1
|
Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kölliker-Fuse nucleus from a respiratory perspective. J Neurochem 2020; 156:16-37. [PMID: 32396650 DOI: 10.1111/jnc.15041] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
The Kölliker-Fuse nucleus (KF) is a functionally distinct component of the parabrachial complex, located in the dorsolateral pons of mammals. The KF has a major role in respiration and upper airway control. A comprehensive understanding of the KF and its contributions to respiratory function and dysfunction requires an appreciation for its neurochemical characteristics. The goal of this review is to summarize the diverse neurochemical composition of the KF, focusing on the neurotransmitters, neuromodulators, and neuropeptides present. We also include a description of the receptors expressed on KF neurons and transporters involved in each system, as well as their putative roles in respiratory physiology. Finally, we provide a short section reviewing the literature regarding neurochemical changes in the KF in the context of respiratory dysfunction observed in SIDS and Rett syndrome. By over-viewing the current literature on the neurochemical composition of the KF, this review will serve to aid a wide range of topics in the future research into the neural control of respiration in health and disease.
Collapse
Affiliation(s)
- Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Zuperku EJ, Stucke AG, Hopp FA, Stuth EAE. Characteristics of breathing rate control mediated by a subregion within the pontine parabrachial complex. J Neurophysiol 2016; 117:1030-1042. [PMID: 27974449 DOI: 10.1152/jn.00591.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the dorsolateral pons in the control of expiratory duration (Te) and breathing frequency is incompletely understood. A subregion of the pontine parabrachial-Kölliker-Fuse (PB-KF) complex of dogs was identified via microinjections, in which localized pharmacologically induced increases in neuronal activity produced increases in breathing rate while decreases in neuronal activity produced decreases in breathing rate. This subregion is also very sensitive to local and systemic opioids. The purpose of this study was to precisely characterize the relationship between the PB-KF subregion pattern of altered neuronal activity and the control of respiratory phase timing as well as the time course of the phrenic nerve activity/neurogram (PNG). Pulse train electrical stimulation patterns synchronized with the onset of the expiratory (E) and/or phrenic inspiratory (I) phase were delivered via a small concentric bipolar electrode while the PNG was recorded in decerebrate, vagotomized dogs. Step frequency patterns during the E phase produced a marked frequency-dependent decrease in Te, while similar step inputs during the I phase increased inspiratory duration (Ti) by 14 ± 3%. Delayed pulse trains were capable of pacing the breathing rate by terminating the E phase and also of triggering a consistent stereotypical inspiratory PNG pattern, even when evoked during apnea. This property suggests that the I-phase pattern generator functions in a monostable circuit mode with a stable E phase and a transient I phase. Thus the I-pattern generator must contain neurons with nonlinear pacemaker-like properties, which allow the network to rapidly obtain a full on-state followed by relatively slow inactivation. The activated network can be further modulated and supplies excitatory drive to the neurons involved with pattern generation.NEW & NOTEWORTHY A circumscribed subregion of the pontine medial parabrachial nucleus plays a key role in the control of breathing frequency primarily via changes in expiratory duration. Excitation of this subregion triggers the onset of the inspiratory phase, resulting in a stereotypical ramplike phrenic activity pattern independent of time within the expiratory phase. The ability to pace the I-burst rate suggests that the in vivo I-pattern generating network must contain functioning pacemaker neurons.
Collapse
Affiliation(s)
- Edward J Zuperku
- Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin; .,Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Astrid G Stucke
- Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and.,Pediatric Anesthesia, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Francis A Hopp
- Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Eckehard A E Stuth
- Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and.,Pediatric Anesthesia, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
3
|
Chaskiel L, Paul F, Gerstberger R, Hübschle T, Konsman JP. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration. Neuropharmacology 2016; 107:146-159. [PMID: 27016016 DOI: 10.1016/j.neuropharm.2016.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/20/2022]
Abstract
During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects.
