1
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
2
|
Lane RM, Darreh-Shori T, Junge C, Li D, Yang Q, Edwards AL, Graham DL, Moore K, Mummery CJ. Onset of Alzheimer disease in apolipoprotein ɛ4 carriers is earlier in butyrylcholinesterase K variant carriers. BMC Neurol 2024; 24:116. [PMID: 38594621 PMCID: PMC11003149 DOI: 10.1186/s12883-024-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION NCT03186989 since June 14, 2017.
Collapse
Affiliation(s)
- Roger M Lane
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatric, Karolinska Institutet, Stockholm, Sweden
| | - Candice Junge
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Dan Li
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Qingqing Yang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | | | | - Katrina Moore
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | |
Collapse
|
3
|
van den Berg M, Adhikari MH, Verschuuren M, Pintelon I, Vasilkovska T, Van Audekerke J, Missault S, Heymans L, Ponsaerts P, De Vos WH, Van der Linden A, Keliris GA, Verhoye M. Altered basal forebrain function during whole-brain network activity at pre- and early-plaque stages of Alzheimer's disease in TgF344-AD rats. Alzheimers Res Ther 2022; 14:148. [PMID: 36217211 PMCID: PMC9549630 DOI: 10.1186/s13195-022-01089-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Imbalanced synaptic transmission appears to be an early driver in Alzheimer's disease (AD) leading to brain network alterations. Early detection of altered synaptic transmission and insight into mechanisms causing early synaptic alterations would be valuable treatment strategies. This study aimed to investigate how whole-brain networks are influenced at pre- and early-plague stages of AD and if these manifestations are associated with concomitant cellular and synaptic deficits. METHODS: To this end, we used an established AD rat model (TgF344-AD) and employed resting state functional MRI and quasi-periodic pattern (QPP) analysis, a method to detect recurrent spatiotemporal motifs of brain activity, in parallel with state-of-the-art immunohistochemistry in selected brain regions. RESULTS At the pre-plaque stage, QPPs in TgF344-AD rats showed decreased activity of the basal forebrain (BFB) and the default mode-like network. Histological analyses revealed increased astrocyte abundance restricted to the BFB, in the absence of amyloid plaques, tauopathy, and alterations in a number of cholinergic, gaba-ergic, and glutamatergic synapses. During the early-plaque stage, when mild amyloid-beta (Aβ) accumulation was observed in the cortex and hippocampus, QPPs in the TgF344-AD rats normalized suggesting the activation of compensatory mechanisms during this early disease progression period. Interestingly, astrogliosis observed in the BFB at the pre-plaque stage was absent at the early-plaque stage. Moreover, altered excitatory/inhibitory balance was observed in cortical regions belonging to the default mode-like network. In wild-type rats, at both time points, peak activity in the BFB preceded peak activity in other brain regions-indicating its modulatory role during QPPs. However, this pattern was eliminated in TgF344-AD suggesting that alterations in BFB-directed neuromodulation have a pronounced impact in network function in AD. CONCLUSIONS This study demonstrates the value of rsfMRI and advanced network analysis methods to detect early alterations in BFB function in AD, which could aid early diagnosis and intervention in AD. Restoring the global synaptic transmission, possibly by modulating astrogliosis in the BFB, might be a promising therapeutic strategy to restore brain network function and delay the onset of symptoms in AD.
Collapse
Affiliation(s)
- Monica van den Berg
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohit H. Adhikari
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Isabel Pintelon
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Tamara Vasilkovska
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Stephan Missault
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Loran Heymans
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- grid.5284.b0000 0001 0790 3681Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Winnok H. De Vos
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Annemie Van der Linden
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.511960.aInstitute of Computer Science, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| | - Marleen Verhoye
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Marde VS, Atkare UA, Gawali SV, Tiwari PL, Badole SP, Wankhede NL, Taksande BG, Upaganlawar AB, Umekar MJ, Kale MB. Alzheimer's disease and sleep disorders: Insights into the possible disease connections and the potential therapeutic targets. Asian J Psychiatr 2022; 68:102961. [PMID: 34890930 DOI: 10.1016/j.ajp.2021.102961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
One of the comorbid conditions in an individual with Alzheimer's disease is a sleep disorder. Clinical features of sleep disorders involve various sleep disturbances such as Obstructive Sleep Apnea (OSAS), Excessive Daytime Sleepiness (EDS), Rapid Eye Movement (REM), Breathing Disorders, Periodic limb movements in sleep (PLMS), etc. The primary tools used for the identification of such disturbances are Polysomnography (PSG) and Wrist actigraphy. This review will highlight and explains the different approaches used in the treatment of sleep disorders. Non-pharmacological treatments include Peter Hauri rules, sleep education program, and light therapy which play a key role in the regulation of sleep-wake cycles. Pharmacological therapy described in this article may be useful in treating sleep destruction in patients with Alzheimer's disease. Along with the Non-pharmacological and pharmacological treatment, here we discuss five commonly recognized plant-based nutraceuticals with hypothesized impact on sleep disorders: caffeine, chamomile, cherries, L-tryptophan, and valerian by the proper emphasis on the known mechanism of their action.
Collapse
Affiliation(s)
- Vaibhav S Marde
- National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Utkarsha A Atkare
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe), Wardha, India
| | - Shweta V Gawali
- University Department of Pharmaceutical Science, Nagpur, India
| | - Prerna L Tiwari
- Springer Nature Technology and Publishing Solutions (SNTPS), India
| | | | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, 441002 Nagpur, Maharashtra, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, 441002 Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik 423101, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, 441002 Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, 441002 Nagpur, Maharashtra, India.
| |
Collapse
|
5
|
The effect of nerve growth factor on supporting spatial memory depends upon hippocampal cholinergic innervation. Transl Psychiatry 2021; 11:162. [PMID: 33723225 PMCID: PMC7961060 DOI: 10.1038/s41398-021-01280-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Nerve growth factor (NGF) gene therapy has been used in clinical trials of Alzheimer's disease. Understanding the underlying mechanisms of how NGF influences memory may help develop new strategies for treatment. Both NGF and the cholinergic system play important roles in learning and memory. NGF is essential for maintaining cholinergic innervation of the hippocampus, but it is unclear whether the supportive effect of NGF on learning and memory is specifically dependent upon intact hippocampal cholinergic innervation. Here we characterize the behavior and hippocampal measurements of volume, neurogenesis, long-term potentiation, and cholinergic innervation, in brain-specific Ngf-deficient mice. Our results show that knockout mice exhibit increased anxiety, impaired spatial learning and memory, decreased adult hippocampal volume, neurogenesis, short-term potentiation, and cholinergic innervation. Overexpression of Ngf in the hippocampus of Ngf gene knockout mice rescued spatial memory and partially restored cholinergic innervations, but not anxiety. Selective depletion of hippocampal cholinergic innervation resulted in impaired spatial memory. However, Ngf overexpression in the hippocampus failed to rescue spatial memory in mice with hippocampal-selective cholinergic fiber depletion. In conclusion, we demonstrate the impact of Ngf deficiency in the brain and provide evidence that the effect of NGF on spatial memory is reliant on intact cholinergic innervations in the hippocampus. These results suggest that adequate cholinergic targeting may be a critical requirement for successful use of NGF gene therapy of Alzheimer's disease.
Collapse
|
6
|
Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Metab Toxicol 2020; 16:673-701. [PMID: 32520597 DOI: 10.1080/17425255.2020.1779700] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cholinergic dysfunction, demonstrated in the late 1970s and early 1980s, led to the introduction of acetylcholinesterase inhibitors (AChEIs) in 1993 (Tacrine) to enhance cholinergic neurotransmission as the first line of treatment against Alzheimer's disease (AD). The new generation of AChEIs, represented by Donepezil (1996), Galantamine (2001) and Rivastigmine (2002), is the only treatment for AD to date, together with Memantine (2003). AChEIs are not devoid of side-effects and their cost-effectiveness is limited. An option to optimize the correct use of AChEIs is the implementation of pharmacogenetics (PGx) in the clinical practice. AREAS COVERED (i) The cholinergic system in AD, (ii) principles of AD PGx, (iii) PGx of Donepezil, Galantamine, Rivastigmine, Huperzine and other treatments, and (iv) practical recommendations. EXPERT OPINION The most relevant genes influencing AChEI efficacy and safety are APOE and CYPs. APOE-4 carriers are the worst responders to AChEIs. With the exception of Rivastigmine (UGT2B7, BCHE-K), the other AChEIs are primarily metabolized via CYP2D6, CYP3A4, and UGT enzymes, with involvement of ABC transporters and cholinergic genes (CHAT, ACHE, BCHE, SLC5A7, SLC18A3, CHRNA7) in most ethnic groups. Defective variants may affect the clinical response to AChEIs. PGx geno-phenotyping is highly recommended prior to treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine , Bergondo, Corunna, Spain
| |
Collapse
|
7
|
Baazaoui N, Iqbal K. A Novel Therapeutic Approach to Treat Alzheimer's Disease by Neurotrophic Support During the Period of Synaptic Compensation. J Alzheimers Dis 2019; 62:1211-1218. [PMID: 29562539 PMCID: PMC5870029 DOI: 10.3233/jad-170839] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer’s disease (AD), at present, is considered an incurable disease and a major dilemma with no drug to stop or slow down its progression. Drugs that are currently available in the market are able to only transiently improve the clinical symptoms. The repeated failures in developing an effective drug has led to the suggestion that the medical intervention was probably too late to be effective since the pathology starts many years before the appearance of the clinical symptoms. Probably, at the time of the appearance of clinical symptoms the brain has undergone major neuronal and synaptic loss. Because of the uncertainty on when to use a prevention therapy, especially targeting amyloid-β (Aβ) and tau pathologies, interventions that rely on the regenerative capacity of the brain such as the modulation of the inherent neurogenesis and neuronal plasticity represent a promising therapeutic strategy. Such an approach can act both at early as well as late stages of the disease and remove the barrier of the time of intervention. In this article, we review studies mainly from our laboratory that show the merit of early intervention during the synaptic and neuronal compensation period where the brain still has the capacity to self-repair by offering neurotrophic support in reversing cognitive impairment, neuronal and synaptic deficits, Aβ, and tau pathologies and decreasing mortality in a transgenic mouse model of AD.
