1
|
Abstract
There are many levels of disorder in amblyopic vision, from basic acuity and contrast sensitivity loss to abnormal binocular vision and global perception of motion and form. Amblyopia treatment via patching to restore acuity often leaves other aspects of vision deficient. The source for these additional deficits is unclear. Neural correlates of poor binocular function and acuity loss are found in V1 and V2. However, they are generally not sufficient to account for behaviorally measured vision loss. This review summarizes the known cortical correlates of visual deficits found in association with amblyopia, particularly those relevant to binocular vision and higher-order visual processing, in striate and extrastriate cortex. Recommendations for future research address open questions on the role of suppression and oculomotor abnormalities in amblyopic vision, and underexplored mechanisms such as top-down influences on information transmission in the amblyopic brain.
Collapse
|
2
|
Béhuret S, Deleuze C, Bal T. Corticothalamic Synaptic Noise as a Mechanism for Selective Attention in Thalamic Neurons. Front Neural Circuits 2015; 9:80. [PMID: 26733818 PMCID: PMC4686626 DOI: 10.3389/fncir.2015.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/27/2015] [Indexed: 12/04/2022] Open
Abstract
A reason why the thalamus is more than a passive gateway for sensory signals is that two-third of the synapses of thalamocortical neurons are directly or indirectly related to the activity of corticothalamic axons. While the responses of thalamocortical neurons evoked by sensory stimuli are well characterized, with ON- and OFF-center receptive field structures, the prevalence of synaptic noise resulting from neocortical feedback in intracellularly recorded thalamocortical neurons in vivo has attracted little attention. However, in vitro and modeling experiments point to its critical role for the integration of sensory signals. Here we combine our recent findings in a unified framework suggesting the hypothesis that corticothalamic synaptic activity is adapted to modulate the transfer efficiency of thalamocortical neurons during selective attention at three different levels: First, on ionic channels by interacting with intrinsic membrane properties, second at the neuron level by impacting on the input-output gain, and third even more effectively at the cell assembly level by boosting the information transfer of sensory features encoded in thalamic subnetworks. This top-down population control is achieved by tuning the correlations in subthreshold membrane potential fluctuations and is adapted to modulate the transfer of sensory features encoded by assemblies of thalamocortical relay neurons. We thus propose that cortically-controlled (de-)correlation of subthreshold noise is an efficient and swift dynamic mechanism for selective attention in the thalamus.
Collapse
Affiliation(s)
- Sébastien Béhuret
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique FRE-3693 Gif-sur-Yvette, France
| | - Charlotte Deleuze
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique FRE-3693Gif-sur-Yvette, France; Institut National de la Santé et de la Recherche Médicale U 1127, Centre National de la Recherche Scientifique UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle ÉpinièreParis, France
| | - Thierry Bal
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique FRE-3693 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Béhuret S, Deleuze C, Gomez L, Frégnac Y, Bal T. Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway. PLoS Comput Biol 2013; 9:e1003401. [PMID: 24385892 PMCID: PMC3873227 DOI: 10.1371/journal.pcbi.1003401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i) the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii) the statistics of the corticothalamic synaptic bombardment and iii) the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the descending influence of cortically-defined “priors”. Most of the sensory information in the early visual system is relayed from the retina to the primary visual cortex through principal relay cells in the thalamus. While relay cells receive ∼7–16% of their synapses from retina, they integrate the synaptic barrage of a dense cortical feedback, which accounts for more than 60% of their total input. This feedback is thought to carry some form of “prior” resulting from the computation performed in cortical areas, which influences the response of relay cells, presumably by regulating the transfer of sensory information to cortical areas. Nevertheless, its statistical nature (input synchronization, excitation/inhibition ratio, etc.) and the cellular mechanisms gating thalamic transfer are largely ignored. Here we implemented hybrid circuits (biological and modeled cells) reproducing the main features of the thalamic gate and explored the functional impact of various statistics of the cortical input. We found that the regulation of sensory information is critically determined by the statistical coherence of the cortical synaptic bombardment associated with a stochastic facilitation process. We propose that this tuning mechanism could operate in the intact brain to selectively filter the sensory information reaching cortical areas according to attended features predesignated by the cortical feedback.
Collapse
Affiliation(s)
- Sébastien Béhuret
- Unité de Neurosciences, Information et Complexité (UNIC), CNRS UPR-3293, Gif-sur-Yvette, France
- * E-mail: (SB); (TB)
| | - Charlotte Deleuze
- Unité de Neurosciences, Information et Complexité (UNIC), CNRS UPR-3293, Gif-sur-Yvette, France
| | - Leonel Gomez
- Unité de Neurosciences, Information et Complexité (UNIC), CNRS UPR-3293, Gif-sur-Yvette, France
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Yves Frégnac
- Unité de Neurosciences, Information et Complexité (UNIC), CNRS UPR-3293, Gif-sur-Yvette, France
| | - Thierry Bal
- Unité de Neurosciences, Information et Complexité (UNIC), CNRS UPR-3293, Gif-sur-Yvette, France
- * E-mail: (SB); (TB)
| |
Collapse
|
4
|
Margetis K, Korfias SI, Gatzonis S, Boutos N, Stranjalis G, Boviatsis E, Sakas DE. Intrathecal baclofen associated with improvement of consciousness disorders in spasticity patients. Neuromodulation 2013; 17:699-704: discussion 704. [PMID: 24350688 DOI: 10.1111/ner.12147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/02/2013] [Accepted: 11/04/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Intrathecal baclofen (ITB) pump is a therapeutic option for persistent vegetative state and minimal conscious state patients that have associated spasticity. We investigated whether this treatment modality can affect their level of consciousness. METHOD In this prospective, open label, observational study, we implanted ITB pumps for the treatment of spasticity in eight patients with disorders of consciousness (vegetative state and minimally conscious state) and we followed them with the Coma Recovery Scale-Revised, the Eastern Cooperative Oncology Group (ECOG) performance scale, and the Modified Ashworth spasticity scale. Baclofen dose and complications also were noted. RESULTS The offending pathologies were traumatic brain injury in six, anoxia due to cardiac arrest in one, acute obstructive hydrocephalus in one. Two of the patients showed a marked, persistent improvement that fulfilled the criteria of emergence from minimally conscious state. Two of patients had their ITB pumps prematurely removed because of complications. The ECOG score was 4 for all patients and did not change during the study. CONCLUSION ITB might be associated with a significant improvement in the disorder of consciousness of two patients from a total of six that had a chronic ITB treatment.
