1
|
López-Murcia FJ, Reim K, Taschenberger H. Complexins: Ubiquitously Expressed Presynaptic Regulators of SNARE-Mediated Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:255-285. [PMID: 37615870 DOI: 10.1007/978-3-031-34229-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitter release is a spatially and temporally tightly regulated process, which requires assembly and disassembly of SNARE complexes to enable the exocytosis of transmitter-loaded synaptic vesicles (SVs) at presynaptic active zones (AZs). While the requirement for the core SNARE machinery is shared by most membrane fusion processes, SNARE-mediated fusion at AZs is uniquely regulated to allow very rapid Ca2+-triggered SV exocytosis following action potential (AP) arrival. To enable a sub-millisecond time course of AP-triggered SV fusion, synapse-specific accessory SNARE-binding proteins are required in addition to the core fusion machinery. Among the known SNARE regulators specific for Ca2+-triggered SV fusion are complexins, which are almost ubiquitously expressed in neurons. This chapter summarizes the structural features of complexins, models for their molecular interactions with SNAREs, and their roles in SV fusion.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Lux UT, Ehrenberg J, Joachimsthaler A, Atorf J, Pircher B, Reim K, Kremers J, Gießl A, Brandstätter JH. Cell Types and Synapses Expressing the SNARE Complex Regulating Proteins Complexin 1 and Complexin 2 in Mammalian Retina. Int J Mol Sci 2021; 22:ijms22158131. [PMID: 34360929 PMCID: PMC8348166 DOI: 10.3390/ijms22158131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Complexins (Cplxs) 1 to 4 are components of the presynaptic compartment of chemical synapses where they regulate important steps in synaptic vesicle exocytosis. In the retina, all four Cplxs are present, and while we know a lot about Cplxs 3 and 4, little is known about Cplxs 1 and 2. Here, we performed in situ hybridization experiments and bioinformatics and exploited Cplx 1 and Cplx 2 single-knockout mice combined with immunocytochemistry and light microscopy to characterize in detail the cell type and synapse-specific distribution of Cplx 1 and Cplx 2. We found that Cplx 2 and not Cplx 1 is the main isoform expressed in normal and displaced amacrine cells and ganglion cells in mouse retinae and that amacrine cells seem to operate with a single Cplx isoform at their conventional chemical synapses. Surprising was the finding that retinal function, determined with electroretinographic recordings, was altered in Cplx 1 but not Cplx 2 single-knockout mice. In summary, the results provide an important basis for future studies on the function of Cplxs 1 and 2 in the processing of visual signals in the mammalian retina.
Collapse
Affiliation(s)
- Uwe Thorsten Lux
- Division of Animal Physiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (U.T.L.); (J.E.); (B.P.)
| | - Johanna Ehrenberg
- Division of Animal Physiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (U.T.L.); (J.E.); (B.P.)
| | - Anneka Joachimsthaler
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.J.); (J.A.); (J.K.); (A.G.)
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.J.); (J.A.); (J.K.); (A.G.)
| | - Bianca Pircher
- Division of Animal Physiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (U.T.L.); (J.E.); (B.P.)
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany;
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.J.); (J.A.); (J.K.); (A.G.)
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.J.); (J.A.); (J.K.); (A.G.)
| | - Johann Helmut Brandstätter
- Division of Animal Physiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (U.T.L.); (J.E.); (B.P.)
- Correspondence:
| |
Collapse
|
3
|
Kurokawa A, Narukawa M, Ohmoto M, Yoshimoto J, Abe K, Misaka T. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction. J Neurochem 2015; 133:806-14. [PMID: 25692331 PMCID: PMC6680196 DOI: 10.1111/jnc.13073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/04/2015] [Accepted: 02/04/2015] [Indexed: 11/30/2022]
Abstract
Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2‐knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2‐knockout mice were significantly lower than those in wild‐type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons.
A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2‐ knockout mice were significantly lower than those in wild‐type mice. These suggested that CPLX2 participated in synaptic taste transduction.
