1
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2024:10.1007/s12035-024-04457-1. [PMID: 39240280 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Guerra-Cantera S, Frago LM, Jiménez-Hernaiz M, Ros P, Freire-Regatillo A, Barrios V, Argente J, Chowen JA. Impact of Long-Term HFD Intake on the Peripheral and Central IGF System in Male and Female Mice. Metabolites 2020; 10:metabo10110462. [PMID: 33202914 PMCID: PMC7698111 DOI: 10.3390/metabo10110462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The insulin-like growth factor (IGF) system is responsible for growth, but also affects metabolism and brain function throughout life. New IGF family members (i.e., pappalysins and stanniocalcins) control the availability/activity of IGFs and are implicated in growth. However, how diet and obesity modify this system has been poorly studied. We explored how intake of a high-fat diet (HFD) or commercial control diet (CCD) affects the IGF system in the circulation, visceral adipose tissue (VAT) and hypothalamus. Male and female C57/BL6J mice received HFD (60% fat, 5.1 kcal/g), CCD (10% fat, 3.7 kcal/g) or chow (3.1 % fat, 3.4 kcal/g) for 8 weeks. After 7 weeks of HFD intake, males had decreased glucose tolerance (p < 0.01) and at sacrifice increased plasma insulin (p < 0.05) and leptin (p < 0.01). Circulating free IGF1 (p < 0.001), total IGF1 (p < 0.001), IGF2 (p < 0.05) and IGFBP3 (p < 0.01) were higher after HFD in both sexes, with CCD increasing IGFBP2 in males (p < 0.001). In VAT, HFD reduced mRNA levels of IGF2 (p < 0.05), PAPP-A (p < 0.001) and stanniocalcin (STC)-1 (p < 0.001) in males. HFD increased hypothalamic IGF1 (p < 0.01), IGF2 (p < 0.05) and IGFBP5 (p < 0.01) mRNA levels, with these changes more apparent in females. Our results show that diet-induced changes in the IGF system are tissue-, sex- and diet-dependent.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Department of Pediatrics, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain
- Correspondence: (J.A.); (J.A.C.)
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.G.-C.); (L.M.F.); (M.J.-H.); (A.F.-R.); (V.B.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain
- Correspondence: (J.A.); (J.A.C.)
| |
Collapse
|
3
|
Acaz-Fonseca E, Ortiz-Rodriguez A, Azcoitia I, Garcia-Segura LM, Arevalo MA. Notch signaling in astrocytes mediates their morphological response to an inflammatory challenge. Cell Death Discov 2019; 5:85. [PMID: 30962951 PMCID: PMC6447583 DOI: 10.1038/s41420-019-0166-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/19/2022] Open
Abstract
In the nervous system, Notch pathway has a prominent role in the control of neuronal morphology and in the determination of the astrocyte fate. However, the role of Notch in morphological astrocyte plasticity is unknown. Here, we have explored the role of Notch activity on the morphological reactivity of primary astrocytes in response to LPS, an inflammatory stimulus. We found that LPS induces reactive astrocyte morphology by the inhibition of Notch signaling via NFκB activation and Jagged upregulation. In contrast, IGF-1, an anti-inflammatory molecule, inhibits LPS-induced reactive astrocyte morphological phenotype by enhancing Notch signaling through the inhibition of NFκB and the activation of MAPK. Therefore, Notch signaling pathway emerges as a mediator of the regulation of astrocyte morphology by inflammatory and anti-inflammatory stimuli.
Collapse
Affiliation(s)
- Estefania Acaz-Fonseca
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Ortiz-Rodriguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Iñigo Azcoitia
- CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, Madrid, 28040 Spain
| | - Luis M. Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Harmatina OY. [INSULIN-LIKE GROWTH FACTOR 1 UNDER CONDITIONS OF THE BRAIN VASCULAR DISEASES.]. ACTA ACUST UNITED AC 2016; 62:95-102. [PMID: 29975480 DOI: 10.15407/fz62.04.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The system insulin-like growth factors (IGF) occupies an important place in the development and growth of the central nervous system (CNS). Gene expression of insulin-like growth factor I (IGF-1) and IGF-1 receptor are represented in all parts of the brain and are heavily concentrated in the cerebral vessels. IGF-1 is involved in neuro-, angiogenesis, in the stimulation of cell proliferation, and repair responses to damage for both the central and peripheral nervous system. IGF- 1 exerts antioxidant, anti-inflammatory and protective effects on the CNS. The review discusses the importance and the role of IGF-I in vascular diseases of the brain, in particular, aneurysms, the ischemic stroke, the aneurysmal subarachnoid hemorrhage, as well as neuroprotection.
Collapse
|
5
|
Neuroprotective role of liver growth factor "LGF" in an experimental model of cerebellar ataxia. Int J Mol Sci 2014; 15:19056-73. [PMID: 25338046 PMCID: PMC4227260 DOI: 10.3390/ijms151019056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022] Open
Abstract
Cerebellar ataxias (CA) comprise a heterogeneous group of neurodegenerative diseases characterized by a lack of motor coordination. They are caused by disturbances in the cerebellum and its associated circuitries, so the major therapeutic goal is to correct cerebellar dysfunction. Neurotrophic factors enhance the survival and differentiation of selected types of neurons. Liver growth factor (LGF) is a hepatic mitogen that shows biological activity in neuroregenerative therapies. We investigate the potential therapeutic activity of LGF in the 3-acetylpiridine (3-AP) rat model of CA. This model of CA consists in the lesion of the inferior olive-induced by 3-AP (40 mg/kg). Ataxic rats were treated with 5 µg/rat LGF or vehicle during 3 weeks, analyzing: (a) motor coordination by using the rota-rod test; and (b) the immunohistochemical and biochemical evolution of several parameters related with the olivo-cerebellar function. Motor coordination improved in 3-AP-lesioned rats that received LGF treatment. LGF up-regulated NeuN and Bcl-2 protein levels in the brainstem, and increased calbindin expression and the number of neurons receiving calbindin-positive projections in the cerebellum. LGF also reduced extracellular glutamate and GABA concentrations and microglia activation in the cerebellum. In view of these results, we propose LGF as a potential therapeutic agent in cerebellar ataxias.
Collapse
|
6
|
Enriched early life experiences reduce adult anxiety-like behavior in rats: a role for insulin-like growth factor 1. J Neurosci 2013; 33:11715-23. [PMID: 23843538 DOI: 10.1523/jneurosci.3541-12.2013] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early life experiences can affect brain development, contributing to shape interindividual differences in stress vulnerability and anxiety-like behavior. In rodents, high levels of maternal care have long-lasting positive effects on the behavior of the offspring and stress response; post-weaning rearing in an enriched environment (EE) or massage counteract the negative effects of maternal separation or prenatal stressors. We recently found that insulin-like growth factor 1 (IGF-1) is a key mediator of early EE or massage on brain development. Whether early enrichment of experience can induce long-lasting effects on anxiety-like behavior and whether IGF-1 is involved in these effects is not known. We assessed anxiety-like behavior by means of the elevated plus maze in control adult rats and in adult rats subjected to early EE or to massage. We found that both EE and massage reduced adult anxiety-like behavior. Early IGF-1 systemic injections in rat pups reared in standard condition mimic the effects of EE and massage, reducing anxiety-like behavior in the adult; blocking early IGF-1 action in massaged and EE animals prevents massage and EE effects. In EE and IGF-1-treated animals, we assessed the hippocampal expression of glucocorticoid receptors (GRs) at postnatal day 12 (P12) and P60, finding a significantly higher GR expression at P60 for both treatments. These results suggest that IGF-1 could be involved in mediating the long-lasting effects of early life experiences on vulnerability/resilience to stress in adults.
