1
|
Li W, Zhang M, Hu Y, Shen P, Bai Z, Huangfu C, Ni Z, Sun D, Wang N, Zhang P, Tong L, Gao Y, Zhou W. Acute mountain sickness prediction: a concerto of multidimensional phenotypic data and machine learning strategies in the framework of predictive, preventive, and personalized medicine. EPMA J 2025; 16:265-284. [PMID: 40438497 PMCID: PMC12106293 DOI: 10.1007/s13167-025-00404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/10/2025] [Indexed: 06/01/2025]
Abstract
Background Acute mountain sickness (AMS) is a self-limiting illness, involving a complex series of physiological responses to rapid ascent to high altitudes, where the body is exposed to lower oxygen levels (hypoxia) and changes in atmospheric pressure. AMS is the mildest and most common form of altitude sickness; however, without adequate preparation and adherence to ascent guidelines, it can progress to life-threatening conditions. Aims Due to the multi-factorial predisposition of AMS among individuals, identifying AMS biomarkers before high altitude exposure from multiple dimensions (e.g., clinical, metabolic, and proteomic markers) and integrating them to build an AMS predictive model enables early diagnosis and personalized interventions, which allows targeted allocation of medical resources, such as prophylactic medications (e.g., acetazolamide) and supplemental oxygen, to those who need them most and prevention of unnecessary complications. Consequently, predicting AMS utilizing biomarkers from multidimensional phenotypic data before high-altitude exposure is essential for the paradigm change in high-altitude medical research from currently applied reactive services to the cost-effective predictive, preventive, and personalized medicine (PPPM/3PM) in primary (reversible damage to health and targeted protection against health-to-disease transition) and secondary (personalized protection against disease progression) care. Methods To this end, this study recruited 83 Han Chinese male volunteers and obtained clinical, proteomic, and metabolomic profiles for analysis before they ascended to high altitudes. The Mann-Whitney U test was used to identify clinical features distinguishing AMS from non-AMS. The proteomic and metabolomic features were concatenated and clustered to find co-expression modules associated with AMS. A machine learning model, Mutual Information-radial kernel-based Support Vector Machine-Recursive Feature Elimination (MI-radialSVM-RFE) was employed for biomarkers selection and AMS prediction. A molecular docking technique was used to select molecular biomarkers that can bind with Traditional Chinese Medicine (TCM) ingredients. Results Among 83 participants, 66 were selected for detailed analysis after quality control steps. Six protein-metabolite co-expression modules were identified as significantly associated with AMS. The MI-radialSVM-RFE model selected 12 biomarkers (two clinical features: systolic blood pressure (SBP) and peak expiratory flow (PEF); six proteins: Acyl-CoA synthetase long-chain family member 4 (ACSL4), immunoglobulin kappa variable 1D-16 (IGKV1D-16), coagulation factor XIII B subunit (F13B), prosaposin (PSAP), poliovirus receptor (PVR), and multimerin-2 (MMRN2); and four metabolites: 2-Methyl-1,3-cyclohexadiene, calcitriol, 4-Acetamido-2-amino-6-nitrotoluene, and 20-Hydroxy-PGE2) for the AMS prediction model. The model exhibited excellent predictive performance in both training (n = 66) and validating cohorts (n = 24) with AUCs of 0.97 and 0.94, respectively. Additionally, molecular docking analysis suggested PSAP and ACSL4 proteins as potential molecular targets for AMS prevention. Conclusion and expert recommendations This study advances high-altitude medicine by developing a predictive model for AMS using clinical, proteomic, and metabolomic data. The identified biomarkers linked to energy metabolism, immune response, and vascular regulation offer insights into AMS mechanisms. High-altitude predictive approaches should focus on implementing biomarker-driven risk screening using clinical, proteomic, and metabolomic data to identify high-risk individuals before high-altitude exposure. Preventive measures should prioritize pre-acclimatization protocols, tailored nutritional strategies and interventions guided by biomarker profiles, and lifestyle adjustments, such as maintaining mitochondrial health through proper nutritional strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-025-00404-9.
Collapse
Affiliation(s)
- Wenhui Li
- Research Center for High Altitude Medicine, Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai-Utah Joint Research Key Laboratory for High Altitude Medicine, Qinghai University, Xining, 810000 China
- The Fifth People’s Hospital of Qinghai Province, Xining, 810000 China
| | - Meng Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Yangyi Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Chaoji Huangfu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Zhexin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Dezhi Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Pengfei Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Li Tong
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Qinghai University, Xining, 810000 China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853 China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| |
Collapse
|
2
|
Devaux CA, Raoult D. The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication. Front Physiol 2022; 13:960308. [PMID: 36091390 PMCID: PMC9454615 DOI: 10.3389/fphys.2022.960308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cases of coronavirus disease 2019 (COVID-19) have been reported worldwide. However, one epidemiological report has claimed a lower incidence of the disease in people living at high altitude (>2,500 m), proposing the hypothesis that adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection. This publication was initially greeted with skepticism, because social, genetic, or environmental parametric variables could underlie a difference in susceptibility to the virus for people living in chronic hypobaric hypoxia atmospheres. Moreover, in some patients positive for SARS-CoV-2, early post-infection ‘happy hypoxia” requires immediate ventilation, since it is associated with poor clinical outcome. If, however, we accept to consider the hypothesis according to which the adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection, identification of the molecular rational behind it is needed. Among several possibilities, HIF-1 regulation appears to be a molecular hub from which different signaling pathways linking hypoxia and COVID-19 are controlled. Interestingly, HIF-1α was reported to inhibit the infection of lung cells by SARS-CoV-2 by reducing ACE2 viral receptor expression. Moreover, an association of the rs11549465 variant of HIF-1α with COVID-19 susceptibility was recently discovered. Here, we review the evidence for a link between HIF-1α, ACE2 and AT1R expression, and the incidence/severity of COVID-19. We highlight the central role played by the HIF-1α signaling pathway in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique, Marseille, France
- *Correspondence: Christian Albert Devaux,
| | - Didier Raoult
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Bai J, Li L, Li Y, Zhang L. Genetic and immune changes in Tibetan high-altitude populations contribute to biological adaptation to hypoxia. Environ Health Prev Med 2022; 27:39. [PMID: 36244759 PMCID: PMC9640738 DOI: 10.1265/ehpm.22-00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/19/2022] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Tibetans have lived at very high altitudes for thousands of years, and have a distinctive suite of physiological traits that enable them to tolerate environmental hypoxia. Expanding awareness and knowledge of the differences in hematology, hypoxia-associated genes, immune system of people living at different altitudes and from different ethnic groups may provide evidence for the prevention of mountain sickness. METHOD Ninety-five Han people at mid-altitude, ninety-five Tibetan people at high-altitude and ninety-eight Han people at high-altitude were recruited. Red blood cell parameters, immune cells, the contents of cytokines, hypoxia-associated gene single nucleotide polymorphisms (SNPs) were measured. RESULTS The values of Hematocrit (HCT), Mean cell volume (MCV) and Mean cell hemoglobin (MCH) in red blood cell, immune cell CD19+ B cell number, the levels of cytokines Erb-B2 receptor tyrosine kinase 3 (ErbB3) and Tumor necrosis factor receptor II (TNF-RII) and the levels of hypoxia-associated factors Hypoxia inducible factor-1α (HIF-1α), Hypoxia inducible factor-2α (HIF-2α) and HIF prolyl 4-hydroxylase 2 (PHD2) were decreased, while the frequencies of SNPs in twenty-six Endothelial PAS domain protein 1 (EPAS1) and Egl-9 family hypoxia inducible factor 1 (EGLN1) were increased in Tibetan people at high-altitude compared with that of Han peoples at high-altitude. Furthermore, compared with mid-altitude individuals, high-altitude individuals showed lower blood cell parameters including Hemoglobin concentration (HGB), HCT, MCV and MCH, higher Mean cell hemoglobin concentration (MCHC), lower immune cells including CD19+ B cells, CD4+ T cells and CD4/CD8 ratio, higher immune cells containing CD8+ T cells and CD16/56NK cells, decreased Growth regulated oncogene alpha (GROa), Macrophage inflammatory protein 1 beta (MIP-1b), Interleukin-8 (IL-8), and increased Thrombomodulin, downregulated hypoxia-associated factors including HIF1α, HIF2α and PHD2, and higher frequency of EGLN1 rs2275279. CONCLUSIONS These results indicated that biological adaption to hypoxia at high altitude might have been mediated by changes in immune cells, cytokines, and hypoxia-associated genes during the evolutionary history of Tibetan populations. Furthermore, different responses to high altitude were observed in different ethnic groups, which may provide a useful knowledge to improve the protection of high-altitude populations from mountain sickness.