Collapse
Affiliation(s)
- Narjes Baazaoui
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
8
|
Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis. PLoS One 2019; 14:e0209228. [PMID: 30645585 PMCID: PMC6333398 DOI: 10.1371/journal.pone.0209228] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
Several lines of evidence imply changes in inhibitory interneuron connectivity and subsequent alterations in oscillatory network activities in the pathogenesis of Alzheimer’s Disease (AD). Recently, we provided evidence for an increased immunoreactivity of both the postsynaptic scaffold protein gephyrin and the GABAA receptor γ2-subunit in the hippocampus of young (1 and 3 months of age), APPPS1 mice. These mice represent a well-established model of cerebral amyloidosis, which is a hallmark of human AD. In this study, we demonstrate a robust increase of parvalbumin immunoreactivity and accentuated projections of parvalbumin positive (PV+) interneurons, which target perisomatic regions of pyramidal cells within the hippocampal subregions CA1 and CA3 of 3-month-old APPPS1 mice. Colocalisation studies confirmed a significant increase in the density of PV+ projections labeled with antibodies against a presynaptic (vesicular GABA transporter) and a postsynaptic marker (gephyrin) of inhibitory synapses within the pyramidal cell layer of CA1 and CA3. As perisomatic inhibition by PV+-interneurons is crucial for the generation of hippocampal network oscillations involved in spatial processing, learning and memory formation we investigated the impact of the putative enhanced perisomatic inhibition on two types of fast neuronal network oscillations in acute hippocampal slices: 1. spontaneously occurring sharp wave-ripple complexes (SPW-R), and 2. cholinergic γ-oscillations. Interestingly, both network patterns were generally preserved in APPPS1 mice similar to WT mice. However, the comparison of simultaneous CA3 and CA1 recordings revealed that the incidence and amplitude of SPW-Rs were significantly lower in CA1 vs CA3 in APPPS1 slices, whereas the power of γ-oscillations was significantly higher in CA3 vs CA1 in WT-slices indicating an impaired communication between the CA3 and CA1 network activities in APPPS1 mice. Taken together, our data demonstrate an increased GABAergic synaptic output of PV+ interneurons impinging on pyramidal cells of CA1 and CA3, which might limit the coordinated cross-talk between these two hippocampal areas in young APPPS1 mice and mediate long-term changes in synaptic inhibition during progression of amyloidosis.
Collapse
|
9
|
Merlo S, Spampinato SF, Sortino MA. Early compensatory responses against neuronal injury: A new therapeutic window of opportunity for Alzheimer's Disease? CNS Neurosci Ther 2018; 25:5-13. [PMID: 30101571 DOI: 10.1111/cns.13050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by extensive neurodegeneration and inflammation in selective brain areas, linked to severely disabling cognitive deficits. Before full manifestation, different stages appear with progressively increased brain pathology and cognitive impairment. This significantly extends the time lag between initial molecular triggers and appearance of detectable symptoms. Notably, a number of studies in the last decade have revealed that in the early stage of mild cognitive impairment, events that appear in contrast with neuronal distress may occur. These have been reproduced in vitro and in animal models and include increase in synaptic elements, increase in synaptic and metabolic activity, enhancement of neurotrophic milieu and changes in glial cell reactivity and inflammation. They have been interpreted as compensatory responses that could either delay disease progression or, in the long run, result detrimental. For this reason, these mechanisms define a new and previously undervalued window of opportunity for intervention. Their importance resides especially in their early appearance. Directing efforts to better characterize this stage, in order to identify new pharmacological targets, is an exciting new avenue to future advances in AD research.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Hall H, Iulita MF, Gubert P, Flores Aguilar L, Ducatenzeiler A, Fisher A, Cuello AC. AF710B, an M1/sigma-1 receptor agonist with long-lasting disease-modifying properties in a transgenic rat model of Alzheimer's disease. Alzheimers Dement 2018; 14:811-823. [PMID: 29291374 DOI: 10.1016/j.jalz.2017.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION AF710B (aka ANAVEX 3-71) is a novel selective allosteric M1 muscarinic and sigma-1 receptor agonist. In 3×Tg-AD mice, AF710B attenuates cognitive deficits and decreases Alzheimer-like hallmarks. We now report on the long-lasting disease-modifying properties of AF710B in McGill-R-Thy1-APP transgenic (Tg) rats. METHODS Chronic treatment with AF710B (10 μg/kg) was initiated in postplaque 13-month-old Tg rats. Drug or vehicle was administered orally daily for 4.5 months and interrupted 5 weeks before behavioral testing. RESULTS AF710B long-term treatment reverted the cognitive deficits associated with advanced Alzheimer-like amyloid neuropathology in Tg rats. These effects were accompanied by reductions in amyloid pathology and markers of neuroinflammation and increases in amyloid cerebrospinal fluid clearance and levels of a synaptic marker. Importantly, these effects were maintained following a 5-week interruption of the treatment. DISCUSSION With M1/sigma-1 activity and long-lasting disease-modifying properties at low dose, AF710B is a promising novel therapeutic agent for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Hélène Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - Palma Gubert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | | | - Abraham Fisher
- Department of Medicinal Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel(§)
| | - Augusto Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
11
|
Jung HY, Yoo DY, Park JH, Kim JW, Chung JY, Kim DW, Won MH, Yoon YS, Hwang IK. Age-dependent changes in vesicular glutamate transporter 1 and 2 expression in the gerbil hippocampus. Mol Med Rep 2018. [PMID: 29532891 PMCID: PMC5928628 DOI: 10.3892/mmr.2018.8705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glutamate is a major excitatory neurotransmitter that is stored in vesicles located in the presynaptic terminal. Glutamate is transported into vesicles via the vesicular glutamate transporter (VGLUT). In the present study, the age‑associated changes of the major VGLUTs, VGLUT1 and VGLUT2, in the hippocampus were investigated, based on immunohistochemistry and western blot analysis at postnatal month 1 (PM1; adolescent), PM6, PM12 (adult group), PM18 and PM24 (the aged groups). VGLUT1 immunoreactivity was primarily detected in the mossy fibers, Schaffer collaterals and stratum lacunosum‑moleculare. By contrast, VGLUT2 immunoreactivity was observed in the granule cell layer and the outer molecular layer of the dentate gyrus, stratum pyramidale, Schaffer collaterals and stratum lacunosum‑moleculare in the hippocampal CA1‑3 regions. VGLUT1 immunoreactivity and protein levels remained constant across all age groups. However, VGLUT2 immunoreactivity and protein levels decreased in the PM3 group when compared with the PM1 group. VGLUT2 immunoreactivity and protein levels were not altered in the PM12 group; however, they increased in the PM18 group. In addition, in the PM18 group, highly immunoreactive VGLUT2 cells were also identified in the stratum radiatum and oriens of the hippocampal CA1 region. In the PM24 group, VGLUT2 immunoreactivity and protein levels were significantly decreased and were the lowest levels observed amongst the different groups. These results suggested that VGLUT1 may be less susceptible to the aging process; however, the increase of VGLUT2 in the non‑pyramidal cells in the PM18 group, and the consequent decrease in VGLUT2, may be closely linked to age‑associated memory impairment in the hippocampus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Baazaoui N, Flory M, Iqbal K. Synaptic Compensation as a Probable Cause of Prolonged Mild Cognitive Impairment in Alzheimer's Disease: Implications from a Transgenic Mouse Model of the Disease. J Alzheimers Dis 2018; 56:1385-1401. [PMID: 28222506 DOI: 10.3233/jad-160845] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a slow, progressive neurodegenerative disease in which cognitive decline takes place over a period of several years with a very variable period of mild cognitive impairment (MCI) and, in some cases, relatively long period before progression to dementia. The cognitive deficit during MCI is probably due to neuronal loss, an intermediate level of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFT) and synaptosis, which is interrupted with a transient compensatory increase. We found impairment in reference memory accompanied by a decrease in the expression of synaptophysin, β-III tubulin, and MAP2 and a trend for GluR1, at 12 weeks of age in 3xTg-AD mice (hAPPSwe, P301L tau, PS1 [M146V] knock-in), a widely used transgenic model of AD. Past 12 weeks, the cross-sectional analysis of different age groups showed a compensatory increase in synaptic markers relative to that in wild type animals in a topographic and time-dependent manner. When studied across time we found that in 3xTg-AD mice, the compensatory phenomenon occurred in parallel in different regions of the brain. However, this attempt of the brain to repair itself was able to only partially rescue cognitive impairment. These findings for the first time raise the intriguing possibility that AD causing mutated transgenes may initially cause an increase in synaptic and dendritic markers as a compensatory mechanism for synaptic deficit, and this phenomenon, though transient, could be the biological basis of the period of MCI seen in AD.