Collapse
|
5
|
Abstract
AbstractThe cingulate cortex (CG) and the adjacent region designated as the splenial visual area (SVA) project to areas of the extrageniculate thalamic system that are concerned with processing visual information. En route to the thalamus, they pass through the thalamic reticular nucleus (TRN), an important source of thalamic inhibition. We wished to determine whether SVA axon collaterals projected to the previously defined visual sector of the TRN or a separate projection zone and did this differ from the projection zone of CG. We iontophoretically injected different neuroanatomical tracers into several locations within CG/SVA and traced the labeled axons through the TRN. The CG and SVA have a projection zone that only partially overlaps the dorsorostral regions of the visuocortical projection zone; there was no evidence to suggest separate SVA and CG zones or tiers of label within the TRN. The projection formed only a weak topographic map in the TRN, which is largely defined in the rostrocaudal axis and is similar to that of the area 7 projection; both projections have a high degree of overlap in the dorsal TRN. We postulate that CG/SVA may be involved in the initiation of orientation behaviors via stimulation of thalamic nuclei and attentional mechanisms of the TRN.
Collapse
|
6
|
Coppola G, Crémers J, Gérard P, Pierelli F, Schoenen J. Effects of light deprivation on visual evoked potentials in migraine without aura. BMC Neurol 2011; 11:91. [PMID: 21794160 PMCID: PMC3158744 DOI: 10.1186/1471-2377-11-91] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/27/2011] [Indexed: 11/21/2022] Open
Abstract
Background The mechanisms underlying the interictal habituation deficit of cortical visual evoked potentials (VEP) in migraine are not well understood. Abnormal long-term functional plasticity of the visual cortex may play a role and it can be assessed experimentally by light deprivation (LD). Methods We have compared the effects of LD on VEP in migraine patients without aura between attacks (MO, n = 17) and in healthy volunteers (HV, n = 17). Six sequential blocks of 100 averaged VEP at 3.1 Hz were recorded before and after 1 hour of LD. We measured VEP P100 amplitude of the 1st block of 100 sweeps and its change over 5 sequential blocks of 100 responses. Results In HV, the consequence of LD was a reduction of 1st block VEP amplitude and of the normal habituation pattern. By contrast, in MO patients, the interictal habituation deficit was not significantly modified, although 1st block VEP amplitude, already lower than in HV before LD, further decreased after LD. Conclusions Light deprivation is thought to decrease both excitatory and subsequent inhibitory processes in visual cortex, which is in line with our findings in healthy volunteers. The VEP results in migraine patients suggest that early excitation was adequately suppressed, but not the inhibitory mechanisms occurring during long term stimulation and habituation. Accordingly, deficient intracortical inhibition is unlikely to be a primary factor in migraine pathophysiology and the habituation deficit.
Collapse
Affiliation(s)
- Gianluca Coppola
- G.B. Bietti Eye Foundation-IRCCS, Dept of Neurophysiology of Vision and Neuroophtalmology, Rome, Italy.
| | | | | | | | | |
Collapse
|
7
|
Wang Z, Bradesi S, Maarek JMI, Lee K, Winchester WJ, Mayer EA, Holschneider DP. Regional brain activation in conscious, nonrestrained rats in response to noxious visceral stimulation. Pain 2008; 138:233-243. [PMID: 18538929 DOI: 10.1016/j.pain.2008.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/25/2008] [Accepted: 04/23/2008] [Indexed: 12/29/2022]
Abstract
Preclinical drug development for visceral pain has largely relied on quantifying pseudoaffective responses to colorectal distension (CRD) in restrained rodents. However, the predictive value of changes in simple reflex responses in rodents for the complex human pain experience is not known. Male rats were implanted with venous cannulas and with telemetry transmitters for abdominal electromyographic (EMG) recordings. [(14)C]-iodoantipyrine was injected during noxious CRD (60 mmHg) in the awake, nonrestrained animal. Regional cerebral blood flow (rCBF)-related tissue radioactivity was quantified by autoradiography and analyzed in the three-dimensionally reconstructed brain by statistical parametric mapping. 60-mmHg CRD, compared with controls (0 mmHg) evoked significant increases in EMG activity (267+/-24% vs. 103+/-8%), as well as in behavioral pain score (77+/-6% vs. 3+/-3%). CRD elicited significant increases in rCBF as expected in sensory (insula, somatosensory cortex), and limbic and paralimbic regions (including anterior cingulate cortex and amygdala). Significant decreases in rCBF were seen in the thalamus, parabrachial nucleus, periaqueductal gray, hypothalamus and pons. Correlations of rCBF with EMG and with behavioral pain score were noted in the cingulate, insula, lateral amygdala, dorsal striatum, somatosensory and motor regions. Our findings support the validity of measurements of cerebral perfusion during CRD in the freely moving rat as a model of functional brain changes in human visceral pain. However, not all regions demonstrating significant group differences correlated with EMG or behavioral measures. This suggests that functional brain imaging captures more extensive responses of the central nervous system to noxious visceral distension than those identified by traditional measures.