Collapse
Affiliation(s)
- Azusa Kurokawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka Narukawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Ohmoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Joto Yoshimoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Kanagawa Academy of Science and Technology, Kanagawa, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Direct interaction of SNARE complex binding protein synaphin/complexin with calcium sensor synaptotagmin 1. ACTA ACUST UNITED AC 2009; 36:173-89. [PMID: 19132534 DOI: 10.1007/s11068-008-9032-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/10/2008] [Accepted: 08/28/2008] [Indexed: 01/10/2023]
Abstract
Although the binding of synaphin (also called complexin) to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is critical for synaptic vesicle exocytosis, the exact role of synaphin remains unclear. Here, we show that synaphin directly binds to synaptotagmin 1, a major Ca(2+) sensor for fast neurotransmitter release, in a 1:1 stoichiometry. Mapping of the synaphin site involved in synaptotagmin 1 binding revealed that the C-terminal region is essential for the interaction between these two proteins. Binding was sensitive to ionic strength, suggesting the involvement of charged residues in the C-terminus region. Mutation of the seven consecutive glutamic acid residues (residues 108-114) at the C-terminal region of synaphin to alanines or glutamines resulted in a dramatic reduction in synaptotagmin 1 binding activity. Furthermore, a peptide from the C-terminus of synaphin (residues 91-124) blocked the binding of synaptotagmin 1 to synaphin, an effect that was abolished by mutating the consecutive glutamic acid residues to alanine. Immunoprecipitation experiments with brain membrane extracts showed the presence of a complex consisting of synaphin, synaptotagmin 1, and SNAREs. We propose that synaphin recruits synaptotagmin 1 to the SNARE-based fusion complex and synergistically functions with synaptotagmin 1 in mediating fast synaptic vesicle exocytosis.
Collapse
|
5
|
Abstract
In contrast to constitutive secretion, SNARE-mediated synaptic vesicle fusion is controlled by multiple regulatory proteins, which determine the Ca(2+) sensitivity of the vesicle fusion process and the speed of excitation-secretion coupling. Complexins are among the best characterized SNARE regulators known to date. They operate by binding to trimeric SNARE complexes consisting of the vesicle protein synaptobrevin and the plasma membrane proteins syntaxin and SNAP-25. The question as to whether complexins facilitate or inhibit SNARE-mediated fusion processes is currently a matter of significant controversy. This is mainly because of the fact that biochemical experiments in vitro and studies on vertebrate complexins in vivo have yielded apparently contradictory results. In this review, I provide a summary of available data on the role of complexins in SNARE-mediated vesicle fusion and attempt to define a model of complexin function that incorporates evidence for both facilitatory and inhibitory roles of complexins in SNARE-mediated fusion.
Collapse
Affiliation(s)
- Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
6
|
Uys JDK, Hattingh SM, Stein DJ, Daniels WMU. Large scale hippocampal cellular distress may explain the behavioral consequences of repetitive traumatic experiences--a proteomic approach. Neurochem Res 2008; 33:1724-34. [PMID: 18307038 DOI: 10.1007/s11064-008-9615-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/30/2008] [Indexed: 01/22/2023]
Abstract
Early life traumatic experiences are associated with psychopathology in adulthood. This may be due in part to the effects of trauma on hippocampal development and protein expression. The purpose of the study was to investigate the effects of early life trauma and adult re-stress on ventral hippocampal protein expression. Adolescent rats (n = 19) were subjected to a triple stressor on post-natal day 28 followed 7 days later by the first re-stress session and 25 days later (post-natal day 60 = adulthood) by the second re-stress session. Ventral hippocampi were collected on post-natal day 68 for protein expression determinations using protein arrays and 2D-gel electrophoresis with liquid chromatography tandem mass spectrometry. Compared to controls, traumatized animals showed an increase in Ca(2+) homeostatic proteins, dysregulated signaling pathways and energy metabolism enzymes, cytoskeletal protein changes, a decrease in neuroplasticity regulators, energy metabolism enzymes and an increase in apoptotic initiator proteins. These results indicate the extensive impact of trauma on adult brain development and behavior.
Collapse
Affiliation(s)
- Joachim D K Uys
- Division of Medical Physiology, Department of Biomedical Sciences, University of Stellenbosch, Tygerberg Campus, Francie van Zijl Avenue, Parow Valley, 7505, Cape Town, Western Cape, South Africa
| | | | | | | |
Collapse
|
7
|
Melia TJ. Putting the clamps on membrane fusion: How complexin sets the stage for calcium-mediated exocytosis. FEBS Lett 2007; 581:2131-9. [PMID: 17350005 DOI: 10.1016/j.febslet.2007.02.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/15/2007] [Accepted: 02/26/2007] [Indexed: 11/20/2022]
Abstract
Three recent papers have addressed a long-standing question in exocytosis: how does a sudden calcium influx trigger a coordinated synchronous release in regulated exocytosis [Giraudo, C.G., Eng, W.S., Melia, T.J. and Rothman, J.E. (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676-680; Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. and McNew, J.A. (2006) Hemifusion arrest by complexin is relieved by Ca(2+)-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748-750; Tang, J., Maximov, A., Shin, O.H., Dai, H., Rizo, J. and Sudhof, T.C. (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175-1187]? Using diverse approaches that include cell-free reconstitution of the membrane fusion machinery and in vivo manipulation of fusogenic proteins, these groups have established that the complexin proteins are fusion clamps. By arresting vesicle secretion just prior to fusion, complexin primes select vesicles for a fast, synchronous response to calcium.