Collapse
Affiliation(s)
- Jun Bai
- Institute of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
- Gansu Key Laboratory of Hematology, Lanzhou 730000, China
| | - Lijuan Li
- Institute of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
- Gansu Key Laboratory of Hematology, Lanzhou 730000, China
| | - Yanhong Li
- Institute of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
- Gansu Key Laboratory of Hematology, Lanzhou 730000, China
| | - Liansheng Zhang
- Institute of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China
- Gansu Key Laboratory of Hematology, Lanzhou 730000, China
- Dingxi People’s Hospital, Dingxi 730500, China
| |
Collapse
|
4
|
Kjeld T, Isbrand AB, Linnet K, Zerahn B, Højberg J, Hansen EG, Gormsen LC, Bejder J, Krag T, Vissing J, Bøtker HE, Arendrup HC. Extreme Hypoxia Causing Brady-Arrythmias During Apnea in Elite Breath-Hold Divers. Front Physiol 2021; 12:712573. [PMID: 34925050 PMCID: PMC8678416 DOI: 10.3389/fphys.2021.712573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The cardiac electrical conduction system is very sensitive to hypoglycemia and hypoxia, and the consequence may be brady-arrythmias. Weddell seals endure brady-arrythmias during their dives when desaturating to 3.2 kPa and elite breath-hold-divers (BHD), who share metabolic and cardiovascular adaptions including bradycardia with diving mammals, endure similar desaturation during maximum apnea. We hypothesized that hypoxia causes brady-arrythmias during maximum apnea in elite BHD. Hence, this study aimed to define the arterial blood glucose (Glu), peripheral saturation (SAT), heart rhythm (HR), and mean arterial blood pressure (MAP) of elite BHD during maximum apneas. Methods: HR was monitored with Direct-Current-Pads/ECG-lead-II and MAP and Glu from a radial arterial-catheter in nine BHD performing an immersed and head-down maximal static pool apnea after three warm-up apneas. SAT was monitored with a sensor on the neck of the subjects. On a separate day, a 12-lead-ECG-monitored maximum static apnea was repeated dry (n = 6). Results: During pool apnea of maximum duration (385 ± 70 s), SAT decreased from 99.6 ± 0.5 to 58.5 ± 5.5% (∼PaO2 4.8 ± 1.5 kPa, P < 0.001), while Glu increased from 5.8 ± 0.2 to 6.2 ± 0.2 mmol/l (P = 0.009). MAP increased from 103 ± 4 to 155 ± 6 mm Hg (P < 0.005). HR decreased to 46 ± 10 from 86 ± 14 beats/minute (P < 0.001). HR and MAP were unchanged after 3–4 min of apnea. During dry apnea (378 ± 31 s), HR decreased from 55 ± 4 to 40 ± 3 beats/minute (P = 0.031). Atrioventricular dissociation and junctional rhythm were observed both during pool and dry apneas. Conclusion: Our findings contrast with previous studies concluding that Glu decreases during apnea diving. We conclude during maximum apnea in elite BHD that (1) the diving reflex is maximized after 3–4 min, (2) increasing Glu may indicate lactate metabolism in accordance with our previous results, and (3) extreme hypoxia rather than hypoglycemia causes brady-arrythmias in elite BHD similar to diving mammals.
Collapse
Affiliation(s)
- Thomas Kjeld
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Brenøe Isbrand
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Linnet
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo Zerahn
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Højberg
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Egon Godthaab Hansen
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars Christian Gormsen
- Department of Clinical Physiology and Nuclear Medicine, Skejby Hospital, Aarhus University, Aarhus, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Krag
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
5
|
Jin XY, Shen CM, Chen C, Guo YX, Cui W, Wang YJ, Zhang WQ, Kong TT, Zhu BF. Ancestry informative DIP loci for dissecting genetic structure and ancestry proportions of Qinghai Tibetan and Tibet Tibetan groups. Mol Biol Rep 2019; 47:1079-1087. [DOI: 10.1007/s11033-019-05202-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022]
|
6
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
7
|
Ray K, Kishore K, Vats P, Bhattacharyya D, Akunov A, Maripov A, Sarybaev A, Singh SB, Kumar B. A Temporal Study on Learning and Memory at High Altitude in Two Ethnic Groups. High Alt Med Biol 2019; 20:236-244. [PMID: 31210541 DOI: 10.1089/ham.2018.0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cognitive function has been compromised during high-altitude (HA) exposure due to slowing of mental processing. Materials and Methods: A total of 20 Indian and 20 Kyrgyz soldiers were studied at 4111 m to assess cognitive function in two different ethnic groups. Paired associate learning, pattern recognition memory, spatial span (SSP), spatial working memory (SWM), choice reaction time (CRT), and simple reaction time (SRT) were evaluated at sea level and on days 3, 7, 14, and 21 of HA stay and on day 3 of deinduction. Results: All the parameters were significantly affected at HA. Indian soldiers were acclimatized by 7 days but Kyrgyz soldiers required 21 days for acclimatization. A slow impairment in SWM, CRT, and SRT was observed in Kyrgyz soldiers than in Indian soldiers and it continues throughout 21 days of HA stay, but for Indian soldiers the deterioration was maximum on day 7 and improvement in SWM, CRT, and SRT was observed on day 14 and close to baseline value on day 21. After deinduction, although Indian soldiers attained the normal value, Kyrgyz soldiers had higher value than baseline in SSP, SWM, CRT, and SRT. Conclusion: Difference in the cognitive performances of Indian and Kyrgyz soldiers may be due to the ethnogenetic diversity of these two groups.