Collapse
Affiliation(s)
- Narjes Baazaoui
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, NY, USA.,Graduate Program in Biology (Neuroscience), College of Staten Island (CSI), City University of New York (CUNY) Graduate Center, New York, NY, USA
| | - Michael Flory
- Research Design and Analysis Service, New York State Institute for Basic Research in DevelopmentalDisabilities, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, NY, USA
| |
Collapse
|
13
|
Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer's disease. Neurobiol Dis 2017; 108:307-323. [PMID: 28865749 DOI: 10.1016/j.nbd.2017.08.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Evidence from human neuropathological studies indicates that the levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are compromised in Alzheimer's disease. However, the causes and temporal (pathology-dependent) evolution of these alterations are not completely understood. To elucidate these issues, we investigated the McGill-R-Thy1-APP transgenic rat, which exhibits progressive intracellular and extracellular amyloid-beta (Aβ) pathology and ensuing cognitive deficits. Neurochemical analyses revealed a differential dysregulation of NGF and BDNF transcripts and protein expression. While BDNF mRNA levels were significantly reduced at very early stages of amyloid pathology, before plaques appeared, there were no changes in NGF mRNA expression even at advanced stages. Paradoxically, the protein levels of the NGF precursor were increased. These changes in neurotrophin expression are identical to those seen during the progression of Alzheimer's disease. At advanced pathological stages, deficits in the protease cascade controlling the maturation and degradation of NGF were evident in McGill transgenic rats, in line with the paradoxical upregulation of proNGF, as seen in Alzheimer's disease, in the absence of changes in NGF mRNA. The compromise in NGF metabolism and BDNF levels was accompanied by downregulation of cortical cholinergic synapses; strengthening the evidence that neurotrophin dysregulation affects cholinergic synapses and synaptic plasticity. Our findings suggest a differential temporal deregulation of NGF and BDNF neurotrophins, whereby deficits in BDNF mRNA appear at early stages of intraneuronal Aβ pathology, before alterations in NGF metabolism and cholinergic synapse loss manifest.
Collapse
|
14
|
De Beaumont L, Pelleieux S, Lamarre-Théroux L, Dea D, Poirier J. Butyrylcholinesterase K and Apolipoprotein E-ɛ4 Reduce the Age of Onset of Alzheimer’s Disease, Accelerate Cognitive Decline, and Modulate Donepezil Response in Mild Cognitively Impaired Subjects. J Alzheimers Dis 2016; 54:913-922. [DOI: 10.3233/jad-160373] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Louis De Beaumont
- Douglas Mental Health University Institute, McGill University, Verdun, Montreal, Canada
| | - Sandra Pelleieux
- Douglas Mental Health University Institute, McGill University, Verdun, Montreal, Canada
| | | | - Doris Dea
- Douglas Mental Health University Institute, McGill University, Verdun, Montreal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, McGill University, Verdun, Montreal, Canada
- Center for Studies in the Prevention of Alzheimer’s Disease, McGill University, Verdun, Montreal, Canada
| | | |
Collapse
|
15
|
Kam K, Duffy ÁM, Moretto J, LaFrancois JJ, Scharfman HE. Interictal spikes during sleep are an early defect in the Tg2576 mouse model of β-amyloid neuropathology. Sci Rep 2016; 6:20119. [PMID: 26818394 PMCID: PMC4730189 DOI: 10.1038/srep20119] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/21/2015] [Indexed: 01/25/2023] Open
Abstract
It has been suggested that neuronal hyperexcitability contributes to Alzheimer's disease (AD), so we asked how hyperexcitability develops in a common mouse model of β-amyloid neuropathology - Tg2576 mice. Using video-EEG recordings, we found synchronized, large amplitude potentials resembling interictal spikes (IIS) in epilepsy at just 5 weeks of age, long before memory impairments or β-amyloid deposition. Seizures were not detected, but they did occur later in life, suggesting that IIS are possibly the earliest stage of hyperexcitability. Interestingly, IIS primarily occurred during rapid-eye movement (REM) sleep, which is notable because REM is associated with increased cholinergic tone and cholinergic impairments are implicated in AD. Although previous studies suggest that cholinergic antagonists would worsen pathophysiology, the muscarinic antagonist atropine reduced IIS frequency. In addition, we found IIS occurred in APP51 mice which overexpress wild type (WT)-APP, although not as uniformly or as early in life as Tg2576 mice. Taken together with results from prior studies, the data suggest that surprising and multiple mechanisms contribute to hyperexcitability. The data also suggest that IIS may be a biomarker for early detection of AD.
Collapse
Affiliation(s)
- Korey Kam
- The Nathan Kline Institute for Psychiatric Research Center for Dementia Research Orangeburg, NY 10962, USA.,Graduate Program in Physiology and Neuroscience New York University Langone Medical Center New York, NY 10016, USA
| | - Áine M Duffy
- The Nathan Kline Institute for Psychiatric Research Center for Dementia Research Orangeburg, NY 10962, USA.,Department of Physiology and Neuroscience New York University Langone Medical Center New York, NY 10016, USA
| | - Jillian Moretto
- The Nathan Kline Institute for Psychiatric Research Center for Dementia Research Orangeburg, NY 10962, USA
| | - John J LaFrancois
- The Nathan Kline Institute for Psychiatric Research Center for Dementia Research Orangeburg, NY 10962, USA
| | - Helen E Scharfman
- The Nathan Kline Institute for Psychiatric Research Center for Dementia Research Orangeburg, NY 10962, USA.,Department of Physiology and Neuroscience New York University Langone Medical Center New York, NY 10016, USA.,Department of Child and Adolescent Psychiatry and Psychiatry New York University Langone Medical Center New York, NY 10016, USA
| |
Collapse
|
16
|
Yoshiyama Y, Kojima A, Itoh K, Isose S, Koide M, Hori K, Arai K. Does Anticholinergic Activity Affect Neuropathology? Implication of Neuroinflammation in Alzheimer's Disease. NEURODEGENER DIS 2015; 15:140-8. [PMID: 26138491 DOI: 10.1159/000381484] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One characteristic neuropathological feature of Alzheimer's disease (AD) is profound neuronal loss in the nucleus basalis of Meynert, the major source of cholinergic innervation of the cerebral cortex. Clinically, anticholinergic activity causes a decline in cognitive function and increases the risk of dementia, thus possibly enhancing AD pathologies and neurodegeneration. Until now there has been insufficient human neuropathological data to support this conclusion. Experimental studies using a tauopathy mouse model demonstrated anticholinergics enhanced tau pathology and neurodegeneration corresponding to central anticholinergic activity. Additionally, donepezil, a cholinesterase inhibitor, ameliorated tau pathology and neurodegeneration in the same mouse model. These results indicate the balance between cholinergic and anticholinergic activities might affect neurodegeneration. Importantly, neurodegeneration observed in the mouse model seemed to correspond to the distribution of microglial activation, and it was reported that neuroinflammation plays an important role in the pathomechanism of AD, while anticholinergic activity augments inflammatory responses. Moreover, some studies indicated β-amyloid itself depletes cholinergic function similarly to anticholinergic activity. Thus, anticholinergic activity might initiate and/or accelerate AD pathology. Limited human data support the conclusion that anticholinergic activity enhances AD-related neuropathology and neurodegeneration. However, experimental data from a tauopathy mouse model indicated anticholinergic activity might enhance neurodegeneration with enhanced neuroinflammation including microglial activation.
Collapse
|
17
|
Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribbs DH, Cotman CW. Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease. Neurobiol Aging 2014; 35:1961-72. [PMID: 24786631 PMCID: PMC4067010 DOI: 10.1016/j.neurobiolaging.2014.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
Mild cognitive impairment (MCI) represents a cognitive state intermediate between normal aging and early Alzheimer's disease (AD). To investigate if the molecular signature of MCI parallels the clinical picture, we use microarrays to extensively profile gene expression in 4 cortical brain regions (entorhinal cortex, hippocampus, superior frontal gyrus, post-central gyrus) using the postmortem tissue from cognitively normal aged controls, MCI, and AD cases. Our data reveal that gene expression patterns in MCI are not an extension of aging, and for the most part, are not intermediate between aged controls and AD. Functional enrichment analysis of significant genes revealed prominent upregulation in MCI brains of genes associated with anabolic and biosynthetic pathways (notably transcription, protein biosynthesis, protein trafficking, and turnover) as well as mitochondrial energy generation. In addition, many synaptic genes showed altered expression in MCI, predominantly upregulation, including genes for central components of the vesicle fusion machinery at the synapse, synaptic vesicle trafficking, neurotransmitter receptors, and synaptic structure and stabilization. These data suggest that there is a rebalancing of synaptic transmission in the MCI brain. To investigate if synaptic gene expression levels in MCI were related to cognitive function, Pearson correlation coefficient between the Mini Mental State Examination (MMSE) and region-specific messenger RNA expression were computed for MCI cases. A number of synaptic genes showed strong significant correlations (r > 0.8, p < 0.01) most notably in the entorhinal cortex, with fewer in the hippocampus, and very few in neocortical regions. The synaptic genes with highly significant correlations were predominantly related to synaptic transmission and plasticity, and myelin composition. Unexpectedly, we found that gene expression changes that facilitate synaptic excitability and plasticity were overwhelmingly associated with poorer MMSE, and conversely that gene expression changes that inhibit plasticity were positively associated with MMSE. These data suggest that there are excessive excitability and apparent plasticity in limbic brain regions in MCI, that is associated with impaired synaptic and cognitive function. Such changes would be predicted to contribute to increased excitability, in turn leading to greater metabolic demand and ultimately progressive degeneration and AD, if not controlled.