Collapse
Affiliation(s)
- Thomas J Melia
- Columbia University, Department of Physiology and Cellular Biophysics, 1150 Saint Nicholas Avenue, New York, NY 10032, USA
| |
Collapse
|
8
|
Yi JH, Hoover R, McIntosh TK, Hazell AS. Early, Transient Increase in Complexin I and Complexin II in the Cerebral Cortex following Traumatic Brain Injury Is Attenuated by N-Acetylcysteine. J Neurotrauma 2006; 23:86-96. [PMID: 16430375 DOI: 10.1089/neu.2006.23.86] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alteration of excitatory neurotransmission is a key feature of traumatic brain injury (TBI) in which extracellular glutamate levels rise. Although increased synaptic release of glutamate occurs at the injury site, the precise mechanism is unclear. Complexin I and complexin II constitute a family of cytosolic proteins involved in the regulation of neurotransmitter release, competing with the chaperone protein alpha-SNAP (soluble N-ethylmaleimide-sensitive factor-attachment protein) for binding to the synaptic vesicle protein synaptobrevin as well as the synaptic membrane proteins SNAP-25 and syntaxin, which together form the SNAP receptor (SNARE) complex. Complexin I is predominantly a marker of axosomatic (inhibitory) synapses, whereas complexin II mainly labels axodendritic and axospinous synapses, the majority of which are excitatory. In order to examine the role of these proteins in TBI, we have studied levels of both complexins in the injured hemisphere by immunoblotting over a time period ranging from 6 h to 7 days following lateral fluid-percussion brain injury in the rat. Transient increases in the levels of complexin I and complexin II proteins were detected in the injured cerebral cortex 6 h following TBI. This increase was followed by a decrease of complexin I in the injured cortex and hippocampus, and a decrease in both complexins in the injured thalamus region at day 3 and day 7 post-injury. The early, transient increase in the injured cortex was completely blocked by N-acetylcysteine (NAC) administered 5 min following trauma, suggesting an involvement of oxidative stress. Neuronal loss was also reduced in the injured hemisphere with post-TBI NAC treatment. Our findings suggest a dysregulation of both inhibitory and excitatory neurotransmission following traumatic injury that is responsive to antioxidant treatment. These alterations in complexin levels may also play an important role in neuronal cell loss following TBI, and thus contribute to the pathophysiology of cerebral damage following brain injury.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Department of Medicine, Hôpital Saint-Luc, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
9
|
Raevskaya NM, Dergunova LV, Vladychenskaya IP, Stavchansky VV, Oborina MV, Poltaraus AB, Limborska SA. Structural organization of the human complexin 2 gene (CPLX2) and aspects of its functional activity. Gene 2005; 359:127-37. [PMID: 16162394 DOI: 10.1016/j.gene.2005.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/07/2005] [Accepted: 07/09/2005] [Indexed: 11/21/2022]
Abstract
We report here on the in vitro and in silico characterization of the organization of the human complexin 2 (CPLX2) gene. This encodes for a protein of 134 amino acid residues, contains five exons, is localized on human chromosome 5q35.3, and spans more than 87 kb. We performed in silico analysis of the CPLX2 5' untranslated region (UTR) and propose an alternative variant of the gene transcript. Compared to the mRNA reported earlier [McMahon, H.T., Missler, M., Li, C., Sudhof, T.C., 1995. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83, 111-119.], this transcript bears a partly altered 5'-UTR associated with the same open reading frame. Both CPLX2 transcripts share exons III-V; the alternative transcript is devoid of exons I and II, and includes exon A instead. Exon A is localized within CPLX2 intron 2 about 7 kb upstream to exon III. Using reverse transcription polymerase chain reaction (RT-PCR) we detected both types of transcripts in human brain mRNA. In silico data suggest that two putative alternative TATA-less promoter regions separated by 74 kb govern the expression of two CPLX2 transcripts. Several potential transcription start sites were detected by primer extension for each of two alternative CPLX2 transcripts. The relative abundance of the alternative transcripts was investigated in human and rat forebrain, cerebellum, and hippocampus. Whereas both transcripts were detected in human and rat brain, their expression levels were found to vary significantly among the regions investigated. The organization of CPLX2 transcripts is conserved in humans and rodents.