Collapse
Affiliation(s)
- Koushik Ray
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Krishna Kishore
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Praveen Vats
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Debojyoti Bhattacharyya
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Almaz Akunov
- Kyrgyz-Indian Mountain Biomedical Research Centre, Bishkek, Kyrgyzstan
| | | | - Akpay Sarybaev
- Kyrgyz-Indian Mountain Biomedical Research Centre, Bishkek, Kyrgyzstan
| | - Shashi Bala Singh
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
8
|
Gladek I, Ferdin J, Horvat S, Calin GA, Kunej T. HIF1A gene polymorphisms and human diseases: Graphical review of 97 association studies. Genes Chromosomes Cancer 2017; 56:439-452. [PMID: 28165644 PMCID: PMC5395341 DOI: 10.1002/gcc.22449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) belong to a family of transcription factors (TF) responsive to a low O2 availability, which is often a characteristic feature of solid tumors. The alpha subunit of the HIF heterodimer is O2 -sensitive, and once stabilized in hypoxia, it functions as a master regulator of various genes involved in hypoxia pathway. Changes in the HIF1A (hypoxia inducible factor 1, alpha subunit) nucleotide sequence or expression has been shown to be associated with the development of several diseases. Because of increasing research interest in HIF1A gene a review of association studies was needed. We here reviewed published data on single nucleotide polymorphisms (SNPs) in HIF1A in various diseases; in total, 34 SNPs were tested for an association with 49 phenotypes, and the results were visualized using the Cytoscape software. Among all collected polymorphisms 16 SNPs showed significant associations with 40 different phenotypes, including six SNPs associated with 14 cancer types. Missense SNPs (rs11549465 and rs11549467) within the oxygen-dependent degradation domain were most frequently studied. The study provides a comprehensive tool for researchers working in this area and may contribute to more accurate disease diagnosis and identification of therapeutic targets.
Collapse
Affiliation(s)
- I Gladek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domzale, Slovenia
| | - J Ferdin
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - S Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domzale, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - GA Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas, M.D. Anderson Cancer Center, So Campus Research Bldg 3, 1881 East Road, Houston, Texas, 77030, USA
| | - T Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domzale, Slovenia
| |
Collapse
|
9
|
Preliminary investigation for effects of hypothalamic Leptin/Ghrelin and arcuate nucleus pro-opiomelanocortin system on regulation of high-altitude acclimatization. Biomed Pharmacother 2017; 89:1462-1466. [PMID: 28372260 DOI: 10.1016/j.biopha.2017.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 11/24/2022] Open
Abstract
This study aims to investigate the mechanism of hypothalamic Leptin/Ghrelin and arcuate nucleus pro-opiomelanocortin (POMC) system in the regulation of high-altitude acclimatization. SD rats (male) were divided into two groups and separately fed at the 2260m and 4700m altitude. Tow groups contained 5 small groups separately, including 1 d, 3 d, 7 d, 15 d and 30 d, and 8 rats in each group. Blood, cerebrospinal fluid and tissues were taken at setting time. Leptin and Ghrelin were detected by using radioactivity immuno-assay. RNA expression of NPY and POMC were detected by using RT-PCR assay. The number of NPY positive neurons was detected by using immunofluorescence (IF) and cell counting. Other rats were sent to the 4300m and fed in animal room with regular diet and drinking. The results indicated that after being sent to high altitude region, Leptin levels at the 3rd and 7th day were significantly higher than the 1st day, while decreased at 15th, and the level at 30th day was closed to the 1st day. Ghrelin levels decreased at the 3rd, 7th and 15th day, and were lower at the 30th day. Comparing to the 1st day, NPY transcription levels increased at the 7th day, while decreased at the 30th. POMC transcription level decreased at the 7th day, while increased at the 30th gradually. The feeding of the rats fed at the 4300m decreased at the 3rd and the 5th, while increased at the 7th, 15th and 30th day. The weight of the rats changed as the feeding changing. In conclusion, after being sent to the high region, the rats were adaptive to the hypoxia environment gradually, and the steady of neuro-endocrine regulation recovered or established.
Collapse
|
10
|
Bhandari S, Zhang X, Cui C, Yangla, Liu L, Ouzhuluobu, Baimakangzhuo, Gonggalanzi, Bai C, Bianba, Peng Y, Zhang H, Xiang K, Shi H, Liu S, Gengdeng, Wu T, Qi X, Su B. Sherpas share genetic variations with Tibetans for high-altitude adaptation. Mol Genet Genomic Med 2016; 5:76-84. [PMID: 28116332 PMCID: PMC5241213 DOI: 10.1002/mgg3.264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Background Sherpas, a highlander population living in Khumbu region of Nepal, are well known for their superior climbing ability in Himalayas. However, the genetic basis of their adaptation to high‐altitude environments remains elusive. Methods We collected DNA samples of 582 Sherpas from Nepal and Tibetan Autonomous Region of China, and we measured their hemoglobin levels and degrees of blood oxygen saturation. We genotyped 29 EPAS1 SNPs, two EGLN1 SNPs and the TED polymorphism (3.4 kb deletion) in Sherpas. We also performed genetic association analysis among these sequence variants with phenotypic data. Results We found similar allele frequencies on the tested 32 variants of these genes in Sherpas and Tibetans. Sherpa individuals carrying the derived alleles of EPAS1 (rs113305133, rs116611511 and rs12467821), EGLN1 (rs186996510 and rs12097901) and TED have lower hemoglobin levels when compared with those wild‐type allele carriers. Most of the EPAS1 variants showing significant association with hemoglobin levels in Tibetans were replicated in Sherpas. Conclusion The shared sequence variants and hemoglobin trait between Sherpas and Tibetans indicate a shared genetic basis for high‐altitude adaptation, consistent with the proposal that Sherpas are in fact a recently derived population from Tibetans and they inherited adaptive variants for high‐altitude adaptation from their Tibetan ancestors.