Collapse
Affiliation(s)
- Nicole C Berchtold
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA.
| | | | | | - Ronald C Kim
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - David H Cribbs
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA; Departments of Neurology and Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Carl W Cotman
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA; Departments of Neurology and Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
18
|
McIntire LBJ, Landman N, Kang MS, Finan GM, Hwang JC, Moore AZ, Park LS, Lin CS, Kim TW. Phenotypic assays for β-amyloid in mouse embryonic stem cell-derived neurons. ACTA ACUST UNITED AC 2014; 20:956-67. [PMID: 23890013 DOI: 10.1016/j.chembiol.2013.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Given the complex nature of Alzheimer's disease (AD), a cell-based model that recapitulates the physiological properties of the target neuronal population would be extremely valuable for discovering improved drug candidates and chemical probes to uncover disease mechanisms. We established phenotypic neuronal assays for the biogenesis and synaptic action of amyloid β peptide (Aβ) based on embryonic stem cell-derived neurons (ESNs). ESNs enriched with pyramidal neurons were robust, scalable, and amenable to a small-molecule screening assay, overcoming the apparent limitations of neuronal models derived from human pluripotent cells. Small-molecule screening of clinical compounds identified four compounds capable of reducing Aβ levels in ESNs derived from the Tg2576 mouse model of AD. Our approach is therefore highly suitable for phenotypic screening in AD drug discovery and has the potential to identify therapeutic candidates with improved efficacy and safety potential.
Collapse
Affiliation(s)
- Laura Beth J McIntire
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Iulita MF, Allard S, Richter L, Munter LM, Ducatenzeiler A, Weise C, Do Carmo S, Klein WL, Multhaup G, Cuello AC. Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein: a multidimensional study. Acta Neuropathol Commun 2014; 2:61. [PMID: 24903713 PMCID: PMC4229908 DOI: 10.1186/2051-5960-2-61] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/07/2014] [Indexed: 01/09/2023] Open
Abstract
Numerous studies have implicated the abnormal accumulation of intraneuronal amyloid-β (Aβ) as an important contributor to Alzheimer's disease (AD) pathology, capable of triggering neuroinflammation, tau hyperphosphorylation and cognitive deficits. However, the occurrence and pathological relevance of intracellular Aβ remain a matter of controversial debate. In this study, we have used a multidimensional approach including high-magnification and super-resolution microscopy, cerebro-spinal fluid (CSF) mass spectrometry analysis and ELISA to investigate the Aβ pathology and its associated cognitive impairments, in a novel transgenic rat model overexpressing human APP. Our microscopy studies with quantitative co-localization analysis revealed the presence of intraneuronal Aβ in transgenic rats, with an immunological signal that was clearly distinguished from that of the amyloid precursor protein (APP) and its C-terminal fragments (CTFs). The early intraneuronal pathology was accompanied by a significant elevation of soluble Aβ42 peptides that paralleled the presence and progression of early cognitive deficits, several months prior to amyloid plaque deposition. Aβ38, Aβ39, Aβ40 and Aβ42 peptides were detected in the rat CSF by MALDI-MS analysis even at the plaque-free stages; suggesting that a combination of intracellular and soluble extracellular Aβ may be responsible for impairing cognition at early time points. Taken together, our results demonstrate that the intraneuronal development of AD-like amyloid pathology includes a mixture of molecular species (Aβ, APP and CTFs) of which a considerable component is Aβ; and that the early presence of these species within neurons has deleterious effects in the CNS, even before the development of full-blown AD-like pathology.
Collapse
Affiliation(s)
- M Florencia Iulita
- />Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William-Osler Promenade, Room 1210, Montreal, Quebec Canada
| | - Simon Allard
- />Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William-Osler Promenade, Room 1210, Montreal, Quebec Canada
| | - Luise Richter
- />Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William-Osler Promenade, Room 1210, Montreal, Quebec Canada
| | - Lisa-Marie Munter
- />Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William-Osler Promenade, Room 1210, Montreal, Quebec Canada
| | - Adriana Ducatenzeiler
- />Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William-Osler Promenade, Room 1210, Montreal, Quebec Canada
| | - Christoph Weise
- />Intitutes of Chemistry and Biochemistry, Freie Universität, Berlin, Germany
| | - Sonia Do Carmo
- />Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William-Osler Promenade, Room 1210, Montreal, Quebec Canada
| | - William L Klein
- />Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Institute for Neuroscience, Chicago, USA
| | - Gerhard Multhaup
- />Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William-Osler Promenade, Room 1210, Montreal, Quebec Canada
| | - A Claudio Cuello
- />Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William-Osler Promenade, Room 1210, Montreal, Quebec Canada
- />Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- />Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
20
|
Transient disturbances in contextual fear memory induced by Aβ(25–35) in rats are accompanied by cholinergic dysfunction. Behav Brain Res 2014; 259:152-7. [DOI: 10.1016/j.bbr.2013.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 11/22/2022]
|
21
|
Canas PM, Simões AP, Rodrigues RJ, Cunha RA. Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimer's disease. Neuropharmacology 2014; 76 Pt A:51-6. [DOI: 10.1016/j.neuropharm.2013.08.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/18/2013] [Accepted: 08/28/2013] [Indexed: 12/18/2022]
|
22
|
BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2013; 110:19567-72. [PMID: 24218590 DOI: 10.1073/pnas.1319297110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer's disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.
Collapse
|
23
|
Brasnjevic I, Lardenoije R, Schmitz C, Van Der Kolk N, Dickstein DL, Takahashi H, Hof PR, Steinbusch HW, Rutten BP. REGION-SPECIFIC NEURON AND SYNAPSE LOSS IN THE HIPPOCAMPUS OF APP SL/PS1 KNOCK-IN MICE. Transl Neurosci 2013; 4:8-19. [PMID: 24829793 PMCID: PMC4018205 DOI: 10.2478/s13380-013-0111-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transgenic mouse models with knock-in (KI) expression of human mutant amyloid precursor protein (APP) and/or human presenilin 1 (PS1) may be helpful to elucidate the cellular consequences of APP and PS1 misprocessing in the aging brain. Age-related alterations in total numbers of neurons and in numbers of synaptophysin-immunoreactive presynaptic boutons (SIPB), as well as the amyloid plaque load were analyzed in the hippocampal dentate gyrus (DG), CA3, and CA1-2 of 2- and 10-month-old APPSL/PS1 homozygous KI, APPSL (expressing human mutant APP751 carrying the Swedish [K670N/M671L] and London [V717I] mutations under Thy-1 promoter), and PS1 homozygous KI mice (expressing human PS1 mutations [M233T and L235P]). APPSL/PS1 homozygous KI mice, but neither APPSL mice nor PS1 homozygous KI mice, showed substantial age-related loss of neurons (-47.2%) and SIPB (-22.6%), specifically in CA1-2. PS1 homozygous KI mice showed an age-related increase in hippocampal granule cell numbers (+37.9%). Loss of neurons and SIPB greatly exceeded the amount of local extracellular Aβ aggregation and astrocytes, whereas region-specific accumulation of intraneuronal Aβ preceded neuron and synapse loss. An age-related increase in the ratio of SIPB to neuron numbers in CA1-2 of APPSL/PS1 homozygous KI mice was suggestive of compensatory synaptic plasticity. These findings indicate a region-selectivity in intra- and extraneuronal Aβ accumulation in connection with neuron and synapse loss in the hippocampus of APPSL/PS1 homozygous KI mice.