Collapse
Affiliation(s)
- Zhuo Wang
- Center for the Neurobiology of Stress, Brain Research Institute, UCLA, Los Angeles, CA, USA Departments of Physiology, Psychiatry and Biobehavioral Sciences, Brain Research Institute, UCLA, Los Angeles, CA, USA VA GLA Healthcare System, Los Angeles, CA, USA Department of Biomedical Engineering, USC, Los Angeles, CA, USA Departments of Psychiatry and the Behavioral Sciences, Cell and Neurobiology, Neurology, USC, Los Angeles, CA, USA Neurology and GI Center of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Fitzgibbon T. Do first order and higher order regions of the thalamic reticular nucleus have different developmental timetables? Exp Neurol 2007; 204:339-54. [PMID: 17234184 DOI: 10.1016/j.expneurol.2006.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 10/27/2006] [Accepted: 11/29/2006] [Indexed: 12/20/2022]
Abstract
The thalamic reticular nucleus (TRN) can been subdivided into sectors based on thalamic and cortical input. Additionally, in carnivores the visual sector of the TRN can be subdivided into first order (perigeniculate nucleus: PGN) and higher order (TRN) regions. This report examines whether TRN development reflects the nature of its higher order visual connections. 170 cells from 12 kittens aged between postnatal day 0 (P0) and P125 were fully analysed after single cell injections in 400-500 microm fixed brain slices. TRN cells have a period of exuberant dendritic branching that peaks between P3 and P12, around the time of eye opening (P7), followed by branch pruning until P68. Similarly, most dendritic appendages are added between P12 and P22 followed by pruning, which is also largely complete by P68. Most branch points occur within the first 10-30% of the dendritic arbor, peaking between 10 and 20% (roughly equivalent to 100 mum from the soma), while appendages were concentrated between 20 and 30% of the arbour; appendages tend to be distributed over a larger proportion of the arbor up to P14 compared to later ages. TRN and PGN maturation were not significantly different. The present data suggest that clear distinctions cannot be made between the maturation of first and higher order pathways and indicate that GABAergic cells of the ventral thalamus may mature earlier than relay cells of the dorsal thalamus. Furthermore, dendritic development in the TRN may be less dependent on extrinsic factors than an intrinsic growth pattern or factors other than a functional hierarchy within the visual pathway.
Collapse
Affiliation(s)
- Thomas Fitzgibbon
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
9
|
Zikopoulos B, Barbas H. Circuits formultisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates. Rev Neurosci 2007; 18:417-438. [PMID: 18330211 PMCID: PMC2855189 DOI: 10.1515/revneuro.2007.18.6.417] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Converging evidence from anatomic and physiological studies suggests that the interaction of high-order association cortices with the thalamus is necessary to focus attention on a task in a complex environment with multiple distractions. Interposed between the thalamus and cortex, the inhibitory thalamic reticular nucleus intercepts and regulates communication between the two structures. Recent findings demonstrate that a unique circuitry links the prefrontal cortex with the reticular nucleus and may underlie the process of selective attention to enhance salient stimuli and suppress irrelevant stimuli in behavior. Unlike other cortices, some prefrontal areas issue widespread projections to the reticular nucleus, extending beyond the frontal sector to the sensory sectors of the nucleus, and may influence the flow of sensory information from the thalamus to the cortex. Unlike other thalamic nuclei, the mediodorsal nucleus, which is the principal thalamic nucleus for the prefrontal cortex, has similarly widespread connections with the reticular nucleus. Unlike sensory association cortices, some terminations from prefrontal areas to the reticular nucleus are large, suggesting efficient transfer of information. We propose a model showing that the specialized features of prefrontal pathways in the reticular nucleus may allow selection of relevant information and override distractors, in processes that are deranged in schizophrenia.
Collapse
Affiliation(s)
| | - Helen Barbas
- Department of Health Sciences, Boston University, Boston, MA
- Program in Neuroscience, Boston University, Boston, MA
- NEPRC, Harvard Medical School, Boston University School of Medicine, Boston, MA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
10
|
Zikopoulos B, Barbas H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J Neurosci 2006; 26:7348-61. [PMID: 16837581 PMCID: PMC6674204 DOI: 10.1523/jneurosci.5511-05.2006] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inhibitory thalamic reticular nucleus (TRN) intercepts and modulates all corticothalamic and thalamocortical communications. Previous studies showed that projections from sensory and motor cortices originate in layer VI and terminate as small boutons in central and caudal TRN. Here we show that prefrontal projections to TRN in rhesus monkeys have a different topographic organization and mode of termination. Prefrontal cortices projected mainly to the anterior TRN, at sites connected with the mediodorsal, ventral anterior, and anterior medial thalamic nuclei. However, projections from areas 46, 13, and 9 terminated widely in TRN and colocalized caudally with projections from temporal auditory, visual, and polymodal association cortices. Population analysis and serial EM reconstruction revealed two distinct classes of corticoreticular terminals synapsing with GABA/parvalbumin-positive dendritic shafts of TRN neurons. Most labeled boutons from prefrontal axons were small, but a second class of large boutons was also prominent. This is in contrast to the homogeneous small TRN terminations from sensory cortices noted previously and in the present study, which are thought to arise exclusively from layer VI. The two bouton types were often observed on the same axon, suggesting that both prefrontal layers V and VI could project to TRN. The dual mode of termination suggests a more complex role of prefrontal input in the functional regulation of TRN and gating of thalamic output back to the cortex. The targeting of sensory tiers of TRN by specific prefrontal areas may underlie attentional regulation for the selection of relevant sensory signals and suppression of distractors.
Collapse
|
11
|
Cudeiro J, Sillito AM. Looking back: corticothalamic feedback and early visual processing. Trends Neurosci 2006; 29:298-306. [PMID: 16712965 DOI: 10.1016/j.tins.2006.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/06/2006] [Accepted: 05/02/2006] [Indexed: 11/30/2022]
Abstract
Although once regarded as a simple sensory relay on the way to the cortex, it is increasingly apparent that the thalamus has a role in the ongoing moment-by-moment processing of sensory input and in cognition. This involves extensive corticofugal feedback connections and the interplay of these with the local thalamic circuitry and the other converging inputs. Here, using the feline visual system as the primary model, some of the latest developments in this field are reviewed and placed in the perspective of an integrated view of system function. Cortical feedback mediated by ionotropic and metabotropic glutamate receptors, and effects mediated by the neuromodulator nitric oxide, all have a role in integrating the thalamic mechanism into the cortical circuit. The essential point is that the perspective of higher-level sensory mechanisms shifts and modulates the thalamic circuitry in ways that optimize abstraction of a meaningful representation of the external world. This review is part of the TINS special issue on The Neural Substrates of Cognition.