Collapse
|
7
|
Calatrava-Ferreras L, Gonzalo-Gobernado R, Herranz AS, Reimers D, Montero Vega T, Jiménez-Escrig A, Richart López LA, Bazán E. Effects of intravenous administration of human umbilical cord blood stem cells in 3-acetylpyridine-lesioned rats. Stem Cells Int 2012; 2012:135187. [PMID: 23150735 PMCID: PMC3488418 DOI: 10.1155/2012/135187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/01/2012] [Indexed: 12/26/2022] Open
Abstract
Cerebellar ataxias include a heterogeneous group of infrequent diseases characterized by lack of motor coordination caused by disturbances in the cerebellum and its associated circuits. Current therapies are based on the use of drugs that correct some of the molecular processes involved in their pathogenesis. Although these treatments yielded promising results, there is not yet an effective therapy for these diseases. Cell replacement strategies using human umbilical cord blood mononuclear cells (HuUCBMCs) have emerged as a promising approach for restoration of function in neurodegenerative diseases. The aim of this work was to investigate the potential therapeutic activity of HuUCBMCs in the 3-acetylpyridine (3-AP) rat model of cerebellar ataxia. Intravenous administered HuUCBMCs reached the cerebellum and brain stem of 3-AP ataxic rats. Grafted cells reduced 3-AP-induced neuronal loss promoted the activation of microglia in the brain stem, and prevented the overexpression of GFAP elicited by 3-AP in the cerebellum. In addition, HuUCBMCs upregulated the expression of proteins that are critical for cell survival, such as phospho-Akt and Bcl-2, in the cerebellum and brain stem of 3-AP ataxic rats. As all these effects were accompanied by a temporal but significant improvement in motor coordination, HuUCBMCs grafts can be considered as an effective cell replacement therapy for cerebellar disorders.
Collapse
Affiliation(s)
- Lucía Calatrava-Ferreras
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gonzalo-Gobernado
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Antonio S. Herranz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Teresa Montero Vega
- Servicio de Bioquímica, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | | | | | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, Carretera de Colmenar Km. 9, 1, 28034 Madrid, Spain
| |
Collapse
|
8
|
Bellini MJ, Hereñú CB, Goya RG, Garcia-Segura LM. Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide. J Neuroinflammation 2011; 8:21. [PMID: 21371294 PMCID: PMC3056784 DOI: 10.1186/1742-2094-8-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 03/03/2011] [Indexed: 12/14/2022] Open
Abstract
Background Insulin-like growth factor-I (IGF-I) exerts neuroprotective actions in the central nervous system that are mediated at least in part by control of activation of astrocytes. In this study we have assessed the efficacy of exogenous IGF-I and IGF-I gene therapy in reducing the inflammatory response of astrocytes from cerebral cortex. Methods An adenoviral vector harboring the rat IGF-I gene and a control adenoviral vector harboring a hybrid gene encoding the herpes simplex virus type 1 thymidine kinase fused to Aequorea victoria enhanced green fluorescent protein were used in this study. Primary astrocytes from mice cerebral cortex were incubated for 24 h or 72 h with vehicle, IGF-I, the IGF-I adenoviral vector, or control vector; and exposed to bacterial lipopolysaccharide to induce an inflammatory response. IGF-I levels were measured by radioimmunoassay. Levels of interleukin 6, tumor necrosis factor-α, interleukin-1β and toll-like receptor 4 mRNA were assessed by quantitative real-time polymerase chain reaction. Levels of IGF-I receptor and IGF binding proteins 2 and 3 were assessed by western blotting. The subcellular distribution of nuclear factor κB (p65) was assessed by immunocytochemistry. Statistical significance was assessed by one way analysis of variance followed by the Bonferroni pot hoc test. Results IGF-I gene therapy increased IGF-I levels without affecting IGF-I receptors or IGF binding proteins. Exogenous IGF-I, and IGF-I gene therapy, decreased expression of toll-like receptor 4 and counteracted the lipopolysaccharide-induced inflammatory response of astrocytes. In addition, IGF-I gene therapy decreased lipopolysaccharide-induced translocation of nuclear factor κB (p65) to the cell nucleus. Conclusion These findings demonstrate efficacy of exogenous IGF-I and of IGF-I gene therapy in reducing the inflammatory response of astrocytes. IGF-I gene therapy may represent a new approach to reduce inflammatory reactions in glial cells.
Collapse
|
9
|
Setting the pace for retinal development: environmental enrichment acts through insulin-like growth factor 1 and brain-derived neurotrophic factor. J Neurosci 2009; 29:10809-19. [PMID: 19726638 DOI: 10.1523/jneurosci.1857-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental enrichment strongly affects visual system maturation both at retinal and cortical levels. Which molecular pathways are activated by an enriched environment (EE) to regulate visual system development has not been clarified. Here, we show that early [postnatal day 1 (P1) to P7] insulin-like growth factor 1 (IGF-1) injections in the eyes of non-EE rat pups mimic EE effects both in increasing BDNF levels in the retinal ganglion cell layer at P10 and in determining a more adult-like retinal acuity, assessed with pattern electroretinogram at P25. Blocking IGF-1 action in EE animals during the same early postnatal time window by injecting the IGF-1 receptor antagonist JB1 prevents EE effects both on BDNF expression and on retinal acuity maturation. Reducing BDNF expression in the retina of IGF-1-treated rats prevents IGF-1 effects on retinal acuity development. Finally, we show that tyrosine hydroxylase (TH) expression is increased in the retina of P10 EE and IGF-1-treated rats and that blocking TH expression in EE animals prevents EE from affecting retinal acuity development. Thus, early levels of IGF-1 play a key role in mediating EE effects on retinal development through an action that requires BDNF and involves dopaminergic amacrine cell network.