Collapse
Affiliation(s)
- Ivona Brasnjevic
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Roy Lardenoije
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Christoph Schmitz
- Department of Anatomy II, Institute of Anatomy, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Nicolien Van Der Kolk
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Dara L. Dickstein
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hisaaki Takahashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, 791-0295 Ehime, Japan
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harry W.M. Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Bart P.F. Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| |
Collapse
|
24
|
Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC. Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer's disease. Neurobiol Aging 2012; 33:1329-42. [DOI: 10.1016/j.neurobiolaging.2011.01.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/21/2011] [Accepted: 01/26/2011] [Indexed: 12/21/2022]
|
25
|
Tayebati SK, Tomassoni D, Amenta F. Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. J Neurol Sci 2012; 322:241-9. [PMID: 22726353 DOI: 10.1016/j.jns.2012.05.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/23/2012] [Indexed: 11/28/2022]
Abstract
Arterial hypertension is the main risk factor for stroke and plays a role in the development of vascular cognitive impairment (VCI) and vascular dementia (VaD). An association between hypertension and reduced cerebral blood flow and VCI is documented and arterial hypertension in midlife is associated with a higher probability of cognitive impairment. These findings suggest that arterial hypertension is a main cause of vascular brain disorder (VBD). Spontaneously hypertensive rat (SHR) is the rat strain most extensively investigated and used for assessing hypertensive brain damage and treatment of it. They are normotensive at birth and at 6months they have a sustained hypertension. Time-dependent rise of arterial blood pressure, the occurrence of brain atrophy, loss of nerve cells and glial reaction are phenomena shared to some extent with hypertensive brain damage in humans. SHR present changes of some neurotransmitter systems that may have functional and behavioral relevance. An impaired cholinergic neurotransmission characterizes SHR, similarly as reported in patients affected by VaD. SHR are also characterized by a dopaminergic hypofunction and noradrenergic hyperactivity similarly as occurs in attention-deficit with hyperactivity disorder (ADHD). Microanatomical, neurochemical and behavioral data on SHR are in favor of the hypothesis that this strain is a suitable model of VBD. Changes in catecholaminergic transmission put forward SHR as a possible model of ADHD as well. Hence SHR could represent a multi-faced model of two important groups of pathologies, VBD and ADHD. As for most models, researchers should always consider that SHR offer some similarities with corresponding human pathologies, but they do not suffer from the same disease. This paper reviews the main microanatomical, neurochemical and behavioral characteristics of SHR with particular reference as an animal model of brain vascular injury.
Collapse
Affiliation(s)
- Seyed Khosrow Tayebati
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy.
| | | | | |
Collapse
|
26
|
Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer's disease-like amyloid pathology. J Neuroinflammation 2012; 9:62. [PMID: 22472085 PMCID: PMC3352127 DOI: 10.1186/1742-2094-9-62] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/02/2012] [Indexed: 12/20/2022] Open
Abstract
Background A growing body of evidence indicates that inflammation is one of the earliest neuropathological events in Alzheimer's disease. Accordingly, we have recently shown the occurrence of an early, pro-inflammatory reaction in the hippocampus of young, three-month-old transgenic McGill-Thy1-APP mice in the absence of amyloid plaques but associated with intracellular accumulation of amyloid beta petide oligomers. The role of such a pro-inflammatory process in the progression of the pathology remained to be elucidated. Methods and results To clarify this we administered minocycline, a tetracyclic derivative with anti-inflammatory and neuroprotective properties, to young, pre-plaque McGill-Thy1-APP mice for one month. The treatment ended at the age of three months, when the mice were still devoid of plaques. Minocycline treatment corrected the up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 observed in young transgenic placebo mice. Furthermore, the down-regulation of inflammatory markers correlated with a reduction in amyloid precursor protein levels and amyloid precursor protein-related products. Beta-site amyloid precursor protein cleaving enzyme 1 activity and levels were found to be up-regulated in transgenic placebo mice, while minocycline treatment restored these levels to normality. The anti-inflammatory and beta-secretase 1 effects could be partly explained by the inhibition of the nuclear factor kappa B pathway. Conclusions Our study suggests that the pharmacological modulation of neuroinflammation might represent a promising approach for preventing or delaying the development of Alzheimer's disease neuropathology at its initial, pre-clinical stages. The results open new vistas to the interplay between inflammation and amyloid pathology.
Collapse
Affiliation(s)
- Maria Teresa Ferretti
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
27
|
Impact of the NGF maturation and degradation pathway on the cortical cholinergic system phenotype. J Neurosci 2012; 32:2002-12. [PMID: 22323714 DOI: 10.1523/jneurosci.1144-11.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical cholinergic atrophy plays a significant role in the cognitive loss seen with aging and in Alzheimer's disease (AD), but the mechanisms leading to it remain unresolved. Nerve growth factor (NGF) is the neurotrophin responsible for the phenotypic maintenance of basal forebrain cholinergic neurons in the mature and fully differentiated CNS. In consequence, its implication in cholinergic atrophy has been suspected; however, no mechanistic explanation has been provided. We have previously shown that the precursor of NGF (proNGF) is cleaved extracellularly by plasmin to form mature NGF (mNGF) and that mNGF is degraded by matrix metalloproteinase 9. Using cognitive-behavioral tests, Western blotting, and confocal and electron microscopy, this study demonstrates that a pharmacologically induced chronic failure in extracellular NGF maturation leads to a reduction in mNGF levels, proNGF accumulation, cholinergic degeneration, and cognitive impairment in rats. It also shows that inhibiting NGF degradation increases endogenous levels of the mature neurotrophin and increases the density of cortical cholinergic boutons. Together, the data point to a mechanism explaining cholinergic loss in neurodegenerative conditions such as AD and provide a potential therapeutic target for the protection or restoration of this CNS transmitter system in aging and AD.
Collapse
|
28
|
Scott L, Feng J, Kiss T, Needle E, Atchison K, Kawabe TT, Milici AJ, Hajós-Korcsok E, Riddell D, Hajós M. Age-dependent disruption in hippocampal θ oscillation in amyloid-β overproducing transgenic mice. Neurobiol Aging 2012; 33:1481.e13-23. [PMID: 22227005 DOI: 10.1016/j.neurobiolaging.2011.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/07/2011] [Accepted: 12/05/2011] [Indexed: 01/25/2023]
Abstract
Transgenic mice are used to model increased brain amyloid-β (Aβ) and amyloid plaque formation reflecting Alzheimer's disease pathology. In our study hippocampal network oscillations, population spikes, and long-term potentiation (LTP) were recorded in APPswe/PS1dE9 (APP/PS1) and presenilin1 (PS1) transgenic and wild type mice at 2, 4, and 8 months of age under urethane anesthesia. Hippocampal theta oscillations elicited by brainstem stimulation were similar in wild type and PS1 mice at all age groups. In contrast, APP/PS1 mice showed an age-dependent decrease in hippocampal activity, characterized by a significant decline in elicited theta power and frequency at 4 and 8 months. Magnitudes of population spikes and long-term potentiation in the dentate gyrus were similar across groups at both 4 and 8 months. In APP/PS1 mice, soluble and insoluble Aβ, and hippocampal and cortical plaque load increased with age, and the disruption in hippocampal theta oscillation showed a significant correlation with plaque load. Our study shows that, using in vivo electrophysiological methods, early Aβ-related functional deficits can be robustly detected in the brainstem-hippocampus multisynaptic network.
Collapse
Affiliation(s)
- Liam Scott
- Pfizer Global Research and Development, Groton, CT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behav Brain Res 2011; 221:594-603. [DOI: 10.1016/j.bbr.2010.05.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/19/2010] [Indexed: 01/19/2023]
|
30
|
Morphological changes in the enteric nervous system of aging and APP23 transgenic mice. Brain Res 2011; 1378:43-53. [PMID: 21241669 DOI: 10.1016/j.brainres.2011.01.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/22/2010] [Accepted: 01/10/2011] [Indexed: 12/31/2022]
Abstract
Gastrointestinal motility disorders often pose a debilitating problem, especially in elderly patients. In addition, they are frequently occurring co-morbidities in dementia. Whereas a failing enteric nervous system has already been shown to be involved in gastrointestinal motility disorders and in Parkinson's disease, a relationship with the neurodegenerative process of Alzheimer's disease was not yet shown. Therefore, we sought to document quantitative changes in the distribution of βIII-tubulin (general neuronal marker), Substance P, neuronal nitric oxide synthase (NOS), glial fibrillary acidic protein (GFAP) and S-100 immunoreactivity in addition to a qualitative assessment of the presence of amyloid in the small and large intestines of 6, 12 and 18-month-old wild type and transgenic Thy-1-APP23 mice. Amyloid deposits were seen in the vasculature, the mucosal and muscle layer of both heterozygous and wild type mice. Amyloidβ₁₋₄₂ could not be detected, pointing to a different amyloid composition than that found in senile plaques in the mice's brains. The finding of an increased density of βIII-tubulin-, Substance P- and NOS-IR-nerve fibres in heterozygous mice could not undoubtedly be related to amyloid deposition or to an activation of glial cells. Therefore, the alterations at the level of the enteric nervous system and the deposition of amyloid seem not primarily involved in the pathogenesis of Alzheimer's disease. At most they are secondary related to the neurodegenerative process. Additionally, our data could not show extensive neuronal or glial cell loss associated with aging, in contrast to other reports. Instead an increase in S100-IR was observed in senescent mice.
