1
|
Chen C, Khanthiyong B, Charoenlappanit S, Roytrakul S, Reynolds GP, Thanoi S, Nudmamud-Thanoi S. Cholinergic-estrogen interaction is associated with the effect of education on attenuating cognitive sex differences in a Thai healthy population. PLoS One 2023; 18:e0278080. [PMID: 37471329 PMCID: PMC10358962 DOI: 10.1371/journal.pone.0278080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/30/2023] [Indexed: 07/22/2023] Open
Abstract
The development of human brain is shaped by both genetic and environmental factors. Sex differences in cognitive function have been found in humans as a result of sexual dimorphism in neural information transmission. Numerous studies have reported the positive effects of education on cognitive functions. However, little work has investigated the effect of education on attenuating cognitive sex differences and the neural mechanisms behind it based on healthy population. In this study, the Wisconsin Card Sorting Test (WCST) was employed to examine sex differences in cognitive function in 135 Thai healthy subjects, and label-free quantitative proteomic method and bioinformatic analysis were used to study sex-specific neurotransmission-related protein expression profiles. The results showed sex differences in two WCST sub-scores: percentage of Total corrects and Total errors in the primary education group (Bayes factor>100) with males performed better, while such differences eliminated in secondary and tertiary education levels. Moreover, 11 differentially expressed proteins (DEPs) between men and women (FDR<0.1) were presented in both education groups, with majority of them upregulated in females. Half of those DEPs interacted directly with nAChR3, whereas the other DEPs were indirectly connected to the cholinergic pathways through interaction with estrogen. These findings provided a preliminary indication that a cholinergic-estrogen interaction relates to, and might underpin, the effect of education on attenuating cognitive sex differences in a Thai healthy population.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Gavin P. Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Mae Ka, Phayao, Thailand
| | - Sutisa Nudmamud-Thanoi
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
2
|
Milbocker KA, Klintsova AY. Examination of cortically projecting cholinergic neurons following exercise and environmental intervention in a rodent model of fetal alcohol spectrum disorders. Birth Defects Res 2020; 113:299-313. [PMID: 33174398 DOI: 10.1002/bdr2.1839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/13/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Up to 1 in 5 infants in the United States are exposed to alcohol prenatally, resulting in neurodevelopmental deficits categorized as fetal alcohol spectrum disorders (FASD). Choline supplementation ameliorates some deficits, suggesting that alcohol exposure (AE) perturbs cholinergic neurotransmission and development. Behavioral interventions, which upregulate cholinergic neurotransmission, rescue cognitive deficits in rodent models of FASD. METHODS We investigated the impacts of two interventions (either wheel-running (WR) or "super intervention," WR plus exposure to a complex environment) on cholinergic neuronal morphology in the nucleus basalis of Meynert (NBM), the source of cortical cholinergic input, and prefrontal cortex (PFC) in a rodent model of FASD. One third of the total 47 male pups received intragastric intubation of ethanol in milk substitute during postnatal days (PD) 4-9. Another third served as sham-intubated procedural controls while the final third served as suckle controls. Rats from each group were exposed to either intervention during PD 30-72. Choline acetyltransferase (ChAT+ ) and acetylcholinesterase staining were used to quantify cholinergic neuron number, soma volume, and axon number. RESULTS Our data indicate a main effect of postnatal treatment on ChAT+ neuron number in NBM in adulthood. Post hoc analysis demonstrates that ChAT+ neuron number is reduced in AE compared to suckle control rodents (p < .01). CONCLUSIONS We examined the cytoarchitectonics of cholinergic neurons in NBM and PFC in adulthood following early postnatal AE and two interventions. We show that AE reduces ChAT+ neuron number in NBM, and this is not mitigated by either intervention.
Collapse
Affiliation(s)
- Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Behzadi G, Afarinesh MR, Haghpanah T. Alteration of the nucleus basalis of Meynert afferents to vibrissae-related sensory cortex in de-whiskered adolescent congenital hypothyroid rats. Biochem Biophys Res Commun 2018; 503:2466-2470. [PMID: 30208512 DOI: 10.1016/j.bbrc.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/01/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Thyroid hypofunction during early development results in anatomical alterations in the cerebellum, cerebrum, hippocampus and other brain structures. The plastic organization of the nucleus basalis of Meynert (nBM) projections to the whiskers-related somatosensory (wS1) cortex in adolescent pups with maternal thyroid hypofunction and sensory deprivation was assessed through retrograde WGA-HRP labeling. METHODS Congenital hypothyroidism induced by adding PTU (25 ppm) to the drinking water from embryonic day 16 to postnatal day (PND) 60. Pregnant rats were divided to intact and congenital hypothyroid groups. In each group, the total whiskers of pups (4 of 8) were trimmed continuously from PND 0 to PND 60. RESULTS Following separately WGA-HRP injections into wS1, retrogradely labeled neurons were observed in nBM. The number of labeled neurons in nBM were higher in the congenital hypothyroid and whisker deprived groups compared to their controls (P < 0.05). CONCLUSION Based on our results both congenital hypothyroidism and sensory deprivation may disturb normal development of cortical circuits in of nBM afferents to the wS1 cortex.
Collapse
Affiliation(s)
- Gila Behzadi
- Functional Neuroanatomy Lab, NPRC, Physiology Dept., Fac. Med, Shahid Beheshti Med. Sci. Univ, Tehran, Iran
| | - Mohammad Reza Afarinesh
- Kerman Cognitive Research Center and Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Tahereh Haghpanah
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Cramer SC. Treatments to Promote Neural Repair after Stroke. J Stroke 2018; 20:57-70. [PMID: 29402069 PMCID: PMC5836581 DOI: 10.5853/jos.2017.02796] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Stroke remains a major cause of human disability worldwide. In parallel with advances in acute stroke interventions, new therapies are under development that target restorative processes. Such therapies have a treatment time window measured in days, weeks, or longer and so have the advantage that they may be accessible by a majority of patients. Several categories of restorative therapy have been studied and are reviewed herein, including drugs, growth factors, monoclonal antibodies, activity-related therapies including telerehabilitation, and a host of devices such as those related to brain stimulation or robotics. Many patients with stroke do not receive acute stroke therapies or receive them and do not derive benefit, often surviving for years thereafter. Therapies based on neural repair hold the promise of providing additional treatment options to a majority of patients with stroke.
Collapse
Affiliation(s)
- Steven C. Cramer
- Departments of Neurology, Anatomy & Neurobiology and Physical Medicine & Rehabilitation, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Viale L, Catoira NP, Di Girolamo G, González CD. Pharmacotherapy and motor recovery after stroke. Expert Rev Neurother 2017; 18:65-82. [DOI: 10.1080/14737175.2018.1400910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Luciano Viale
- Centro Asistencial Universitario, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Natalia Paola Catoira
- Residencia de Investigación en Salud, Gobierno de la Ciudad Autónoma de Buenos Aires, CABA, Argentina
- Segunda Cátedra de Farmacología, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| | - Guillermo Di Girolamo
- Segunda Cátedra de Farmacología, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
- Instituto de Investigaciones Cardiológicas ¨Prof. Dr. Alberto C. Taquini¨, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| | - Claudio Daniel González
- Segunda Cátedra de Farmacología, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| |
Collapse
|
6
|
Abstract
Pathological neural activity could be treated by directing specific plasticity to renormalize circuits and restore function. Rehabilitative therapies aim to promote adaptive circuit changes after neurological disease or injury, but insufficient or maladaptive plasticity often prevents a full recovery. The development of adjunctive strategies that broadly support plasticity to facilitate the benefits of rehabilitative interventions has the potential to improve treatment of a wide range of neurological disorders. Recently, stimulation of the vagus nerve in conjunction with rehabilitation has emerged as one such potential targeted plasticity therapy. Vagus nerve stimulation (VNS) drives activation of neuromodulatory nuclei that are associated with plasticity, including the cholinergic basal forebrain and the noradrenergic locus coeruleus. Repeatedly pairing brief bursts of VNS sensory or motor events drives robust, event-specific plasticity in neural circuits. Animal models of chronic tinnitus, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, and post-traumatic stress disorder benefit from delivery of VNS paired with successful trials during rehabilitative training. Moreover, mounting evidence from pilot clinical trials provides an initial indication that VNS-based targeted plasticity therapies may be effective in patients with neurological diseases and injuries. Here, I provide a discussion of the current uses and potential future applications of VNS-based targeted plasticity therapies in animal models and patients, and outline challenges for clinical implementation.
Collapse
Affiliation(s)
- Seth A Hays
- Texas Biomedical Device Center, Richardson, TX, USA.
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA.
- School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
7
|
Ramanathan DS, Conner JM, Anilkumar AA, Tuszynski MH. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits. J Neurophysiol 2014; 113:1585-97. [PMID: 25505106 DOI: 10.1152/jn.00408.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia.