Collapse
|
10
|
Downer EJ, Cowley TR, Cox F, Maher FO, Berezin V, Bock E, Lynch MA. A synthetic NCAM-derived mimetic peptide, FGL, exerts anti-inflammatory properties via IGF-1 and interferon-γ modulation. J Neurochem 2009; 109:1516-25. [DOI: 10.1111/j.1471-4159.2009.06076.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Fernandez AM, Fernandez S, Carrero P, Garcia-Garcia M, Torres-Aleman I. Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci 2007; 27:8745-56. [PMID: 17699657 PMCID: PMC6672188 DOI: 10.1523/jneurosci.1002-07.2007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 05/29/2007] [Accepted: 06/14/2007] [Indexed: 12/30/2022] Open
Abstract
Maladaptive inflammation is a major suspect in progressive neurodegeneration, but the underlying mechanisms are difficult to envisage in part because reactive glial cells at lesion sites secrete both proinflammatory and anti-inflammatory mediators. We now report that astrocytes modulate neuronal resilience to inflammatory insults through the phosphatase calcineurin. In quiescent astrocytes, inflammatory mediators such as tumor necrosis factor-alpha (TNF-alpha) recruits calcineurin to stimulate a canonical inflammatory pathway involving the transcription factors nuclear factor kappaB (NFkappaB) and nuclear factor of activated T-cells (NFAT). However, in reactive astrocytes, local anti-inflammatory mediators such as insulin-like growth factor I also recruit calcineurin but, in this case, to inhibit NFkappaB/NFAT. Proof of concept experiments in vitro showed that expression of constitutively active calcineurin in astrocytes abrogated the inflammatory response after TNF-alpha or endotoxins and markedly enhanced neuronal survival. Furthermore, regulated expression of constitutively active calcineurin in astrocytes markedly reduced inflammatory injury in transgenic mice, in a calcineurin-dependent manner. These results suggest that calcineurin forms part of a molecular pathway whereby reactive astrocytes determine the outcome of the neuroinflammatory process by directing it toward either its resolution or its progression.
Collapse
Affiliation(s)
- Ana M Fernandez
- Laboratory of Neuroendocrinology, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Ciucci F, Putignano E, Baroncelli L, Landi S, Berardi N, Maffei L. Insulin-like growth factor 1 (IGF-1) mediates the effects of enriched environment (EE) on visual cortical development. PLoS One 2007; 2:e475. [PMID: 17534425 PMCID: PMC1871611 DOI: 10.1371/journal.pone.0000475] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/04/2007] [Indexed: 11/18/2022] Open
Abstract
Enriched environment (EE) has been recently shown to affect visual cortex development and plasticity, and to prevent dark rearing effects. The factors mediating EE effects on visual cortical development and plasticity are still unclear. We have investigated whether IGF-1 is involved in mediating EE effects on the developing visual cortex. We show that EE increases the number of IGF-1 positive neurons in the visual cortex at P18. Increasing IGF-1 in the visual cortex of non-EE rats by means of osmotic minipumps implanted at P18 mimics EE effects, accelerating visual acuity development, assessed with Visual Evoked Potentials (VEPs). Blocking IGF-1 action in the visual cortex of EE rats by means of the IGF-1 receptor antagonist JB1 from P18 completely blocks EE action on visual acuity development. These results show that IGF-1 is a key factor mediating EE effects on visual cortical development. We then show that IGF-1 affects GAD65 immunoreactivity in perisomatic innervation and the condensation of Chondroitin Sulphate Proteoglycans (CSPGs) in perineuronal nets (PNNs) in the visual cortex. This suggests that IGF-1 action in mediating EE effects could be exerted through the modulation of intracortical inhibitory circuitry and PNN development.
Collapse
|
13
|
Andermahr J, Elsner A, Brings AE, Hensler T, Gerbershagen H, Jubel A. Reduced collagen degradation in polytraumas with traumatic brain injury causes enhanced osteogenesis. J Neurotrauma 2006; 23:708-20. [PMID: 16689672 DOI: 10.1089/neu.2006.23.708] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Patients with traumatic brain injury (TBI) and skeletal injuries have increased rates of excessive bone healing (EH = hypertrophic callus formation and/or heterotopic ossification). Polytrauma patients are often attributed higher rates of delayed fracture union. This study compares 182 total fractures in 29 isolated polytrauma patients (POLY) and 48 patients after TBI and polytrauma (TBI+POLY), examining the clinical parameters of EH versus delay. A subset of 28 patients (13 TBI+POLY, 15 POLY) underwent serological testing for the following bone turnover parameters: carboxy-terminal extension peptide of type 1 procollagen (P1CP), pyridinolene cross-linked carboxy-terminal telopeptide (1CTP), insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3), and basic fibroblast growth factor (bFGF). There were higher rates of delayed union in the POLY patients (45% vs. 23%) and EH in the TBI+POLY patients (33% vs. 17%) (not significant = NS). More delayed unions were observed in diaphyseal fractures suffered by POLY (28%) than in TBI+POLY (15%) patients (NS). EH after pelvic fracture was apparent in 52% TBI+POLY and in 21% POLY fractures (NS). P1CP levels did not differ between the groups, but the collagen breakdown parameter 1CTP was significantly higher in the POLY group (p = 0.01-0.04). IGF-1 levels were below normal in both groups, and did not differ. IGFBP-3, an IGF-1-inhibiting and collagenase-3-activating protein, was significantly higher in POLY patients (p = 0.017-0.037). bFGF levels did not vary between groups. Increased serum levels of 1CTP and IGFBP-3 in POLY patients suggest that EH in TBI patients is secondary to decreased collagen breakdown rather than increased synthesis.
Collapse
Affiliation(s)
- Jonas Andermahr
- Clinic of Trauma, Hand, Reconstructive Surgery, University of Cologne, Köln, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Hashimoto K, Parker A, Malone P, Gabelt BT, Rasmussen C, Kaufman PS, Hernandez MR. Long-term activation of c-Fos and c-Jun in optic nerve head astrocytes in experimental ocular hypertension in monkeys and after exposure to elevated pressure in vitro. Brain Res 2005; 1054:103-15. [PMID: 16081055 DOI: 10.1016/j.brainres.2005.06.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 11/30/2022]
Abstract
This study investigates whether the immediate early gene (IEG) products c-Fos and c-Jun are activated in vivo in monkeys with experimental glaucoma, and in vitro in cultured human ONH astrocytes exposed to hydrostatic pressure (HP). Three Rhesus monkeys with mild glaucomatous damage (mean intraocular pressure (IOP) 27 +/- 1.3 mm Hg approximately 42 weeks) and three with moderate glaucomatous damage (mean IOP 44 +/- 6.7% mm Hg approximately 11 weeks) were used for this study; the contralateral eye served as normal control (mean IOP 18.6 +/- 1.7 mm Hg). ONH tissues were stained with GFAP, DAPI, and c-Jun or c-Fos, and transcription factor positive and negative nuclei were counted to determine nuclear localization. Cultured human normal and glaucomatous ONH astrocytes exposed to elevated HP served as the in vitro model of elevated pressure. Activation and nuclear localization of c-Fos and c-Jun increased significantly in the monkeys with elevated IOP. These data correlated with axonal loss, reactive astrocytes, and remodeling of the optic disc. Cultured human ONH astrocytes showed increased nuclear localization of c-Fos and c-Jun under exposure to HP. Immunohistochemistry demonstrated that the upstream regulators of c-Fos and c-Jun, ERK-MAPK and MAPKp38 localized to the nuclei of ONH astrocytes in monkeys with experimental glaucoma. Taken together, these results demonstrate c-Fos and c-Jun activation in ONH astrocytes in vivo and in vitro, and that activation of both transcription factors is associated with ERK and MAPKp38 activation in experimental glaucoma, suggesting that activation of transcription factors may participate in the induction and maintenance of the reactive astrocyte phenotype in glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- K Hashimoto
- Division of Ophthalmology and Visual Science, Niigata University Graduate School, 1-757 Asahimachi, Niigata 951-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Sonntag WE, Ramsey M, Carter CS. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev 2005; 4:195-212. [PMID: 16024298 DOI: 10.1016/j.arr.2005.02.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 02/22/2005] [Indexed: 10/25/2022]
Abstract
The concept that growth hormone and IGF-1 are required for normal development of the mammalian body and, more recently the brain, is supported by a vast experimental literature. IGF-1 crosses the blood-brain barrier and in recent years, much attention has focused on age-related decreases in serum growth hormone and IGF-1 as potential mechanisms that may influence cognitive function in the elderly. However, interventional studies are needed to establish a definite link between these hormones and function of the aging brain. In rodents, long-term growth hormone/IGF-1 replacement improves learning and memory in aged rats. While the exact mechanism underlying these cognitive improvements is unknown, growth hormone and IGF-1 replacement to aged animals increases neurogenesis, vascular density, and glucose utilization, and alters NMDA receptor subunit composition in brain areas that are implicated in learning and memory. While these observations offer valuable insight into the influence of growth hormone and IGF-1 on neuronal events in the aged mammal, additional functional studies are required to link these changes to cognitive improvements.