Collapse
|
31
|
|
32
|
Perez SE, He B, Muhammad N, Oh KJ, Fahnestock M, Ikonomovic MD, Mufson EJ. Cholinotrophic basal forebrain system alterations in 3xTg-AD transgenic mice. Neurobiol Dis 2010; 41:338-52. [PMID: 20937383 DOI: 10.1016/j.nbd.2010.10.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/07/2010] [Accepted: 10/02/2010] [Indexed: 12/29/2022] Open
Abstract
The cholinotrophic system, which is dependent upon nerve growth factor and its receptors for survival, is selectively vulnerable in Alzheimer's disease (AD). But, virtually nothing is known about how this deficit develops in relation to the hallmark lesions of this disease, amyloid plaques and tau containing neurofibrillary tangles. The vast majority of transgenic models of AD used to evaluate the effect of beta amyloid (Aβ) deposition upon the cholinotrophic system over-express the amyloid precursor protein (APP). However, nothing is known about how this system is affected in triple transgenic (3xTg)-AD mice, an AD animal model displaying Aβ plaque- and tangle-like pathology in the cortex and hippocampus, which receive extensive cholinergic innervation. We performed a detailed morphological and biochemical characterization of the cholinotrophic system in young (2-4 months), middle-aged (13-15 months) and old (18-20 months) 3xTg-AD mice. Cholinergic neuritic swellings increased in number and size with age, and were more conspicuous in the hippocampal-subicular complex in aged female than in 3xTg-AD male mice. Stereological analysis revealed a reduction in choline acetyltransferase (ChAT) positive cells in the medial septum/vertical limb of the diagonal band of Broca in aged 3xTg-AD mice. ChAT enzyme activity levels decreased significantly in the hippocampus of middle-aged 3xTg-AD mice compared to age-matched non-transgenic (or wild type) mice. ProNGF protein levels increased in the cortex of aged 3xTg-AD mice, whereas TrkA protein levels were reduced in a gender-dependent manner in aged mutant mice. In contrast, p75(NTR) protein cortical levels were stable but increased in the hippocampus of aged 3xTg-AD mice. These data demonstrate that cholinotrophic alterations in 3xTg-AD mice are age- and gender-dependent and more pronounced in the hippocampus, a structure more severely affected by Aβ plaque pathology.
Collapse
Affiliation(s)
- Sylvia E Perez
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, suite 300, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Robertson RT, Baratta J, Yu J, LaFerla FM. Amyloid-beta expression in retrosplenial cortex of triple transgenic mice: relationship to cholinergic axonal afferents from medial septum. Neuroscience 2009; 164:1334-46. [PMID: 19772895 PMCID: PMC2784206 DOI: 10.1016/j.neuroscience.2009.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 09/08/2009] [Accepted: 09/14/2009] [Indexed: 12/17/2022]
Abstract
Triple transgenic (3xTg-AD) mice harboring the presenilin 1, amyloid precursor protein, and tau transgenes (Oddo et al., 2003b) display prominent levels of amyloid-beta (Abeta) immunoreactivity in forebrain regions. The Abeta immunoreactivity is first seen intracellularly in neurons and later as extracellular plaque deposits. The present study examined Abeta immunoreactivity that occurs in layer III of the granular division of retrosplenial cortex (RSg). This pattern of Abeta immunoreactivity in layer III of RSg develops relatively late, and is seen in animals older than 14 months. The appearance of the Abeta immunoreactivity is similar to an axonal terminal field and thus may offer a unique opportunity to study the relationship between afferent projections and the formation of Abeta deposits. Axonal tract tracing techniques demonstrated that the pattern of axon terminal labeling in layer III of RSg, following placement of DiI in medial septum, is remarkably similar to the pattern of cholinergic axons in RSg, as detected by acetylcholinesterase histochemical staining, choline acetyltransferase immunoreactivity, or p75 receptor immunoreactivity; this pattern also is strikingly similar to the band of Abeta immunoreactivity. In animals sustaining early damage to the medial septal nucleus (prior to the advent of Abeta immunoreactivity), the band of Abeta in layer III of RSg does not develop; the corresponding band of cholinergic markers also is eliminated. In older animals (after the appearance of the Abeta immunoreactivity) damage to cholinergic afferents by electrolytic lesions, immunotoxin lesions, or cutting the cingulate bundle, result in a rapid loss of the cholinergic markers and a slower reduction of Abeta immunoreactivity. These results suggest that the septal cholinergic axonal projections transport Abeta or amyloid precursor protein (APP) to layer III of RSg.
Collapse
Affiliation(s)
- R T Robertson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
34
|
Cholinergic Involvement in Alzheimer’s Disease. A Link with NGF Maturation and Degradation. J Mol Neurosci 2009; 40:230-5. [DOI: 10.1007/s12031-009-9238-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 11/25/2022]
|
35
|
Tayebati S, Di Tullio M, Amenta F. Vesicular Acetylcholine Transporter (VAChT) in the Brain of Spontaneously Hypertensive Rats (SHR): Effect of Treatment with an Acetylcholinesterase Inhibitor. Clin Exp Hypertens 2009; 30:732-43. [DOI: 10.1080/10641960802580216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Emerging hypotheses regarding the influences of butyrylcholinesterase-K variant, APOE epsilon 4, and hyperhomocysteinemia in neurodegenerative dementias. Med Hypotheses 2009; 73:230-50. [PMID: 19359103 DOI: 10.1016/j.mehy.2009.01.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 12/04/2008] [Accepted: 01/24/2009] [Indexed: 01/20/2023]
Abstract
Non-enzymatic functions of butyrylcholinesterase (BuChE) include prevention of the aggregation of amyloid-beta peptide (A beta) in a concentration-dependent manner. This is mediated by the C-terminus of the protein, distal from the enzymatic site. The BuChE-K variant polymorphism lowers expression of BuChE protein and/or alters C-terminal activity. In combination with factors that increase production or reduce elimination of A beta, and/or increase susceptibility to A beta toxicity - such as the apolipoprotein E (APOE) epsilon 4 allele and/or hyperhomocysteinemia - BuChE-K may accelerate cholinergic synaptic and neuronal damage and cognitive decline. A beta-mediated damage to ascending cholinergic pathways may be further accentuated by Lewy body and/or cerebrovascular disease. As the disease advances and functioning cholinergic synapses disappear, both the rapid cognitive decline and response to cholinesterase inhibitor therapy in individuals with these factors may diminish. Non-enzymatic functions of the BuChE protein, APOE epsilon 4 status and hyperhomocysteinemia influence the progression of pathology, symptom expression, and response to cholinesterase inhibition in a stage-specific manner in neurodegenerative disorders associated with Alzheimer, Lewy body and vascular pathology.
Collapse
|
37
|
Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA. Transient intraneuronal A beta rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice. Acta Neuropathol 2008; 116:647-55. [PMID: 18974993 DOI: 10.1007/s00401-008-0451-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 11/29/2022]
Abstract
The accumulation of beta-amyloid (A beta) plaques and neurofibrillary tangles consisting of hyperphosphorylated tau protein are pathological features of Alzheimer's disease (AD) commonly modeled in mice using known human familial mutations; however, the loss of neurons also found to occur in AD is rarely observed in such models. The mechanism of neuron degeneration remains unclear but is of great interest as it is very likely an important factor for the onset of adverse memory deficits occurring in individuals with AD. The role of A beta in the neuronal degeneration is a matter of controversial debates. In the present study we investigated the impact of extracellular plaque A beta versus intraneuronal A beta on neuronal cell death. The thalamus and the frontal cortex of the APP/PS1KI mouse model were chosen for stereological quantification representing regions with plaques only (thalamus) or plaques as well as intraneuronal A beta (frontal cortex). A loss of neurons was found in the frontal cortex at the age of 6 months coinciding with the decrease of intraneuronal immunoreactivity, suggesting that the neurons with early intraneuronal A beta accumulation were lost. Strikingly, no neuron loss was observed in the thalamus despite the development of abundant plaque pathology with levels comparable to the frontal cortex. This study suggests that plaques have no effect on neuron death whereas accumulation of intraneuronal A beta may be an early transient pathological event leading to neuron loss in AD.
Collapse
Affiliation(s)
- Ditte Zerlang Christensen
- Division of Molecular Psychiatry and Alzheimer Ph.D. Graduate School, Department of Psychiatry, University of Goettingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Christensen DZ, Bayer TA, Wirths O. Intracellular Aß triggers neuron loss in the cholinergic system of the APP/PS1KI mouse model of Alzheimer's disease. Neurobiol Aging 2008; 31:1153-63. [PMID: 18771817 DOI: 10.1016/j.neurobiolaging.2008.07.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/24/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
Loss of cholinergic neurons in the Nucleus Basalis of Meynert in Alzheimer's disease (AD) patients was one of the first discoveries of neuron loss in AD. Despite an intense focus on the cholinergic system in AD, the reason for this cholinergic neuron loss is yet unknown. In the present study we examined Abeta-induced pathology and neuron loss in the cholinergic system of the bigenic APP/PS1KI mouse model. Expression of the APP transgene was found in ChAT-positive neurons of motor nuclei accompanied by robust intracellular Abeta accumulation, whereas no APP expressing neurons and thus no intracellular Abeta accumulation were found in neither the forebrain or pons complexes, nor in the caudate putamen. This expression pattern was used as a model system to study the effect of intra- and extracellular Abeta accumulation on neuron loss in the cholinergic system. Stereological quantification revealed a loss of ChAT-positive neurons in APP/PS1KI mice only in the motor nuclei Mo5 and 7N accumulating intracellular Abeta. This study supports the hypothesis of intracellular Abeta accumulation as an early pathological alteration contributing to cell death in AD.