Collapse
Affiliation(s)
- Sushil Bhandari
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650223China; Kunming College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China; Nepal Academy of Science and TechnologyGPO Box: 3323, KhumaltarLalitpurNepal
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Chaoying Cui
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Yangla
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Lan Liu
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Ouzhuluobu
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Baimakangzhuo
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Gonggalanzi
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Caijuan Bai
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Bianba
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Yi Peng
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Kun Xiang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Hong Shi
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650223China; Institute of Primate Translational MedicineKunming University of Science and TechnologyKunming650500China
| | - Shiming Liu
- National Key Laboratory of High Altitude Medicine High Altitude Medical Research Institute Xining 810012 China
| | - Gengdeng
- National Key Laboratory of High Altitude Medicine High Altitude Medical Research Institute Xining 810012 China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine High Altitude Medical Research Institute Xining 810012 China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| |
Collapse
|
11
|
Yang W, Qi Y, Fu J. Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis. BMC Genet 2016; 17:134. [PMID: 27716028 PMCID: PMC5048413 DOI: 10.1186/s12863-016-0440-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/20/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High-altitude adaptation provides an excellent system for studying how organisms cope with multiple environmental stressors and interacting genetic modifications. To explore the genetic basis of high-altitude adaptation in poikilothermic animals, we acquired transcriptome sequences from a high-altitude population and a low-altitude population of the Asiatic toad (Bufo gargarizans). Transcriptome data from another high-altitude amphibian, Rana kukunoris and its low-altitude relative R. chensiensis, which are from a previous study, were also incorporated into our comparative analysis. RESULTS More than 40,000 transcripts were obtained from each transcriptome, and 5107 one-to-one orthologs were identified among the four taxa for comparative analysis. A total of 29 (Bufo) and 33 (Rana) putative positively selected genes were identified for the two high-altitude species, which were mainly concentrated in nutrient metabolism related functions. Using SNP-tagging and FST outlier analysis, we further tested 89 other nutrient metabolism related genes for signatures of natural selection, and found that two genes, CAPN2 and ITPR1, were likely under balancing selection. We did not detect any positively selected genes associated with response to hypoxia. CONCLUSIONS Amphibians clearly employ different genetic mechanisms for high-altitude adaptation compared to endotherms. Modifications of genes associated with nutrient metabolism feature prominently while genes related to hypoxia tolerance appear to be insignificant. Poikilotherms represent the majority of animal diversity, and we hope that our results will provide useful directions for future studies of amphibians as well as other poikilotherms.
Collapse
Affiliation(s)
- Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Present address: Department of Biology, Lund University, 223 62, Lund, Sweden
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Department of Integrative Biology, University of Guelph, Guelph, N1G 2 W1, ON, Canada.
| |
Collapse
|
12
|
Jain K, Suryakumar G, Prasad R, Ganju L, Bala Singh S. Enhanced hypoxic tolerance by Seabuckthorn is due to upregulation of HIF-1α and attenuation of ER stress. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2015.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
13
|
Abstract
Extreme, expedition, and wilderness medicine are modern and rapidly evolving specialties that address the spirit of adventure and exploration. The relevance of and interest in these specialties are changing rapidly to match the underlying activities, which include global exploration, adventure travel, and military deployments. Extreme, expedition, and wilderness medicine share themes of providing best available medical care in the outdoors, especially in austere or remote settings. Early clinical and logistics decision making can often have important effects on subsequent outcomes. There are lessons to be learned from out-of-hospital care, military medicine, humanitarian medicine, and disaster medicine that can inform in-hospital medicine, and vice-versa. The future of extreme, expedition, and wilderness medicine will be defined by both recipients and practitioners, and empirical observations will be transformed by evidence-based practice.
Collapse
Affiliation(s)
- Christopher H E Imray
- Division of Translational Medicine, Warwick Medical School, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.
| | - Michael P W Grocott
- Faculty of Medicine, University of Southampton, Southampton, UK; Anaesthesia and Critical Care Research Unit, University Hospital, Southampton NHS Foundation Trust, Southampton, UK; Critical Care Research Area, NIHR Southampton Respiratory Biomedical Research Unit, Southampton, UK
| | - Mark H Wilson
- Institute of Pre-Hospital Care, London's Air Ambulance, The Royal London Hospital, UK; Imperial College, St Mary's Major Trauma Centre, London, UK
| | - Amy Hughes
- UK-Med Ebola Response Team, UK International Emergency Trauma and Medical Register, University of Manchester, Manchester, UK
| | - Paul S Auerbach
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Tipton MJ. Environmental extremes: origins, consequences and amelioration in humans. Exp Physiol 2015; 101:1-14. [DOI: 10.1113/ep085362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/08/2015] [Indexed: 01/26/2023]
Affiliation(s)
- M. J. Tipton
- Extreme Environments Laboratory, Department of Sport & Exercise Science; University of Portsmouth; Portsmouth UK
| |
Collapse
|
15
|
O'Brien KA, Griffin JL, Murray AJ, Edwards LM. Mitochondrial responses to extreme environments: insights from metabolomics. EXTREME PHYSIOLOGY & MEDICINE 2015; 4:7. [PMID: 25949809 PMCID: PMC4422479 DOI: 10.1186/s13728-015-0026-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
Humans are capable of survival in a remarkable range of environments, including the extremes of temperature and altitude as well as zero gravity. Investigation into physiological function in response to such environmental stresses may help further our understanding of human (patho-) physiology both at a systems level and in certain disease states, making it a highly relevant field of study. This review focuses on the application of metabolomics in assessing acclimatisation to these states, particularly the insights this approach can provide into mitochondrial function. It includes an overview of metabolomics and the associated analytical tools and also suggests future avenues of research.
Collapse
Affiliation(s)
- Katie A O'Brien
- Centre of Human & Aerospace Physiological Sciences, King's College London, London, UK
| | - Julian L Griffin
- MRC Human Nutrition Research Unit, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, England ; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Lindsay M Edwards
- Centre of Human & Aerospace Physiological Sciences, King's College London, London, UK ; Fibrosis Drug Performance Unit, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| |
Collapse
|
16
|
|
17
|
Gilbert-Kawai ET, Milledge JS, Grocott MP, Martin DS. King of the Mountains: Tibetan and Sherpa Physiological Adaptations for Life at High Altitude. Physiology (Bethesda) 2014; 29:388-402. [DOI: 10.1152/physiol.00018.2014] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anecdotal evidence surrounding Tibetans' and Sherpas' exceptional tolerance to hypobaric hypoxia has been recorded since the beginning of high-altitude exploration. These populations have successfully lived and reproduced at high altitude for hundreds of generations with hypoxia as a constant evolutionary pressure. Consequently, they are likely to have undergone natural selection toward a genotype (and phenotype) tending to offer beneficial adaptation to sustained hypoxia. With the advent of translational human hypoxic research, in which genotype/phenotype studies of healthy individuals at high altitude may be of benefit to hypoxemic critically ill patients in a hospital setting, high-altitude natives may provide a valuable and intriguing model. The aim of this review is to provide a comprehensive summary of the scientific literature encompassing Tibetan and Sherpa physiological adaptations to a high-altitude residence. The review demonstrates the extent to which evolutionary pressure has refined the physiology of this high-altitude population. Furthermore, although many physiological differences between highlanders and lowlanders have been found, it also suggests many more potential avenues of investigation.
