1
|
Zambrano-Cervantes M, González-Córdova AF, Hernández-Mendoza A, Beltrán-Barrientos LM, Rendón-Rosales MÁ, Manzanarez-Quin CG, Torres-Llanez MJ, Vallejo-Cordoba B. Fermented milks with specific Lactobacillus spp. with potential cardioprotective effects. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1749-1760. [PMID: 37179799 PMCID: PMC10122198 DOI: 10.1007/s13197-023-05715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 05/15/2023]
Abstract
In vitro and in vivo studies have reported the potential cardioprotective effects of fermented milks (FM). The aim of the present study was to evaluate the inhibitory activities of angiotensin converting enzyme (ACE), thrombin enzyme (TI) and micellar solubility of cholesterol of FM after 24 and 48 h of fermentation with Limosilactobacillus fermentum (J20, J23, J28 and J38), Lactiplantibacillus plantarum (J25) or Lactiplantibacillus pentosus (J34 and J37) exposed to simulated gastrointestinal digestion. Results showed that FM with J20 and J23 at 48 h of fermentation presented significantly (p < 0.05) higher degree of hydrolysis than other FM, and were not significantly different (p > 0.05) between them. Conversely, peptide relative abundance was significantly (p < 0.05) higher in FM with J20 than FM with J23. Moreover, IC50 (protein concentration necessary to inhibit enzyme activity by 50%) for ACE inhibition were 0.33 and 0.5 mg/mL for FM with J20 and J23, respectively. For TI inhibition, the IC50 were 0.3 and 0.24 mg/mL for FM with J20 and J23, respectively. Results exhibited 51 and 74% inhibition of micellar solubility cholesterol for FM with J20 and J23, respectively. Therefore, these results showed that not only peptide abundance, but also specific peptides might be responsible for these potential cardioprotective effects.
Collapse
Affiliation(s)
- Miriam Zambrano-Cervantes
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Aarón F. González-Córdova
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Adrián Hernández-Mendoza
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Lilia M. Beltrán-Barrientos
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Miguel Á. Rendón-Rosales
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Carmen G. Manzanarez-Quin
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - María J. Torres-Llanez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Belinda Vallejo-Cordoba
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| |
Collapse
|
2
|
Ding M, Huang Z, Huang Z, Zhao Z, Zhao D, Shan K, Ke W, Zhang M, Zhou G, Li C. Proteins from different sources in a high-fat food matrix influence lipid hydrolysis through bolus coalescence and interactions with bile salts. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Neelissen J, Leanderson P, Jonasson L, Chung RWS. The Effects of Dairy and Plant-Based Liquid Components on Lutein Liberation in Spinach Smoothies. Nutrients 2023; 15:nu15030779. [PMID: 36771485 PMCID: PMC9920929 DOI: 10.3390/nu15030779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Lutein is a dietary lipophilic compound with anti-inflammatory properties. We have previously shown that dairy fat can improve the lutein content in spinach smoothies. It is, however, unclear whether fat concentrations and fermentation status in dairy products affect lutein liberation in smoothies. Moreover, plant-based milks vary in fat, protein, and fiber content which may affect lutein dissolution. This study aimed to provide translatable information to consumers by comparing lutein liberation in spinach smoothies made with different dairy or plant-based liquids in domestic settings. The smoothies were digested in vitro, and liberated lutein was measured by high-performance liquid chromatography (HPLC). High-fat and medium-fat cow's milk, as well as coconut milk with and without additives, were found to significantly improve lutein liberation by 36%, 30%, 25%, and 42%, respectively, compared to blending spinach with water alone. Adjustment models suggested that the effects of cow's milk and coconut milk were derived from fat and protein, respectively. On the other hand, soymilk with and without additives showed significantly reduced lutein liberation by 40% and 61%, respectively. To summarize, only 4 out of 14 tested liquids increased lutein liberation in spinach smoothies. The results highlight the importance of testing food companions for lipophilic active ingredients.