Collapse
Affiliation(s)
- Ditte Z Christensen
- Division of Molecular Psychiatry and Alzheimer Ph.D. Graduate School, Department of Psychiatry, University of Goettingen, von-Siebold-Str. 5, 37075 Goettingen, Germany
| | | | | |
Collapse
|
39
|
Cassel JC, Mathis C, Majchrzak M, Moreau PH, Dalrymple-Alford JC. Coexisting cholinergic and parahippocampal degeneration: a key to memory loss in dementia and a challenge for transgenic models? NEURODEGENER DIS 2008; 5:304-17. [PMID: 18520165 DOI: 10.1159/000135615] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 10/31/2007] [Indexed: 12/25/2022] Open
Abstract
One century after Alzheimer's initial report, a variety of animal models of Alzheimer's disease (AD) are being used to mimic one or more pathological signs viewed as critical for the evolution of cognitive decline in dementia. Among the most common are, (a) traditional lesion models aimed at reproducing the degeneration of one of two key brain regions affected in AD, namely the cholinergic basal forebrain (CBF) and the transentorhinal region, and (b) transgenic mouse models aimed at reproducing AD histopathological hallmarks, namely amyloid plaques and neurofibrillary tangles. These models have provided valuable insights into the development and consequences of the pathology, but they have not consistently reproduced the severity of memory deficits exhibited in AD. The reasons for this lack of correspondence with the severity of expected deficits may include the limited replication of multiple neuropathology in potentially key brain regions. A recent lesion model in the rat found that severe memory impairment was obtained only when the two traditional lesions were combined together (i.e. conjoint CBF and entorhinal cortex lesions), indicative of a dramatic impact on cognitive function when there is coexisting, rather than isolated, damage in these two brain regions. It is proposed that combining AD transgenic mouse models with additional experimental damage to both the CBF and entorhinal regions might provide a unique opportunity to further understand the evolution of the disease and improve treatments of severe cognitive dysfunction in neurodegenerative dementias.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- LINC UMR 7191, Université Louis Pasteur, CNRS, Institut Fédératif de Recherche IFR 37, GDR CNRS 2905, Strasbourg, France.
| | | | | | | | | |
Collapse
|
40
|
Bell KFS, Zheng L, Fahrenholz F, Cuello AC. ADAM-10 over-expression increases cortical synaptogenesis. Neurobiol Aging 2008; 29:554-65. [PMID: 17187903 DOI: 10.1016/j.neurobiolaging.2006.11.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 10/25/2006] [Accepted: 11/07/2006] [Indexed: 11/27/2022]
Abstract
Cortical cholinergic, glutamatergic and GABAergic terminals become upregulated during early stages of the transgenic amyloid pathology. Abundant evidence suggests that sAPP alpha, the product of the non-amyloidogenic alpha-secretase pathway, is neurotrophic both in vitro and when exogenously applied in vivo. The disintegrin metalloprotease ADAM-10 has been shown to have alpha-secretase activity in vivo. To determine whether sAPP alpha has an endogenous biological influence on cortical presynaptic boutons in vivo, we quantified cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities in either ADAM-10 moderate expressing (ADAM-10 mo) transgenic mice, which moderately overexpress ADAM-10, or age-matched non-transgenic controls. Both early and late ontogenic time points were investigated. ADAM-10 mo transgenic mice display significantly elevated cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities at the early time point (8 months). Only the cholinergic presynaptic bouton density remains significantly elevated in late-staged ADAM-10 mo transgenic animals (18 months). To confirm that the observed elevations were due to increased levels of endogenous murine sAPP alpha, exogenous human sAPP alpha was infused into the cortex of non-transgenic control animals for 1 week. Exogenous infusion of sAPP alpha led to significant elevations in the cholinergic, glutamatergic and GABAergic cortical presynaptic bouton populations. These results are the first to demonstrate an in vivo influence of ADAM-10 on neurotransmitter-specific cortical synaptic plasticity and further confirm the neurotrophic influence of sAPP alpha on cortical synaptogenesis.
Collapse
Affiliation(s)
- Karen F S Bell
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
41
|
Pappatà S, Salvatore E, Postiglione A. In Vivo Imaging of Neurotransmission and Brain Receptors in Dementia. J Neuroimaging 2008; 18:111-24. [DOI: 10.1111/j.1552-6569.2007.00194.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
42
|
Small DH. Network dysfunction in Alzheimer's disease: does synaptic scaling drive disease progression? Trends Mol Med 2008; 14:103-8. [PMID: 18262842 DOI: 10.1016/j.molmed.2007.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 11/29/2022]
Abstract
Accumulation of beta-amyloid protein (Abeta) in the brain is a key feature of Alzheimer's disease (AD). The build-up of aggregated forms of Abeta leads to synaptic loss and to cognitive dysfunction. Although the pathways controlling production and aggregation of Abeta are well studied, the mechanisms that drive the spread of neurodegeneration in the brain are unclear. Here, the idea is presented that AD progresses as a consequence of synaptic scaling, a type of neuronal plasticity that helps maintain synaptic signal strength. Recent studies indicate that brain-derived neurotrophic factor, tumour necrosis factor-alpha and alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) regulate synaptic scaling in the AD brain. It is suggested that further studies on synaptic scaling in AD could reveal new targets for therapeutic drug development.
Collapse
Affiliation(s)
- David H Small
- Menzies Research Institute, University of Tasmania, Hobart 7000, Tasmania, Australia.
| |
Collapse
|
43
|
Bell KFS, Bennett DA, Cuello AC. Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci 2007; 27:10810-7. [PMID: 17913914 PMCID: PMC6672819 DOI: 10.1523/jneurosci.3269-07.2007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic integrity is now recognized as a central component of Alzheimer's disease. Surprisingly, however, the structural status of glutamatergic synapses in Alzheimer's disease is unclear, despite the fact that glutamate is the major excitatory transmitter of the CNS and has key roles in excitotoxicity and long-term potentiation. The identification of specific markers of glutamatergic neurons now allows an assessment of the structural involvement of the glutamatergic system across progressive stages of the Alzheimer's pathology, an opportunity not afforded by previously used neurochemical approaches. Glutamatergic presynaptic bouton density and dystrophic neurite abundance were quantified in midfrontal gyrus brain tissue from subjects with no cognitive impairment, mild cognitive impairment, or mild- or severe-stage Alzheimer's disease. Our study demonstrates a striking pathology-dependent pattern of glutamatergic synaptic remodeling with disease progression. Subjects with mild cognitive impairment display a paradoxical elevation in glutamatergic presynaptic bouton density, a situation akin to that observed in the cholinergic system, which then depletes and drops with disease progression. This pattern of synaptic remodeling mirrors our previous findings in transgenic animal models and is of major relevance to current transmitter-based therapeutics.
Collapse
Affiliation(s)
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Armour Academic Center, Chicago, Illinois 60612
| | - A. Claudio Cuello
- Departments of Pharmacology and Therapeutics
- Anatomy and Cell Biology, and
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1Y6, and
| |
Collapse
|
44
|
Perez SE, Dar S, Ikonomovic MD, DeKosky ST, Mufson EJ. Cholinergic forebrain degeneration in the APPswe/PS1DeltaE9 transgenic mouse. Neurobiol Dis 2007; 28:3-15. [PMID: 17662610 PMCID: PMC2245889 DOI: 10.1016/j.nbd.2007.06.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 06/05/2007] [Accepted: 06/06/2007] [Indexed: 11/18/2022] Open
Abstract
The impact of Abeta deposition upon cholinergic intrinsic cortical and striatal, as well as basal forebrain long projection neuronal systems was qualitatively and quantitatively evaluated in young (2-6 months) and middle-aged (10-16 months) APPswe/PS1DeltaE9 transgenic (tg) mice. Cholinergic neuritic swellings occurred as early as 2-3 months of age in the cortex and hippocampus and 5-6 months in the striatum of tg mice. However, cholinergic neuron number or choline acetyltransferase (ChAT) optical density measurements remained unchanged in the forebrain structures with age in APPswe/PS1DeltaE9 tg mice. ChAT enzyme activity decreased significantly in the cortex and hippocampus of middle-aged tg mice. These results suggest that Abeta deposition has age-dependent effects on cortical and hippocampal ChAT fiber networks and enzyme activity, but does not impact the survival of cholinergic intrinsic or long projection forebrain neurons in APPswe/PS1DeltaE9 tg mice.
Collapse
Affiliation(s)
- Sylvia E. Perez
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Saleem Dar
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Milos D. Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Steven T. DeKosky
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
45
|
González I, Arévalo-Serrano J, Sanz-Anquela JM, Gonzalo-Ruiz A. Effects of beta-amyloid protein on M1 and M2 subtypes of muscarinic acetylcholine receptors in the medial septum-diagonal band complex of the rat: relationship with cholinergic, GABAergic, and calcium-binding protein perikarya. Acta Neuropathol 2007; 113:637-51. [PMID: 17294199 DOI: 10.1007/s00401-007-0201-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
Cortical cholinergic dysfunction has been correlated with the expression and processing of beta-amyloid precursor protein. However, it remains unclear as to how cholinergic dysfunction and beta-amyloid (Abeta) formation and deposition might be related to one another. Since the M1- and M2 subtypes of muscarinic acetylcholine receptors (mAChRs) are considered key molecules that transduce the cholinergic message, the purpose of the present study was to assess the effects of the injected Abeta peptide on the number of M1mAchR- and M2mAChR-immunoreactive cells in the medial septum-diagonal band (MS-nDBB) complex of the rat. Injections of Abeta protein into the retrosplenial cortex resulted in a decrease in M1mAChR and M2mAChR immunoreactivity in the MS-nDBB complex. Quantitative analysis revealed a significant reduction in the number of M1mAChR- and M2mAChR-immunoreactive cells in the medial septum nucleus (MS) and in the horizontal nucleus of the diagonal band of Broca (HDB) as compared to the corresponding hemisphere in control animals and with that seen in the contralateral hemisphere, which corresponds to the PBS-injected side. Co-localization studies showed that the M1mAChR protein is localized in GABA-immunoreactive cells of the MS-nDBB complex, in particular those of the MS nucleus, while M2mAChR protein is localized in both the cholinergic and GABAergic cells. Moreover, GABAergic cells containing M2mAChR are mainly localized in the MS nucleus, while cholinergic cells containing M2mAChR are localized in the MS and the HDB nuclei. Our findings suggest that Abeta induces a reduction in M1mAChR- and M2mAChR-containing cells, which may contribute to impairments of cholinergic and GABAergic transmission in the MS-nDBB complex.