Collapse
Affiliation(s)
- Natalja M Raevskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | | | | | | | | | |
Collapse
|
10
|
Gibson HE, Reim K, Brose N, Morton AJ, Jones S. A similar impairment in CA3 mossy fibre LTP in the R6/2 mouse model of Huntington's disease and in the complexin II knockout mouse. Eur J Neurosci 2005; 22:1701-12. [PMID: 16197510 DOI: 10.1111/j.1460-9568.2005.04349.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complexin II is reduced in Huntington's disease (HD) patients and in the R6/2 mouse model of HD. Mice lacking complexin II (Cplx2-/- mice) show selective cognitive deficits that reflect those seen in R6/2 mice. To determine whether or not there is a common mechanism that might underlie the cognitive deficits, long-term potentiation (LTP) was examined in the CA3 region of hippocampal slices from R6/2 mice and Cplx2-/- mice. While associational/commissural (A/C) LTP was not significantly different, mossy fibre (MF) LTP was significantly reduced in slices from R6/2 mice and Cplx2-/- mice compared with wild-type (WT) and Cplx2+/+ control mice. MF field excitatory postsynaptic potentials (fEPSPs) in response to paired stimuli were not significantly different between control mice and R6/2 or Cplx2-/- mice, suggesting that MF basal glutamate release is unaffected. Forskolin (30 microm) caused an increase in glutamate release at MF synapses in slices from R6/2 mice and from Cplx2-/- mice that was not significantly different from that seen in control mice, indicating that the capacity for increased glutamate release is not diminished. Thus, R6/2 mice and Cplx2-/- mice have a common selective impairment of MF LTP in the CA3 region. Together, these data suggest that complexin II is required for MF LTP, and that depletion of complexin II causes a selective impairment in MF LTP in the CA3 region. This impairment in MF LTP could contribute to spatial learning deficits observed in R6/2 and Cplx2-/- mice.
Collapse
Affiliation(s)
- Helen E Gibson
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|
11
|
Zink M, Rapp S, Gebicke-Haerter PJ, Henn FA, Thome J. Antidepressants differentially affect expression of complexin I and II RNA in rat hippocampus. Psychopharmacology (Berl) 2005; 181:560-5. [PMID: 15983795 DOI: 10.1007/s00213-005-0017-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/22/2005] [Indexed: 11/30/2022]
Abstract
Disturbance of synaptic transmission is currently viewed as an important pathophysiological mechanism and therapeutic target of mood disorders. Amongst other lines of evidence this theory is based on human post-mortem investigations showing differential expression of complexins. In order to discriminate between molecular correlates of the disease itself and effects of psychotropic drugs given to patients, we performed an animal trial using subchronic antidepressant treatment. Cohorts of adult male Sprague-Dawley rats were treated over a period of 14 days with intraperitoneal injections of either saline (0.9%, n=8), desipramine (15 mg/kg, n=7), fluoxetine (10 mg/kg, n=8), or tranylcypromine (10 mg/kg, n=5). Brain slices were used for in situ hybridizations with 35S labelled RNA probes of the genes complexin I, complexin II and syntaxin 1 A, the SNARE complex protein interacting with the complexins, and assessed semi-quantitatively for region-specific expression levels. Expression of complexin I was induced only in habenular nuclei after treatment with fluoxetine. In contrast, complexin II was significantly induced by desipramine and tranylcypromine, but not fluoxetine, in several brain regions. All treatment groups, but most significantly fluoxetine-treated animals, showed higher expression levels of syntaxin 1A. Antidepressants differentially affect expression levels of complexin I and more prominently complexin II and syntaxin 1A. The induction of complexin II and syntaxin 1A might strengthen the synaptic transmission at axo-dendritic or axo-axonal synapses. Previous post-mortem findings reporting on downregulation of complexins cannot be explained as mere effects of psychotropic drug treatment.
Collapse
Affiliation(s)
- Mathias Zink
- Central Institute of Mental Health, P.O. Box 12 21 20, 68072, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
12
|
Glynn D, Drew CJ, Reim K, Brose N, Morton AJ. Profound ataxia in complexin I knockout mice masks a complex phenotype that includes exploratory and habituation deficits. Hum Mol Genet 2005; 14:2369-85. [PMID: 16000319 DOI: 10.1093/hmg/ddi239] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Complexins are presynaptic proteins that bind to the SNARE complex where they modulate neurotransmitter release. A number of studies report changes in complexins in psychiatric (schizophrenia and depression) and neurodegenerative disorders (Huntington's disease, Wernicke's encephalopathy and Parkinson's disease). Here, we characterize the behavioural phenotype of Cplx1 knockout (Cplx1-/-) mice. Cplx1-/- mice develop a strong ataxia in the absence of cerebellar degeneration. Although originally reported to die within 2-4 months after birth, when reared using an enhanced feeding regime, these mice survive normally (i.e. >2 years). Cplx1-/- mice show pronounced deficits in motor coordination and locomotion including abnormal gait, inability to run or swim, impaired rotarod performance, reduced neuromuscular strength, dystonia and resting tremor. Although the abnormal motor phenotype dominates their overt symptoms, Cplx1-/- mice also show other behavioural deficits, particularly in complex behaviours. They have deficits in grooming and rearing behaviour and show reduced exploration in several different paradigms. They also show deficits in tasks reflecting emotional reactivity. They fail to habituate to confinement and show a 'panic' response when exposed to water. The abnormalities seen in the behaviour of Cplx1-/- mice reflect those predicted from the distribution of complexin I in the brain. Our data show that complexin I is essential not only for normal motor function in mice, but also for normal performance of other complex behaviours. These results support the idea that altered expression of complexins in disease states may contribute to the symptomatology of disorders in which they are dysregulated.