Collapse
Affiliation(s)
- Léa Chaskiel
- CNRS, PsychoNeuroImmunologie, Nutrition et Génétique, UMR 5226, Bordeaux, France; Univ. Bordeaux, PsyNuGen, UMR 5226, Bordeaux, France
| | - Flora Paul
- CNRS, PsychoNeuroImmunologie, Nutrition et Génétique, UMR 5226, Bordeaux, France; Univ. Bordeaux, PsyNuGen, UMR 5226, Bordeaux, France
| | - Rüdiger Gerstberger
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Thomas Hübschle
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Jan Pieter Konsman
- CNRS, PsychoNeuroImmunologie, Nutrition et Génétique, UMR 5226, Bordeaux, France; Univ. Bordeaux, PsyNuGen, UMR 5226, Bordeaux, France.
| |
Collapse
|
4
|
Abstract
Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine-mediated inspiratory off-switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that "learning to breathe" is necessary to adjust to changing internal and external states to maintain homeostasis and survival.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
5
|
Díaz-Casares A, López-González MV, Peinado-Aragonés CA, González-Barón S, Dawid-Milner MS. Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area. Auton Neurosci 2012; 169:124-34. [PMID: 22748567 DOI: 10.1016/j.autneu.2012.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/14/2012] [Accepted: 06/06/2012] [Indexed: 02/06/2023]
Abstract
To characterize the possible role of glutamate in the interaction between Hypothalamic Defense Area (HDA) and Parabrachial complex (PBc) nuclei, cardiorespiratory changes were analyzed in response to electrical stimulation of the HDA (1 ms pulses, 30-50 μA given at 100 Hz for 5s) before and after the microinjection of the nonspecific glutamate receptor antagonist kynurenic acid (50 nl, 5 nmol), NMDA receptor antagonist MK-801 (50 nl, 50 nmol), non-NMDA receptor antagonist CNQX (50 nl, 50 nmol) or metabotropic glutamate receptor antagonist MCPG (50 nl, 5 nmol) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (p<0.001) due to a decrease in expiratory time (p<0.01). The respiratory response was accompanied by a pressor (p<0.001) and a tachycardic response (p<0.001). Kynurenic acid within the lateral parabrachial region (lPB) abolished the tachycardia (p<0.001) and decreased the magnitude of blood pressure response (p<0.001) to HDA stimulation. Similarly, the magnitude of the tachycardia and the pressor response was decreased after the microinjection of MK-801 (p<0.01 and p<0.001, respectively) and CNQX (p<0.05 in both cases) into the lPB. Kynurenic acid microinjection in this region produced an inhibition of the tachypnea (p<0.001) to HDA stimulation but the respiratory response persisted unchanged after MK-801 or CNQX microinjection into the lPB. Kynurenic acid within the medial parabrachial region (mPB) abolished the tachycardia (p<0.01) and decreased the magnitude of the pressor response (p<0.001) to HDA stimulation. MK-801 and CNQX microinjection in this region decreased the magnitude of the tachycardia (p<0.05, in both cases) and pressor response (p<0.05, in both cases). The respiratory response evoked by HDA stimulation was not changed after the microinjection of kynurenic acid, MK-801 or CNQX within the mPB. No changes were observed in the cardiorespiratory response evoked to HDA stimulation after MCPG microinjection within lPB and mPB. These results indicate that glutamate PBc receptors are involved in the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.
Collapse
Affiliation(s)
- A Díaz-Casares
- Departamento de Fisiología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | | | | | | | | |
Collapse
|
6
|
Stoiljkovic M, Radulovacki M, Carley DW. Local antagonism of intertrigeminal region metabotropic glutamate receptors exacerbates apneic responses to intravenous serotonin. Respir Physiol Neurobiol 2009; 165:137-42. [PMID: 19026767 PMCID: PMC2773821 DOI: 10.1016/j.resp.2008.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/24/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
