmission. The proteins Munc18a, Munc18-interacting protein 1 and Munc18-interacting protein 2 mediate exocytosis and decrease beta-amyloid peptide formation. Cyclin-dependent kinase 5 and its activator p35 disrupt Munc18a-syntaxin 1 binding, thereby promoting synaptic vesicle fusion during exocytosis. We investigated protein levels of the signaling pathway: p35, cyclin-dependent kinase 5, Munc18a, syntaxin 1A and 1B, Munc18-interacting protein 1 and Munc18-interacting protein 2 in Alzheimer's disease cortex and found that this pathway was up-regulated in the Alzheimer's disease parietal and occipital cortex. In the cortex of transgenic Tg2576 mice over-expressing human beta-amyloid precursor protein with the Swedish mutation known to lead to familial Alzheimer's disease, which have substantial levels of beta-amyloid peptide but lack neurofibrillary tangles and neuron loss, no alterations of protein levels were detected. These data suggest that the pathway is enhanced in dying or surviving neurons and might serve a protective role by compensating for decreased neurotransmission and decreasing beta-amyloid peptide levels early during the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- E H Jacobs
- Wolfson Centre for Age-Related Diseases, Guy's, King's and St Thomas' Schools of Biomedical Sciences, King's College London, St. Thomas Street, London SE1 1UL, UK.
| | | | | |
Collapse
|
40
|
Li X, Bürklen T, Yuan X, Schlattner U, Desiderio DM, Wallimann T, Homayouni R. Stabilization of ubiquitous mitochondrial creatine kinase preprotein by APP family proteins. Mol Cell Neurosci 2005; 31:263-72. [PMID: 16260146 DOI: 10.1016/j.mcn.2005.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 08/06/2005] [Accepted: 09/22/2005] [Indexed: 11/20/2022] Open
Abstract
Amyloid precursor protein (APP) is involved in the pathogenesis of Alzheimer's disease (AD). However, the physiological role of APP and its family members is still unclear. To gain insights into APP function, we used a proteomic approach to identify APP interacting proteins. We report here for the first time a direct interaction between the C-terminal region of APP family proteins and ubiquitous mitochondrial creatine kinase (uMtCK). This interaction was confirmed in vitro as well as in cultured cells and in brain. Interestingly, expression of full-length and C-terminal domain of APP family proteins stabilized uMtCK preprotein in cultured cells. Our data suggest that APP may regulate cellular energy levels and mitochondrial function via a direct interaction and stabilization of uMtCK.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Ashley J, Packard M, Ataman B, Budnik V. Fasciclin II signals new synapse formation through amyloid precursor protein and the scaffolding protein dX11/Mint. J Neurosci 2005; 25:5943-55. [PMID: 15976083 PMCID: PMC6724788 DOI: 10.1523/jneurosci.1144-05.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 11/21/2022] Open
Abstract
Cell adhesion molecules (CAMs) have been universally recognized for their essential roles during synapse remodeling. However, the downstream pathways activated by CAMs have remained mostly unknown. Here, we used the Drosophila larval neuromuscular junction to investigate the pathways activated by Fasciclin II (FasII), a transmembrane CAM of the Ig superfamily, during synapse remodeling. We show that the ability of FasII to stimulate or to prevent synapse formation depends on the symmetry of transmembrane FasII levels in the presynaptic and postsynaptic cell and requires the presence of the fly homolog of amyloid precursor protein (APPL). In turn, APPL is regulated by direct interactions with the PDZ (postsynaptic density-95/Discs large/zona occludens-1)-containing protein dX11/Mint/Lin-10, which also regulates synapse expansion downstream of FasII. These results provide a novel mechanism by which cell adhesion molecules are regulated and provide fresh insights into the normal operation of APP during synapse development.
Collapse
Affiliation(s)
- James Ashley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA
| | | | | | | |
Collapse
|
42
|
Yoon IS, Pietrzik CU, Kang DE, Koo EH. Sequences from the low density lipoprotein receptor-related protein (LRP) cytoplasmic domain enhance amyloid beta protein production via the beta-secretase pathway without altering amyloid precursor protein/LRP nuclear signaling. J Biol Chem 2005; 280:20140-7. [PMID: 15772078 DOI: 10.1074/jbc.m413729200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that the low density lipoprotein receptor-related protein (LRP) affects the processing of amyloid precursor protein (APP) and amyloid beta (Abeta) protein production as well as mediates the clearance of Abeta from the brain. Recent studies indicate that the cytoplasmic domain of LRP is critical for this modulation of APP processing requiring perhaps a complex between APP, the adaptor protein FE65, and LRP. In this study, we expressed a small LRP domain consisting of the C-terminal 97 amino acids of the cytoplasmic domain, or LRP-soluble tail (LRP-ST), in CHO cells to test the hypothesis that the APP.LRP complex can be disrupted. We anticipated that LRP-ST would inhibit the normal interaction between LRP and APP and therefore perturb APP processing to resemble a LRP-deficient state. Surprisingly, CHO cells expressing LRP-ST demonstrated an increase in both sAPP secretion and Abeta production compared with control CHO cells in a manner reminiscent of the cellular effects of the APP "Swedish mutation." The increase in sAPP secretion consisted mainly of sAPPbeta, consistent with the increase in Abeta release. Further, this effect is LRP-independent, as the same alterations remained when LRP-ST was expressed in LRP-deficient cells but not when the construct was membrane-anchored. Finally, deletion experiments suggested that the last 50 amino acid residues of LRP-ST contain the important domain for altering APP processing and Abeta production. These observations indicate that there are cellular pathways that may suppress Abeta generation but that can be altered to facilitate Abeta production.