Collapse
Affiliation(s)
- William E Sonntag
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157-1083, USA.
| | | | | |
Collapse
|
16
|
Kazanis I, Giannakopoulou M, Philippidis H, Stylianopoulou F. Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp Neurol 2004; 186:221-34. [PMID: 15026258 DOI: 10.1016/j.expneurol.2003.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 11/27/2003] [Accepted: 12/10/2003] [Indexed: 11/24/2022]
Abstract
The effects of a unilateral, penetrating brain trauma on IGF-I, BDNF and NT-3 were studied immunocytochemically in the rat. BDNF and NT-3 were decreased in the peritraumatic area, but increased in the adjacent region, 4 and 12 h post-injury. One week following the trauma, BDNF remained low in the peritraumatic area, but was restored to normal levels in the adjacent, while no effect of injury on NT-3 levels was detected in either area. Injury resulted in an increase in IGF-I levels in the peritraumatic area, which was most pronounced 1 week following the trauma, indicating that IGF-I could participate in endogenous repair processes. We thus administered IGF-I immediately following the trauma and investigated its effects on injury-induced changes in neurotrophin levels. Administration of IGF-I partially reversed the injury-induced decrease in BDNF and NT-3 in the peritraumatic area observed 4 and 12 h post-injury, while at the same time-points, it completely cancelled the effects of injury in the adjacent region. One week after the trauma, BDNF levels were dramatically increased in both the peritraumatic and adjacent area, reaching levels even higher than those of the sham-operated animals, following IGF-I administration. Our results showing that IGF-I not only counteracts injury-induced changes in neurotrophins, but can also further increase their levels, indicate that this growth factor could mediate repair and/or protective processes, following brain trauma.
Collapse
Affiliation(s)
- Ilias Kazanis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, University of Athens, Athens 11527, Greece
| | | | | | | |
Collapse
|
17
|
Kazanis I, Bozas E, Philippidis H, Stylianopoulou F. Neuroprotective effects of insulin-like growth factor-I (IGF-I) following a penetrating brain injury in rats. Brain Res 2003; 991:34-45. [PMID: 14575874 DOI: 10.1016/s0006-8993(03)03525-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The elucidation of the molecular mechanisms involved in the response of brain tissue to trauma and the recognition of substances with neuroprotective properties is a prerequisite for the development of rational therapeutic approaches. In this study, we used a model of, unilateral, penetrating stab-like brain injury and examined the possible beneficial effects of post-injury administration of insulin-like growth factor-I (IGF-I) both at the cellular level, 4 and 12 h post-injury, and on the physical condition of the animals up to 1 week following the trauma. The consequences of injury were assessed by immunohistochemically observing the expression of heat-shock protein 70 (Hsp70), which is thought to be a marker of cell stress and injury, and by staining the tissue with the TUNEL reaction, in order to detect apoptotic cell death. Injury resulted in an increase in the number of Hsp70 and TUNEL positive cells in the peritraumatic area. The physical condition of the rats was followed by measuring body weight changes, food and water intake and by estimating their "motor activity". IGF-I administration resulted in a significant decrease in the number of Hsp70 and TUNEL positive cells in the peritraumatic area. Additionally, it improved the total "motor activity" of injured rats, increased food intake and attenuated the post-injury body weight loss. IGF-I thus emerges as a factor acting both at the cellular level as a neuroprotectant and at the systemic level as an anabolic agent.
Collapse
Affiliation(s)
- Ilias Kazanis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, University of Athens, 123 Papadiamantopoulou Str, 115 27, Athens, Greece
| | | | | | | |
Collapse
|
18
|
Pierson CR, Zhang W, Sima AAF. Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropathol Exp Neurol 2003; 62:765-79. [PMID: 12901702 DOI: 10.1093/jnen/62.7.765] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We recently reported that early gene responses and expression of cytoskeletal proteins are perturbed in regenerating nerve in type 1 insulinopenic diabetes but not in type 2 hyperinsulinemic diabetes. We hypothesized that these differences were due to impaired insulin action in the former type of diabetes. To test this hypothesis, type 1 diabetic BB/Wor-rats were replaced with proinsulin C-peptide, which enhances insulin signaling without lowering blood glucose. Following sciatic nerve crush injury, early gene responses such as insulin-like growth factor, c-fos, and nerve growth factor were examined longitudinally in sciatic nerve. Neurotrophic factors, their receptors, and beta-tubulin and neurofilament expression were examined in dorsal root ganglia. C-peptide replacement significantly normalized early gene responses in injured sciatic nerve and partially corrected the expression of endogenous neurotrophic factors and their receptors, as well as neuroskeletal protein in dorsal root ganglia. These effects translated into normalization of axonal radial growth and significantly improved axonal elongation of regenerating fibers in C-peptide-replaced BB/Wor-rats. The findings in C-peptide replaced type 1 diabetic rats were similar to those previously reported in hyperinsulinemic and iso-hyperglycemic type 2 BB/Z-rats. We conclude that impaired insulin action may be more important than hyperglycemia in suppressing nerve fiber regeneration in type 1 diabetic neuropathy.