Collapse
Affiliation(s)
- Javier Cudeiro
- NEUROcom (Neuroscience and Motor Control Group), Department of Medicine, University of A Coruña, Campus de Oza, 15006 A Coruña, Spain.
| | | |
Collapse
|
12
|
Abstract
The major pathway for visual information reaching cerebral cortex is through the lateral geniculate nucleus (LGN) of the thalamus. Acting on this vital relay is another thalamic nucleus, the thalamic reticular nucleus (TRN). This nucleus receives topographically organized collaterals from both thalamus and cortex and sends similarly organized projections back to thalamus. The inputs to the TRN are excitatory, but the output back to the thalamic relay is inhibitory, providing an ideal organization for modulating visual activity during early processing. This functional architecture led Crick in 1984 to hypothesize that TRN serves to direct a searchlight of attention to different regions of the topographic map; however, despite the substantial influence of this hypothesis, the activity of TRN neurons has never been determined during an attention task. We have determined the nature of the response of visual TRN neurons in awake monkeys, and the modulation of that response as the monkeys shifted attention between visual and auditory stimuli. Visual TRN neurons had a strong (194 spikes/s) and fast (25 ms latency) transient increase of activity to spots of light falling in their receptive fields, as well as high background firing rate (45 spikes/s). When attention shifted to the spots of light, the amplitude of the transient visual response typically increased, whereas other neuronal response characteristics remained unchanged. Thus, as predicted previously, TRN activity is modified by shifts of visual attention, and these attentional changes could influence visual processing in LGN via the inhibitory connections back to the thalamus.
Collapse
Affiliation(s)
- Kerry McAlonan
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20982-4435, USA.
| | | | | |
Collapse
|
13
|
Debay D, Wolfart J, Le Franc Y, Le Masson G, Bal T. Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks. ACTA ACUST UNITED AC 2005; 98:540-58. [PMID: 16289755 DOI: 10.1016/j.jphysparis.2005.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We use dynamic clamp to construct "hybrid" thalamic circuits by connecting a biological neuron in situ to silicon- or software-generated "neurons" through artificial synapses. The purpose is to explore cellular sensory gating mechanisms that regulate the transfer efficiency of signals during different sleep-wake states. Hybrid technology is applied in vitro to different paradigms such as: (1) simulating interactions between biological thalamocortical neurons, artificial reticular thalamic inhibitory interneurons and a simulated sensory input, (2) grafting an artificial sensory input to a wholly biological thalamic network that generates spontaneous sleep-like oscillations, (3) injecting in thalamocortical neurons a background synaptic bombardment mimicking the activity of corticothalamic inputs. We show that the graded control of the strength of intrathalamic inhibition, combined with the membrane polarization and the fluctuating synaptic noise in thalamocortical neurons, is able to govern functional shifts between different input/output transmission states of the thalamic gate.
Collapse
Affiliation(s)
- Damien Debay
- Unité de Neurosciences Intégratives et Computationnelles (UNIC), CNRS UPR 2191, Institut de Neurobiologie Alfred Fessard, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
14
|
Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T. Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 2005; 8:1760-7. [PMID: 16261132 DOI: 10.1038/nn1591] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/30/2005] [Indexed: 11/09/2022]
Abstract
Characterizing the responsiveness of thalamic neurons is crucial to understanding the flow of sensory information. Typically, thalamocortical neurons possess two distinct firing modes. At depolarized membrane potentials, thalamic cells fire single action potentials and faithfully relay synaptic inputs to the cortex. At hyperpolarized potentials, the activation of T-type calcium channels promotes burst firing, and the transfer is less accurate. Our results suggest that this duality no longer holds if synaptic background activity is taken into account. By injecting stochastic conductances into guinea-pig thalamocortical neurons in slices, we show that the transfer function of these neurons is strongly influenced by conductance noise. The combination of synaptic noise with intrinsic properties gives a global responsiveness that is more linear, mixing single-spike and burst responses at all membrane potentials. Because in thalamic neurons, background synaptic input originates mainly from cortex, these results support a determinant role of corticothalamic feedback during sensory information processing.
Collapse
Affiliation(s)
- Jakob Wolfart
- Unité de Neurosciences Integratives et Computationnelles, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
15
|
Abstract
On the basis of theoretical, anatomical, psychological and physiological considerations, Francis Crick (1984) proposed that, during selective attention, the thalamic reticular nucleus (TRN) controls the internal attentional searchlight that simultaneously highlights all the neural circuits called on by the object of attention. In other words, he submitted that during either perception, or the preparation and execution of any cognitive and/or motor task, the TRN sets all the corresponding thalamocortical (TC) circuits in motion. Over the last two decades, behavioural, electrophysiological, anatomical and neurochemical findings have been accumulating, supporting the complex nature of the TRN and raising questions about the validity of this speculative hypothesis. Indeed, our knowledge of the actual functioning of the TRN is still sprinkled with unresolved questions. Therefore, the time has come to join forces and discuss some recent cellular and network findings concerning this diencephalic GABAergic structure, which plays important roles during various states of consciousness. On the whole, the present critical survey emphasizes the TRN's complexity, and provides arguments combining anatomy, physiology and cognitive psychology.
Collapse
Affiliation(s)
- Didier Pinault
- Laboratoire d'anatomo-électrophysiologie cellulaire et intégrée, INSERM U405, psychopathologie et pharmacologie de la cognition Faculté de Médecine, 11 rue Humann, F-67085 Strasbourg, France.
| |
Collapse
|
16
|
Kim D, Park D, Choi S, Lee S, Sun M, Kim C, Shin HS. Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 2003; 302:117-9. [PMID: 14526084 DOI: 10.1126/science.1088886] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sensations from viscera, like fullness, easily become painful if the stimulus persists. Mice lacking alpha1G T-type Ca2+ channels show hyperalgesia to visceral pain. Thalamic infusion of a T-type blocker induced similar hyperalgesia in wild-type mice. In response to visceral pain, the ventroposterolateral thalamic neurons evokeda surge of single spikes, which then slowly decayed as T type-dependent burst spikes gradually increased. In alpha1G-deficient neurons, the single-spike response persisted without burst spikes. These results indicate that T-type Ca2+ channels underlie an antinociceptive mechanism operating in the thalamus andsupport the idea that burst firing plays a critical role in sensory gating in the thalamus.