Collapse
Affiliation(s)
- Dhakshin S Ramanathan
- Department of Neurosciences, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Francisco, California; and Veterans Affairs Medical Center, San Francisco, California
| | - James M Conner
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Arjun A Anilkumar
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, California; Veterans Affairs Medical Center, San Diego, California;
| |
Collapse
|
8
|
Herrera-Rincon C, Panetsos F. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex. Front Cell Neurosci 2014; 8:385. [PMID: 25452715 PMCID: PMC4231972 DOI: 10.3389/fncel.2014.00385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/29/2014] [Indexed: 11/13/2022] Open
Abstract
Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex "on demand" by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain ; Department of Industrial Engineering and Management Systems, University of Central Florida Orlando, FL, USA
| |
Collapse
|
9
|
Li CX, Chappell TD, Ramshur JT, Waters RS. Forelimb amputation-induced reorganization in the ventral posterior lateral nucleus (VPL) provides a substrate for large-scale cortical reorganization in rat forepaw barrel subfield (FBS). Brain Res 2014; 1583:89-108. [PMID: 25058605 DOI: 10.1016/j.brainres.2014.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/02/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022]
Abstract
In this study, we examined the role of the ventral posterior lateral nucleus (VPL) as a possible substrate for large-scale cortical reorganization in the forepaw barrel subfield (FBS) of primary somatosensory cortex (SI) that follows forelimb amputation. Previously, we reported that, 6 weeks after forelimb amputation in young adult rats, new input from the shoulder becomes expressed throughout the FBS that quite likely has a subcortical origin. Subsequent examination of the cuneate nucleus (CN) 1 to 30 weeks following forelimb amputation showed that CN played an insignificant role in cortical reorganization and led to the present investigation of VPL. As a first step, we used electrophysiological recordings in forelimb intact adult rats (n=8) to map the body representation in VPL with particular emphasis on the forepaw and shoulder representations and showed that VPL was somatotopically organized. We next used stimulation and recording techniques in forelimb intact rats (n=5) and examined the pattern of projection (a) from the forelimb and shoulder to SI, (b) from the forepaw and shoulder to VPL, and (c) from sites in the forepaw and shoulder representation in VPL to forelimb and shoulder sites in SI. The results showed that the projections were narrowly focused and homotopic. Electrophysiological recordings were then used to map the former forepaw representation in forelimb amputated young adult rats (n=5) at 7 to 24 weeks after amputation. At each time period, new input from the shoulder was observed in the deafferented forepaw region in VPL. To determine whether the new shoulder input in the deafferented forepaw VPL projected to a new shoulder site in the deafferented FBS, we examined the thalamocortical pathway in 2 forelimb-amputated rats. Stimulation of a new shoulder site in deafferented FBS antidromically-activated a cell in the former forepaw territory in VPL; however, similar stimulation from a site in the original shoulder representation, outside the deafferented region, in SI did not activate cells in the former forepaw VPL. These results suggest that the new shoulder input in deafferented FBS is relayed from cells in the former forepaw region in VPL. In the last step, we used anatomical tracing and stimulation and recording techniques in forelimb intact rats (n=9) to examine the cuneothalamic pathway from shoulder and forepaw receptive field zones in CN to determine whether projections from the shoulder zone might provide a possible source of shoulder input to forepaw VPL. Injection of biotinylated dextran amine (BDA) into physiologically identified shoulder responsive sites in CN densely labeled axon terminals in the shoulder representation in VPL, but also gave off small collateral branches into forepaw VPL. In addition, microstimulation delivered to forepaw VPL antidromically-activated cells in shoulder receptive field sites in CN. These results suggest that forepaw VPL also receives input from shoulder receptive sites in CN that are latent or subthreshold in forelimb intact rats. However, we speculate that following amputation these latent shoulder inputs become expressed, possibly as a down-regulation of GABA inhibition from the reticular nucleus (RTN). These results, taken together, suggest that VPL provides a substrate for large-scale cortical reorganization that follows forelimb amputation.
Collapse
Affiliation(s)
- Cheng X Li
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | - Tyson D Chappell
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | - John T Ramshur
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | - Robert S Waters
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
10
|
Abstract
The basal forebrain cholinergic system modulates neuronal excitability and vascular tone throughout the cerebral cortex and hippocampus. This system is severely affected in Alzheimer's disease (AD), and drug treatment to enhance cholinergic signaling is widely used as symptomatic therapy in AD. Defining the full morphologies of individual basal forebrain cholinergic neurons has, until now, been technically beyond reach due to their large axon arbor sizes. Using genetically-directed sparse labeling, we have characterized the complete morphologies of basal forebrain cholinergic neurons in the mouse. Individual arbors were observed to span multiple cortical columns, and to have >1000 branch points and total axon lengths up to 50 cm. In an AD model, cholinergic axons were slowly lost and there was an accumulation of axon-derived material in discrete puncta. Calculations based on published morphometric data indicate that basal forebrain cholinergic neurons in humans have a mean axon length of ∼100 meters. DOI:http://dx.doi.org/10.7554/eLife.02444.001 The human brain is made up of roughly 80 to 100 billion neurons, organized into extensive networks. Each neuron consists of a number of components: a cell body, which contains the nucleus; numerous short protrusions from the cell body called dendrites; and a long thin structure called an axon that carries the electrical signals generated in the cell body and the dendrites to the next neuron in the network. One of the most studied networks in the human brain is the basal forebrain network, which is made up of large neurons that communicate with one another using a chemical transmitter called acetylcholine. This network has a key role in cognition, and its neurons are among the first to degenerate in Alzheimer's disease. However, relatively little is known about the structure of these ‘cholinergic’ neurons because their large size makes them difficult to study using standard techniques. Now, Wu et al. have visualized, for the first time, the complete 3D structure of cholinergic neurons in the mouse forebrain. The mice in question had been genetically modified so that only ten or so of their many thousands of cholinergic neurons expressed a distinctive ‘marker’ protein. This made it possible to distinguish these neurons from surrounding brain tissue in order to visualize their structures. The resulting pictures clearly illustrate the neurons' complexity, with individual axons in adult mice displaying up to 1000 branches. Measurements showed that each cholinergic axon in the mouse brain is roughly 30 centimeters long, even though the brain itself is less than 2 centimeters from front to back. Based on measurements by other researchers, Wu et al. calculated that the axons of single cholinergic neurons in the human brain are about 100 meters long on average. The extreme length and complex branching structure of cholinergic forebrain neurons helps to explain why each neuron is able to modulate the activity of many others in the network. It could also explain their vulnerability to degeneration, as the need to transport materials over such long distances may limit the ability of these neurons to respond to damage. DOI:http://dx.doi.org/10.7554/eLife.02444.002
Collapse
Affiliation(s)
- Hao Wu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - John Williams
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States Department of Opthalmology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
11
|
Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, Jahanshahi M. The nucleus basalis of Meynert: A new target for deep brain stimulation in dementia? Neurosci Biobehav Rev 2013; 37:2676-88. [DOI: 10.1016/j.neubiorev.2013.09.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
|
12
|
Grazioplene RG, Deyoung CG, Rogosch FA, Cicchetti D. A novel differential susceptibility gene: CHRNA4 and moderation of the effect of maltreatment on child personality. J Child Psychol Psychiatry 2013; 54:872-80. [PMID: 23240931 PMCID: PMC3608843 DOI: 10.1111/jcpp.12031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The differential susceptibility hypothesis states that some genetic variants that confer risk in adverse environments are beneficial in normal or nurturing environments. The cholinergic system is promising as a source of susceptibility genes because of its involvement in learning and neural plasticity. The cholinergic receptor gene CHRNA4 has been linked to characteristics related to the personality traits Neuroticism and Openness/Intellect. METHODS The effects of interaction between CHRNA4 genotype and maltreatment status on child personality were examined in a well matched sample of 339 maltreated and 275 non-maltreated children (aged 8-13 years). RESULTS Variation in CHRNA4 interacted with childhood maltreatment to predict personality in a manner indicating differential susceptibility. The interaction of CHRNA4 and maltreatment status predicted Neuroticism and Openness/Intellect. Maltreated children with the rs1044396 T/T genotype scored highest on Neuroticism and showed no effect of genotype on Openness/Intellect. Non-maltreated children with this genotype scored lowest on Neuroticism and highest on Openness/Intellect. CONCLUSION Variation in CHRNA4 appears to contribute to personality by affecting degree of developmental sensitivity to both normal and adverse environments.