Collapse
Affiliation(s)
- Jan Neelissen
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Per Leanderson
- Occupational and Environmental Medicine Center, 581 85 Linköping, Sweden
- Division of Prevention, Rehabilitation and Community, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Lena Jonasson
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Rosanna W. S. Chung
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden
- Correspondence:
| |
Collapse
|
4
|
Zhu WW, Zhang Y, Tang CH. Maximizing cholesterol-lowering benefits of soy protein isolate by glycation with soy soluble polysaccharide. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Zhu WW, Tang CH. Mild preheating improves cholesterol-lowering benefits of soy protein via enhancing hydrophobicity of its gastrointestinal digests: An in vitro study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Alashi AM, Wu H, Aluko RE. Indigestible cowpea proteins reduced plasma cholesterol after long-term oral administration to Sprague-Dawley rats. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Cowpea protein isolate (CPI) was subjected to various dry and wet heat pretreatments followed by sequential digestion with pepsin and pancreatin; the undigested residues were isolated as the indigestible cowpea proteins (ICPs). All the ICPs exhibited in vitro bile acid-binding capacity but ICP from the slow cooling-induced gelation had the highest yield (68%) and was used for rat feeding experiments to determine effect on plasma total cholesterol (TC). Groups consisting of 3 male and 3 female Sprague-Dawley rats each were fed hypercholesterolemic diets that contained casein only or casein that was partially substituted with ICP of CPI for 6 weeks. Results showed diet that contained 5% (w/w) ICP was more effective in preventing TC increase (1.8 mmol/L) when compared to increases of 9.34 and 4.15 mmol/L for CPI and casein only diets, respectively.
Graphical abstract
Collapse
|
7
|
Koh YC, Lin YC, Lee PS, Lu TJ, Lin KY, Pan MH. A multi-targeting strategy to ameliorate high-fat-diet- and fructose-induced (western diet-induced) non-alcoholic fatty liver disease (NAFLD) with supplementation of a mixture of legume ethanol extracts. Food Funct 2021; 11:7545-7560. [PMID: 32815965 DOI: 10.1039/d0fo01405b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NAFLD (non-alcoholic fatty liver disease) is a multifactorial liver disease related to multiple causes or unhealthy conditions, including obesity and chronic inflammation. The accumulation of excess triglycerides, called steatosis, is known as a hallmark of an imbalance between the rates of hepatic fatty acid uptake/synthesis and oxidation/export. Furthermore, occurrence of NAFLD may lead to a cocktail of disease consequences caused by the altered metabolism of glucose, lipids, and lipoproteins, for instance, insulin resistance, type II diabetes, nonalcoholic steatohepatitis (NASH), liver fibrosis, and even hepatocarcinogenesis. Due to the complexity of the occurrence of NAFLD, a multi-targeting strategy is highly recommended to effectively address the issue and combat the causal loop. Ethanol extracts of legumes are popular supplements due to their richness and diversity in phytochemicals, especially isoflavones and anthocyanins. Although many of them have been reported to have efficacy in the treatment of different metabolic syndromes and obesity, there have not been many studies on them as a supplemental mixture. In this study, the alleviative effects of selected legume ethanol extracts (CrE) on high-fat-diet- and fructose-induced obesity, liver steatosis, and hyperglycemia are discussed. As revealed by the findings, CrE not only ameliorated obesity in terms of weight gained and enlargement of adipose tissue, but also significantly reduced the incidence of steatosis via phosphorylation of AMPK, resulting in inhibition of the downstream SREBP-1c/FAS pathway and an increase in an indicator of β-oxidation (carnitine palmitoyl transferase 1a, CPT1A). Furthermore, CrE dramatically alleviated inflammatory responses, including both plasma and hepatic TNF-α, IL-6, and MCP-1 levels. CrE also had attenuating effects on hyperglycemia and insulin resistance and significantly reduced the fasting glucose level, fasting insulin level, and plasma leptin, and it exhibited positive effects in the Oral glucose tolerance test (OGTT) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). At the molecular level, CrE could activate the PI3K/Akt/Glut2 pathway, which indicated an increase in insulin sensitivity and glucose uptake. Taken together, these results suggest that ethanol extracts of legumes could be potential supplements for metabolic syndromes, and their efficacy and effectiveness might facilitate the multi-targeting strategy required to mitigate NAFLD.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yen-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Kai-Yi Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan. and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan and Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