Collapse
Affiliation(s)
- Christopher R Pierson
- Department of Pathology, Wayne State University, School of Medicine and Detroit Medical Center, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
19
|
Pierson CR, Zhang W, Murakawa Y, Sima AAF. Early gene responses of trophic factors in nerve regeneration differ in experimental type 1 and type 2 diabetic polyneuropathies. J Neuropathol Exp Neurol 2002; 61:857-71. [PMID: 12387452 DOI: 10.1093/jnen/61.10.857] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously suggested that alterations in sequential early gene responses of trophic factors (IGF-1 -->c-fos-->NGF) contribute to impaired peripheral nerve regeneration in type 1 diabetic BB/W-rats. To study the role these responses may play in type 2 diabetic nerve regeneration, BB/Z-rats were subjected to sciatic nerve crush injury. The expression of IGF-1, c-fos, NGF and the receptors p75 and IGF-1R were determined at the protein and mRNA levels in sciatic nerve distal to the crush site by immunoblotting and semi-quantitative RT-PCR. In situ hybridization was performed to assess the cellular localization of IGF-1, NGF, p75, and IGF-1R mRNA and immunohistochemistry served to localize the source of p75 and IGF-1R protein expression. The data were compared to those of type 1 diabetic BB/Wor-rats and non-diabetic controls. Increased expression of IGF-1 in Schwann cells is the first growth factor response to injury and peaked at 0.5 hours (h) in control, 2 h in type 2 rats, and 24 h in type 1 rats. IGF-1R was expressed in Schwann cells and its expression was asynchronous to IGF-1 expression in type 1 rats but remained synchronous with IGF-1 in control and type 2 animals. The expression of the immediate early proto-oncogene c-fos exhibited an initial peak at 6 h in control animals, 24 h in type 2, and 2 days (d) in type 1 animals. The initial peak of NGF expression occurred at 6 h in non-diabetic rats, 24 h in type 2, and 2 d in type 1 diabetic rats. The expression of p75 was delayed and attenuated in type 1 diabetic rats; however, in type 2 diabetic rats it was similar to that of non-diabetic rats. These data indicate that early gene responses following nerve damage are significantly less perturbed in type 2 compared to type 1 diabetes. These differences may account for the more efficient nerve regeneration seen in type 2 diabetic polyneuropathy.
Collapse
Affiliation(s)
- Christopher R Pierson
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
20
|
Venters HD, Broussard SR, Zhou JH, Bluthé RM, Freund GG, Johnson RW, Dantzer R, Kelley KW. Tumor necrosis factor(alpha) and insulin-like growth factor-I in the brain: is the whole greater than the sum of its parts? J Neuroimmunol 2001; 119:151-65. [PMID: 11585617 DOI: 10.1016/s0165-5728(01)00388-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cytokine tumor necrosis factor(alpha) (TNFalpha) and the hormone insulin-like growth factor-I (IGF-I) have both been shown to regulate inflammatory events in the central nervous system (CNS). This review summarizes the seemingly independent roles of TNFalpha and IGF-I in promoting and inhibiting neurodegenerative diseases. We then offer evidence that the combined effects of IGF-I and TNFalpha on neuronal survival can be vastly different when both receptors are stimulated simultaneously, as is likely to occur in vivo. We propose the framework of a molecular model of hormone-cytokine receptor cross talk in which disparate cell surface receptors share intracellular substrates that regulate neuronal survival.
Collapse
Affiliation(s)
- H D Venters
- Laboratory of Immunophysiology, Department of Animal Sciences, College of Medicine, University of Illinois, 207 Edward R. Madigan Laboratory, 1207 West Gregory Drive, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu G, Sima AA. Altered immediate early gene expression in injured diabetic nerve: implications in regeneration. J Neuropathol Exp Neurol 2001; 60:972-83. [PMID: 11589428 DOI: 10.1093/jnen/60.10.972] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To study the role that immediate early gene responses may play in impaired nerve fiber regeneration in diabetes, diabetic male BB/Wor rats were subjected to sciatic nerve crush at 6 wk of diabetes. Sciatic nerve mRNA expression of IGF-I, IGF-1-receptor, NGF, and p75 (low affinity NGF receptor), as well as protein expression of C-FOS, were examined at various time points following crush injury and compared with age- and sex-matched nondiabetic BB/Wor rats. Diabetic rats showed a delay in the early peak expression of IGF-1, C-FOS, NGF, and p75. The earliest immediate gene responses were those of IGF-I and IGF-1-receptor, which peaked at 0.5 h post-crush in control rats. In diabetic rats, IGF-1 peaked at 24 h whereas IGF-1-receptor mRNA revealed no early peak. The early NGF mRNA expression showed a maximum response at 6 h and of p75 at 4 days post-crush in control rats, whereas in diabetic rats they occurred at 2 days and 6 days, respectively. C-FOS protein expression showed a maximum at 6 h in control rats and in diabetic animals an attenuated peak was present at 2 days. These data provide the first evidence that immediate early gene responses are delayed in diabetes following sciatic nerve crush injury. The delayed IGF-1 expression may affect C-FOS induction and may be responsible for the delay in the NGF response in diabetic rats. The delayed immediate early gene responses precede the previously described perturbed macrophage recruitment and delayed Wallerian degeneration in this type I model and provide a possible explanation for impaired nerve regeneration in diabetes.
Collapse
Affiliation(s)
- G Xu
- Department of Pathology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
22
|
Venters HD, Dantzer R, Kelley KW. Tumor necrosis factor-alpha induces neuronal death by silencing survival signals generated by the type I insulin-like growth factor receptor. Ann N Y Acad Sci 2001; 917:210-20. [PMID: 11268346 DOI: 10.1111/j.1749-6632.2000.tb05385.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Within the central nervous system, the proinflammatory cytokine tumor necrosis factor (TNF)-alpha is best characterized by its ability to directly foment signals of death. However, recent evidence suggests that TNF-alpha also promotes neurodegeneration through inhibition of a vital survival signal, insulin-like growth factor-I (IGF-I). By inhibiting essential components of the IGF-I survival response, such as phosphatidylinositol 3'-kinase (PI 3-kinase), low nontoxic concentrations of TNF-alpha indirectly trigger the death of neurons. We suggest that this inhibition of survival signaling is a pathophysiologically relevant action of TNF-alpha in the brain. This type of cross-talk by which vastly different receptors utilize shared intracellular substrates is potentially applicable to a broad number of receptors that are coexpressed on the same cell. The use of neuronal growth factors in the treatment of neurodegenerative diseases, such as cerebral ischemia and the AIDS dementia complex, may prove much more effective if the elevated expression of TNF-alpha in these disorders is neutralized.
Collapse
Affiliation(s)
- H D Venters
- Laboratory of Immunophysiology, Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
23
|
Abstract
It has been established that following injury to the central nervous system two types of damage take place, the initial insult and the secondary response to injury. This review will focus on the secondary molecular aspects of neurotrauma. These responses may be either deleterious or have protective effects upon the injured cell population. Molecular responses include the regulation of genes which change cellular architecture, up-regulate of growth factors, induce reparative stress responses, influence apoptosis and regulate the transcriptional process. The purpose of this study is to provide the reader with a brief overview of some of the molecular mechanisms which are activated following a neurological insult.