Collapse
|
13
|
Hays SA, Rennaker RL, Kilgard MP. Targeting plasticity with vagus nerve stimulation to treat neurological disease. PROGRESS IN BRAIN RESEARCH 2013; 207:275-99. [PMID: 24309259 DOI: 10.1016/b978-0-444-63327-9.00010-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pathological neural activity in a variety of neurological disorders could be treated by directing plasticity to specifically renormalize aberrant neural circuits, thereby restoring normal function. Brief bursts of acetylcholine and norepinephrine can enhance the neural plasticity associated with coincident events. Vagus nerve stimulation (VNS) represents a safe and effective means to trigger the release of these neuromodulators with a high degree of temporal control. VNS-event pairing can generate highly specific and long-lasting plasticity in sensory and motor cortex. Based on the capacity to drive specific changes in neural circuitry, VNS paired with experience has been successful in effectively ameliorating animal models of chronic tinnitus, stroke, and posttraumatic stress disorder. Targeted plasticity therapy utilizing VNS is currently being translated to humans to treat chronic tinnitus and improve motor recovery after stroke. This chapter will discuss the current progress of VNS paired with experience to drive specific plasticity to treat these neurological disorders and will evaluate additional future applications of targeted plasticity therapy.
Collapse
Affiliation(s)
- Seth A Hays
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA
| | | | | |
Collapse
|
14
|
Mesulam M. Cholinergic aspects of aging and Alzheimer's disease. Biol Psychiatry 2012; 71:760-1. [PMID: 22482884 PMCID: PMC3712351 DOI: 10.1016/j.biopsych.2012.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 01/04/2023]
Affiliation(s)
- Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Chicago, Illinois 60612, USA.
| |
Collapse
|
15
|
Cortical map plasticity improves learning but is not necessary for improved performance. Neuron 2011; 70:121-31. [PMID: 21482361 DOI: 10.1016/j.neuron.2011.02.038] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2011] [Indexed: 11/21/2022]
Abstract
Cortical map plasticity is believed to be a key substrate of perceptual and skill learning. In the current study, we quantified changes in perceptual ability after pairing tones with stimulation of the cholinergic nucleus basalis to induce auditory cortex map plasticity outside of a behavioral context. Our results provide evidence that cortical map plasticity can enhance perceptual learning. However, auditory cortex map plasticity fades over weeks even though tone discrimination performance remains stable. This observation is consistent with recent reports that cortical map expansions associated with perceptual and motor learning are followed by a period of map renormalization without a decrement in performance. Our results indicate that cortical map plasticity enhances perceptual learning, but is not necessary to maintain improved discriminative ability.
Collapse
|
16
|
Whyte E, Skidmore E, Aizenstein H, Ricker J, Butters M. Cognitive impairment in acquired brain injury: a predictor of rehabilitation outcomes and an opportunity for novel interventions. PM R 2011; 3:S45-51. [PMID: 21703580 PMCID: PMC4492523 DOI: 10.1016/j.pmrj.2011.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 11/16/2022]
Abstract
Cognitive impairment is a common sequela in acquired brain injury and one that predicts rehabilitation outcomes. There is emerging evidence that impairments in cognitive functions can be manipulated by both pharmacologic and nonpharmacologic interventions to improve rehabilitation outcomes. By using stroke as a model for acquired brain injury, we review the evidence that links cognitive impairment to poor rehabilitation outcomes and discuss possible mechanisms to explain this association. Furthermore, we examine nascent promising research that suggests that interventions that target cognitive impairments can lead to better rehabilitation outcomes.
Collapse
Affiliation(s)
- Ellen Whyte
- Department of Psychiatry, School of Medicine, WPIC-BT 764, 3811 O'Hara St, Pittsburgh PA 15213, USA
| | | | | | | | | |
Collapse
|
17
|
Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neurosci Biobehav Rev 2011; 35:1397-409. [PMID: 21392524 DOI: 10.1016/j.neubiorev.2011.03.001] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting the elderly population today; however, there is currently no accurate description of the etiology of this devastating disorder. No single factor has been demonstrated as being causative; however, an alternative co-factors theory suggests that the interaction of multiple risk factors is responsible for AD. We have used this model, in combination with the original cholinergic hypothesis of AD to propose a "new" cholinergic hypothesis that we present in this review. This new version takes into account recent findings from the literature and our reports of removal of medial septum cholinergic projections to the hippocampus reduces both behavioural and anatomical plasticity, resulting in greater cognitive impairment in response to secondary insults (stress, injury, disease, etc.). We will first summarize the experimental results and discuss some potential mechanisms that could explain our results. We will then present our 'new' version of the cholinergic hypothesis and how it relates to the field of AD research today. Finally we will discuss some of the implications for treatment that arise from this model and present directions for future study.
Collapse
Affiliation(s)
- Laura A Craig
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge; 4401 University Drive, Lethbridge, AB, Canada
| | | | | |
Collapse
|
18
|
Conner JM, Kulczycki M, Tuszynski MH. Unique contributions of distinct cholinergic projections to motor cortical plasticity and learning. ACTA ACUST UNITED AC 2010; 20:2739-48. [PMID: 20181623 DOI: 10.1093/cercor/bhq022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The cholinergic basal forebrain projects throughout the neocortex, exerting a critical role in modulating plasticity associated with normal learning. Cholinergic modulation of cortical plasticity could arise from 3 distinct mechanisms by 1) "direct" modulation via cholinergic inputs to regions undergoing plasticity, 2) "indirect" modulation via cholinergic projections to anterior, prefrontal attentional systems, or 3) modulating more global aspects of processing via distributed inputs throughout the cortex. To segregate these potential mechanisms, we investigated cholinergic-dependent reorganization of cortical motor representations in rats undergoing skilled motor learning. Behavioral and electrophysiological consequences of depleting cholinergic inputs to either motor cortex, prefrontal cortex, or globally, were compared. We find that local depletion of cholinergic afferents to motor cortex significantly disrupts map plasticity and skilled motor behavior, whereas prefrontal cholinergic depletion has no effect on these measures. Global cholinergic depletion perturbs map plasticity comparable with motor cortex depletions but results in significantly greater impairments in skilled motor acquisition. These findings indicate that local cholinergic activation within motor cortex, as opposed to indirect regulation of prefrontal systems, modulate cortical map plasticity and motor learning. More globally acting cholinergic mechanisms provide additional support for the acquisition of skilled motor behaviors, beyond those associated with cortical map reorganization.
Collapse
Affiliation(s)
- J M Conner
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093-0626, USA.
| | | | | |
Collapse
|
19
|
Anselme P. The uncertainty processing theory of motivation. Behav Brain Res 2009; 208:291-310. [PMID: 20035799 DOI: 10.1016/j.bbr.2009.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/13/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Most theories describe motivation using basic terminology (drive, 'wanting', goal, pleasure, etc.) that fails to inform well about the psychological mechanisms controlling its expression. This leads to a conception of motivation as a mere psychological state 'emerging' from neurophysiological substrates. However, the involvement of motivation in a large number of behavioural parameters (triggering, intensity, duration, and directedness) and cognitive abilities (learning, memory, decision, etc.) suggest that it should be viewed as an information processing system. The uncertainty processing theory (UPT) presented here suggests that motivation is the set of cognitive processes allowing organisms to extract information from the environment by reducing uncertainty about the occurrence of psychologically significant events. This processing of information is shown to naturally result in the highlighting of specific stimuli. The UPT attempts to solve three major problems: (i) how motivations can affect behaviour and cognition so widely, (ii) how motivational specificity for objects and events can result from nonspecific neuropharmacological causal factors (such as mesolimbic dopamine), and (iii) how motivational interactions can be conceived in psychological terms, irrespective of their biological correlates. The UPT is in keeping with the conceptual tradition of the incentive salience hypothesis while trying to overcome the shortcomings inherent to this view.
Collapse
Affiliation(s)
- Patrick Anselme
- Centre de Neurosciences Cognitives et Comportementales, Université de Liège, Liège, Belgium.
| |
Collapse
|
20
|
The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity. J Neurosci 2009; 29:5992-6000. [PMID: 19420265 DOI: 10.1523/jneurosci.0230-09.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The basal forebrain cholinergic system has been implicated in the reorganization of adult cortical sensory and motor representations under many, but not all, experimental conditions. It is still not fully understood which types of plasticity require the cholinergic system and which do not. In this study, we examine the hypothesis that the basal forebrain cholinergic system is required for eliciting plasticity associated with complex cognitive processing (e.g., behavioral experiences that drive cortical reorganization) but is not required for plasticity mediated under behaviorally independent conditions. We used established experimental manipulations to elicit two distinct forms of plasticity within the motor cortex: facial nerve transections evoke reorganization of cortical motor representations independent of behavioral experience, and skilled forelimb training induces behaviorally dependent expansion of forelimb motor representations. In animals that underwent skilled forelimb training in conjunction with a facial nerve lesion, cholinergic mechanisms were required for mediating the behaviorally dependent plasticity associated with the skilled motor training but were not necessary for mediating plasticity associated with the facial nerve transection. These results dissociate the contribution of cholinergic mechanisms to distinct forms of cortical plasticity and support the hypothesis that the forebrain cholinergic system is selectively required for modulating complex forms of cortical plasticity driven by behavioral experience.