8
|
Lin T, O'Keefe S, Duncan S, Fernández-Fraguas C. Retention of primary bile salts by dry beans (Phaseolus vulgaris L.) during in vitro digestion: Role of bean components and effect of food processing. Food Res Int 2020; 137:109337. [DOI: 10.1016/j.foodres.2020.109337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022]
|
9
|
Naumann S, Haller D, Eisner P, Schweiggert-Weisz U. Mechanisms of Interactions between Bile Acids and Plant Compounds-A Review. Int J Mol Sci 2020; 21:E6495. [PMID: 32899482 PMCID: PMC7555273 DOI: 10.3390/ijms21186495] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Plant compounds are described to interact with bile acids during small intestinal digestion. This review will summarise mechanisms of interaction between bile acids and plant compounds, challenges in in vivo and in vitro analyses, and possible consequences on health. The main mechanisms of interaction assume that increased viscosity during digestion results in reduced micellar mobility of bile acids, or that bile acids and plant compounds are associated or complexed at the molecular level. Increasing viscosity during digestion due to specific dietary fibres is considered a central reason for bile acid retention. Furthermore, hydrophobic interactions are proposed to contribute to bile acid retention in the small intestine. Although frequently hypothesised, no mechanism of permanent binding of bile acids by dietary fibres or indigestible protein fractions has yet been demonstrated. Otherwise, various polyphenolic structures were recently associated with reduced micellar solubility and modification of steroid and bile acid excretion but underlying molecular mechanisms of interaction are not yet fully understood. Therefore, future research activities need to consider the complex composition and cell-wall structures as influenced by processing when investigating bile acid interactions. Furthermore, influences of bile acid interactions on gut microbiota need to be addressed to clarify their role in bile acid metabolism.
Collapse
Affiliation(s)
- Susanne Naumann
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
| | - Dirk Haller
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Chair of Nutrition and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Peter Eisner
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (D.H.); (P.E.)
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
- Steinbeis-Hochschule, Faculty of Technology and Engineering, George-Bähr-Straße 20, 01069 Dresden, Germany
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany;
| |
Collapse
|
10
|
Naumann S, Schweiggert-Weisz U, Eisner P. Characterisation of the molecular interactions between primary bile acids and fractionated lupin cotyledons (Lupinus angustifolius L.). Food Chem 2020; 323:126780. [PMID: 32334300 DOI: 10.1016/j.foodchem.2020.126780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
Interactions between bile acids and plant-based materials, and the related feedback mechanisms in enterohepatic circulation, have been considered targets for lowering cholesterol. This study aimed to identify lupin compounds that interact with primary bile acids on molecular level. Lupin cotyledons were fractionated and bile acid adsorbing activities were investigated using in vitro digestion, equilibrium dialysis and kinetic analyses. Protein- and fibre-enriched fractions significantly (p ≤ 0.05) adsorbed chenodesoxycholic acids (up to 2.33 µmol/100 g DM). Alcohol purification showed that bile acid adsorption is independent of protein and fibre structures. Moreover, high adsorption was observed with an alcohol extract (6.97 µmol chenodesoxycholic acids/100 g DM) that was rich in phytochemicals, such as flavonoids (1842 mg/100 g DM). These results suggest the formation of hydrophobic interactions between polyphenols and bile acids. Further studies of molecular mechanisms are required to define the contributions of polyphenols to the cholesterol-lowering actions of lupins.
Collapse
Affiliation(s)
- Susanne Naumann
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany.
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany.
| | - Peter Eisner
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany.
| |
Collapse
|
11
|
Bellesi FA, Pizones Ruiz-Henestrosa VM, Pilosof A. Lipolysis of soy protein and HPMC mixed emulsion as modulated by interfacial competence of emulsifiers. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
van Rijs P, Fogliano V. Roasting carob flour decreases the capacity to bind glycoconjugates of bile acids. Food Funct 2020; 11:5924-5932. [DOI: 10.1039/d0fo01158d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Carob is the fruit obtained from Ceratonia siliqua L. and it is a source of bioactive compounds that have been linked to several health promoting effects, including lowering blood cholesterol concentration.