Collapse
Affiliation(s)
- Daesoo Kim
- National Creative Research Initiative Center for Calcium and Learning, Korea Institutes of Science and Technology, Seoul 136-791, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Guillery RW, Harting JK. Structure and connections of the thalamic reticular nucleus: Advancing views over half a century. J Comp Neurol 2003; 463:360-71. [PMID: 12836172 DOI: 10.1002/cne.10738] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The advance of knowledge of the thalamic reticular nucleus and its connections has been reviewed and Max Cowan's contributions to this knowledge and to the methods used for studying the nucleus have been summarized. Whereas 50 years ago the nucleus was seen as a diffusely organized cell group closely related to the brain stem reticular formation, it can now be seen as a complex, tightly organized entity that has a significant inhibitory, modulatory action on the thalamic relay to cortex. The nucleus is under the control, on the one hand, of topographically organized afferents from the cerebral cortex and the thalamus, and on the other of more diffuse afferents from brain stem, basal forebrain, and other regions. Whereas the second group of afferents can be expected to have global actions on thalamocortical transmission, relevant for overall attentive state, the former group will have local actions, modulating transmission through the thalamus to cortex with highly specific local effects. Since it appears that all areas of cortex and all parts of the thalamus are linked directly to the reticular nucleus, it now becomes important to define how the several pathways that pass through the thalamus relate to each other in their reticular connections.
Collapse
Affiliation(s)
- R W Guillery
- Department of Anatomy, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
18
|
Abstract
The present study compares nociceptive responses of neurons in the reticular thalamic nucleus (RT) to those of the ventroposterior lateral nucleus (VPL). Extracellular single-unit activities of cells in the RT and VPL were recorded in anesthetized rats. Only units with identified tactile receptive fields in the forepaw or hindpaw were studied. In the first series of experiments, RT and VPL responses to pinching with a small artery clamp were tested with the rats under pentobarbital, urethane, ketamine, or halothane anesthesia. Under all types of anesthesia, many RT units were inhibited. Second, the specificity of the nociceptive response was tested by pinching and noxious heating of the unit's tactile receptive field. Of the 39 VPL units tested, 20 were excited by both types of noxious stimuli. In sharp contrast, of the 30 RT units tested, none were excited and 17 were inhibited. In a third series of experiments, low-intensity and beam-diffused CO(2) laser irradiation was used to activate peripheral nociceptive afferents. Wide-dynamic-range VPL units responded with short- and long-latency excitations. In contrast, RT units had short-latency excitation followed by long-latency inhibition. Nociceptive input inhibited RT units in less than 500 ms. We conclude that a significant portion of RT neurons were polysynaptically inhibited by nociceptive inputs. Since all the cells tested were excited by light tactile inputs, the somatosensory RT may serve in the role of a modality gate, which modifies (i.e. inhibits) tactile inputs while letting noxious inputs pass.
Collapse
Affiliation(s)
- Chen-Tung Yen
- Department of Zoology, National Taiwan University, #1, Sect. 4, Roosevelt Road, Taipei, 106 Taiwan, ROC.
| | | |
Collapse
|
19
|
Abstract
Sensory information is routed to the cortex via the thalamus, but despite this sensory bombardment, animals must attend selectively to stimuli that signal danger or opportunity. Sensory input must be filtered, allowing only behaviorally relevant information to capture limited attentional resources. Located between the thalamus and cortex is a thin lamina of neurons called the thalamic reticular nucleus (Rt). The thalamic reticular nucleus projects exclusively to thalamus, thus forming an essential component of the circuitry mediating sensory transmission. This article presents evidence supporting a role for Rt beyond the mere relay of sensory information. Rather than operating as a component of the sensory relay, the authors suggest that Rt represents an inhibitory interface or "attentional gate," which regulates the flow of information between the thalamus and cortex. Recent findings have also implicated Rt in higher cognitive functions, including learning, memory, and spatial cognition. Drawing from recent insights into the dynamic nature of the thalamic relay in awake, behaving animals, the authors present a speculative account of how Rt might regulate thalamocortical transmission and ultimately the contents of consciousness.
Collapse
Affiliation(s)
- Kerry McAlonan
- School of Psychology, University of St. Andrews, St. Andrews, United Kingdom
| | | |
Collapse
|
20
|
Le Masson G, Renaud-Le Masson S, Debay D, Bal T. Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 2002; 417:854-8. [PMID: 12075353 DOI: 10.1038/nature00825] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sensory information reaches the cerebral cortex through the thalamus, which differentially relays this input depending on the state of arousal. Such 'gating' involves inhibition of the thalamocortical relay neurons by the reticular nucleus of the thalamus, but the underlying mechanisms are poorly understood. We reconstructed the thalamocortical circuit as an artificial and biological hybrid network in vitro. With visual input simulated as retinal cell activity, we show here that when the gain in the thalamic inhibitory feedback loop is greater than a critical value, the circuit tends towards oscillations -- and thus imposes a temporal decorrelation of retinal cell input and thalamic relay output. This results in the functional disconnection of the cortex from the sensory drive, a feature typical of sleep states. Conversely, low gain in the feedback inhibition and the action of noradrenaline, a known modulator of arousal, converge to increase input output correlation in relay neurons. Combining gain control of feedback inhibition and modulation of membrane excitability thus enables thalamic circuits to finely tune the gating of spike transmission from sensory organs to the cortex.