Collapse
Affiliation(s)
- Edward T. Gilbert-Kawai
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
- University College London Division of Surgery and Interventional Science, Royal Free Hospital, London, United Kingdom
- University College Hospital London NIHR Biomedical Research Centre, London, United Kingdom
| | - James S. Milledge
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
| | - Michael P.W. Grocott
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
- University College Hospital London NIHR Biomedical Research Centre, London, United Kingdom
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
- Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; and
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Daniel S. Martin
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
- University College London Division of Surgery and Interventional Science, Royal Free Hospital, London, United Kingdom
- University College Hospital London NIHR Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
18
|
Carod-Artal F. Cefalea de elevada altitud y mal de altura. Neurologia 2014; 29:533-40. [DOI: 10.1016/j.nrl.2012.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/21/2012] [Indexed: 11/29/2022] Open
|
19
|
Jain K, Suryakumar G, Prasad R, Ganju L. Upregulation of cytoprotective defense mechanisms and hypoxia-responsive proteins imparts tolerance to acute hypobaric hypoxia. High Alt Med Biol 2013; 14:65-77. [PMID: 23537263 DOI: 10.1089/ham.2012.1064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to high altitude is a well-known environmental stress with physiological and metabolic consequences, with the major stressor being hypobaric hypoxia. The disruption in cellular homeostasis elicits several acute and chronic adaptations designed to diminish the stress imposed by the hypoxic insult. Highly conserved cellular machinery protects the myocardium from damage under reduced oxygen tension. In the present study, adult Sprague-Dawley rats were exposed to an altitude of 9754 m in a decompression chamber and screened on the basis of the time taken for onset of gasping. The animals were grouped as susceptible (<10 min), normal (10-25 min), and tolerant (>25 min). Histologically, susceptible animals showed increased myocardial inflammation and infiltration and greater CK-MB activity. These animals showed a three-fold increase in reactive oxygen species levels and subsequent oxidative damage to proteins and lipids as compared to control unexposed group. In tolerant animals, the damage was minimal. The resistance to damage in these animals was possibly due to enhanced myocardial antioxidant enzymes, catalase and superoxide dismutase. A significantly higher expression of HIF-1α and its responsive genes, including EPO, HO-1, and GLUT1, was seen in tolerant animals, although VEGF expression was enhanced in the susceptible group. Cytoprotective chaperones, HSP70 and HSP90, were elevated in the tolerant animals. The differential expression of these hypoxia-responsive molecules may thus act as potential biochemical markers for screening and identifying individuals susceptible to environmental stress.
Collapse
Affiliation(s)
- Kanika Jain
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | | | | | | |
Collapse
|
20
|
Kang L, Zheng HX, Chen F, Yan S, Liu K, Qin Z, Liu L, Zhao Z, Li L, Wang X, He Y, Jin L. mtDNA lineage expansions in Sherpa population suggest adaptive evolution in Tibetan highlands. Mol Biol Evol 2013; 30:2579-87. [PMID: 24002810 DOI: 10.1093/molbev/mst147] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sherpa population is an ethnic group living in south mountainside of Himalayas for hundreds of years. They are famous as extraordinary mountaineers and guides, considered as a good example for successful adaptation to low oxygen environment in Tibetan highlands. Mitochondrial DNA (mtDNA) variations might be important in the highland adaption given its role in coding core subunits of oxidative phosphorylation in mitochondria. In this study, we sequenced the complete mtDNA genomes of 76 unrelated Sherpa individuals. Generally, Sherpa mtDNA haplogroup constitution was close to Tibetan populations. However, we found three lineage expansions in Sherpas, two of which (C4a3b1 and A4e3a) were Sherpa-specific. Both lineage expansions might begin within the past hundreds of years. Especially, nine individuals carry identical Haplogroup C4a3b1. According to the history of Sherpas and Bayesian skyline plot, we constructed various demographic models and found out that it is unlikely for these lineage expansions to occur in neutral models especially for C4a3b1. Nonsynonymous mutations harbored in C4a3b1 (G3745A) and A4e3a (T4216C) are both ND1 mutants (A147T and Y304H, respectively). Secondary structure predictions showed that G3745A were structurally closing to other pathogenic mutants, whereas T4216C itself was reported as the primary mutation for Leber's hereditary optic neuropathy. Thus, we propose that these mutations had certain effect on Complex I function and might be important in the high altitude adaptation for Sherpa people.
Collapse
Affiliation(s)
- Longli Kang
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, Tibet University for Nationalities, Xianyang, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc Natl Acad Sci U S A 2012; 109:7391-6. [PMID: 22517755 DOI: 10.1073/pnas.1202484109] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distinction between mild pathogenic mtDNA mutations and population polymorphisms can be ambiguous because both are homoplasmic, alter conserved functions, and correlate with disease. One possible explanation for this ambiguity is that the same variant may have different consequences in different contexts. The NADH dehydrogenase subunit 1 (ND1) nucleotide 3394 T > C (Y30H) variant is such a case. This variant has been associated with Leber hereditary optic neuropathy and it reduces complex I activity and cellular respiration between 7% and 28% on the Asian B4c and F1 haplogroup backgrounds. However, complex I activity between B4c and F1 mtDNAs, which harbor the common 3394T allele, can also differ by 30%. In Asia, the 3394C variant is most commonly associated with the M9 haplogroup, which is rare at low elevations but increases in frequency with elevation to an average of 25% of the Tibetan mtDNAs (odds ratio = 23.7). In high-altitude Tibetan and Indian populations, the 3394C variant occurs on five different macrohaplogroup M haplogroup backgrounds and is enriched on the M9 background in Tibet and the C4a4 background on the Indian Deccan Plateau (odds ratio = 21.9). When present on the M9 background, the 3394C variant is associated with a complex I activity that is equal to or higher than that of the 3394T variant on the B4c and F1 backgrounds. Hence, the 3394C variant can either be deleterious or beneficial depending on its haplogroup and environmental context. Thus, this mtDNA variant fulfills the criteria for a common variant that predisposes to a "complex" disease.
Collapse
|
22
|
Pagani L, Ayub Q, MacArthur DG, Xue Y, Baillie JK, Chen Y, Kozarewa I, Turner DJ, Tofanelli S, Bulayeva K, Kidd K, Paoli G, Tyler-Smith C. High altitude adaptation in Daghestani populations from the Caucasus. Hum Genet 2011; 131:423-33. [PMID: 21904933 PMCID: PMC3312735 DOI: 10.1007/s00439-011-1084-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/19/2011] [Indexed: 11/30/2022]
Abstract
We have surveyed 15 high-altitude adaptation candidate genes for signals of positive selection in North Caucasian highlanders using targeted re-sequencing. A total of 49 unrelated Daghestani from three ethnic groups (Avars, Kubachians, and Laks) living in ancient villages located at around 2,000 m above sea level were chosen as the study population. Caucasian (Adygei living at sea level, N = 20) and CEU (CEPH Utah residents with ancestry from northern and western Europe; N = 20) were used as controls. Candidate genes were compared with 20 putatively neutral control regions resequenced in the same individuals. The regions of interest were amplified by long-PCR, pooled according to individual, indexed by adding an eight-nucleotide tag, and sequenced using the Illumina GAII platform. 1,066 SNPs were called using false discovery and false negative thresholds of ~6%. The neutral regions provided an empirical null distribution to compare with the candidate genes for signals of selection. Two genes stood out. In Laks, a non-synonymous variant within HIF1A already known to be associated with improvement in oxygen metabolism was rediscovered, and in Kubachians a cluster of 13 SNPs located in a conserved intronic region within EGLN1 showing high population differentiation was found. These variants illustrate both the common pathways of adaptation to high altitude in different populations and features specific to the Daghestani populations, showing how even a mildly hypoxic environment can lead to genetic adaptation.