Collapse
Affiliation(s)
- S A Dutcher
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
24
|
Cardona-Gómez GP, DonCarlos L, Garcia-Segura LM. Insulin-like growth factor I receptors and estrogen receptors colocalize in female rat brain. Neuroscience 2001; 99:751-60. [PMID: 10974438 DOI: 10.1016/s0306-4522(00)00228-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several findings indicate that there is a close interaction between estrogen and insulin-like growth factor I in different brain regions. In adult brain, both estrogen and insulin-like growth factor I have co-ordinated effects in the regulation of neuroendocrine events, synaptic plasticity and neural response to injury. In this study we have qualitatively assessed whether estrogen receptors and insulin-like growth factor I receptor are colocalized in the same cells in the preoptic area, hypothalamus, hippocampus, cerebral cortex and cerebellum of female rat brain using confocal microscopy. Immunoreactivity for estrogen receptors alpha and beta was colocalized with immunoreactivity for insulin-like growth factor I receptor in many neurons from the preoptic area, hypothalamus, hippocampus and cerebral cortex. Furthermore, estrogen receptor beta and insulin-like growth factor I receptor immunoreactivities were colocalized in the Purkinje cells of the cerebellum. Colocalization of estrogen receptor beta and insulin-like growth factor I receptor was also detected in cells with the morphology of astrocytes in all regions assessed. The co-expression of estrogen receptors and insulin-like growth factor I receptor in the same neurons may allow a cross-coupling of their signaling pathways. Furthermore, the colocalization of immunoreactivity for estrogen receptor beta and insulin-like growth factor I receptor in glial cells suggests that glia may also play a role in the interactions of insulin-like growth factor I and estrogen in the rat brain. In conclusion, the co-expression of estrogen receptors and insulin-like growth factor I receptors in the same neural cells suggests that the co-ordinated actions of estrogen and insulin-like growth factor I in the brain may be integrated at the cellular level.
Collapse
|
25
|
Pons S, Torres-Aleman I. Insulin-like growth factor-I stimulates dephosphorylation of ikappa B through the serine phosphatase calcineurin (protein phosphatase 2B). J Biol Chem 2000; 275:38620-5. [PMID: 10973957 DOI: 10.1074/jbc.m004531200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Astrocytes represent the most abundant cell type of the adult nervous system. Under normal conditions, astrocytes participate in neuronal feeding and detoxification. However, following brain injury, local increases in inflammatory cytokines trigger a reactive phenotype in astrocytes during which these cells produce their own inflammatory cytokines and neurotoxic free radicals. Indeed, progression of this inflammatory reaction is responsible for most neurological damage associated with brain trauma. Insulin-like growth factor-I (IGF-I) protects neurons against a variety of brain pathologies associated with glial overproduction of proinflammatory cytokines. Here, we demonstrate that in astrocyte cultures IGF-I regulates NFkappaB, a transcription factor known to play a key role in the inflammatory reaction. IGF-I induces a site-specific dephosphorylation of IkappaBalpha (phospho-Ser(32)) in astrocytes. Moreover, IGF-I-mediated dephosphorylation of IkappaBalpha protects this molecule from tumor necrosis factor alpha (TNFalpha)-stimulated degradation; therefore, IGF-I also inhibits the nuclear translocation of NFkappaB (p65) induced by TNFalpha exposure. Finally, we show that dephosphorylation of IkappaBalpha by IGF-I pathways requires activation of calcineurin. Activation of this phosphatase is independent of phosphatidylinositol 3-kinase and mitogen-activated protein kinase. Thus, these data suggest that the therapeutic benefits associated with IGF-I treatment of brain injury are derived from both its positive effects on neuronal survival and inhibition of the glial inflammatory reaction.
Collapse
Affiliation(s)
- S Pons
- Cellular and Molecular Neuroendocrinology Laboratory, Instituto Cajal de Neurobiologia, Consejo Superior de Investigaciones Cientificas, Av. Doctor Arce 37, Madrid E28002, Spain.
| | | |
Collapse
|
26
|
Busiguina S, Fernandez AM, Barrios V, Clark R, Tolbert DL, Berciano J, Torres-Aleman I. Neurodegeneration is associated to changes in serum insulin-like growth factors. Neurobiol Dis 2000; 7:657-65. [PMID: 11114263 DOI: 10.1006/nbdi.2000.0311] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serum levels of insulin and insulin-like growth factors and their binding proteins (IGFs and IGFBPs, respectively) are changed in human neurodegenerative diseases of very different etiology, such as Alzheimer's disease, amyotrophic lateral sclerosis, or cerebellar ataxia. However, the significance of these endocrine disturbances is not clear. We now report that in two very different inherited neurodegenerative conditions, ataxia-telangiectasia (AT) and Charcot-Marie-Tooth 1A (CMT-1A) disease, serum levels of IGFs are also altered. Both types of patients have increased serum IGF-I and IGFBP-2 levels, and decreased serum IGFBP-1 levels, while only AT patients have high serum insulin levels. Furthermore, serum IGFs are also changed in three different animal models of neurodegeneration: neurotoxin-induced motor discoordination, diabetic neuropathy, and hereditary cerebellar ataxia. In these three models, serum insulin levels are significantly decreased, serum IGF-I and IGFBP-1, -2, and -3 are decreased in diabetic and neurotoxin-injected rats, while serum IGFBP-1 is increased in hereditary ataxic rats. Altogether, these observations indicate that a great variety of neurodegenerative diseases show endocrine perturbations, resulting in changes in serum IGFs levels. These perturbations are disease-specific and are probably due to metabolic and endocrine derangements, nerve cell death, and sickness-related disturbances associated to the neurodegenerative process. Our observations strongly support the need to evaluate serum IGFs in other neurodegenerative conditions.
Collapse
Affiliation(s)
- S Busiguina
- Laboratory of Neuroendocrinology, Cajal Institute, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Physical exercise increases brain activity through mechanisms not yet known. We now report that in rats, running induces uptake of blood insulin-like growth factor I (IGF-I) by specific groups of neurons throughout the brain. Neurons accumulating IGF-I show increased spontaneous firing and a protracted increase in sensitivity to afferent stimulation. Furthermore, systemic injection of IGF-I mimicked the effects of exercise in the brain. Thus, brain uptake of IGF-I after either intracarotid injection or after exercise elicited the same pattern of neuronal accumulation of IGF-I, an identical widespread increase in neuronal c-Fos, and a similar stimulation of hippocampal brain-derived neurotrophic factor. When uptake of IGF-I by brain cells was blocked, the exercise-induced increase on c-Fos expression was also blocked. We conclude that serum IGF-I mediates activational effects of exercise in the brain. Thus, stimulation of the uptake of blood-borne IGF-I by nerve cells may lead to novel neuroprotective strategies.
Collapse
|
28
|
Venters HD, Dantzer R, Kelley KW. A new concept in neurodegeneration: TNFalpha is a silencer of survival signals. Trends Neurosci 2000; 23:175-80. [PMID: 10717677 DOI: 10.1016/s0166-2236(99)01533-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The p55 receptor for the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha) is best characterized by its ability to induce signals that trigger cell death. However, this is not the only way in which this TNF receptor kills neurons. A new view of neurodegeneration has recently emerged in which a TNF receptor induces death through the 'silencing of survival signals' (SOSS), such as phosphatidylinositol 3' kinase (PI3 kinase), that are activated by the insulin-like growth factor 1 receptor. This mechanism of intracellular crosstalk is the most pathophysiologically relevant action of TNFalpha in the brain and is applicable to a broad number of receptors that are localized on the same cell. Treatment of the more-devastating and costly neurodegenerative diseases of our time might be best promoted by increasing the efficacy of neuronal survival factors using new approaches aimed at inhibiting the SOSS.