Collapse
Affiliation(s)
- Dervila Glynn
- Department of Pharmacology, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
13
|
Butterworth MB, Frizzell RA, Johnson JP, Peters KW, Edinger RS. PKA-dependent ENaC trafficking requires the SNARE-binding protein complexin. Am J Physiol Renal Physiol 2005; 289:F969-77. [PMID: 15972388 DOI: 10.1152/ajprenal.00390.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute regulation of epithelial sodium channel (ENaC) function at the apical surface of polarized kidney cortical collecting duct (CCD) epithelial cells occurs in large part by changes in channel number, mediated by membrane vesicle trafficking. Several soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNARE) have been implicated in this process. A novel SNARE-binding protein, complexin, has been identified in nervous tissue which specifically binds to and stabilizes SNARE complexes at synaptic membranes to promote vesicle fusion. To test whether this protein is present in mouse CCD (mCCD) cells and its possible involvement in acute ENaC regulation, we cloned complexin (isoform II) from a mouse kidney cDNA library. Complexin II mRNA coexpressed with alpha-, beta-, and gamma-ENaC subunits in Xenopus laevis oocytes reduced sodium currents to 16 +/- 3% (n = 19) of control values. Short-circuit current (I(sc)) measurements on mCCD cell lines stably over- or underexpressing complexin produced similar results. Basal I(sc) was reduced from 12.0 +/- 1.0 (n = 15) to 2.0 +/- 0.4 (n = 15) and 1.8 +/- 0.3 (n = 17) microA/cm(2), respectively. Similarly forskolin-stimulated I(sc) was reduced from control values of 20.0 +/- 2 to 2.7 +/- 0.5 and 2.3 +/- 0.4 microA/cm(2) by either increasing or decreasing complexin expression. Surface biotinylation demonstrated that the complexin-induced reduction in basal I(sc)was due to a reduction in apical membrane-resident ENaC and the inhibition in forskolin stimulation was due to the lack of ENaC insertion into the apical membrane to increase surface channel number. Immunofluorescent localization of SNARE proteins in polarized mCCD epithelia detected the presence of syntaxins 1 and 3 and synaptosomal-associated protein of 23 kDa (SNAP-23) at the apical membrane, and vesicle-associated membrane protein (VAMP2) was localized to intracellular compartments. These findings identify SNAREs that may mediate ENaC-containing vesicle insertion in mCCD epithelia and suggest that stabilization of SNARE interactions by complexin is an essential aspect of the regulated trafficking events that increase apical membrane ENaC density either by constitutive or regulated trafficking pathways.
Collapse
Affiliation(s)
- M B Butterworth
- Dept. of Cell Biology and Physiology, University of Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
14
|
Isao T, Akiyama K. Effect of acute and chronic treatment with methamphetamine on mRNA expression of synaptotagmin IV and 25 KDa-synaptic-associated protein in the rat brain. Psychiatry Clin Neurosci 2004; 58:410-9. [PMID: 15298655 DOI: 10.1111/j.1440-1819.2004.01276.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of acute and chronic administration of methamphetamine (METH) on mRNA levels of synaptotagmin IV (SytIV) and an isoform of synaptic-associated protein of 25 KDa (SNAP25a) have been investigated in rat brain using in situ hybridization. Pretreatment with 0.5 mg/kg dopamine D1 receptor antagonist (SCH23390), but not 0.5 mg/kg N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801), significantly attenuated the increased SytIV mRNA levels induced by acute METH administration in the striatum and the nucleus accumbens. Pretreatment with 0.5 mg/kg SCH23390, but not 0.5 mg/kg MK-801, significantly attenuated the increased SNAP25a mRNA levels induced by acute METH administration in the striatum and the dentate gyrus of the hippocampus. In the chronic treatment experiment, the SytIV mRNA levels of the group that received chronic treatment with METH followed by a METH challenge showed an increase similar to that seen after acute METH administration. In addition, those in the striatum, nucleus accumbens, and dentate gyrus were significantly higher than those of the group that received chronic treatment with saline followed by a METH challenge. The SNAP25a mRNA levels of the group that received chronic treatment with METH followed by a saline challenge were significantly higher than those of the group that received chronic treatment with saline followed by a saline challenge in the striatum and nucleus accumbens. The results of the present study suggest that SytIV may play an important role in the synaptic plasticity underlying METH-induced neuroadaptive changes including behavioral sensitization.