Collapse
|
21
|
Rothi LJG, Fuller R, Leon SA, Kendall D, Moore A, Wu SS, Crosson B, Heilman KM, Nadeau SE. Errorless practice as a possible adjuvant to donepezil in Alzheimer's disease. J Int Neuropsychol Soc 2009; 15:311-22. [PMID: 19241637 PMCID: PMC3010871 DOI: 10.1017/s1355617709090201] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Six individuals with probable Alzheimer's disease (AD) participated in a phase 1 study employing a repeated measures, parallel baseline design testing the hypothesis that error-free experience during word production practice combined with an acetyl cholinesterase inhibitor would improve confrontation naming ability. While acetyl cholinesterase inhibitors are safe and delay cognition decline associated with AD, improvement over baseline cognition is less evident; clinically significant cognitive deficits persist and progress. Both animal and clinical research strongly implicate acetylcholine in learning, a form of neuroplasticity. In clinical practice, however, people with AD are given cholinergic medications without concomitant systematic/targeted retraining. In this study six participants with probable AD and taking donepezil participated in targeted word production practice using an errorless learning strategy. Results showed that combining behavioral enrichment training and an acetyl cholinesterase inhibitor resulted in significant improvements in verbal confrontation naming of trained items for three of six participants. Differences in baseline dementia severity, living conditions, and medications may have influenced the training response. Detection of substantial treatment effects in 50% of subjects suggests further language treatment studies in AD in combination with an acetyl cholinesterase inhibitor are warranted and provide useful information on inclusion/exclusion criteria for use in subsequent studies.
Collapse
Affiliation(s)
- Leslie J Gonzalez Rothi
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida 32608-1197, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xerri C. Imprinting of idyosyncratic experience in cortical sensory maps: Neural substrates of representational remodeling and correlative perceptual changes. Behav Brain Res 2008; 192:26-41. [DOI: 10.1016/j.bbr.2008.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
|
23
|
Afarinesh MR, Sheibani V, Arabzadeh S, Shamsizadeh A. Effect of chronic morphine exposure on response properties of rat barrel cortex neurons. Addict Biol 2008; 13:31-9. [PMID: 18201293 DOI: 10.1111/j.1369-1600.2007.00087.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic exposure to morphine can impair performance in tasks which need sensory processing. Using single unit recordings we investigate the effect of chronic morphine exposure on the firing properties of neurons in layers IV and V of the whisker-related area of rat primary somatosensory cortex. In urethane-anesthetized animals, neuronal activity was recorded in response to principal and adjacent whisker deflections either stimulated independently or in a conditioning test paradigm. A condition test ratio (CTR) was calculated for assessing the inhibitory receptive field. In layer IV, chronic morphine treatment did not change the spontaneous discharge activity. On responses to principal and adjacent whisker deflections did not show any significant changes following chronic morphine exposure. The magnitude Off responses to adjacent whisker deflection decreased while its response latency increased. In addition, there was a significant increase in the latency of Off responses to principal whisker deflection. CTR did not change significantly following morphine exposure. Layer V neurons, on the other hand, did not show any significant changes in their spontaneous activity or their evoked responses following morphine exposure. Our results suggest that chronic morphine exposure has a subtle modulatory effect on response properties of neurons in barrel cortex.
Collapse
|
24
|
Percaccio CR, Pruette AL, Mistry ST, Chen YH, Kilgard MP. Sensory experience determines enrichment-induced plasticity in rat auditory cortex. Brain Res 2007; 1174:76-91. [PMID: 17854780 DOI: 10.1016/j.brainres.2007.07.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 07/25/2007] [Accepted: 07/31/2007] [Indexed: 10/23/2022]
Abstract
Our previous studies demonstrated that only a few days of housing in an enriched environment increases response strength and paired-pulse depression in the auditory cortex of awake and anesthetized rats [Engineer, N.D., Percaccio, C.R., Pandya, P.K., Moucha, R., Rathbun, D.L., Kilgard, M.P., 2004. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. J Neurophysiol. 92, 73-82 and Percaccio, C.R., Engineer, N.D., Pruette, A.L., Pandya, P.K., Moucha, R., Rathbun, D.L., Kilgard, M.P., 2005. Environmental enrichment increases paired-pulse depression in rat auditory cortex. J Neurophysiol. 94, 3590-3600]. Multiple environmental and neurochemical factors likely contribute to the expression of this plasticity. In the current study, we examined the contribution of social stimulation, exercise, auditory exposure, and cholinergic modulation to enrichment-induced plasticity. We recorded epidural evoked potentials from awake rats in response to tone pairs and noise bursts. Auditory evoked responses were not altered by social stimulation or exercise. Rats that could hear the enriched environment, but not interact with it, exhibited enhanced responses to tones and increased paired-pulse depression. The degree to which enrichment increased response strength and forward masking was not reduced after a ventricular injection of 192 IgG-saporin. These results indicate that rich auditory experience stimulates physiological plasticity in the auditory cortex, despite persistent deficits in cholinergic activity. This conclusion may be beneficial to clinical populations with sensory gating and cholinergic abnormalities, including individuals with autism, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Cherie R Percaccio
- Neuroscience Program, School of Behavioral and Brain Sciences, GR 41, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75083-0688, USA.
| | | | | | | | | |
Collapse
|
25
|
Hanganu IL, Staiger JF, Ben-Ari Y, Khazipov R. Cholinergic modulation of spindle bursts in the neonatal rat visual cortex in vivo. J Neurosci 2007; 27:5694-705. [PMID: 17522314 PMCID: PMC6672769 DOI: 10.1523/jneurosci.5233-06.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine (ACh) is known to shape the adult neocortical activity related to behavioral states and processing of sensory information. However, the impact of cholinergic input on the neonatal neuronal activity remains widely unknown. Early during development, the principal activity pattern in the primary visual (V1) cortex is the intermittent self-organized spindle burst oscillation that can be driven by the retinal waves. Here, we assessed the relationship between this early activity pattern and the cholinergic drive by either blocking or augmenting the cholinergic input and investigating the resultant effects on the activity of the rat visual cortex during the first postnatal week in vivo. Blockade of the muscarinic receptors by intracerebroventricular, intracortical, or supracortical atropine application decreased the occurrence of V1 spindle bursts by 50%, both the retina-independent and the optic nerve-mediated spindle bursts being affected. In contrast, blockade of acetylcholine esterase with physostigmine augmented the occurrence, amplitude, and duration of V1 spindle bursts. Whereas direct stimulation of the cholinergic basal forebrain nuclei increased the occurrence probability of V1 spindle bursts, their chronic immunotoxic lesion using 192 IgG-saporin decreased the occurrence of neonatal V1 oscillatory activity by 87%. Thus, the cholinergic input facilitates the neonatal V1 spindle bursts and may prime the developing cortex to operate specifically on relevant early (retinal waves) and later (visual input) stimuli.
Collapse
Affiliation(s)
- Ileana L Hanganu
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U29, 13273 Marseille, France.
| | | | | | | |
Collapse
|
26
|
Cowen SL, McNaughton BL. Selective delay activity in the medial prefrontal cortex of the rat: contribution of sensorimotor information and contingency. J Neurophysiol 2007; 98:303-16. [PMID: 17507507 PMCID: PMC6257987 DOI: 10.1152/jn.00150.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The medial prefrontal cortex (mPFC) plays a critical role in the organization of goal-directed behaviors and in the learning of reinforcement contingencies. Given these observations, it was hypothesized that mPFC neurons may store associations between sequentially paired stimuli when both stimuli contribute to the prediction of reward. To test this hypothesis, neural-ensemble spiking activity was recorded as rats performed a paired-associate discrimination task. Rats were trained to associate sequentially presented stimuli with probabilistic reward. In one condition, both elements of the stimulus sequence provided information about reward delivery. In another condition, only the first stimulus contributed to the prediction. As hypothesized, stimulus-selective, prospective delay activity was observed during sequences in which both elements contributed to the prediction of reward. Unexpectedly, selective delay responses were associated with slight variations in head position and thus not necessarily generated by intrinsic mnemonic processes. Interestingly, the sensitivity of neurons to head position was greatest during intervals when reward delivery was certain. These results suggest that a significant portion of delay activity in the rat mPFC reflects task-relevant sensorimotor activity, possibly related to enhancing stimulus detection, rather than stimulus-stimulus associations. These observations agree with recent evidence that suggests that prefrontal neurons are particularly responsive during the performance of action sequences related to the acquisition of reward. These results also indicate that considerable attention must be given to the monitoring and analysis of sensorimotor variables during delay tasks because slight changes in position can produce activity in the mPFC that erroneously appears to be driven by intrinsic mechanisms.