Collapse
Affiliation(s)
- Luca Pagani
- The Wellcome Trust Sanger Institute, Hinxton, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, Ouzhuluobu, Basang, Ciwangsangbu, Danzengduojie, Chen H, Shi H, Su B. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol Biol Evol 2010; 28:1075-81. [PMID: 21030426 DOI: 10.1093/molbev/msq290] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Modern humans have occupied almost all possible environments globally since exiting Africa about 100,000 years ago. Both behavioral and biological adaptations have contributed to their success in surviving the rigors of climatic extremes, including cold, strong ultraviolet radiation, and high altitude. Among these environmental stresses, high-altitude hypoxia is the only condition in which traditional technology is incapable of mediating its effects. Inhabiting at >3,000-m high plateau, the Tibetan population provides a widely studied example of high-altitude adaptation. Yet, the genetic mechanisms underpinning long-term survival in this environmental extreme remain unknown. We performed an analysis of genome-wide sequence variations in Tibetans. In combination with the reported data, we identified strong signals of selective sweep in two hypoxia-related genes, EPAS1 and EGLN1. For these two genes, Tibetans show unusually high divergence from the non-Tibetan lowlanders (Han Chinese and Japanese) and possess high frequencies of many linked sequence variations as reflected by the Tibetan-specific haplotypes. Further analysis in seven Tibetan populations (1,334 individuals) indicates the prevalence of selective sweep across the Himalayan region. The observed indicators of natural selection on EPAS1 and EGLN1 suggest that during the long-term occupation of high-altitude areas, the functional sequence variations for acquiring biological adaptation to high-altitude hypoxia have been enriched in Tibetan populations.
Collapse
Affiliation(s)
- Yi Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology and Kunming Primate Research Center, Chinese Academy of Sciences, Kunming, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bigham AW, Mao X, Mei R, Brutsaert T, Wilson MJ, Julian CG, Parra EJ, Akey JM, Moore LG, Shriver MD. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum Genomics 2010; 4:79-90. [PMID: 20038496 PMCID: PMC2857381 DOI: 10.1186/1479-7364-4-2-79] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
High-altitude environments (>2,500 m) provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor ( HIF ) pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF -targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude.
Collapse
Affiliation(s)
- Abigail W Bigham
- Department of Pediatrics, The University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A role for succinate dehydrogenase genes in low chemoresponsiveness to hypoxia? Clin Auton Res 2010; 19:335-42. [PMID: 19768395 DOI: 10.1007/s10286-009-0028-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
The detection of hypoxia by the carotid bodies elicits a ventilatory response of utmost importance for tolerance to high altitude. Germline mutations in three genes encoding subunit B, C and D of succinate dehydrogenase (SDHB, SDHC and SDHD) have been associated with paragangliomas of the carotid body. We hypothesized that SDH dysfunction within the carotid body could result in low chemoresponsiveness and intolerance to high altitude. The frequency of polymorphisms of SDHs, hypoxia-inducible factor type 1 (HIF1alpha) and angiotensin converting enzyme (ACE) genes was compared between 40 subjects with intolerance to high altitude and a low hypoxic ventilatory response at exercise (HVRe < or = 0.5 ml min(-1) kg(-1); HVR- group) and 41 subjects without intolerance to high altitude and a high HVRe (> or = 0.80 ml min(-1) kg(-1); HVR+). We found no significant association between low or high HVRe and (1) the allele frequencies for nine single nucleotide polymorphisms (SNPs) in the SDHD and SDHB genes, (2) the ACE insertion/deletion polymorphism and (3) four SNPs in the HIF1alpha gene. However, a marginal significant association was found between the synonymous polymorphism c.18A>C of the SDHB gene and chemoresponsiveness: 8/40 (20%) in the HVR- group and 3/41 (7%) in the HVR+ group (p = 0.12). A principal component analysis showed that no subject carrying the 18C allele had both high ventilatory and cardiac response to hypoxia. In conclusion, no clear association was found between gene variants involved in oxygen sensing and chemoresponsiveness, although some mutations in the SDHB and SDHD genes deserve further investigations in a larger population.
Collapse
|
26
|
Konac E, Dogan I, Onen HI, Yurdakul AS, Ozturk C, Varol A, Ekmecki A. Genetic variations in the hypoxia-inducible factor-1alpha gene and lung cancer. Exp Biol Med (Maywood) 2009; 234:1109-16. [PMID: 19546348 DOI: 10.3181/0902-rm-49] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1), an important genetic component of angiogenesis, becomes stable as a response to tumor hypoxia and facilitates tumor survival. The polymorphisms of the HIF-1alphagene may cause changes in the activity of this protein, which serves as a transcription factor for many genes in tumorigenesis. In this study, we have investigated the relationship between seven HIF-1alphapolymorphisms [C > T substitution in intron 8 (rs10873142), T418I (rs41508050) in exon 10, P564P (rs41492849), L580L (rs34005929), P582S (rs11549465), A588T (rs11549467) in exon 12 and dinucleotide GT repeats in intron 13 (rs10645014)] among lung cancer patients in the Turkish population. Genomic DNA was isolated from 141 lung cancer cases and 156 controls and subjected to PCR for amplification. Genotyping was carried out with RFLP and DNA sequencing methods. There was no significant difference between the lung cancer cases and controls in terms of the distribution of genotyping frequencies of seven HIF-1alphapolymorphisms (P > 0.05). No significant relationship was found between the C > T substitution in intron 8 and P582S haplotypes and development of lung cancer. In addition, there were no significant associations between the genotypes and clinopathological characteristics of the cases examined. These findings show that polymorphisms in the HIF-1alphagene do not confer susceptibility to lung cancer.
Collapse
Affiliation(s)
- Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500 Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Cellular hypoxia is the common final pathway of brain injury that occurs not just after asphyxia, but also when cerebral perfusion is impaired directly (eg, embolic stroke) or indirectly (eg, raised intracranial pressure after head injury). We Review recent advances in the understanding of neurological clinical syndromes that occur on exposure to high altitudes, including high altitude headache (HAH), acute mountain sickness (AMS), and high altitude cerebral oedema (HACE), and the genetics, molecular mechanisms, and physiology that underpin them. We also present the vasogenic and cytotoxic bases for HACE and explore venous hypertension as a possible contributory factor. Although the factors that control susceptibility to HACE are poorly understood, the effects of exposure to altitude (and thus hypobaric hypoxia) might provide a reproducible model for the study of cerebral cellular hypoxia in healthy individuals. The effects of hypobaric hypoxia might also provide new insights into the understanding of hypoxia in the clinical setting.