Collapse
Affiliation(s)
- Taketo Isao
- Department of Psychiatry, Dokkyo University School of Medicine, Tochigi, Japan.
| | | |
Collapse
|
15
|
Freeman W, Morton AJ. Differential messenger RNA expression of complexins in mouse brain. Brain Res Bull 2004; 63:33-44. [PMID: 15121237 DOI: 10.1016/j.brainresbull.2003.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 12/12/2003] [Indexed: 11/19/2022]
Abstract
Complexins (CPLXs) are small isomeric proteins that bind to the soluble NSF-attachment protein receptor (SNARE) complex and modulate neurotransmitter release. Two isoforms of CPLX exist in the brain, CPLXI and CPLXII. These are differentially distributed in the cortex and cerebellum, with CPLXI found in axosomatic terminals and CPLXII in axodendritic terminals. Since in cortex and cerebellum axosomatic terminals are inhibitory and axodendritic terminals are excitatory, it has been assumed that CPLXI modulates inhibitory and CPLXII modulates excitatory transmitter release. Here we used in situ hybridisation to study the mRNA distribution of CPLXI and CPLXII in mouse brain. We show that while CPLXs are expressed in distinct cell populations, they do not segregate with either particular neurotransmitters, or different classes of transmitter action. For example, while CPLXII is the dominant isoform in the output (glutamatergic excitatory) neurons of the cortex, it is also the dominant isoform in medium spiny (GABAergic inhibitory) neurons of the striatum. We suggest that the functional role of CPLXs depends not only on the identity of the neurotransmitter, but also upon the circuitry connecting the neurons in which they are expressed. Thus, the predominant expression of CPLXII in neurons of the basal ganglia and cortex suggests a role in cognition, emotional behaviour and control of voluntary movement, while the pattern of CPLXI expression suggests a primary role in motor learning programs and sensory processing.
Collapse
Affiliation(s)
- Whitney Freeman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | |
Collapse
|
16
|
Abstract
Release of neurotransmitter from presynaptic nerve terminals is mediated by SNARE proteins, which are located on the vesicle and plasma membranes. These proteins form a SNARE complex thought to mediate membrane fusion. Complexin is a soluble protein essential for transmitter release, which has been postulated to bind to and stabilise the SNARE complex. We have cloned a complexin homologue, Hm-cpx1, from the leech, Hirudo medicinalis. This protein is expressed in only a subset of neurons in the leech CNS, including the Retzius and P neurons. It is 33% identical to rat complexin I, and 44% identical to squid complexin. Sequence conservation is particularly high in the predicted SNARE binding domain.
Collapse
Affiliation(s)
- Iain M Dykes
- Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0368, USA
| | | |
Collapse
|
17
|
Honda A, Yamada M, Saisu H, Takahashi H, Mori KJ, Abe T. Direct, Ca2+-dependent interaction between tubulin and synaptotagmin I: a possible mechanism for attaching synaptic vesicles to microtubules. J Biol Chem 2002; 277:20234-42. [PMID: 11925429 DOI: 10.1074/jbc.m112080200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synaptic vesicle protein synaptotagmin I probably plays important roles in the synaptic vesicle cycle. However, the mechanisms of its action remain unclear. In this study, we have searched for cytoplasmic proteins that interact with synaptotagmin I. We found that the cytoskeletal protein tubulin directly and stoichiometrically bound to recombinant synaptotagmin I. The binding depended on mm Ca(2+), and 1 mol of tubulin dimer bound 2 mol of synaptotagmin I with half-maximal binding at 6.6 microm tubulin. The Ca(2+) dependence mainly resulted from Ca(2+) binding to the Ca(2+) ligands of synaptotagmin I. The C-terminal region of beta-tubulin and both C2 domains of synaptotagmin I were involved in the binding. The YVK motif in the C2 domains of synaptotagmin I was essential for tubulin binding. Tubulin and synaptotagmin I were co-precipitated from the synaptosome extract with monoclonal antibodies to tubulin and SNAP-25 (synaptosome-associated protein of 25 kDa), indicating the presence of tubulin/synaptotagmin I complex and tubulin binding to synaptotagmin I in SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes. Synaptotagmin I promoted tubulin polymerization and bundled microtubules in the presence of Ca(2+). These results suggest that direct interaction between synaptotagmin I and tubulin provides a mechanism for attaching synaptic vesicles to microtubules in high Ca(2+) concentrations.