Collapse
Affiliation(s)
- Stephen L Cowen
- Arizona Research Labs, Division of Neural Systems, Memory and Aging and Department of Psychology, The University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
27
|
Meidinger MA, Hildebrandt-Schoenfeld H, Illing RB. Cochlear damage induces GAP-43 expression in cholinergic synapses of the cochlear nucleus in the adult rat: a light and electron microscopic study. Eur J Neurosci 2007; 23:3187-99. [PMID: 16820009 DOI: 10.1111/j.1460-9568.2006.04853.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies suggest a potential for activity-dependent reconstruction in the adult mammalian brainstem that exceeds previous expectations. We found that a unilateral cochlear lesion led within 1 week to a rise of choline acetyltransferase (ChAT) immunoreactivity in the ventral cochlear nucleus of the affected side, matching the lesion-induced expression of growth-associated protein 43 (GAP-43) previously described. The rise of both ChAT and GAP-43 immunoreactivity was reflected in the average density of the staining. Moreover, the number of light-microscopically identifiable boutons increased in both stains. GAP-43-positive boutons could, by distinct ultrastructural features, regularly be identified as presynaptic endings. However, GAP-43 immunoreactivity was not only found in presynaptic endings with a classical morphology, but also in profiles that suggest morphological dynamic structures by showing filopodia, assemblages of pleomorphic vesicles, large vesicles (diameter up to 200 nm) fusing with the presynaptic plasma membrane close to synaptic contacts, small dense-core vesicles (diameter about 80 nm) and presynaptic ribosomes. Moreover, we observed perforated synapses as well as GAP-43 immunoreactivity condensed in rafts, both indicative of growing or changing neuronal connections. Classical and untypical ultrastructural profiles that contained GAP-43 also contained ChAT. We conclude that there is extensive deafness-induced GAP-43-mediated synaptic plasticity in the cochlear nucleus, and that this plasticity is predominantly, if not exclusively, based on cholinergic afferents.
Collapse
Affiliation(s)
- Markus A Meidinger
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
28
|
Sellien H, Ebner FF. Rapid plasticity follows whisker pairing in barrel cortex of the awake rat. Exp Brain Res 2006; 177:1-14. [PMID: 16924487 DOI: 10.1007/s00221-006-0644-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
Synaptic plasticity can be induced easily throughout life in the rodent somatic sensory cortex. Trimming all but two whiskers on one side of an adult rat's face, called 'whisker pairing', causes the active (intact) whiskers to develop a stronger drive on cortical cells in their respective barrel columns, while inactive (trimmed) whisker efficacy is down-regulated. To date, this type of activity-dependent plasticity has been induced by trimming all but two whiskers, letting the rats explore their environment from 1 day to 1 month, after which cortical responses were analyzed physiologically under anesthesia. Such studies have enhanced our understanding of cortical plasticity, but the anesthesia complicates the examination of changes that occur in the first few hours after whisker trimming. Here we assayed the short-term changes that occur in alert, active animals over a period of hours after whisker trimming. The magnitude of barrel cortex evoked responses was measured in response to stimulation of the cut and paired whiskers of rats under several conditions: (a) whisking in air (control), (b) active whisking of an object by the rat, and (c) epochs of passive whisker stimulation to identify the onset of whisker pairing plasticity changes in cortex. The main difference between whisking in air without contact and passive whisker stimulation is that the former condition induces an increased response to stimulation of inactive cut whiskers, while the latter condition increases the responses to the stimulated whiskers. The results support the conclusion that whisker pairing plasticity in barrel cortex occurs within 4 h after whisker trimming in an awake, alert animal.
Collapse
Affiliation(s)
- Heike Sellien
- Department of Psychology and Neuroscience Program, Vanderbilt University, Nashville, TN 37203, USA
| | | |
Collapse
|
29
|
Fernández de Sevilla D, Rodrigo-Angulo M, Nuñez A, Buño W. Cholinergic modulation of synaptic transmission and postsynaptic excitability in the rat gracilis dorsal column nucleus. J Neurosci 2006; 26:4015-25. [PMID: 16611818 PMCID: PMC6673877 DOI: 10.1523/jneurosci.5489-05.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Somatosensory information, conveyed through the gracilis nucleus (GN), is regulated by descending corticofugal (CF) glutamatergic fibers. In addition, the GN receives cholinergic inputs with still unclear source and functional significance. Using both the in vitro slice and intracellular recording with sharp and patch electrodes and in vivo extracellular single-unit recordings, we analyzed the effects of activation of cholinergic receptors on synaptic, intrinsic, and functional properties of rat GN neurons. The cholinergic agonist carbamilcholine-chloride [carbachol (CCh); 1-10 microM] in vitro (1) induced presynaptic inhibition of EPSPs evoked by both dorsal column and CF stimulation, (2) increased postsynaptic excitability, and (3) amplified the spike output of GN neurons. The inhibition by atropine (1 microM) and pirenzepine (10 microM) of all presynaptic and postsynaptic effects of CCh suggests actions through muscarinic M1 receptors. The above effects were insensitive to nicotinic antagonists. We searched the anatomical origin of the cholinergic projection to the GN throughout the hindbrain and forebrain, and we found that the cholinergic fibers originated mainly in the pontine reticular nucleus (PRN). Electrical stimulation of the PRN amplified sensory responses in the GN in vivo, an effect prevented by topical application of atropine. Our results demonstrate for the first time that cholinergic agonists induce both presynaptic and postsynaptic effects on GN neurons and suggest an important regulatory action of inputs from cholinergic neuronal groups in the pontine reticular formation in the functional control of somatosensory information flow in the GN.
Collapse
|
30
|
Abstract
Acetylcholine has been shown to modulate many forms of cortical plasticity. New evidence indicates that reorganization of adult primary auditory cortex is still possible after removal of cholinergic inputs. This finding suggests that acetylcholine may act less as a gate and more as a gain control on cortical plasticity.
Collapse
Affiliation(s)
- Michael P Kilgard
- Cognition and Neuroscience Program, University of Texas, Dallas, School of Behavioral and Brain Sciences, GR41, Richardson, Texas 75083, USA
| |
Collapse
|
31
|
Kamke MR, Brown M, Irvine DRF. Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex. Hear Res 2005; 206:89-106. [PMID: 16081001 DOI: 10.1016/j.heares.2004.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 12/09/2004] [Indexed: 11/17/2022]
Abstract
Numerous studies have implicated the cholinergic basal forebrain (cBF) in the modulation of auditory cortical responses. This study aimed to accurately define the sources of cBF input to primary auditory cortex (AI) and to assess the efficacy of a cholinergic immunotoxin in cat. Three anaesthetized cats received multiple injections of horseradish-peroxidase conjugated wheatgerm-agglutin into physiologically identified AI. Following one to two days survival, tetramethylbenzidine histochemistry revealed the greatest number of retrogradely labeled cells in ipsilateral putamen, globus pallidus and internal capsule, and smaller numbers in more medial nuclei of the basal forebrain (BF). Concurrent choline acetyltransferase immunohistochemistry showed that almost 80% of the retrogradely labeled cells in BF were cholinergic, with the vast majority of these cells arising from the more lateral BF nuclei identified above. In the second part of the study, unilateral intraparenchymal injections of the cholinergic immunotoxin ME20.4-SAP were made into the putamen/globus pallidus nuclei of six cats. Immuno- and histochemistry revealed a massive reduction in the number of cholinergic cells in and around the targeted area, and a corresponding reduction in the density of cholinergic fibers in auditory cortex. These results are discussed in terms of their implications for investigations of the role of the cBF in cortical plasticity.
Collapse
Affiliation(s)
- Marc R Kamke
- Department of Psychology, School of Psychology, Psychiatry and Psychological Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Vic. 3800, Australia.
| | | | | |
Collapse
|
32
|
Kamke MR, Brown M, Irvine DRF. Basal Forebrain Cholinergic Input Is Not Essential for Lesion-Induced Plasticity in Mature Auditory Cortex. Neuron 2005; 48:675-86. [PMID: 16301182 DOI: 10.1016/j.neuron.2005.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 07/11/2005] [Accepted: 09/13/2005] [Indexed: 11/17/2022]
Abstract
The putative role of the basal forebrain cholinergic system in mediating lesion-induced plasticity in topographic cortical representations was investigated. Cholinergic immunolesions were combined with unilateral restricted cochlear lesions in adult cats, demonstrating the consequence of cholinergic depletion on lesion-induced plasticity in primary auditory cortex (AI). Immunolesions almost eliminated the cholinergic input to AI, while cochlear lesions produced broad high-frequency hearing losses. The results demonstrate that the near elimination of cholinergic input does not disrupt reorganization of the tonotopic representation of the lesioned (contralateral) cochlea in AI and does not affect the normal representation of the unlesioned (ipsilateral) cochlea. It is concluded that cholinergic basal forebrain input to AI is not essential for the occurrence of lesion-induced plasticity in AI.