Injections of a broad spectrum glutamate receptor antagonist into the pontine intertrigeminal region (ITR) exacerbate vagal reflex apnea produced by intravenous serotonin infusion. This effect is not reproduced by ITR injections with either NMDA or AMPA receptor antagonists. Here, we tested the hypothesis that ITR injection with a metabotropic glutamate antagonist would alter respiratory responses to serotonin (5-HT) intravenous infusions. In anesthetized adult male rats (N=20; Sprague-Dawley) AIDA (1-aminoindan-1,5-dicarboxylic acid), a specific antagonist of the type 1 metabotropic glutamate receptor (mGlu1R), was microinjected unilaterally into the ITR to block 5-HT evoked apnea. Respiratory pattern changes evoked by ITR-glutamate injection and by intravenous serotonin (5-HT) infusion (0.5 microl, 0.05 M; or 2.5x10(-8) mol) were characterized according to apnea expression and duration, as well as coefficients of variation for breath duration (CVTT) and amplitude (CVVT) before and after ITR AIDA injection. Unilateral AIDA blockade of the ITR significantly increased the duration of apnea evoked by 5-HT infusion (p<0.03 for each dose tested) during the 30s following infusion in a dose-dependent fashion, with the two highest doses resulting in intermittent apneas for at least 10 min following a bolus 5-HT infusion. Similar prolonged increases in CVTT and CVVT with respect to control were associated with ITR AIDA injections. These findings suggest that brief perturbations of vagal afferent pathways can produce ongoing respiratory dysrhythmia, including spontaneous apnea, and that glutamatergic neurotransmission within ITR may be important for damping such disturbances. The present observations also suggest that such respiratory damping may be mediated by mGlu1 receptors. These findings extend our understanding of the role of the intertrigeminal region in modulating respiratory reflexes.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Center for Narcolepsy, Sleep and Health Research, Colleges of Nursing and Medicine, University of Illinois at Chicago M/C 802, 845 S. Damen Avenue, Chicago, IL 60612, United States
| | | | | |
Collapse
|
7
|
Biondolillo JW, Williams LA, King MS. Blocking glutamate receptors in the waist area of the parabrachial nucleus decreases taste reactivity behaviors in conscious rats. Chem Senses 2009; 34:221-30. [PMID: 19174448 DOI: 10.1093/chemse/bjn081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The "waist" area (W) of the parabrachial nucleus contains neurons that receive orosensory input and play a role in the initiation of oromotor behaviors. Immunohistochemical data indicate that neurons in W receive glutamatergic input and express glutamate receptors, but a behavioral role for glutamate neurotransmission within W has not been investigated. To determine the role of specific glutamate receptors in taste reactivity behaviors, glutamate receptor blockers were delivered into W by reverse microdialysis during intraoral infusion of 0.1 M sodium chloride, 0.1 M sucrose, 0.03 M hydrochloric acid, and 0.003 M quinine hydrochloride. Blocking alpha-amino-3-hydroxy-5-methyl-isoxazolepropionate (AMPA)/kainate ionotropic glutamate receptors in W with 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX) reduced ingestive taste reactivity behaviors to each tastant by 72-85% compared with baseline levels (P's < 0.05). Blocking N-methyl-D-aspartate receptors as well as type 1 and group III metabotropic glutamate receptors had minor effects on taste reactivity responses to the tastants. These data provide strong evidence for a behavioral role of glutamatergic neurotransmission in W in conscious rats.
Collapse
|
8
|
Radulovacki M, Stoiljkovic M, Saponjic J, Carley DW. Effects of intertrigeminal region NMDA and non-NMDA receptors on respiratory responses in rats. Respir Physiol Neurobiol 2006; 156:40-6. [PMID: 16934539 DOI: 10.1016/j.resp.2006.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 11/22/2022]
Abstract
Respiratory disturbance, including apnea, can be induced by microinjection of glutamate into the intertrigeminal region (ITR) of the lateral pons, a region that is anatomically coupled to both the dorsal and ventral respiratory groups of the medulla. We showed that the ITR plays a functional role in regulating both vagal reflex apnea and spontaneous sleep-related apnea in rats, but the mechanisms have not been determined. This study shows that functional NMDA receptors are expressed in the ITR since the blockade of these receptors by AP5, a specific NMDA receptor antagonist, was fully effective in blocking apnea induced by glutamate injection within this region. Selective blockade of ITR NMDA receptors had no effect on the immediate apnea evoked by an intravenous 5-HT bolus, whereas the nonspecific glutamate receptor antagonist kynurenic acid significantly increased the duration of this vagal reflex apnea. These findings are of interest because pontine NMDA receptors participate in inspiratory off-switch mechanisms and have been implicated in various short- and long-term potentiation and depression phenomena. These data support the involvement of ITR non-NMDA receptors in modulation of reflex apnea per se, whereas NMDA receptors play a role in damping respiratory responses to transient disturbances.