Collapse
Affiliation(s)
- Mark H Wilson
- Centre for Altitude, Space and Extreme Environment Medicine, University College London, London, UK.
| | | | | |
Collapse
|
28
|
Abstract
An increase in hemoglobin level is seen in virtually all lowlanders who move to or train at altitude; however, studies of high-altitude native populations illustrate that this response is not necessary for successful long-term residence. Indigenous populations living at the same altitude have differences not only in hemoglobin level but also in other traits like oxygen saturation. Support for a genetic causation for differences in features of oxygen transport, namely hemoglobin levels and oxygen saturation, is derived from kindred studies among the highlander populations. Indeed, evidence from Tibet suggests that inferred genes for high oxygen saturation are associated with higher offspring survival. It may be that signaling molecules like nitric oxide and transcription factors such as hypoxia-inducible factor could act as an upstream regulator for highlander traits. However, the preponderance of data suggests that it is unlikely that one process or even a common set of processes is responsible for successful biologic adaptation shown in all three resident high-altitude populations. Future studies will require the ability to identify combinations of genetic variants with outcomes including expression levels, appropriate phenotypes, and functional responses.
Collapse
Affiliation(s)
- Kingman P Strohl
- Department of Medicine, Case Western Reserve University, Veterans Administration Medical Center, 111 J, 10701 East Boulevard, Cleveland, OH 44106, USA.
| |
Collapse
|
29
|
Pandit JJ. Structure-function relationships: a breath of fresh air--or just more hot air--in sleep apnoea research? Respiration 2008; 76:16-8. [PMID: 18583924 DOI: 10.1159/000127578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Stobdan T, Karar J, Pasha MAQ. High Altitude Adaptation: Genetic Perspectives. High Alt Med Biol 2008; 9:140-7. [DOI: 10.1089/ham.2007.1076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tsering Stobdan
- Institute of Genomics and Integrative Biology, Delhi, India, and Department of Biotechnology, University of Pune, Pune, India
| | - Jayashree Karar
- Institute of Genomics and Integrative Biology, Delhi, India, and Department of Biotechnology, University of Pune, Pune, India
| | - M. A. Qadar Pasha
- Institute of Genomics and Integrative Biology, Delhi, India, and Department of Biotechnology, University of Pune, Pune, India
| |
Collapse
|
31
|
Beall CM. Detecting natural selection in high-altitude human populations. Respir Physiol Neurobiol 2007; 158:161-71. [PMID: 17644049 DOI: 10.1016/j.resp.2007.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/26/2007] [Accepted: 05/29/2007] [Indexed: 11/16/2022]
Abstract
High-altitude natives have distinctive biological characteristics that appear to offset the stress of hypoxia. Evolutionary theory reasons that they reflect genetic adaptations resulting from natural selection on traits with heritable variation. Furthermore, high-altitude natives of the Andean and Tibetan Plateaus differ from one another, perhaps resulting from different evolutionary histories. Three approaches have developed a case for the possibility of population genetic differences: comparing means of classical physiological traits measured in samples of natives and migrants between altitudes, estimating genetic variance using statistical genetics techniques, and comparing features of species with different evolutionary histories. Tibetans have an inferred autosomal dominant major gene for high oxygen saturation that is associated with higher offspring survival, a strong indicator of ongoing natural selection. New approaches use candidate gene and genomic analyses. Conclusive evidence about population genetic differences and associations with phenotypes remains to be discovered.
Collapse
Affiliation(s)
- Cynthia M Beall
- Case Western Reserve University, Department of Anthropology, Cleveland, OH 44106-7125, United States.
| |
Collapse
|
32
|
Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci U S A 2007; 104 Suppl 1:8655-60. [PMID: 17494744 PMCID: PMC1876443 DOI: 10.1073/pnas.0701985104] [Citation(s) in RCA: 527] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Populations native to the Tibetan and Andean Plateaus are descended from colonizers who arrived perhaps 25,000 and 11,000 years ago, respectively. Both have been exposed to the opportunity for natural selection for traits that offset the unavoidable environmental stress of severe lifelong high-altitude hypoxia. This paper presents evidence that Tibetan and Andean high-altitude natives have adapted differently, as indicated by large quantitative differences in numerous physiological traits comprising the oxygen delivery process. These findings suggest the hypothesis that evolutionary processes have tinkered differently on the two founding populations and their descendents, with the result that the two followed different routes to the same functional outcome of successful oxygen delivery, long-term persistence and high function. Assessed on the basis of basal and maximal oxygen consumption, both populations avail themselves of essentially the full range of oxygen-using metabolism as populations at sea level, in contrast with the curtailed range available to visitors at high altitudes. Efforts to identify the genetic bases of these traits have included quantitative genetics, genetic admixture, and candidate gene approaches. These reveal generally more genetic variance in the Tibetan population and more potential for natural selection. There is evidence that natural selection is ongoing in the Tibetan population, where women estimated to have genotypes for high oxygen saturation of hemoglobin (and less physiological stress) have higher offspring survival. Identifying the genetic bases of these traits is crucial to discovering the steps along the Tibetan and Andean routes to functional adaptation.