Collapse
Affiliation(s)
- H D Venters
- Laboratory of Immunophysiology, Dept of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
29
|
Azcoitia I, Sierra A, Garcia-Segura LM. Neuroprotective effects of estradiol in the adult rat hippocampus: interaction with insulin-like growth factor-I signalling. J Neurosci Res 1999; 58:815-22. [PMID: 10583912 DOI: 10.1002/(sici)1097-4547(19991215)58:6<815::aid-jnr8>3.0.co;2-r] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously shown that 17-beta-estradiol protects neurons in the dentate gyrus from kainic acid-induced death in vivo. To analyse whether this effect is mediated through estrogen receptors and through cross-talk between steroid and insulin-like growth factor (IGF) systems, we have concomitantly administered antagonists of estrogen receptor (ICI 182,780) or the IGF-I receptor (JB1) with estradiol. In addition, we have also administered IGF-I with or without the estrogen receptor antagonist. JB1 (20 microg/ml), ICI 182,780 (10(-7) M), and IGF-I (100 microg/ml) were delivered into the left lateral ventricle of young ovariectomized rats via an Alzet osmotic minipump (0.5 microl/hr) for 2 weeks. All rats received kainic acid (7 mg/Kg b.w.) or vehicle i.p. injections at day 7 after minipump implant. Also on day 7, rats treated i.c. v.with only ICI 182,780 or JB1 received a single i.p. injection of 17-beta-estradiol (150 microg/rat) or vehicle. On day 14 after minipump implant, the rats were killed, brains processed, and the number of surviving hilar neurons estimated by the optical disector technique. Both IGF-I and estradiol treatments resulted in over 90% survival of hilar neurons. The neuroprotective action of estradiol was blocked by ICI 182,780 and by JB1. Furthermore, IGF-I enhancement of neuronal survival was significantly reduced by ICI 182,780. These results indicate that in this model of hippocampal lesion, the neuroprotective effect of estradiol depends both on estrogen receptors and IGF-I receptors, while the protection exerted by IGF-I depends also on estrogen receptors. In conclusion, an interaction of estrogen receptor and IGF-I receptor signalling may mediate neuroprotection in the adult rat hippocampus.
Collapse
Affiliation(s)
- I Azcoitia
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain.
| | | | | |
Collapse
|
30
|
Gveric D, Cuzner ML, Newcombe J. Insulin-like growth factors and binding proteins in multiple sclerosis plaques. Neuropathol Appl Neurobiol 1999; 25:215-25. [PMID: 10417663 DOI: 10.1046/j.1365-2990.1999.00187.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insulin-like growth factors (IGFs) play an important role in development and myelination in the central nervous system (CNS) as well as in the proliferation and differentiation of cells of the immune system. To assess the influence of this growth factor family on demyelination and repair in multiple sclerosis (MS), the expression of IGF-I, IGF-II, insulin, IGF binding proteins (IGFBP) 1-3 and IGF-I receptor (IGF-IR) in CNS tissue from MS and normal control cases was studied by immunocytochemistry. In active MS lesions, the expression of IGF-I, insulin and IGFBP1 was detected in hypertrophic astrocytes while that of IGF-II and IGFBP2 and 3 was confined to foamy macrophages within lesions and activated microglia in adjacent white matter. IGF-IR, the major IGF receptor, was immunolocalized in macrophages and an astrocyte subpopulation in plaques. Oligodendrocytes in normal-appearing white matter expressed only IGFBP1, not IGFs or IGF-IR. As the remyelinating capacity of oligodendrocytes could be impaired owing to the absence of IGF-IR, the prevailing role of IGFs in inflammatory demyelination may be to promote phagocytosis of myelin and astrogliosis.
Collapse
Affiliation(s)
- D Gveric
- The Multiple Sclerosis Laboratory, Institute of Neurology, London, UK
| | | | | |
Collapse
|
31
|
Fernandez AM, Gonzalez de la Vega AG, Planas B, Torres-Aleman I. Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci 1999; 11:2019-30. [PMID: 10336671 DOI: 10.1046/j.1460-9568.1999.00623.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exogenous administration of insulin-like growth factor I (IGF-I) restores motor function in rats with neurotoxin-induced cerebellar deafferentation. We first determined that endogenous IGFs are directly involved in the recovery process because infusion of an IGF-I receptor antagonist into the lateral ventricle blocks gradual recovery of limb coordination that spontaneously occurs after partial deafferentation of the olivo-cerebellar circuitry. We then analysed mechanisms whereby exogenous IGF-I restores motor function in rats with complete damage of the olivo-cerebellar pathway. Treatment with IGF-I normalized several markers of cell function in the cerebellum, including calbindin, glutamate receptor 1 (GluR1), gamma-aminobutyric acid (GABA) and glutamate, which are all depressed after 3-acetylpyridine (3AP)-induced deafferentation. IGF-I also promoted functional reinnervation of the cerebellar cortex by inferior olive (IO) axons. In the IO, increased expression of bax in neurons and bcl-X in astrocytes after 3AP was significantly reduced by IGF-I treatment. On the contrary, IGF-I prevented the decrease in poly-sialic-acid neural cell adhesion molecule (PSA-NCAM) and GAP-43 expression induced by 3AP in IO cells. IGF-I also significantly increased the number of neurons expressing bcl-2 in brainstem areas surrounding the IO. Altogether, these results indicate that subcutaneous IGF-I therapy promotes functional recovery of the olivo-cerebellar pathway by acting at two sites within this circuitry: (i) by modulating death- and plasticity-related proteins in IO neurons; and (ii) by impinging on homeostatic mechanisms leading to normalization of cell function in the cerebellum. These results provide insight into the neuroprotective actions of IGF-I and may be of practical consequence in the design of new therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Hironishi M, Ueyama E, Senba E. Systematic expression of immediate early genes and intensive astrocyte activation induced by intrastriatal ferrous iron injection. Brain Res 1999; 828:145-53. [PMID: 10320734 DOI: 10.1016/s0006-8993(99)01356-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The potential role(s) of transitional metals such as iron have been implicated in neurodegeneration through biochemical processes, particularly oxidative stress. We injected ferrous chloride (FeCl2) and ferric chloride (FeCl3) into the striatonigral system of Sprague-Dawley rats to investigate the biological and toxic effects of ferrous iron in the central nervous system. When FeCl2 was injected into the ventral midbrain, rats showed a characteristic behavior which indicated ipsilateral dopaminergic hyperactivity. FeCl2 injection into the striatum induced a dose-dependent damage, the activation of astrocytes and recruitment of macrophage/microglia at the injected site. Interestingly, the activation of astrocytes was also observed in the anatomically remote areas such as the ipsilateral subthalamic nucleus and pars reticulata of the substantia nigra after 1 week. Expression of immediate early genes (IEGs; c-fos and NGFI-A) was observed in the cortex, thalamic nuclei, subthalamic nucleus, pars reticulata of the substantia nigra, lateral and medial geniculate bodies on the ipsilateral side from 3 to 15 h after FeCl2 injection. Pre-treatment with dimethyl sulfoxide, a hydroxyl radical scavenger, prevented FeCl2-induced expression of IEGs in the thalamic nuclei and geniculate bodies, but not in the cerebral cortex. On the other hand, the effects of FeCl3 were faint and limited on IEGs expression and tissue damage. These results suggest that ferrous iron affects the nervous system vigorously, possibly yielding free radicals such as hydroxyl radicals, and could be one of the important candidates for neurodegenerative diseases under the state in which acclimating systems for iron toxicity are disrupted.