Collapse
Affiliation(s)
- Il-Sang Yoon
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | |
Collapse
|
43
|
Xie Z, Romano DM, Tanzi RE. RNA interference-mediated silencing of X11alpha and X11beta attenuates amyloid beta-protein levels via differential effects on beta-amyloid precursor protein processing. J Biol Chem 2005; 280:15413-21. [PMID: 15699037 DOI: 10.1074/jbc.m414353200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processing of the beta-amyloid precursor protein (APP) plays a key role in Alzheimer disease neuropathogenesis. APP is cleaved by beta- and alpha-secretase to produce APP-C99 and APP-C83, which are further cleaved by gamma-secretase to produce amyloid beta-protein (Abeta) and p3, respectively. APP adaptor proteins with phosphotyrosine-binding domains, including X11alpha (MINT1, encoded by gene APBA1) and X11beta (MINT2, encoded by gene APBA2), can bind to the conserved YENPTY motif in the APP C terminus. Overexpression of X11alpha and X11beta alters APP processing and Abeta production. Here, for the first time, we have described the effects of RNA interference (RNAi) silencing of X11alpha and X11beta expression on APP processing and Abeta production. RNAi silencing of APBA1 in H4 human neuroglioma cells stably transfected to express either full-length APP or APP-C99 increased APP C-terminal fragment levels and lowered Abeta levels in both cell lines by inhibiting gamma-secretase cleavage of APP. RNAi silencing of APBA2 also lowered Abeta levels, but apparently not via attenuation of gamma-secretase cleavage of APP. The notion of attenuating gamma-secretase cleavage of APP via the APP adaptor protein X11alpha is particularly attractive with regard to therapeutic potential given that side effects of gamma-secretase inhibition due to impaired proteolysis of other gamma-secretase substrates, e.g. Notch, might be avoided.
Collapse
Affiliation(s)
- Zhongcong Xie
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129-4404, USA
| | | | | |
Collapse
|
44
|
Kerr ML, Small DH. Cytoplasmic domain of the ?-amyloid protein precursor of Alzheimer's disease: Function, regulation of proteolysis, and implications for drug development. J Neurosci Res 2005; 80:151-9. [PMID: 15672415 DOI: 10.1002/jnr.20408] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The beta-amyloid protein precursor (APP) has been extensively studied for its role in amyloid production and the pathogenesis of Alzheimer's disease (AD). However, little is known about the normal function of APP and its biological interactions. In this Mini-Review, the role of the cytoplasmic domain of APP in APP trafficking and proteolysis is described. These studies suggest that proteins that bind to the cytoplasmic domain may be important targets for drug development in AD.
Collapse
Affiliation(s)
- Megan L Kerr
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biology, and Monash University Centre for Brain and Behaviour, Monash University, Victoria, Australia
| | | |
Collapse
|
45
|
Pedrini S, Carter TL, Prendergast G, Petanceska S, Ehrlich ME, Gandy S. Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Med 2005; 2:e18. [PMID: 15647781 PMCID: PMC543463 DOI: 10.1371/journal.pmed.0020018] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/30/2004] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Statins are widely used cholesterol-lowering drugs that act by inhibiting HMGCoA reductase, the rate-limiting enzyme in cholesterol biosynthesis. Recent evidence suggests that statin use may be associated with a decreased risk for Alzheimer disease, although the mechanisms underlying this apparent risk reduction are poorly understood. One popular hypothesis for statin action is related to the drugs' ability to activate alpha-secretase-type shedding of the alpha-secretase-cleaved soluble Alzheimer amyloid precursor protein ectodomain (sAPP(alpha)). Statins also inhibit the isoprenoid pathway, thereby modulating the activities of the Rho family of small GTPases-Rho A, B, and C-as well as the activities of Rac and cdc42. Rho proteins, in turn, exert many of their effects via Rho-associated protein kinases (ROCKs). Several cell-surface molecules are substrates for activated alpha-secretase-type ectodomain shedding, and regulation of shedding typically occurs via activation of protein kinase C or extracellular-signal-regulated protein kinases, or via inactivation of protein phosphatase 1 or 2A. However, the possibility that these enzymes play a role in statin-stimulated shedding has been excluded, leading us to investigate whether the Rho/ROCK1 protein phosphorylation pathway might be involved. METHODS AND FINDINGS We found that both atorvastatin and simvastatin stimulated sAPP(alpha) shedding from a neuroblastoma cell line via a subcellular mechanism apparently located upstream of endocytosis. A farnesyl transferase inhibitor also increased sAPP(alpha) shedding, as did a dominant negative form of ROCK1. Most conclusively, a constitutively active ROCK1 molecule inhibited statin-stimulated sAPP(alpha) shedding. CONCLUSION Together, these data suggest that statins exert their effects on shedding of sAPP(alpha) from cultured cells, at least in part, by modulation of the isoprenoid pathway and ROCK1.