Collapse
Affiliation(s)
- Gwendal Le Masson
- Laboratoire de Physiopathologie des Réseaux Neuronaux Médullaires, EPI INSERM 9914, Institut François Magendie, Université Victor Segalen Bordeaux 2, 1 Rue Camille Saint Saëns, 33077 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
21
|
Stehberg J, Acuña-Goycolea C, Ceric F, Torrealba F. The visceral sector of the thalamic reticular nucleus in the rat. Neuroscience 2002; 106:745-55. [PMID: 11682160 DOI: 10.1016/s0306-4522(01)00316-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Visceral sensory perception is subjected to modulation by attention or distraction, like other sensory systems. The thalamic reticular nucleus is a key region in selective attention, effecting a change in the mode of thalamocortical transmission. Each major thalamocortical system is connected with a particular sector of the thalamic reticular nucleus. No connections from the thalamic reticular nucleus have been described to the visceral sensory thalamus. We used axonal tracing techniques to study the possible existence of reciprocal connections between the visceral sensory relay in the lateral ventroposterior parvicellular thalamic nucleus, and the reticular nucleus of the thalamus. We also studied the projections from the visceral sensory cortex, located in the granular insular cortex in the rat, to the reticular nucleus of the thalamus. We found a convergent input from both thalamic and cortical sensory visceral regions to the same sector of the reticular nucleus of the thalamus. This visceral sector in turn sent GABAergic feedback connections to the lateral ventroposterior parvicellular thalamic nucleus. In addition, the visceral thalamus received histaminergic projections from the tuberomammillary nucleus, and noradrenergic projections from the locus coeruleus; both nuclei belong to the ascending activating system. Our findings indicate that the visceral sensory thalamocortical pathway is connected to the same subcortical structures that provide attention mechanisms for other thalamocortical systems.
Collapse
Affiliation(s)
- J Stehberg
- Departamento de Ciencias Fisiologicas, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Alameda 340, Santiago, Chile
| | | | | | | |
Collapse
|
22
|
Chaudhuri A, Zangenehpour S. Chapter V Molecular activity maps of sensory function. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
23
|
Montero VM, Wright LS, Siegel F. Increased glutamate, GABA and glutamine in lateral geniculate nucleus but not in medial geniculate nucleus caused by visual attention to novelty. Brain Res 2001; 916:152-8. [PMID: 11597602 DOI: 10.1016/s0006-8993(01)02886-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study is concerned with cortico-thalamic neural mechanisms underlying attentional phenomena. Previous results from this laboratory demonstrated that the visual sector of the GABAergic thalamic reticular nucleus is selectively c-fos activated in rats that are naturally paying attention to features of a novel-complex environment, and that this activation is dependent on top-down glutamatergic inputs from the primary visual cortex. By contrast, the acoustic sector of the thalamic reticular nucleus is not activated despite noise generated by exploration and c-fos activation of brainstem acoustic centers (e.g. dorsal cochlear nucleus, inferior colliculus). A prediction of these results is that the levels of the neurotransmitters glutamate and GABA, and the glutamate-related amino acid glutamine, will be increased in the lateral geniculate nucleus (LGN), but not in the medial geniculate nucleus (MGN) of rats that explore a novel-complex environment in comparison to levels of these amino acids in control rats. By means of neurochemical analysis of these amino acids (HPLC) the results of this study confirmed this prediction. The results are consistent with the previously proposed 'focal attention' hypothesis postulating that a focus of attention in the primary visual cortex generates top-down center-surround facilitatory-inhibitory effects on geniculocortical transmission via corticoreticulogeniculate pathways. The results also supports the notion that a main function of corticothalamic pathways to relay thalamic nuclei is attention-dependent modulation of thalamocortical transmission.
Collapse
Affiliation(s)
- V M Montero
- Department of Physiology, University of Wisconsin, 1300 University Ave., Madison, WI 53706, USA.
| | | | | |
Collapse
|
24
|
Abstract
Experiments on putative neuronal mechanisms underlying absence seizures as well as clinical observations are critically reviewed for their ability to explain apparent "loss of consciousness." It is argued that the initial defect in absences lies with corticothalamic (CT) neuronal mechanisms responsible for selective attention and/or planning for action, rather than with those establishing either the states or the contents of consciousness. Normally, rich thalamocortical (TC)-CT feedback loops regulate the flow of information to the cortex and help its neurons to organize themselves in discrete assemblies, which through high-frequency (>30 Hz) oscillations bind those distributed processes of the brain that are considered important, so that we are able to focus on what is needed from moment to moment and be aware of this fact. This ability is transiently lost in absence seizures, because large numbers of CT loops are recruited for seconds in much stronger, low-frequency ( approximately 3 Hz) oscillations of EPSP/IPSP sequences, which underlie electroencephalographic (EEG) spike-and-wave discharges (SWDs). These oscillations probably result from a transformation of the normal EEG rhythm of sleep spindles on an abnormal increase of cortical excitability that results in strong activation of inhibitory neurons in the cortex and in nucleus reticularis thalami. The strong general enhancement of CT feedback during SWDs may disallow the discrete feedback, which normally selects specific TC circuits for conscious perception and/or motor reaction. Such a mechanism of SWD generation allows variability in the extent to which different TC sectors are engaged in the SWD activity and thus explains the variable ability of some patients to respond during an absence, depending on the sensory modality examined.
Collapse
Affiliation(s)
- G K Kostopoulos
- Department of Physiology, Medical School, University of Patras, Patras 261 10, Greece.
| |
Collapse
|
25
|
Abstract
FOS protein is synthesized in neuronal nuclei in response to a variety of environmental stimuli and has been used as a marker of stimulus-specific brain function. The present studies were initiated to examine the effects of ultraviolet light on the induction of FOS protein immunoreactivity (FOS-IR) in several brain regions of adult male hamsters. Experiment 1 confirmed previous observations of FOS-IR induced in visual cortex in response to ultraviolet light. However, protein was also induced by ultraviolet or white light in a variety of other areas and induction occurred in both sighted and enucleated animals. Therefore, experiments were conducted to evaluate the effects of a 514 nm light on FOS-IR induction in blind or sighted animals. Experiments 2 and 3 were performed during the early subjective night and mid-subjective day, respectively, using animals about 4 days after bilateral enucleation or sham surgery. In Experiment 2, light and enucleation independently and interactively resulted in increased FOS-IR neuronal nuclei counts. In Experiment 3, there was a main effect of enucleation and an interaction between enucleation and light condition, but no main effect of light. In Experiment 4, conducted during the early subjective night using animals enucleated 60 days earlier, there were neither effects of light or enucleation. The results support the view that, under certain conditions related to subjective time of day and time since enucleation, light can act through unknown extraocular mechanisms to modify brain activity. Further, short term enucleation itself induces widespread alteration in brain function as indicated by increased FOS-IR expression. The results specifically do not support a role for extraretinal photoreception with respect to direct circadian rhythm regulation.