Collapse
Affiliation(s)
- M Hironishi
- Department of Anatomy and Neurobiology, Wakayama Medical College, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | | | | |
Collapse
|
33
|
Fernandez-Galaz MC, Naftolin F, Garcia-Segura LM. Phasic synaptic remodeling of the rat arcuate nucleus during the estrous cycle depends on insulin-like growth factor-I receptor activation. J Neurosci Res 1999; 55:286-92. [PMID: 10348659 DOI: 10.1002/(sici)1097-4547(19990201)55:3<286::aid-jnr3>3.0.co;2-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Insulin-like growth factor-I (IGF-I) has trophic and plastic effects on neurons and glial cells and modulates neuroendocrine events by acting at the level of the hypothalamus. IGF-I and estrogen signaling interact to regulate in vitro hypothalamic neuronal survival and differentiation. In vivo, IGF-I levels fluctuate in the rat hypothalamic arcuate nucleus during the estrous cycle in parallel with a phasic remodeling of synaptic contacts and glial cell processes. Both the fluctuation of IGF-I levels and the synaptic and glial changes are induced by estrogen. The possible role of IGF-I in the regulation of arcuate nucleus synaptic plasticity has been assessed in the present study by intracerebroventricular administration to cycling female rats of a specific IGF-I receptor antagonist. In agreement with previous findings, the number of synaptic inputs to arcuate neuronal somas in control rats showed a significant decrease between the morning of proestrus and the morning of estrus. This decline in synaptic inputs and the accompanying increase in glial ensheathing of neuronal somas were blocked by the IGF-I receptor antagonist. In contrast, the IGF-I receptor antagonist did not affect the basal number of synapses or the morphology of synaptic terminals or length of the synaptic contacts. These findings indicate that IGF-I receptor activation may be involved in the phasic remodeling of arcuate nucleus synapses during the estrous cycle. Res.
Collapse
Affiliation(s)
- M C Fernandez-Galaz
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
34
|
Cook JL, Marcheselli V, Alam J, Deininger PL, Bazan NG. Temporal changes in gene expression following cryogenic rat brain injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 55:9-19. [PMID: 9645955 DOI: 10.1016/s0169-328x(97)00350-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Expression of 18 genes was examined at 8 different time points between 1 h and 28 days following cryogenic rat brain injury. The genes include thymidine kinase (TK), p53 tumor suppressor, c-fos, renin, myelin basic protein (MBP), proteolipid protein (PLP), transferrin, transferrin receptor, platelet-derived growth factor A (PDGF A), platelet-derived growth factor B (PDGF B), platelet-derived growth factor receptor alpha (PDGF alpha receptor), platelet-derived growth factor receptor beta (PDGF beta receptor), glial fibrillary acidic protein (GFAP), transforming growth factor-beta 1 (TGF-beta 1), basic fibroblast growth factor (bFGF), fibroblast growth factor receptor-1 (FGF-R1), insulin-like growth factor-1 (IGF-1), and somatostatin. Time courses of gene expression were determined for RNAs derived from hippocampus and cortex. Genes were divided into categories based upon those in which statistically significant changes in expression were first observed at or before 24 h (early genes) and those in which changes were first observed at or after 72 h (late genes). In the present model, many genes demonstrate elevated RNA levels in the cortex prior to hippocampus, following injury. RNAs transcribed from late genes tend to be elevated concurrently in cortex and hippocampus.
Collapse
Affiliation(s)
- J L Cook
- Ochsner Medical Foundation, Division of Research, New Orleans, LA, USA.
| | | | | | | | | |
Collapse
|
35
|
Torres-Aleman I, Villalba M, Nieto-Bona MP. Insulin-like growth factor-I modulation of cerebellar cell populations is developmentally stage-dependent and mediated by specific intracellular pathways. Neuroscience 1998; 83:321-34. [PMID: 9460743 DOI: 10.1016/s0306-4522(97)00367-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although development of transgenic animals overexpressing insulin-like growth factor-I has allowed the establishment of a role of this trophic factor in brain growth, detailed knowledge of the action of insulin-like growth factor-I on different brain areas is still lacking. We now provide evidence for a pleiotrophic role of this growth factor on cerebellar development. Insulin-like growth factor-I produced by cerebellar cultures is a survival factor for Purkinje cells and a mitogen/differentiation factor for cerebellar glioblasts. Trophic effects of insulin-like growth factor-I were observed only during specific developmental stages. In addition, insulin-like growth factor-I increased intracellular Ca2+ levels in Purkinje cells and c-Fos in dividing glioblasts. Survival-promoting effects of insulin-like growth factor-I on Purkinje cells required activation of protein kinase C, while glioblast division induced by insulin-like growth factor-I depended on phosphatidylinosytol 3-kinase activation. We conclude that insulin-like growth factor-I is a paracrine/autocrine pleiotrophic factor for both glia and neurons in the cerebellum. Its effects are mediated by distinct intracellular signals and appear to be specific to the developmental stage of the target cell. Since development of the different cell populations that compose a specific brain territory is not synchronized, the pleiotrophic action of growth factors such as insulin-like growth factor-I may be essential to ontogenetic processes underlying normal brain growth.
Collapse
Affiliation(s)
- I Torres-Aleman
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | |
Collapse
|
36
|
Fernandez AM, de la Vega AG, Torres-Aleman I. Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad Sci U S A 1998; 95:1253-8. [PMID: 9448318 PMCID: PMC18736 DOI: 10.1073/pnas.95.3.1253] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/1997] [Indexed: 02/05/2023] Open
Abstract
We tested the potential of insulin-like growth factor I (IGF-I) to induce functional recovery in an animal model of cerebellar ataxia because this motor impairment is accompanied in humans and rodents by distinct changes in several components of the IGF-I trophic system. Rats rendered ataxic by deafferentation of the cerebellar cortex with 3-acetylpyridine recovered motor function after IGF-I was administered, as determined by behavioral and electrophysiological tests. When treated with IGF-I, inferior olive neurons, the targets of the neurotoxin, were rescued to various degrees (from 92 to 27% of surviving neurons), depending on the time that treatment with IGF-I was initiated. Furthermore, full recovery was obtained regardless of the route by which the trophic factor was administered (intraventricular or subcutaneous) even in rats with severe neuronal loss. These results suggest that human ataxia could be treated with IGF-I by a simple procedure.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Cellular and Molecular Neuroendocrinology, Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid 28002, Spain
| | | | | |
Collapse
|