Collapse
Affiliation(s)
- Atsuko Honda
- Department of Cellular Neurobiology, Brain Research Institute, Faculty of Science, Niigata University, Niigata 951-8585, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Brown V, Jin P, Ceman S, Darnell JC, O'Donnell WT, Tenenbaum SA, Jin X, Feng Y, Wilkinson KD, Keene JD, Darnell RB, Warren ST. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 2001; 107:477-87. [PMID: 11719188 DOI: 10.1016/s0092-8674(01)00568-2] [Citation(s) in RCA: 858] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fragile X syndrome results from the absence of the RNA binding FMR protein. Here, mRNA was coimmunoprecipitated with the FMRP ribonucleoprotein complex and used to interrogate microarrays. We identified 432 associated mRNAs from mouse brain. Quantitative RT-PCR confirmed some to be >60-fold enriched in the immunoprecipitant. In parallel studies, mRNAs from polyribosomes of fragile X cells were used to probe microarrays. Despite equivalent cytoplasmic abundance, 251 mRNAs had an abnormal polyribosome profile in the absence of FMRP. Although this represents <2% of the total messages, 50% of the coimmunoprecipitated mRNAs with expressed human orthologs were found in this group. Nearly 70% of those transcripts found in both studies contain a G quartet structure, demonstrated as an in vitro FMRP target. We conclude that translational dysregulation of mRNAs normally associated with FMRP may be the proximal cause of fragile X syndrome, and we identify candidate genes relevant to this phenotype.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Brain Chemistry
- Centrifugation, Density Gradient
- Disease Models, Animal
- Fragile X Mental Retardation Protein
- Fragile X Syndrome/genetics
- Humans
- Ligands
- Macromolecular Substances
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Genetic
- Molecular Sequence Data
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Oligonucleotide Array Sequence Analysis
- Polymerase Chain Reaction
- Precipitin Tests
- Protein Binding
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/physiology
- Regulatory Sequences, Nucleic Acid
- Ribosomes/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- V Brown
- Howard Hughes Medical Institute, Department of Human Genetics, Department of Pediatrics, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
A cortico-subcortico-cerebellar neural circuit has been postulated to be important in the pathophysiology of schizophrenia. This study investigated whether there are synaptic changes in the cerebellum to accompany its putative involvement in the disorder. We measured the expression of three synaptic proteins (synaptophysin, complexin I and complexin II) in the cerebellar cortex of 16 subjects with schizophrenia and 16 controls using in situ hybridisation histochemistry and immunoautoradiography. Complexin I and II are expressed predominantly by inhibitory and excitatory neurones respectively. In schizophrenia, synaptophysin mRNA was decreased, as was complexin II and its mRNA. Complexin I mRNA and protein levels were unaltered. Expression of the mRNAs in the rat cerebellum was unaffected by 2 weeks administration of antipsychotic drugs (haloperidol, chlorpromazine, risperidone, olanzapine or clozapine). We conclude that there is synaptic pathology in the cerebellum in schizophrenia. By disrupting neural circuits, the alterations may contribute to the cerebellar dysfunction thought to occur in the disorder.
Collapse
Affiliation(s)
- S L Eastwood
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | | | | |
Collapse
|
20
|
Eastwood SL, Harrison PJ. Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 2000; 5:425-32. [PMID: 10889554 DOI: 10.1038/sj.mp.4000741] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Complexin (cx) I and cx II are synaptic proteins preferentially expressed by inhibitory and excitatory hippocampal neurons respectively. We previously reported decreased hippocampal formation cx mRNA and protein expression in schizophrenia, with a greater loss of cx II than cx I. The present in situ hybridization study was both an attempt at replication, and an extension to include bipolar and unipolar mood disorders, using sections from the Stanley Foundation brain series. In schizophrenia, both mRNAs were decreased in some hippocampal subfields, especially CA4, but were preserved in subiculum. The cx II/cx I mRNA ratio was unchanged. In bipolar disorder, the mRNAs were reduced in CA4, subiculum and parahippocampal gyrus, with the deficit in subiculum being diagnostically specific. No alterations in cx mRNAs were found in major depression. Treatment of rats with antipsychotics (haloperidol or chlorpromazine) for 2 weeks had no effect on hippocampal cx mRNAs. These data replicate the finding of decreased cx I and cx II expression in the hippocampus in schizophrenia and show a similar or greater abnormality in bipolar disorder. Non-replication of the cx II > cx I mRNA loss in schizophrenia means that the hypothesis of a preferential involvement of excitatory connections was not supported. The results extend the emerging evidence that altered circuitry may be a component of the neuroanatomy of both schizophrenia and bipolar mood disorder.