Collapse
Affiliation(s)
- Miodrag Radulovacki
- Department of Pharmacology, M/C 868, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
9
|
Blair ML, Mickelsen D. Activation of lateral parabrachial nucleus neurons restores blood pressure and sympathetic vasomotor drive after hypotensive hemorrhage. Am J Physiol Regul Integr Comp Physiol 2006; 291:R742-50. [PMID: 16574886 DOI: 10.1152/ajpregu.00049.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lesions of the lateral parabrachial nucleus (LPBN) impair blood pressure recovery after hypotensive blood loss (Am J Physiol Regul Integr Comp Physiol 280: R1141, 2001). This study tested the hypothesis that posthemorrhage blood pressure recovery is mediated by activation of neurons, located in the ventrolateral aspect of the LPBN (VL-LPBN), that initiates blood pressure recovery by restoring sympathetic vasomotor drive. Hemorrhage experiments (16 ml/kg over 22 min) were performed in unanesthetized male Sprague-Dawley rats prepared with bilateral ibotenate lesions or guide cannulas directed toward the external lateral subnucleus of the VL-LPBN. Hemorrhage initially decreased mean arterial pressure (MAP) from approximately 100 mmHg control to 40-50 mmHg, and also decreased heart rate. In animals with sham lesions, MAP returned to 84 +/- 4 mmHg by 40 min posthemorrhage, and subsequent autonomic blockade with hexamethonium reduced MAP to 53 +/- 2 mmHg. In contrast, animals with VL-LPBN lesions remained hypotensive at 40 min posthemorrhage (58 +/- 4 mmHg) and hexamethonium had no effect on MAP, implying a deficit in sympathetic tone. VL-LPBN lesions did not alter the renin response or the effect of vasopressin V1 receptor blockade after hemorrhage. Posthemorrhage blood pressure recovery was also significantly delayed by VL-LPBN infusion of the ionotropic glutamate receptor antagonist kynurenic acid. Both VL-LPBN lesions and VL-LPBN kynurenate infusion caused posthemorrhage bradycardia to be significantly prolonged. Bradycardia was reversed by hexamethonium or atropine, but did not contribute to posthemorrhage hypotension. Taken together, these data support the hypothesis that stimulation of VL-LPBN glutamate receptors mediates spontaneous blood pressure recovery by initiating restoration of sympathetic vasomotor drive.
Collapse
Affiliation(s)
- Martha L Blair
- Dept. of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
10
|
Vales K, Zach P, Bielavska E. Metabotropic glutamate receptor antagonists but not NMDA antagonists affect conditioned taste aversion acquisition in the parabrachial nucleus of rats. Exp Brain Res 2005; 169:50-7. [PMID: 16273405 DOI: 10.1007/s00221-005-0127-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 07/06/2005] [Indexed: 11/29/2022]
Abstract
The effect of glutamate receptor antagonists on conditioned taste aversion (CTA) was studied in rats. The association of the short-term memory of a gustatory conditioned stimulus (CS) with visceral malaise (unconditioned stimulus, US) in the CTA paradigm takes place in the parabrachial nuclei (PBN) of the brainstem. The first direct evidence of participation of glutamatergic neurotransmission in the PBN during CTA demonstrated that the extracellular level of glutamate rises during saccharin drinking (Bielavska et al. in Brain Res 887:413-417, 2000). Our results show an effect of microdialysis administration of selective GluR antagonists into the PBN on the formation of CTA engram. We used four glutamate receptor (GluR) antagonists of different types (D-AP5, MK-801 as antagonists of ionotropic GluR and L-AP3, MSPG as antagonists of metabotropic GluR). The disruptive effect of MK-801 on CTA formation in the PBN is concentration-dependent, with the greatest inhibition under the higher concentrations eliciting significant disruption. The application of D-AP5 (0.1, 1, 5 mM) did not elicit a statistically significant blockade of CTA acquisition. This indicates that the association of the US-CS in the PBN is not dependent on NMDA receptors. On the contrary, application of L-AP3 (0.1, 1, 5 mM) blocked the CS-US association.
Collapse
Affiliation(s)
- Karel Vales
- Institute of Physiology, Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | |
Collapse
|
11
|
Bourgeais L, Gauriau C, Monconduit L, Villanueva L, Bernard JF. Dendritic domains of nociceptive-responsive parabrachial neurons match terminal fields of lamina I neurons in the rat. J Comp Neurol 2003; 464:238-56. [PMID: 12898615 DOI: 10.1002/cne.10793] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study investigates, in the anesthetized rat, the dendritic extent of parabrachial (PB) neurons whose nociceptive response to noxious stimuli has been previously recorded with an extracellular micropipette. The PB neurons were then injected with biocytin through the recording micropipette, via a juxtacellular technique. The dendritic arborization of individual PB neurons was carefully compared with the projections of medullary (trigeminal) and spinal lamina I neurons. The latter projections were labeled in separate animals that received injections of Phaseolus vulgaris-leucoagglutinin restricted to the superficial layers of spinal or medullary dorsal horn. We report here that: 1) PB neurons excited chiefly by noxious stimulation of the face have their dendritic tree located primarily within the field of lamina I trigeminal projections, i.e., in the caudal portion of PB area, around the external medial and the caudal part of the external lateral subnuclei; and 2) PB neurons excited chiefly by noxious stimulation of the paw or the tail have their dendritic tree located primarily within the field of lamina I spinal projections, i.e., in PB mid-extent, around the borderline between the external lateral and both the lateral crescent and the superior lateral subnuclei. Our results suggest the presence of an extensive excitatory axodendritic link between lamina I projections and PB nociceptive neurons around the lateral crescent and the external medial subnuclei. These findings strengthen the possibility of involvement of a subgroup of PB neurons in nociceptive processes.