Collapse
Affiliation(s)
- Marc R Kamke
- School of Psychology, Psychiatry, and Psychological Medicine, Monash University, Victoria 3800, Australia.
| | | | | |
Collapse
|
33
|
Pych JC, Chang Q, Colon-Rivera C, Gold PE. Acetylcholine release in hippocampus and striatum during testing on a rewarded spontaneous alternation task. Neurobiol Learn Mem 2005; 84:93-101. [PMID: 15950501 DOI: 10.1016/j.nlm.2005.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 04/30/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
The present experiment tested male Sprague-Dawley rats for spontaneous alternation performance in a food-rewarded Y-shaped maze. Microdialysis samples, later assessed for acetylcholine concentration, were collected from the hippocampus and striatum of each rat prior to and during testing; testing sessions lasted 20 min. Early in testing, rats alternated at a rate of 72%. Alternation scores increased throughout the 20-min testing session and reached 93% during the last 5 min. The behavioral findings suggest that, during testing, rats changed the basis for their performance from a spatial working memory strategy to a persistent turning strategy. ACh release in both hippocampus and striatum increased at the onset of testing. Increases in ACh release in the striatum began at 18% above baseline during the first 5 min of testing and steadily increased reaching 58% above baseline during the final 5 min. The progressive rise of striatum ACh release during testing occurred at about the time rats adopted a persistent turning strategy. In contrast, ACh release in the hippocampus increased by 50% with the onset of testing and remained at this level until declining slightly during the last 5 min of testing. The relative changes in ACh release in the striatum and hippocampus resulted in a close negative relationship between the ratio of ACh release in the hippocampus/striatum and alternation scores.
Collapse
Affiliation(s)
- Jason C Pych
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | | | | | | |
Collapse
|
34
|
Illing RB, Kraus KS, Meidinger MA. Reconnecting neuronal networks in the auditory brainstem following unilateral deafening. Hear Res 2005; 206:185-99. [PMID: 16081008 DOI: 10.1016/j.heares.2005.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 01/10/2005] [Indexed: 11/27/2022]
Abstract
When we disturbed the auditory input of the adult rat by cochleotomy or noise trauma on one side, several substantial anatomical, cellular, and molecular changes took place in the auditory brainstem. We found that: (1) cochleotomy or severe noise trauma both lead to a considerable increase of immunoreactivity of the growth-associated protein GAP-43 in the ventral cochlear nucleus (VCN) of the affected side; (2) the expression of GAP-43 in VCN is restricted to presynaptic endings and short fiber segments; (3) axon collaterals of the cholinergic medial olivocochlear (MOC) neurons are the path along which GAP-43 reaches VCN; (4) partial cochlear lesions induce the emergence of GAP-43 positive presynaptic endings only in regions tonotopically corresponding to the extent of the lesion; (5) judging from the presence of immature fibers and growth cones in VCN on the deafened side, at least part of the GAP-43 positive presynaptic endings appear to be newly formed neuronal contacts following axonal sprouting while others may be modified pre-existing contacts; and (6) GAP-43 positive synapses are formed only on specific postsynaptic profiles, i.e., glutamatergic, glycinergic and calretinin containing cell bodies, but not GABAergic cell bodies. We conclude that unilateral deafening, be it partial or total, induces complex patterns of reconnecting neurons in the adult auditory brainstem, and we evaluate the possibility that the deafness-induced chain of events is optimized to remedy the loss of a bilaterally balanced activity in the auditory brainstem.
Collapse
Affiliation(s)
- Robert-Benjamin Illing
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, D-79106 Freiburg, Germany.
| | | | | |
Collapse
|
35
|
Yu AJ, Dayan P. Uncertainty, neuromodulation, and attention. Neuron 2005; 46:681-92. [PMID: 15944135 DOI: 10.1016/j.neuron.2005.04.026] [Citation(s) in RCA: 1033] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/16/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
Uncertainty in various forms plagues our interactions with the environment. In a Bayesian statistical framework, optimal inference and prediction, based on unreliable observations in changing contexts, require the representation and manipulation of different forms of uncertainty. We propose that the neuromodulators acetylcholine and norepinephrine play a major role in the brain's implementation of these uncertainty computations. Acetylcholine signals expected uncertainty, coming from known unreliability of predictive cues within a context. Norepinephrine signals unexpected uncertainty, as when unsignaled context switches produce strongly unexpected observations. These uncertainty signals interact to enable optimal inference and learning in noisy and changeable environments. This formulation is consistent with a wealth of physiological, pharmacological, and behavioral data implicating acetylcholine and norepinephrine in specific aspects of a range of cognitive processes. Moreover, the model suggests a class of attentional cueing tasks that involve both neuromodulators and shows how their interactions may be part-antagonistic, part-synergistic.
Collapse
Affiliation(s)
- Angela J Yu
- Gatsby Computational Neuroscience Unit, London, United Kingdom.
| | | |
Collapse
|
36
|
Berg RW, Friedman B, Schroeder LF, Kleinfeld D. Activation of Nucleus Basalis Facilitates Cortical Control of a Brain Stem Motor Program. J Neurophysiol 2005; 94:699-711. [PMID: 15728764 DOI: 10.1152/jn.01125.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We tested the hypothesis that activation of nucleus basalis magnocellularis (NBM), which provides cholinergic input to cortex, facilitates motor control. Our measures of facilitation were changes in the direction and time-course of vibrissa movements that are elicited by microstimulation of vibrissa motor (M1) cortex. In particular, microstimulation led solely to a transient retraction of the vibrissae in the sessile animal but to a full motion sequence of protraction followed by retraction in the aroused animal. We observed that activation of NBM, as assayed by cortical desynchronization, induced a transition from microstimulation-evoked retraction to full sweep sequences. This dramatic change in the vibrissa response to microstimulation was blocked by systemic delivery of atropine and, in anesthetized animals, an analogous change was blocked by the topical administration of atropine to M1 cortex. We conclude that NBM significantly facilitates the ability of M1 cortex to control movements. Our results bear on the importance of cholinergic activation in schemes for neuroprosthetic control of movement.
Collapse
Affiliation(s)
- Rune W Berg
- Department of Physics 0374, University of California at San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
37
|
Conner JM, Chiba AA, Tuszynski MH. The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 2005; 46:173-9. [PMID: 15848797 DOI: 10.1016/j.neuron.2005.03.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 01/27/2005] [Accepted: 03/01/2005] [Indexed: 11/26/2022]
Abstract
A reorganization of cortical representations is postulated as the basis for functional recovery following many types of nervous system injury. Neuronal mechanisms underlying this form of cortical plasticity are poorly understood. The present study investigated the hypothesis that the basal forebrain cholinergic system plays an essential role in enabling the cortical reorganization required for functional recovery following brain injury. The results demonstrate that functional recovery following cortical injury requires basal forebrain cholinergic mechanisms and suggest that the basis for this recovery is the cholinergic-dependent reorganization of motor representations. These findings raise the intriguing possibility that deficits in cholinergic function may limit functional outcomes following nervous system injury.
Collapse
Affiliation(s)
- James M Conner
- Department of Neurosciences, Unviersity of California, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
38
|
Sarter M, Hasselmo ME, Bruno JP, Givens B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. ACTA ACUST UNITED AC 2005; 48:98-111. [PMID: 15708630 DOI: 10.1016/j.brainresrev.2004.08.006] [Citation(s) in RCA: 489] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2004] [Indexed: 12/17/2022]
Abstract
Neurophysiological studies demonstrated that increases in cholinergic transmission in sensory areas enhance the cortical processing of thalamic inputs. Cholinergic activity also suppresses the retrieval of internal associations, thereby further promoting sensory input processing. Behavioral studies documented the role of cortical cholinergic inputs in attentional functions and capacities by demonstrating, for example, that the integrity of the cortical cholinergic input system is necessary for attentional performance, and that the activity of cortical cholinergic inputs is selectively enhanced during attentional performance. This review aims at integrating the neurophysiological and behavioral evidence on the functions of cortical cholinergic inputs and hypothesizes that the cortical cholinergic input system generally acts to optimize the processing of signals in attention-demanding contexts. Such signals 'recruit', via activation of basal forebrain corticopetal cholinergic projections, the cortical attention systems and thereby amplify the processing of attention-demanding signals (termed 'signal-driven cholinergic modulation of detection'). The activity of corticopetal cholinergic projections is also modulated by direct prefrontal projections to the basal forebrain and, indirectly, to cholinergic terminals elsewhere in the cortex; thus, cortical cholinergic inputs are also involved in the mediation of top-down effects, such as the knowledge-based augmentation of detection (see Footnote 1) of signals and the filtering of irrelevant information (termed 'cognitive cholinergic modulation of detection'). Thus, depending on the quality of signals and task characteristics, cortical cholinergic activity reflects the combined effects of signal-driven and cognitive modulation of detection. This hypothesis begins to explain signal intensity or duration-dependent performance in attention tasks, the distinct effects of cortex-wide versus prefrontal cholinergic deafferentation on attention performance, and it generates specific predictions concerning cortical acetylcholine (ACh) release in attention task-performing animals. Finally, the consequences of abnormalities in the regulation of cortical cholinergic inputs for the manifestation of the symptoms of major neuropsychiatric disorders are conceptualized in terms of dysregulation in the signal-driven and cognitive cholinergic modulation of detection processes.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, 525 E. University Ave., Ann Arbor, MI 48109-1109, USA.