Collapse
Affiliation(s)
- E G Marchant
- Department of Psychiatry and Behavioral Sciences, State University of New York, Stony Brook, NY 11794, USA
| | | |
Collapse
|
26
|
Kostopoulos GK. Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis. Clin Neurophysiol 2000; 111 Suppl 2:S27-38. [PMID: 10996552 DOI: 10.1016/s1388-2457(00)00399-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES This review aims to offer a critical account of recent scientific developments relevant to the hypothesis which Pierre Gloor proposed in the 1970s for the generation of spike and wave discharges (SWDs) of primary generalized absence seizures. RESULTS According to this hypothesis SWDs develop in the same circuits, which normally generate sleep spindles, by an initially cortical transformation of one every two or more spindle waves to a 'spike' component of SWDs, while the next one or more spindle waves are eliminated and replaced by a slow negative wave. This hypothesis was based on experiments in feline generalized penicillin epilepsy showing the possibility of transition from spindles to SWDs, when cortical neurons become hyper-responsive to thalamocortical volleys, which normally induce spindles, and thus engage feedback cortical inhibition, rebound excitation, recurrent intracortical dissemination of excitation during the 'spike' and strong excitation of thalamus for further augmentation of a brain wide synchronous oscillation. In the 1980s, electrophysiological studies in vitro and in vivo revealed the basic features of spindle rhythm generation by neurons in nucleus reticularis thalami and thalamocortical-corticothalamic oscillatory reverberations. CONCLUSIONS In the light of this knowledge, experimental studies in several genetic and pharmacological animal models of absence seizures, clinical observations and theoretical studies in computer models have considered, tested, modified and challenged this hypothesis. It may still be found useful in the era of dynamic digital EEG analysis of SWDs and its current sources.
Collapse
Affiliation(s)
- G K Kostopoulos
- Department of Physiology, Medical School, University of Patras, 261 10, Patras, Greece.
| |
Collapse
|
27
|
FitzGibbon T. Cortical projections from the suprasylvian gyrus to the reticular thalamic nucleus in the cat. Neuroscience 2000; 97:643-55. [PMID: 10842009 DOI: 10.1016/s0306-4522(00)00048-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cat's suprasylvian gyrus was injected iontophoretically with either 4% wheat germ agglutinin-horseradish peroxidase, 4% dextran-fluororuby or 4% dextran-biotin. The locations of labelled fibres, presumed terminals and cell bodies were determined with the aid of a camera lucida attachment and computer aided stereometry. Cells from the crown of the suprasylvian gyrus project to the dorsal-most portion of the rostral half of the reticular nucleus. The region or 'sector' is distinct, albeit with some overlap, from the visual sector of the reticular nucleus defined by projections from adjacent extrastriate visual cortices. The projection from the suprasylvian gyrus to the reticular nucleus has a rough topography such that the caudal areas project to the more caudal aspects of the sector and rostral areas project to the more rostral areas of the reticular nucleus. There is a large degree of overlap of rostrocaudal projections from the suprasylvian gyrus within the sector, however, the projections originating from rostral sites are situated in a more ventral location compared to the projection originating from the caudal suprasylvian gyrus. Analysis of the distribution of biotin labelled presumptive terminals did not support the notion of 'slabs' or regional variation in terminal density across the mediolateral thickness of the reticular nucleus. In addition, a number of presumptive terminals were found within the internal capsule which coincided with the position of retrogradely labelled cells in the internal capsule following thalamic injections and appears to be part of the perireticular nucleus. The results suggest that the reticular nucleus may be segregated into sectors connected with modality specific cortical areas (e.g. striate and extrastriate visual areas) and nonspecific sectors connected with polymodal (e.g. area 7) cortical regions. The reticular nucleus and its connections with the suprasylvian gyrus may form an important link in binding eye movements to sensory integrative process through visuomotor and auditory thalamic connections.
Collapse
Affiliation(s)
- T FitzGibbon
- Department of Anatomy and Histology, Institute for Biomedical Research Save Sight Institute, The University of Sydney, NSW 2006, Sydney, Australia.
| |
Collapse
|
28
|
Montero VM. Attentional activation of the visual thalamic reticular nucleus depends on 'top-down' inputs from the primary visual cortex via corticogeniculate pathways. Brain Res 2000; 864:95-104. [PMID: 10793191 DOI: 10.1016/s0006-8993(00)02182-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study is concerned with corticothalamic neural mechanisms underlying attentional phenomena. Previous results from this laboratory demonstrated that the visual sector of the GABAergic thalamic reticular nucleus is activated by attention in rats. Here it is demonstrated that Fos-detected activation of the visual reticular sector in rats, induced by attentive exploration of a novel-complex environment, is dependent on 'top-down' cortical inputs from the primary visual cortex, on the basis (a) that activation of the visual reticular sector is drastically diminished after ibotenate lesions mostly restricted to layer 6 of the primary visual cortex, which gives origin to the corticogeniculate pathway that innervates both the visual reticular sector and the dorsal lateral geniculate nucleus; and (b) the lesions did not induce retrograde degeneration nor diminution of Fos label in the geniculate. The results are consistent with the previously proposed hypothesis that a focus of attention in V1 generates a column of increased thalamocortical transmission in LGN by means of monosynaptic glutamatergic corticogeniculate inputs, and decreased transmission of surrounding regions by disynaptic cortico-reticulo-geniculate (ultimately GABAergic) inputs. The results also suggest that attentional modulation of thalamocortical transmission is a main function of corticothalamic pathways to sensory relay nuclei.