Collapse
Affiliation(s)
- S L Eastwood
- Departments of Psychiatry and Clinical Neurology (Neuropathology), University of Oxford, UK
| | | |
Collapse
|
21
|
Eastwood SL, Burnet PW, Harrison PJ. Expression of complexin I and II mRNAs and their regulation by antipsychotic drugs in the rat forebrain. Synapse 2000; 36:167-77. [PMID: 10819897 DOI: 10.1002/(sici)1098-2396(20000601)36:3<167::aid-syn2>3.0.co;2-d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Complexin (cx) I and II are homologous synaptic protein genes which are differentially expressed in mouse and human brain and differentially affected in schizophrenia. We characterized the distribution of cx I and II mRNAs in rat forebrain and examined whether their abundance, or the transcript of the synaptic marker synaptophysin, is affected by 14 days' administration of antipsychotic drugs (haloperidol, chlorpromazine, risperidone, olanzapine, or clozapine). Cx I mRNA predominated in medial habenula, medial septum-diagonal band complex, and thalamus, whereas cx II mRNA was more abundant in most other regions, including isocortex and hippocampus. Within the hippocampus, cx I mRNA was primarily expressed by interneurons and cx II mRNA by granule cells and pyramidal neurons. Localized cx II mRNA signal was seen in the dentate gyrus molecular layer, suggestive of its transport into granule cell dendrites. Antipsychotic treatment produced selective, modest effects on cx mRNA expression. Cx I mRNA was elevated by olanzapine in dorsolateral striatum and frontoparietal cortex, while the abundance of cx II mRNA relative to cx I mRNA was decreased in both areas by olanzapine and haloperidol. Chlorpromazine increased cx II mRNA in frontoparietal cortex and synaptophysin mRNA in dorsolateral striatum. In summary, the data have implications both for understanding the effects of antipsychotic medication on synaptic organization, and for synaptic protein expression studies in patients treated with the drugs.
Collapse
Affiliation(s)
- S L Eastwood
- University Department of Psychiatry, Warneford Hospital, Oxford, UK.
| | | | | |
Collapse
|
22
|
Yamada M, Saisu H, Ishizuka T, Takahashi H, Abe T. Immunohistochemical distribution of the two isoforms of synaphin/complexin involved in neurotransmitter release: localization at the distinct central nervous system regions and synaptic types. Neuroscience 1999; 93:7-18. [PMID: 10430466 DOI: 10.1016/s0306-4522(99)00104-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellular and subcellular localization of the two synaphin isoforms, proteins associated with the docking/fusion complex crucial to neurotransmitter release, was studied in the rat central nervous system by using light microscopic and electron microscopic immunohistochemistry with monoclonal antibodies specific to each isoform. Synaphin 1 (complexin II) was predominantly expressed in neurons of the central nervous system regions such as cerebral cortex (the II, III and VI cortical layers), claustrum, hippocampus, entorhinal cortex, amygdaloid nuclei, substantia nigra pars compacta, superior colliculus, pontine reticulotegmental nucleus and inferior olive, whereas synaphin 2 (complexin I) was in the cerebral cortex (the IV cortical layer), thalamus, locus coeruleus, gigantocellular reticular field, cuneate nucleus and cerebellar basket and stellate cells. In some regions, including the caudate-putamen, globus pallidus, pontine reticular nucleus, cerebellar nuclei and spinal gray matter, synaphin 1 was mainly present in small or medium-sized neurons, while synaphin 2 was in large cells. Medial habenular nucleus and cerebellar granule cells showed both immunoreactivities. In the neuropil of the cerebral cortex and hippocampus, synaphin 1 expression was accentuated in the axon terminals of axospinal and axodendritic synapses, while synaphin 2 was predominant in the axon terminals of axosomatic synapses. In the axon terminals, both immunolabelings were associated with synaptic vesicles and the plasma membrane, being accentuated in the vicinity of synaptic contacts. In the cerebral cortex, both immunoreactivities were also present occasionally in dendrites and dendritic spines, associated with microtubules and the plasma membrane including the postsynaptic densities. These results suggest that the two isoforms of synaphin are involved in synaptic function at the distinct presynaptic regions in the central nervous system, and that some dendrites are another functional site for the proteins.
Collapse
Affiliation(s)
- M Yamada
- Department of Pathology, Brain Research Institute, Niigata University, Japan
| | | | | | | | | |
Collapse
|