| | | | | | | |
Collapse
|
39
|
Aztiria E, Gotti C, Domenici L. Alpha7 but not alpha4 AChR subunit expression is regulated by light in developing primary visual cortex. J Comp Neurol 2005; 480:378-91. [PMID: 15558799 DOI: 10.1002/cne.20358] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present paper we analyzed the expression pattern of the alpha4 and alpha7 nicotinic acetylcholine receptor (nAChR) subunits in the rat visual cortex through postnatal development, to clarify whether their expression is developmentally regulated and whether eventual developmental changes are regulated by visual experience. We found that both alpha4 and alpha7 mRNA levels accumulate from postnatal day 12 (P12) before eye opening, to around P35. The immunohistochemical results indicated that both subunits are expressed throughout all cortical laminae, except layer I. Alpha4 subunit immunohistochemistry revealed significant increments in the number of positive cells in layers V and VI after eye opening. In the case of the alpha7 subunit, the number of immunoreactive cells increased in all cortical layers soon after eye opening, except in layer VI, matching the results found at the transcriptional level. In animals reared in darkness from P9 to P22, the relative amount of the alpha4 mRNA and the number of immunoreactive cells exhibited no changes. 3H-epibatidine binding experiments showed that the number of heteromeric nAChR subunits in dark-reared rats did not change with respect to age-matched controls, thus confirming the immunohistochemical results. The mRNA of the alpha7 subunit remained stable in dark-reared rats, whereas the number and distribution of immunoreactive cells changed. Moreover, the number of 125I alphabungarotoxin-binding nAChRs was significantly increased in dark-reared animals. These results indicate that visual cortex stimulation by visual input is an essential step for alpha7 nAChR normal expression, suggesting a possible role for these receptors in an experience-dependent fashion on the maturation of this cortical area.
Collapse
Affiliation(s)
- Eugenio Aztiria
- International School for Advanced Studies (ISAS-SISSA), 34014 Trieste, Italy
| | | | | |
Collapse
|
40
|
Abstract
Aphasia, the loss or impairment of language caused by brain damage, is one of the most devastating cognitive impairments of stroke. Aphasia is present in 21-38% of acute stroke patients and is associated with high short- and long-term morbidity, mortality and expenditure. Recovery from aphasia is possible even in severe cases. While speech-language therapy remains the mainstay treatment of aphasia, the effectiveness of conventional therapies has not been conclusively proved. This has motivated attempts to integrate knowledge from several domains in an effort to plan more rational therapies and to introduce other therapeutic strategies, including the use of intensive language therapy and pharmacological agents. Several placebo-controlled trials suggest that piracetam is effective in recovery from aphasia when started soon after the stroke, but its efficacy vanishes in patients with chronic aphasia. Drugs acting on catecholamine systems (bromocriptine, dexamfetamine) have shown varying degrees of efficacy in case series, open-label studies and placebo-controlled trials. Bromocriptine is useful in acute and chronic aphasias, but its beneficial action appears restricted to nonfluent aphasias with reduced initiation of spontaneous verbal messages. Dexamfetamine improves language function in subacute aphasia and the beneficial effect is maintained in the long term, but its use is restricted to highly selected samples. Pharmacological agents operating on the cholinergic system (e.g. donepezil) have shown promise. Data from single-case studies, case series and an open-label study suggest that donepezil may have beneficial effects on chronic poststroke aphasia. Preliminary evidence suggests that donepezil is well tolerated and its efficacy is maintained in the long term. Randomised controlled trials of donepezil and other cholinergic agents in poststroke aphasia are warranted.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Centro de Investigaciones Médico-Sanitarias (CIMES), Departamento de Medicina, Universidad de Málaga, Campus Universitario Teatinos, University of Málaga, Málaga, Spain
| |
Collapse
|
41
|
Verstraeten E, Cluydts R. Executive control of attention in sleep apnea patients: theoretical concepts and methodological considerations. Sleep Med Rev 2004; 8:257-67. [PMID: 15233954 DOI: 10.1016/j.smrv.2004.01.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sleep apnea patients' nocturnal breathing disturbances cause daytime sleepiness and cognitive impairments. Attentional capacity and vigilance deficits have often been observed. Moreover, some studies have suggested executive dysfunction, usually assumed to be related to (pre)frontal lobe dysfunction caused by intermittent hypoxemia. However, sleep disruption itself has a pervasive influence on cognitive function and affects not only underlying 'lower-level' processes such as arousal and alertness, but also 'higher-level' cognitive processes such as executive attention. This methodological caveat has not been fully taken into account in the sleep apnea literature. In order to be able to disentangle these cognitive processes on different levels, sound theoretical neurocognitive frameworks are needed to attain careful analyses and interpretations of neuropsychological data. Therefore, this paper firstly presents an overview of relevant theoretical concepts and models of arousal, attention, and executive function. Then, it is being argued that these theoretical considerations have important methodological implications. These methodological concerns are being addressed by specific experimental and statistical approaches, illustrated by some well-known neuropsychological tests. It can be concluded that the reported executive deficits in sleep apnea patients should be regarded as tentative, and that more case-controlled studies are needed using fine-grained analyses to parcel complex cognitive abilities into their subcomponents.
Collapse
Affiliation(s)
- Edwin Verstraeten
- Department of Cognitive and Physiological Psychology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | |
Collapse
|
42
|
Kudoh M, Seki K, Shibuki K. Sound sequence discrimination learning is dependent on cholinergic inputs to the rat auditory cortex. Neurosci Res 2004; 50:113-23. [PMID: 15288504 DOI: 10.1016/j.neures.2004.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 06/10/2004] [Indexed: 11/19/2022]
Abstract
In rat auditory cortex (AC) slices, synaptic potentiation following heterosynaptic stimulation is affected by the stimulus sequence used for induction. It was hypothesized that this sequence-dependent plasticity might be partly involved in the cellular mechanisms underlying sound sequence discrimination. Sequence dependence is abolished by muscarinic receptor antagonists. Therefore, dependence of sound sequence discrimination learning on cholinergic inputs to the rat AC was investigated. Rats were trained to discriminate the sequences of two sound components and a licking behavior in response to one of two possible sequences was rewarded with water. Atropine, a muscarinic receptor antagonist, attenuated sound sequence discrimination learning. The acquired sound sequence discrimination was not affected by atropine. Injections of the cholinergic immunotoxin 192IgG-saporin into the AC suppressed sound sequence discrimination learning, while discrimination between the two sound components was not affected. An inhibitor of M-current, linopirdine, restores the sequence dependence of synaptic potentiation in the AC slices suppressed by atropine. In this study, sound sequence discrimination learning attenuated by 192IgG-saporin was also restored by linopirdine. These similarities between sequence dependent plasticity in the AC slices and sound sequence discrimination learning support the hypothesis that the former is involved in the cellular mechanisms underlying the latter.
Collapse
Affiliation(s)
- Masaharu Kudoh
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata 951-8585, Japan.
| | | | | |
Collapse
|
43
|
Shulz DE, Ego-Stengel V, Ahissar E. Acetylcholine-dependent potentiation of temporal frequency representation in the barrel cortex does not depend on response magnitude during conditioning. ACTA ACUST UNITED AC 2004; 97:431-9. [PMID: 15242655 DOI: 10.1016/j.jphysparis.2004.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The response properties of neurons of the postero-medial barrel sub-field of the somatosensory cortex (the cortical structure receiving information from the mystacial vibrissae can be modified as a consequence of peripheral manipulations of the afferent activity. This plasticity depends on the integrity of the cortical cholinergic innervation, which originates at the nucleus basalis magnocellularis (NBM). The activity of the NBM is related to the behavioral state of the animal and the putative cholinergic neurons are activated by specific events, such as reward-related signals, during behavioral learning. Experimental studies on acetylcholine (ACh)-dependent cortical plasticity have shown that ACh is needed for both the induction and the expression of plastic modifications induced by sensory-cholinergic pairings. Here we review and discuss ACh-dependent plasticity and activity-dependent plasticity and ask whether these two mechanisms are linked. To address this question, we analyzed our data and tested whether changes mediated by ACh were activity-dependent. We show that ACh-dependent potentiation of response in the barrel cortex of rats observed after sensory-cholinergic pairing was not correlated to the changes in activity induced during pairing. Since these results suggest that the effect of ACh during pairing is not exerted through a direct control of the post-synaptic activity, we propose that ACh might induce its effect either pre- or post-synaptically through activation of second messenger cascades.