Collapse
Affiliation(s)
- Phylyne van Rijs
- Food quality and design group
- AFSG department Wageningen University and Research
- Wageningen
- The Netherland
| | - Vincenzo Fogliano
- Food quality and design group
- AFSG department Wageningen University and Research
- Wageningen
- The Netherland
| |
Collapse
|
13
|
Macierzanka A, Torcello-Gómez A, Jungnickel C, Maldonado-Valderrama J. Bile salts in digestion and transport of lipids. Adv Colloid Interface Sci 2019; 274:102045. [PMID: 31689682 DOI: 10.1016/j.cis.2019.102045] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022]
Abstract
Because of their unusual chemical structure, bile salts (BS) play a fundamental role in intestinal lipid digestion and transport. BS have a planar arrangement of hydrophobic and hydrophilic moieties, which enables the BS molecules to form peculiar self-assembled structures in aqueous solutions. This molecular arrangement also has an influence on specific interactions of BS with lipid molecules and other compounds of ingested food and digestive media. Those comprise the complex scenario in which lipolysis occurs. In this review, we discuss the BS synthesis, composition, bulk interactions and mode of action during lipid digestion and transport. We look specifically into surfactant-related functions of BS that affect lipolysis, such as interactions with dietary fibre and emulsifiers, the interfacial activity in facilitating lipase and colipase anchoring to the lipid substrate interface, and finally the role of BS in the intestinal transport of lipids. Unravelling the roles of BS in the processing of lipids in the gastrointestinal tract requires a detailed analysis of their interactions with different compounds. We provide an update on the most recent findings concerning two areas of BS involvement: lipolysis and intestinal transport. We first explore the interactions of BS with various dietary fibres and food emulsifiers in bulk and at interfaces, as these appear to be key aspects for understanding interactions with digestive media. Next, we explore the interactions of BS with components of the intestinal digestion environment, and the role of BS in displacing material from the oil-water interface and facilitating adsorption of lipase. We look into the process of desorption, solubilisation of lipolysis, products and formation of mixed micelles. Finally, the BS-driven interactions of colloidal particles with the small intestinal mucus layer are considered, providing new findings for the overall assessment of the role of BS in lipid digestion and intestinal transport. This review offers a unique compilation of well-established and most recent studies dealing with the interactions of BS with food emulsifiers, nanoparticles and dietary fibre, as well as with the luminal compounds of the gut, such as lipase-colipase, triglycerides and intestinal mucus. The combined analysis of these complex interactions may provide crucial information on the pattern and extent of lipid digestion. Such knowledge is important for controlling the uptake of dietary lipids or lipophilic pharmaceuticals in the gastrointestinal tract through the engineering of novel food structures or colloidal drug-delivery systems.
Collapse
|
14
|
Lin T, O'Keefe S, Duncan S, Fernández-Fraguas C. Manipulation of the dry bean (Phaseolus vulgaris L.) matrix by hydrothermal and high-pressure treatments: Impact on in vitro bile salt-binding ability. Food Chem 2019; 310:125699. [PMID: 31810727 DOI: 10.1016/j.foodchem.2019.125699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/26/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
Abstract
The capacity of high-fiber foods to sequester BS during digestion is considered a mechanism to lower serum-cholesterol. We investigated the effect of hydrothermal (HT) and high-hydrostatic-pressure (HHP) on the bile salt (BS)-binding ability of dry beans, and how this relates to changes in bean microstructure, fiber content (insoluble-IDF/soluble-SDF), and viscosity. HT and HHP-600 MPa led to significant IDF reduction, including resistant starch (RS), whereas 150-450 MPa significantly increased RS, without modifying IDF/SDF content. Microscopy analysis showed that heating disrupted the bean cell wall integrity, protein matrix and starch granules more severely than 600 MPa; however, tightly-packed complexes of globular starch granules-protein-cell wall fiber formed at HHP ≤ 450 MPa. While HT significantly reduced BS-binding efficiency despite no viscosity change, HHP-treatments maintained or enhanced BS-retention. 600 MPa-treatment induced the maximum BS-binding ability and viscosity. These results demonstrate that BS-binding by beans is not solely based on their fiber content or viscosity, but is influenced by additional microstructural factors.