Collapse
Affiliation(s)
- V M Montero
- Department of Physiology and Waisman Center on Mental Retardation, University of Wisconsin, 1500 Highland Ave., Madison, WI, USA.
| |
Collapse
|
29
|
Hartings JA, Temereanca S, Simons DJ. High responsiveness and direction sensitivity of neurons in the rat thalamic reticular nucleus to vibrissa deflections. J Neurophysiol 2000; 83:2791-801. [PMID: 10805677 DOI: 10.1152/jn.2000.83.5.2791] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thalamic reticular nucleus (Rt) is strategically positioned to integrate descending and ascending signals in the control of sensorimotor and other thalamocortical activity. Its prominent role in the generation of sleep spindles notwithstanding, relatively little is known of Rt function in regulating interactions with the sensory environment. We recorded and compared the responses of individual Rt and thalamocortical neurons in the ventroposterior medial (VPm) nucleus of the rat to controlled deflections of mystacial vibrissae. Transient Rt responses to the onset (ON) and offset (OFF) of vibrissa deflection are larger and longer in duration than those of VPm and of all other populations studied in the whisker/barrel pathway. Magnitudes of ON and OFF responses in Rt were negatively correlated with immediately preceding activities, suggesting a contribution of low-threshold T-type Ca(2+) channels. Rt neurons also respond with high tonic firing rates during sustained vibrissa deflections. By comparison, VPm neurons are less likely to respond tonically and are more likely to exhibit tonic suppression. Rt and VPm populations are similar to each other, however, in that they retain properties of directional sensitivity established in primary afferent neurons. In both populations neurons are selective for deflection angle and exhibit directional consistency, responding best to a particular direction of movement regardless of the starting position of the vibrissal hair. These findings suggest a role for Rt in the processing of detailed sensory information. Temporally, Rt may function to limit the duration of stimulus-evoked VPm responses and to focus them on rapid vibrissa perturbations. Moreover, by regulating the baseline activity of VPm neurons, Rt may indirectly enhance the response selectivity of layer IV barrel neurons to synchronous VPm firing.
Collapse
Affiliation(s)
- J A Hartings
- Department of Neurobiology, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
30
|
Van Der Gucht E, Vandenbussche E, Orban GA, Vandesande F, Arckens L. A new cat Fos antibody to localize the immediate early gene c-fos in mammalian visual cortex after sensory stimulation. J Histochem Cytochem 2000; 48:671-84. [PMID: 10769051 DOI: 10.1177/002215540004800511] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We developed a novel antibody against cat Fos by immunizing rabbits with a 26-amino-acid peptide. Immunocytochemistry on visual cortex of cats undergoing different visual manipulations was applied to test the reliability and the efficacy of this antiserum. One hour of light stimulation after an overnight dark adaptation resulted in strongly induced Fos expression in supra- and infragranular layers of cat primary visual cortex. Short-term monocular deprivation changed the Fos expression profile into a columnar immunostaining related to ocular dominance columns. Fos expression has also been analyzed in cats in which visual input was confined to the right hemisphere by sectioning the left optic tract and the corpus callosum. In the right hemisphere, visual stimulation elicited Fos induction, whereas in the contralateral hemisphere a very low Fos signal was observed. The specificity of this newly synthesized antibody was confirmed by Western blotting. To further establish the applicability of this Fos antiserum, we performed immunostaining on monkey and rat visual cortex. This new cat Fos antibody appears to be excellent for study of Fos expression as a marker for mapping neuronal activity in mammalian brain.
Collapse
Affiliation(s)
- E Van Der Gucht
- Laboratory of Neuroendocrinology and Immunological Biotechnology, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
31
|
Abstract
A synchronizing volley of excitation was delivered to cells from the primary visual cortex of the anaesthetized cat by an electrical pulse stimulation of the optic radiations. In intracellular records, this resulted in an initial, fast depolarization of the membrane potential followed by a longer lasting (266 ms) hyperpolarization, and then to small amplitude damped oscillations of the membrane potential. In different cells the number of peaks ranged from 3 to 6, and the amplitude of the first oscillation averaged 3.5 mV. If the pulse stimulation was repeated during visual drive with an optimal bar stimulus, the membrane potential fluctuations were non-linearly enhanced with spike bursts recorded during the depolarized states of the membrane potential. The amplitude of the first oscillation in these cases averaged 6.9 mV. The mean frequency of damped oscillations was 9.9 Hz. The results suggest that these oscillations are mediated by the waxing and waning of the excitatory drive to the recorded neurone.
Collapse
Affiliation(s)
- B Ahmed
- University Laboratory of Physiology, University of Oxford, UK
| |
Collapse
|
32
|
Abstract
The thalamic reticular nucleus (TRN) has been implicated in attentional processes based on its anatomical, electrophysiological, and neurochemical relationships with the sensory nuclei of the thalamus and corresponding sensory areas of cortex. This study examined the possibility that the TRN is involved in covert orienting of attention. Attention can be summoned to a spatial location in the absence of an overt orienting response. The reaction time to a visual target is faster when attention has been drawn to the location of the target by a preceding cue in that location (valid cue) compared with when the cue misdirects attention (invalid cue) away from the location of the subsequent target. This reaction time difference is referred to as the "validity effect." Rats were trained to perform such a reaction time task with visual cues and targets presented in poke holes to either side of the rat's head, which had to be maintained centrally and still. If the rat made an overt orienting response to the cue, the trial was aborted. Unilateral lesions were made by injection of ibotenic acid in the TRN. After surgery, there was no bias apparent in their responding; they were as likely to initiate responses and were equally accurate to either side. There was, however, a complete abolition of the validity effect for responses to contralateral targets. The data are discussed in terms of a role for the TRN in attentional processing.
Collapse
|