Collapse
Affiliation(s)
- Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
33
|
Koukourakis MI, Papazoglou D, Giatromanolaki A, Panagopoulos I, Maltezos E, Harris AL, Gatter KC, Sivridis E. C2028T polymorphism in exon 12 and dinucleotide repeat polymorphism in intron 13 of the HIF-1alpha gene define HIF-1alpha protein expression in non-small cell lung cancer. Lung Cancer 2006; 53:257-62. [PMID: 16837101 DOI: 10.1016/j.lungcan.2006.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/31/2006] [Accepted: 05/31/2006] [Indexed: 12/31/2022]
Abstract
OBJECTIVES In this study, we investigated whether polymorphisms of the HIF-1alpha gene may account for the patterns of HIF-1alpha protein expression in non-small cell lung carcinomas (NSCLC) and the expression of HIF-1alpha down-stream proteins. METHODS Specific HIF-1alpha polymorphisms were assessed in a series of patients with NSCLC: (a) the C to T transition at nucleotide 1744 (position 2028 according to sequence with accession number , which gives rise to Pro/Ser variation at codon 582), (b) the G to A nucleotide substitution at point 1790 (position 2046 according to sequence with accession number , which gives rise to Ala/Thr variation at codon 588), and (c) the dinucleotide GT repeat polymorphism in intron 13. Immunohistochemistry for HIF-1alpha and down-stream proteins (VEGF, LDH-5, GLUT-1) was also performed in tumor material. RESULTS A strong association of the P582S polymorphism and of GT repeat polymorphism higher than 14/14 with increased HIF-1alpha expression was noted. HIF-1alpha polymorphism did not relate to the expression of the HIF-1alpha downstream proteins analysed, but significant association of HIF-1alpha expression with LDH-5 was confirmed (p=0.008). CONCLUSIONS HIF-1alpha polymorphisms may have an important impact on HIF-protein stability and, eventually, function.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Koukourakis MI, Giatromanolaki A, Polychronidis A, Simopoulos C, Gatter KC, Harris AL, Sivridis E. Endogenous markers of hypoxia/anaerobic metabolism and anemia in primary colorectal cancer. Cancer Sci 2006; 97:582-8. [PMID: 16827797 PMCID: PMC11159659 DOI: 10.1111/j.1349-7006.2006.00220.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Anemia has been implicated in the decreased oxygen tension noted within the tumor environment. In a series of 79 colorectal adenocarcinomas we investigated the role of anemia in activating molecular pathways regulated by hypoxia. Preoperative Hb levels were correlated with the immunohistochemical expression of HIF1alpha and HIF2alpha, LDH5, GLUT1, VEGF, DEC1 and BNIP3, and with angiogenesis and the cancer cell proliferation index. Upregulation of HIF1alpha and HIF2alpha proteins, found in 43% and 44.3% of cases, respectively, was not related to anemia (Hb < 10 g%). This is in agreement with other studies suggesting that HIF activation occurs for various reasons, such as poor or irregular vascularity, or oncogene activation. Nevertheless, low Hb levels (<10 g%) were linked to activated anaerobic metabolism (LDH5 overexpression) in a subset of tumors not expressing HIF1alpha (P < 0.01). Overexpression of HIFs, whether linked to anemia or not, was associated with a number of factors related to tumor aggressiveness (assessed as local invasion and nodal metastasis), anaerobic metabolism and intratumoral acidosis (LDH5, GLUT1; increased glucose metabolism to lactate), activation of genes related to necrosis (BNIP3) and angiogenesis (VEGF). Expression of BNIP3 emerged as the strongest independent factor related to transmural invasion and metastasis to lymph nodes. Identification of specific patterns of the hypoxia molecular cascade activated in cancer cells might help in developing specific therapeutic policies.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis, Greece.
| | | | | | | | | | | | | |
Collapse
|
35
|
Maloney JP, Broeckel U. Epidemiology, Risk Factors, and Genetics of High-Altitude–Related Pulmonary Disease. Clin Chest Med 2005; 26:395-404, v. [PMID: 16140134 DOI: 10.1016/j.ccm.2005.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
High-altitude-related pulmonary disease is a spectrum of acute and chronic illnesses with a well-described epidemiology. The risk for these illnesses is related to well-known environmental risk factors and lesser-known but important genetic factors. Prevention of acute high-altitude illness is possible in most visitors from lower elevations. Chronic high-altitude illnesses have an important worldwide impact.
Collapse
Affiliation(s)
- James P Maloney
- Division of Pulmonary and Critical Medicine, University of Colorado Health Sciences Center, 4220 East 9th Avenue, C-272, Denver, CO 80262, USA.
| | | |
Collapse
|
36
|
Gao W, Gao Y, Zhang G, Song L, Sun B, Shi J. Hypoxia-induced expression of HIF-1alpha and its target genes in umbilical venous endothelial cells of Tibetans and immigrant Han. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:93-100. [PMID: 15970466 DOI: 10.1016/j.cca.2005.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 05/07/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
The better adaptation of native Tibetans to hypoxia is thought to be partly due to improved umbilical circulation, which results in reduced pre- and postnatal fatalities. We hypothesized that the difference in umbilical circulation between native Tibetans and other high-altitude inhabitants was due to differences in the expression of hypoxia-induced factor (HIF-1) and its target genes vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). We tested this hypothesis by examining the effect of hypoxia on the expression of HIF-1alpha, VEGF, and iNOS in cultured umbilical venous endothelial cells (UVECs) from native Tibetans and immigrant Hans. UVECs were collected and cultured under hypoxic (0.5% oxygen) or normoxic conditions for 2, 4, 12 and 24 h. The mRNA levels of HIF-1alpha, VEGF, endothelial nitric oxide synthase (eNOS) and iNOS and the protein level of HIF-1alpha were determined with RT-PCR and Western blot analyses, respectively. In both immigrant Han and Tibetans, HIF-1alpha mRNA was constitutively expressed under normoxic condition, and remained constant after hypoxic exposure. In contrast, HIF-1alpha protein was undetectable under normoxic condition, but underwent dynamic changes in response to hypoxia. It was induced at 4 h, peaked at 12 h, and remained elevated at 24 h. Concurrent with the induction of HIF-1alpha protein, the mRNA levels of VEGF and iNOS were also up-regulated whereas that of eNOS was down-regulated. The lack of a hypoxia-related difference in the expression of HIF-1alpha and its target genes suggests that HIF-1alpha does not play a critical role in high altitude adaptation. Alternative mechanisms may be responsible for the better adaptation of native Tibetans.
Collapse
Affiliation(s)
- Wenxiang Gao
- Department of Pathophysiology and Institute of High Altitude Medicine, Third Military Medical University, 30 Gao Tan Yan, Shapingba, Chongqing 400038, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Raguso CA, Guinot SL, Janssens JP, Kayser B, Pichard C. Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude. Curr Opin Clin Nutr Metab Care 2004; 7:411-7. [PMID: 15192444 DOI: 10.1097/01.mco.0000134372.78438.09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Loss of body mass and exercise intolerance are common findings in chronic obstructive pulmonary disease and are often difficult to reverse despite optimal nutritional intake. Similar findings have been reported in healthy individuals during high-altitude exposure. The role of hypoxia in modulating metabolism has been largely investigated in vitro and in animal studies. More fragmentary is the knowledge regarding hypoxia effects on in-vivo human metabolism. This paper reviews recent literature regarding the effects of chronic exposure to hypoxia on metabolism, particularly comparing chronic obstructive pulmonary disease patients with humans exposed to high altitude. RECENT FINDINGS Hypoxia has important metabolic effects. Many oxygen-sensitive regulatory mechanisms work through hypoxia inducible factor 1, and recent literature regarding the hypoxic stimulus and its pathological implications deals largely with hypoxia inducible factor 1-related findings. Hypoxia inducible factor 1 is pivotal in the adaptation to chronic hypoxia: it induces gene expression for fructose-2-6-biphosphatase, an enzyme switching glucose metabolism towards glycolysis, allowing energy production in anaerobic conditions. Hypoxia inducible factor 1 is also involved in the development of anorexia because it induces the promoter of the leptin gene. Particularly important for future therapeutic implications are findings related to hypoxia inducible factor 1 polymorphism and interaction with other molecules, especially estrogens, in the clinical evolution of disease. SUMMARY Malnutrition is a worsening factor in chronic obstructive pulmonary disease. Similarities between chronic obstructive pulmonary disease and altitude exposure point to the importance of hypoxia in this regard. A better understanding of the underlying mechanisms will help to find alternative therapeutic approaches.
Collapse
Affiliation(s)
- Comasia A Raguso
- Division of Clinical Nutrition, University Hospital, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Sightings. High Alt Med Biol 2004. [DOI: 10.1089/152702904322963636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|