Collapse
Affiliation(s)
- Tiantian Lin
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sean O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Susan Duncan
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cristina Fernández-Fraguas
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
15
|
In Vitro Antithrombotic and Hypocholesterolemic Activities of Milk Fermented with Specific Strains of Lactococcus lactis. Nutrients 2019; 11:nu11092150. [PMID: 31505734 PMCID: PMC6769448 DOI: 10.3390/nu11092150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023] Open
Abstract
Milk fermented with specific lactic acid bacteria (LAB) was reported to be a rich source of metabolites, such as peptides with different biological activities that may have a positive effect on cardiovascular health. Thus, in this study, the antithrombotic and hypocholesterolemic activities of fermented milk with specific strains of Lactococcus lactis were investigated before and after exposure to a simulated gastrointestinal digestion (SGD) model. The inhibition of thrombin-induced fibrin polymerization (IC50 peptide concentration necessary to inhibit thrombin activity by 50%), anticoagulant activity, inhibition of micellar solubility of cholesterol and bile acid binding capacity of water soluble fractions (WSF) <3 kDa from fermented milk were evaluated. Results indicated that the WSF from fermented milk with Lc-572 showed antithrombotic (IC50 = 0.049 mg/mL) and hypocholesterolemic (55% inhibition of micellar solubility of cholesterol and 27% bile acid binding capacity) activities. Meanwhile, fermented milk with Lc-571 showed mainly antithrombotic activity (IC50 = 0.045 mg/mL). On the other hand, fermented milk with Lc-600 presented mainly hypocholesterolemic activity (31.4% inhibition of micellar solubility of and 70% bile acid binding capacity). Moreover, biological activities were not lost after simulated gastrointestinal digestion conditions. Thus, fermented milk with these specific L. lactis strains show potential for the development of functional foods.
Collapse
|
16
|
Singh J, Metrani R, Shivanagoudra SR, Jayaprakasha GK, Patil BS. Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9124-9138. [PMID: 30969768 DOI: 10.1021/acs.jafc.8b07306] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bile acids are cholesterol-derived steroid molecules that serve various metabolic functions, particularly in the digestion of lipids. Gut microbes produce unconjugated and secondary bile acids through deconjugation and dehydroxylation reactions, respectively. Alterations in the gut microbiota have profound effects on bile acid metabolism, which can result in the development of gastrointestinal and metabolic diseases. Emerging research shows that diets rich in dietary fiber have substantial effects on the microbiota and human health. Plant-based foods are primary sources of bioactive compounds and dietary fiber, which are metabolized by microbes to produce different metabolites. However, the bioaccessibility of these compounds are not well-defined. In this review, we discuss the interaction of bile acids with dietary fiber, the gut microbiota, and their role in the bioaccessibility of bioactive compounds. To understand the possible mechanism by which bile acids bind fiber, molecular docking was performed between different dietary fiber and bile salts.