Collapse
Affiliation(s)
- Daniel E Shulz
- Unité de Neurosciences Intégratives et Computationnelles, Centre National de la Recherche Scientifique, Institut de Neurobiologie Alfred Fessard, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | |
Collapse
|
44
|
Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. ACTA ACUST UNITED AC 2004; 45:38-78. [PMID: 15063099 DOI: 10.1016/j.brainresrev.2004.02.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/26/2022]
Abstract
A deficiency in the noradrenergic system of the brain, originating largely from cells in the locus coeruleus (LC), is theorized to play a critical role in the progression of a family of neurodegenerative disorders that includes Parkinson's disease (PD) and Alzheimer's disease (AD). Consideration is given here to evidence that several neurodegenerative diseases and syndromes share common elements, including profound LC cell loss, and may in fact be different manifestations of a common pathophysiological process. Findings in animal models of PD indicate that the modification of LC-noradrenergic activity alters electrophysiological, neurochemical and behavioral indices of neurotransmission in the nigrostriatal dopaminergic system, and influences the response of this system to experimental lesions. In models related to AD, noradrenergic mechanisms appear to play important roles in modulating the activity of the basalocortical cholinergic system and its response to injury, and to modify cognitive functions including memory and attention. Mechanisms by which noradrenaline may protect or promote recovery from neural damage are reviewed, including effects on neuroplasticity, neurotrophic factors, neurogenesis, inflammation, cellular energy metabolism and excitotoxicity, and oxidative stress. Based on evidence for facilitatory effects on transmitter release, motor function, memory, neuroprotection and recovery of function after brain injury, a rationale for the potential of noradrenergic-based approaches, specifically alpha2-adrenoceptor antagonists, in the treatment of central neurodegenerative diseases is presented.
Collapse
Affiliation(s)
- Marc R Marien
- Centre de Recherche Pierre Fabre, Neurobiology I, 17 Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | |
Collapse
|
45
|
Abstract
Acetylcholine is involved in a variety of brain functions. In the visual cortex, the pattern of cholinergic innervation varies considerably across different mammalian species and across different cortical layers within the same species. The physiological effects of acetylcholine in the visual cortex display complex responses, which are likely due to cholinergic receptor subtype composition in cytoplasm membrane as well as interaction with other transmitter systems within the local neural circuitry. The functional role of acetylcholine in visual cortex is believed to improve the signal-to-noise ratio of cortical neurons during visual information processing. Available evidence suggests that acetylcholine is also involved in experience-dependent visual cortex plasticity. At the level of synaptic transmission, activation of muscarinic receptors has been shown to play a permissive role in visual cortex plasticity. Among the muscarinic receptor subtypes, the M(1) receptor seems to make a predominant contribution towards modifications of neural circuitry. The signal transduction cascade of the cholinergic pathway may act synergistically with that of the NMDA receptor pathway, whose activation is a prerequisite for cortical plasticity.
Collapse
Affiliation(s)
- Qiang Gu
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
46
|
Abstract
A profound loss of cortical cholinergic innervation is a nearly invariant feature of advanced Alzheimer's disease (AD). The temporal course of this lesion and its relationship to other aspects of the disease have not yet been fully clarified. Despite assertions to the contrary, a review of the evidence suggests that a perturbation of cholinergic innervation is likely to be present even in the very early stages of AD. This cholinergic lesion is unlikely to be a major determinant of the clinical symptoms or of the neuropathological lesions. Nonetheless, it almost certainly contributes to the severity of the cognitive and behavioral deficits, especially in the areas of memory and attention. The cholinergic lesion may also influence the progression of the neuropathological process through complex interactions with amyloidogenesis, tau phosphorylation and neuroplasticity.
Collapse
Affiliation(s)
- Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|
47
|
Affiliation(s)
- M Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Departments of Neurology and Psychiatry, Feinberg Medical School, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
48
|
Prakash N, Cohen-Cory S, Penschuck S, Frostig RD. Basal Forebrain Cholinergic System Is Involved in Rapid Nerve Growth Factor (NGF)-Induced Plasticity in the Barrel Cortex of Adult Rats. J Neurophysiol 2004; 91:424-37. [PMID: 14507983 DOI: 10.1152/jn.00489.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that topical application of nerve growth factor (NGF) to the barrel cortex of an adult rat rapidly augmented a whisker functional representation (WFR) by increasing its area and height within minutes after NGF application. In addition, we found that TrkA, the high-affinity NGF receptor, was only found on fibers projecting into the barrel cortex. Here we use a combination of techniques including chronic intrinsic signal optical imaging, neuronal fiber tracking and immunohistological techniques, to test the hypothesis that NGF-induced rapid cortical plasticity is mediated by the cortical projections of the basal forebrain cholinergic system (BFCS). Our studies localize the source of the cells in the BFCS that project to a single WFR and also demonstrate that TrkA-immunoreactive fibers in the cortex are also cholinergic and likely arise from the BFCS. In addition, by selectively lesioning the BFCS cortical fibers with the immunotoxin 192 IgG-saporin, we show that NGF-induced WFR-cortical plasticity is eliminated. These results, taken together with our previously reported imaging results that demonstrated that agonists of the cholinergic system (particularly nicotine) showed transient NGF-like augmentations of a WFR, implicate the BFCS cortical projections as necessary for NGF's rapid plasticity in the adult rat somatosensory cortex.
Collapse
Affiliation(s)
- Neal Prakash
- Departments of Neurobiology and Behavior, University of California, Irvine, California 92697-4550, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Recently, cholinergic afferents to cerebral cortex have met renewed attention regarding the regulation of plasticity as well as cognitive processing. My laboratory has developed a mouse neonatal basal forebrain lesion paradigm that has contributed considerably to the understanding of cholinergic mechanisms in cortical development. We have shown that transient cholinergic deafferentation, beginning at birth, precipitates alterations in neuronal differentiation and synaptic connectivity that persist into maturity, and contribute to altered cognitive behavior. These data are in general agreement with studies in rats in which the cholinergic basal forebrain is lesioned very early in development but contrast with effects of later developmental lesions. Moreover, in mouse, both morphological and behavioral consequences of the lesion are sex dependent. Studies of receptors and secondary messengers that are instrumental in morphogenesis and plasticity suggest that sex dependent molecular alterations occur within days if not hours following cortical cholinergic deafferentation.
Collapse
Affiliation(s)
- Christine F Hohmann
- Department of Biology, Morgan State University, Cold Spring Lane and Hillen Road, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA.
| |
Collapse
|
50
|
Golmayo L, Nuñez A, Zaborszky L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience 2003; 119:597-609. [PMID: 12770572 DOI: 10.1016/s0306-4522(03)00031-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prefrontal cortex (PFC) receives input from sensory neocortical regions and sends projections to the basal forebrain (BF). The present study tested the possibility that pathways from sensory cortical regions via the PFC-BF and from the BF back to specific sensory cortical areas could modulate sensory responses. Two prefrontal areas that responded to stimulation of the primary somatosensory and visual cortices were delineated: an area encompassing the rostral part of the cingulate cortex that responded to visual cortex stimulation, and a region dorso-lateral to the first in the precentral-motor association area that reacted to somatosensory cortex stimulation. Moreover, BF neurons responded to PFC electrical stimulation. They were located in the ventral pallidum, substantia innominata and the horizontal limb of the diagonal-band areas. Of the responsive BF neurons 42% reacted only to stimulation of 'visually-responsive,' 33% responded only to the 'somatosensory-responsive' prefrontal sites and the remaining neurons reacted to both prefrontal cortical areas. The effect of BF and PFC stimulations on somatosensory and visual-evoked potentials was tested. BF stimulation increased the amplitude of both sensory-evoked potentials. However, stimulation of the 'somatosensory-responsive' prefrontal area increased only somatosensory-evoked potentials while 'visually-responsive' prefrontal-area stimulation increased only visual-evoked potentials. Atropine blocked both facilitatory effects. The proposed cortico-prefronto-basalo-cortical circuitry may have an important role in cortical plasticity and selective attention.
Collapse
Affiliation(s)
- L Golmayo
- Department of Morphology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | | |
Collapse
|