Collapse
Affiliation(s)
- Steve Pedrini
- 1Farber Institute for Neurosciences, Thomas Jefferson UniversityPhiladelphia, PennsylvaniaUnited States of America
| | - Troy L Carter
- 1Farber Institute for Neurosciences, Thomas Jefferson UniversityPhiladelphia, PennsylvaniaUnited States of America
| | - George Prendergast
- 2Lankenau Institute for Medical Research, WynnewoodPennsylvaniaUnited States of America
| | - Suzana Petanceska
- 3Nathan S. Kline Institute for Psychiatric Research, Department of PsychiatryNew York University School of Medicine, Orangeburg, New YorkUnited States of America
| | - Michelle E Ehrlich
- 1Farber Institute for Neurosciences, Thomas Jefferson UniversityPhiladelphia, PennsylvaniaUnited States of America
| | - Sam Gandy
- 1Farber Institute for Neurosciences, Thomas Jefferson UniversityPhiladelphia, PennsylvaniaUnited States of America
- 2Lankenau Institute for Medical Research, WynnewoodPennsylvaniaUnited States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
King GD, Scott Turner R. Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? Exp Neurol 2004; 185:208-19. [PMID: 14736502 DOI: 10.1016/j.expneurol.2003.10.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cytoplasmic C-terminus of APP plays critical roles in its cellular trafficking and delivery to proteases. Adaptor proteins with phosphotyrosine-binding (PTB) domains, including those in the X11, Fe65, and c-Jun N-terminal kinase (JNK)-interacting protein (JIP) families, bind specifically to the absolutely conserved -YENPTY- motif in the APP C-terminus to regulate its trafficking and processing. Compounds that modulate APP-adaptor protein interactions may inhibit Abeta generation by specifically targeting the substrate (APP) instead of the enzyme (beta- or gamma-secretase). Genetic polymorphisms in (or near) adaptor proteins may influence risk of sporadic AD by interacting with APP in vivo to modulate its trafficking and processing to Abeta.
Collapse
Affiliation(s)
- Gwendalyn D King
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
47
|
Abstract
The phosphotyrosine binding domain of the neuronal protein X11alpha/mint-1 binds to the C-terminus of amyloid precursor protein (APP) and inhibits catabolism to beta-amyloid (Abeta), but the mechanism of this effect is unclear. Coexpression of X11alpha or its PTB domain with APPswe inhibited secretion of Abeta40 but not APPsbetaswe, suggesting inhibition of gamma- but not beta-secretase. To further probe cleavage(s) inhibited by X11alpha, we coexpressed beta-secretase (BACE-1) or a component of the gamma-secretase complex (PS-1Delta9) with APP, APPswe, or C99, with and without X11alpha, in HEK293 cells. X11alpha suppressed the PS-1Delta9-induced increase in Abeta42 secretion generated from APPswe or C99. However, X11alpha did not impair BACE-1-mediated proteolysis of APP or APPswe to C99. In contrast to impaired gamma-cleavage of APPswe, X11alpha or its PTB domain did not inhibit gamma-cleavage of NotchDeltaE to NICD (the Notch intracellular domain). The X11alpha PDZ-PS.1Delta9 interaction did not affect gamma-cleavage activity. In a cell-free system, X11alpha did not inhibit the catabolism of APP C-terminal fragments. These data suggest that X11alpha may inhibit Abeta secretion from APP by impairing its trafficking to sites of active gamma-secretase complexes. By specifically targeting substrate instead of enzyme X11alpha may function as a relatively specific gamma-secretase inhibitor.
Collapse
Affiliation(s)
- Gwendalyn D King
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|