Collapse
Affiliation(s)
- Jashbir Singh
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences , Texas A&M University , 1500 Research Parkway , Suite A120, College Station , Texas 77845 , United States
| | - Rita Metrani
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences , Texas A&M University , 1500 Research Parkway , Suite A120, College Station , Texas 77845 , United States
| | - Siddanagouda R Shivanagoudra
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences , Texas A&M University , 1500 Research Parkway , Suite A120, College Station , Texas 77845 , United States
| | - Guddadarangavvanahally K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences , Texas A&M University , 1500 Research Parkway , Suite A120, College Station , Texas 77845 , United States
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences , Texas A&M University , 1500 Research Parkway , Suite A120, College Station , Texas 77845 , United States
| |
Collapse
|
17
|
Shen SG, Lin YH, Zhao DX, Wu YK, Yan RR, Zhao HB, Tan ZL, Jia SR, Han PP. Comparisons of Functional Properties of Polysaccharides from Nostoc flagelliforme under Three Culture Conditions. Polymers (Basel) 2019; 11:E263. [PMID: 30960247 PMCID: PMC6419065 DOI: 10.3390/polym11020263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 01/12/2023] Open
Abstract
Nostoc flagelliforme is an edible cyanobacterium with excellent food and herbal values. It has been used as food in China for more than 2000 years. Many studies have been focused on improving the yield and bioactivity of Nostoc flagelliforme polysaccharides although these have ignored the functional properties. In this study, we extracted and purified three polysaccharides (WL-CPS, NaCl-CPS and Glu-CPS) from Nostoc flagelliforme under normal, salt stress and mixotrophic culture conditions, respectively, in order to change the physicochemical properties of polysaccharides with the aim of obtaining better functional properties. Both salt stress and mixotrophic culture conditions increased the specific yield of polysaccharides. Their functional properties were comparatively investigated and the results showed that NaCl-CPS exhibited the highest emulsification activity and flocculation capability, which was also higher than that of some commercial products. In contrast, Glu-CPS exhibited the highest water and oil holding capacities, foaming property, intrinsic viscosity and bile acids binding capacity. Our results indicated that both NaCl-CPS and Glu-CPS could be considered to be functional polysaccharides according to their respective characteristics, which have great potential in numerous applications, such as food, pharmaceutical, cosmetic, chemical and mineral industries. These findings also demonstrated the potential application of the proper regulation of culture conditions in the development of polysaccharides with desired functional properties.
Collapse
Affiliation(s)
- Shi-Gang Shen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazards, Logistics University of Chinese People's Armed Police Forces, Tianjin 300309, China.
| | - Ya-Hui Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Dong-Xue Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yi-Kai Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Rong-Rong Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hua-Bing Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazards, Logistics University of Chinese People's Armed Police Forces, Tianjin 300309, China.
| | - Zhi-Lei Tan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Pei-Pei Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
18
|
Naso JN, Bellesi FA, Pizones Ruiz-Henestrosa VM, Pilosof AMR. Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential. Colloids Surf B Biointerfaces 2018; 174:493-500. [PMID: 30497011 DOI: 10.1016/j.colsurfb.2018.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
Abstract
During the last decade a special interest has been focused on studying the relationship between the composition and structure of emulsions and the extent of lipolysis, driven by the necessity of modulate lipid digestion to decrease or delay fats absorption or increase healthy fat nutrients bioavailability. Because bile salts (BS) play a crucial role in lipids metabolism, understanding how typical food emulsifiers affect the structures of BS under duodenal conditions, can aid to further understand how to control lipids digestion. In the present work the BS-binding capacity of three emulsifiers (Lecithin, Tween 80 and β-lactoglobulin) was studied under duodenal conditions. The combination of several techniques (DLS, TEM, ζ-potential and conductivity) allowed the characterization of molecular assemblies resulting from the interactions, as modulated by the relative amounts of BS and emulsifiers in solution.
Collapse
Affiliation(s)
- Julieta N Naso
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Fellowship Agencia Nacional de Promoción Científica y Tecnológica, Argentina
| | - Fernando A Bellesi
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Víctor M Pizones Ruiz-Henestrosa
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana M R Pilosof
- ITAPROQ-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
19
|
Naumann S, Schweiggert-Weisz U, Bader-Mittermaier S, Haller D, Eisner P. Differentiation of Adsorptive and Viscous Effects of Dietary Fibres on Bile Acid Release by Means of In Vitro Digestion and Dialysis. Int J Mol Sci 2018; 19:ijms19082193. [PMID: 30060480 PMCID: PMC6121312 DOI: 10.3390/ijms19082193] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/16/2022] Open
Abstract
To explain the cholesterol-reducing effects of dietary fibres, one of the major mechanisms proposed is the reduced reabsorption of bile acids in the ileum. The interaction of dietary fibres with bile acids is associated with their viscous or adsorptive effects. Since these fibre characteristics are difficult to investigate in vivo, suitable in vitro methodologies can contribute to understanding the mechanistic principles. We compared the commonly used centrifugal approach with a modified dialysis method using dietary fibre-rich materials from different sources (i.e., barley, citrus, lupin, and potato). Digestion was simulated in vitro with oral, gastric, and small intestinal digestion environments. The chyme was dialysed and released bile acids were analysed by high-performance liquid chromatography. The centrifugation method showed adsorptive effects only for cholestyramine (reference material) and a high-fibre barley product (1.4 µmol taurocholic acid/100 mg dry matter). Alternatively, the dialysis approach showed higher values of bile acid adsorption (2.3 µmol taurocholic acid/100 mg dry matter) for the high-fibre barley product. This indicated an underestimated adsorption when using the centrifugation method. The results also confirmed that the dialysis method can be used to understand the influence of viscosity on bile acid release. This may be due to entrapment of bile acids in the viscous chyme matrix. Further studies on fibre structure and mechanisms responsible for viscous effects are required to understand the formation of entangled networks responsible for the entrapment of the bile acids.