Collapse
Affiliation(s)
- Iván González
- Laboratory of Neuroanatomy, Institute of Neuroscience of Castilla and León, University of Valladolid, Campus de los Pajaritos de Soria, 42004 Soria, Spain
| | | | | | | |
Collapse
|
46
|
Güntert A, Döbeli H, Bohrmann B. High sensitivity analysis of amyloid-beta peptide composition in amyloid deposits from human and PS2APP mouse brain. Neuroscience 2006; 143:461-75. [PMID: 17008022 DOI: 10.1016/j.neuroscience.2006.08.027] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 07/27/2006] [Accepted: 08/07/2006] [Indexed: 11/25/2022]
Abstract
Cortical amyloid-beta (Abeta) deposition is considered essential in Alzheimer's disease (AD) and is also detectable in nondemented individuals with pathologic aging (PA). The present work presents a detailed analysis of the Abeta composition in various plaque types from human AD and PA cases, compared with plaque Abeta isolated from PS2APP mice. To determine minute amounts of Abeta from 30 to 50 laser-dissected amyloid deposits, we used a highly sensitive mass spectrometry procedure after restriction protease lysyl endopeptidase (Lys-C) digestion. This approach allowed the analysis of the amino-terminus and, including a novel ionization modifier, for the first time the carboxy-terminus of Abeta at a detection limit of approximately 200 fmol. In addition, full length Abeta 40/42 and pyroglutamate 3-42 were analyzed using a highly sensitive urea-based Western blot procedure. Generally, Abeta fragments were less accessible in human deposits, indicative of more posttranslational modifications. Thioflavine S positive cored plaques in AD were found to contain predominantly Abeta 42, whereas thioflavine S positive compact plaques and vascular amyloid consist mostly of Abeta 40. Diffuse plaques from AD and PA, as well as from PS2APP mice are composed predominantly of Abeta 1-42. Despite biochemical similarities in human and PS2APP mice, immuno-electron microscopy revealed an extensive extracellular matrix associated with Abeta fibrils in AD, specifically in diffuse plaques. Amino-terminal truncations of Abeta, especially pyroglutamate 3-40/42, are more frequently found in human plaques. In cored plaques we measured an increase of N-terminal truncations of approximately 20% between Braak stages IV to VI. In contrast, diffuse plaques of AD and PA cases, show consistently only low levels of amino-terminal truncations. Our data support the concept that diffuse plaques represent initial Abeta deposits but indicate a structural difference for Abeta depositions in human AD compared with PS2APP mice already at the stage of diffuse plaque formation.
Collapse
Affiliation(s)
- A Güntert
- Pharma Research Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | | | |
Collapse
|
47
|
Machová E, Jakubík J, Michal P, Oksman M, Iivonen H, Tanila H, Dolezal V. Impairment of muscarinic transmission in transgenic APPswe/PS1dE9 mice. Neurobiol Aging 2006; 29:368-78. [PMID: 17140703 DOI: 10.1016/j.neurobiolaging.2006.10.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/20/2006] [Accepted: 10/30/2006] [Indexed: 02/07/2023]
Abstract
We assessed the integrity of cholinergic neurotransmission in parietal cortex of young adult (7 months) and aged (17 months) transgenic APPswe/PS1dE9 female mice compared to littermate controls. Choline acetyltransferase and acetylcholinesterase activity declined age-dependently in both genotypes, whereas both age- and genotype-dependent decline was found in butyrylcholinesterase activity, vesicular acetylcholine transporter density, muscarinic receptors and carbachol stimulated binding of GTP gamma S in membranes as a functional indicator of muscarinic receptor coupling to G-proteins. Notably, vesicular acetylcholine transporter levels and muscarinic receptor-G-protein coupling were impaired in transgenic mice already at the age of 7 months compared to wild type littermates. Thus, brain amyloid accumulation in this mouse model is accompanied by a serious deterioration of muscarinic transmission already before the mice manifest significant cognitive deficits.
Collapse
Affiliation(s)
- E Machová
- Department of Neurochemistry, Institute of Physiology CAS, Vídenská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
48
|
Heinitz K, Beck M, Schliebs R, Perez-Polo JR. Toxicity mediated by soluble oligomers of beta-amyloid(1-42) on cholinergic SN56.B5.G4 cells. J Neurochem 2006; 98:1930-45. [PMID: 16945109 DOI: 10.1111/j.1471-4159.2006.04015.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been assumed to be as a result of the extensive accumulation of beta-amyloid (Abeta). In addition to Abeta fibrillar assemblies, there are pre-fibrillar forms that have been shown to be neurotoxic, although their role in cholinergic degeneration is still not known. Using the cholinergic cell line SN56.B5.G4, we investigated the effect of different Abeta(1-42) aggregates on cell viability. In our model, only soluble oligomeric but not fibrillar Abeta(1-42) forms induced toxicity in cholinergic cells. To determine whether the neurotoxicity of oligomeric Abeta(1-42) was caused by its oxidative potential, we performed microarray analysis of SN56.B5.G4 cells treated either with oligomeric Abeta(1-42) or H(2)O(2). We showed that genes affected by Abeta(1-42) differed from those affected by non-specific oxidative stress. Many of the genes affected by Abeta(1-42) were present in the endoplasmic reticulum (ER), Golgi apparatus and/or otherwise involved in protein modification and degradation (chaperones, ATF6), indicating a possible role for ER-mediated stress in Abeta-mediated toxicity. Moreover, a number of genes, which are known to be involved in AD (clusterin, Slc18a3), were identified. This study provides important leads for the understanding of oligomeric Abeta(1-42) toxicity in cholinergic cells, which may account in part for cholinergic degeneration in AD.
Collapse
Affiliation(s)
- Katrin Heinitz
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
49
|
Bell KFS, Claudio Cuello A. Altered synaptic function in Alzheimer's disease. Eur J Pharmacol 2006; 545:11-21. [PMID: 16887118 DOI: 10.1016/j.ejphar.2006.06.045] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 12/30/2005] [Accepted: 06/13/2006] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease is the leading cause of dementia in the elderly, presenting itself clinically by progressive loss of memory and learning. Since synaptic density correlates more closely with cognitive impairment than any other pathological lesion observable in the disease pathology, an increased understanding of the mechanisms behind synaptic disconnection is of vital importance. Our lab investigated the neurotransmitter-specific status of distinct cortical presynaptic bouton populations in various transgenic mouse models of the Alzheimer's-like amyloid pathology in order to assess their involvement throughout the progression of the pathology. These studies have revealed that the amyloid pathology appears to progress in a neurotransmitter-specific manner where the cholinergic terminals appear most vulnerable, followed by the glutamatergic terminals and finally by the somewhat more resilient GABAergic terminals. This review will discuss additional studies which also provide evidence of a neurotransmitter-specific pathology as well as comment on the potential explanations for the observed vulnerabilities, touching upon metabolic demand, trophic support and receptor mediated activation.
Collapse
Affiliation(s)
- Karen F S Bell
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, QC, Canada H3G 1Y6
| | | |
Collapse
|
50
|
McLaurin J, Kierstead ME, Brown ME, Hawkes CA, Lambermon MHL, Phinney AL, Darabie AA, Cousins JE, French JE, Lan MF, Chen F, Wong SSN, Mount HTJ, Fraser PE, Westaway D, St George-Hyslop P. Cyclohexanehexol inhibitors of Abeta aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med 2006; 12:801-8. [PMID: 16767098 DOI: 10.1038/nm1423] [Citation(s) in RCA: 278] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 04/26/2006] [Indexed: 11/09/2022]
Abstract
When given orally to a transgenic mouse model of Alzheimer disease, cyclohexanehexol stereoisomers inhibit aggregation of amyloid beta peptide (Abeta) into high-molecular-weight oligomers in the brain and ameliorate several Alzheimer disease-like phenotypes in these mice, including impaired cognition, altered synaptic physiology, cerebral Abeta pathology and accelerated mortality. These therapeutic effects, which occur regardless of whether the compounds are given before or well after the onset of the Alzheimer disease-like phenotype, support the idea that the accumulation of Abeta oligomers has a central role in the pathogenesis of Alzheimer disease.
Collapse
Affiliation(s)
- JoAnne McLaurin
- Centre for Research in Neurodegenerative Diseases, 6 Queen's Park Crescent West, Toronto, Ontario M5S 3H2 Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|