Collapse
Affiliation(s)
- Laurence Bourgeais
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U-161, F-75014 Paris, France
| | | | | | | | | |
Collapse
|
12
|
Baird JP, Travers SP, Travers JB. Integration of gastric distension and gustatory responses in the parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1581-93. [PMID: 11641131 DOI: 10.1152/ajpregu.2001.281.5.r1581] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Palatable gustatory stimuli promote feeding, whereas gastric distension generally inhibits this behavior. We explored a neural basis for integration of these opposing sensory signals by evaluating the effect of gastric distension on gustatory responses in the parabrachial nucleus (PBN) of anesthetized rats. Sixteen percent of 92 taste cells were coactivated; they responded to independent taste or gastric distension stimulus application. Modulation of taste responses by distension was more prevalent; taste responses declined 37% in response to distension in 25% of the cells and increased by 46% in 10% of cells. Across the whole population, however, the suppressive effect of distension on taste responses was small (6%). The incidence of modulation did not vary as a simple hedonic function of gustatory sensitivity, i.e., similar proportions of sucrose-, citric-acid-, and QHCl-best, but not NaCl-best, neurons were modulated by gastric distension. Coactivated, modulated, and nonmodulated gustatory-responsive cells were intermingled in the gustatory zone of the caudal PBN. The suppression of PBN taste responses by visceral stimulation may reflect a mechanism for satiation and further implicates the PBN in the control of ingestive function.
Collapse
Affiliation(s)
- J P Baird
- Oral Biology, College of Dentistry, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
13
|
Shigemoto R, Mizuno N. Chapter III Metabotropic glutamate receptors — immunocytochemical and in situ hybridization analyses. GLUTAMATE 2000. [DOI: 10.1016/s0924-8196(00)80044-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Guthmann A, Herbert H. Expression of N-methyl-D-aspartate receptor subunits in the rat parabrachial and K�lliker-Fuse nuclei and in selected pontomedullary brainstem nuclei. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991227)415:4<501::aid-cne6>3.0.co;2-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Guthmann A, Herbert H. In situ hybridization analysis of flip/flop splice variants of AMPA-type glutamate receptor subunits in the rat parabrachial and Kölliker-Fuse nuclei. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:145-57. [PMID: 10640685 DOI: 10.1016/s0169-328x(99)00281-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to analyze the occurrence and distribution of flip/flop splice variants of AMPA-type glutamate receptors (GluRA-D) in the rat parabrachial and Kölliker-Fuse nuclei (PB/KF). We performed in situ hybridization experiments on sections through different rostro-caudal levels of the PB/KF and analyzed the subunit expression semiquantitatively by means of grain counts for each probe in eight PB nuclei and in the KF. Our experiments revealed that the splice variants of the AMPA receptor subunit mRNAs are expressed differentially in the distinct nuclei of the PB/KF. The flip splice variants were predominantly expressed (GluRB-D flip) while the flop splice variants (GluRA flop and C flop) were expressed considerably weaker. Within the PB/KF, several nuclei expressed transcripts of GluRB flip (superior, central, dorsal, external, and ventral lateral PB, waist area, medial PB, KF) and GluRC flip (internal, superior, central, dorsal, external, and ventral lateral PB, waist area, KF). GluRB transcripts were not found in neurons of the internal lateral PB and in only 50% of the neurons in the KF. A more restricted expression in the PB/KF was observed for the GluRD flip (internal lateral PB), GluRA flop (medial PB, KF) and GluRC flop mRNA (superior lateral PB, KF). The present data demonstrate that the nuclei of the PB/KF show a differential expression of AMPA receptor subunits. This suggests that the anatomically and functionally distinct nuclei might make use of AMPA-type glutamate receptors with different physiological properties and ion selectivities.
Collapse
Affiliation(s)
- A Guthmann
- Department of Animal Physiology, University of Tübingen, D-72076, Tübingen, Germany
| | | |
Collapse
|