Collapse
Affiliation(s)
- Susanne Naumann
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany.
| | | | - Dirk Haller
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
- Chair of Nutrition and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| | - Peter Eisner
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany.
| |
Collapse
|
20
|
Enhancing cellulose functionalities by size reduction using media-mill. Sci Rep 2018; 8:11343. [PMID: 30054552 PMCID: PMC6063918 DOI: 10.1038/s41598-018-29777-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023] Open
Abstract
This study explored the feasibility of enhancing cellulose functionalities by using media milling to reduce the size of cellulose particles, and assayed various physicochemical and physiological properties of the resulting cellulose. Cellulose has been recognized as dietary fiber by USFDA due to its health benefits. However, its properties like low degradability, stiff texture, and insolubility in water limits its applicability in foods. Milling reduced the volume mean size of cellulose from 25.7 μm to 0.9 μm, which in turn increased the specific surface area (36.78-fold), and swelling capacity (9-fold). Conversely, a reduction in the bulk density (1.41 to 1.32 g/mL) and intrinsic viscosity (165.64 to 77.28 mL/g) were found. The milled cellulose also had significantly enhanced capacity for holding water and binding bile acids and sugars. Moreover, the size reduction also resulted in increased fermentability of cellulose into short chain fatty acids using three human fecal microflora samples. The increase in production of acetate (2880.60%), propionate (2738.52%), and butyrate (2865.89%) after fermentation of cellulose for 24 h were significantly enhanced by size reduction. With these improved characteristics, the milled cellulose might have beneficial physiological effects including laxation as well as reduced blood cholesterol and glucose attenuation.
Collapse
|
21
|
Huang K, Du B, Xu B. Alterations in physicochemical properties and bile acid binding capacities of dietary fibers upon ultrafine grinding. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Pilosof AM. Potential impact of interfacial composition of proteins and polysaccharides stabilized emulsions on the modulation of lipolysis. The role of bile salts. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Li CY, Mense AL, Brewer LR, Lau C, Shi YC. In Vitro Bile Acid Binding Capacity of Wheat Bran with Different Particle Sizes. Cereal Chem 2017. [DOI: 10.1094/cchem-08-16-0211-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chun-yan Li
- Department of Grain Science and Industry, Kansas State University, Manhattan KS, 66502, U.S.A
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Andrew L. Mense
- Department of Grain Science and Industry, Kansas State University, Manhattan KS, 66502, U.S.A
| | - Lauren R. Brewer
- Department of Grain Science and Industry, Kansas State University, Manhattan KS, 66502, U.S.A
| | - Chuan Lau
- Department of Grain Science and Industry, Kansas State University, Manhattan KS, 66502, U.S.A
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan KS, 66502, U.S.A
| |
Collapse
|
24
|
The potential roles of Pinto bean (Phaseolus vulgaris cv. Pinto) bioactive peptides in regulating physiological functions: Protease activating, lipase inhibiting and bile acid binding activities. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
25
|
Hall C, Hillen C, Garden Robinson J. Composition, Nutritional Value, and Health Benefits of Pulses. Cereal Chem 2017. [DOI: 10.1094/cchem-03-16-0069-fi] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Clifford Hall
- Department of Plant Science, North Dakota State University, Fargo, ND 58108-6050, U.S.A
| | - Cassandra Hillen
- Department of Plant Science, North Dakota State University, Fargo, ND 58108-6050, U.S.A
| | | |
Collapse
|
26
|
Trisat K, Wong-on M, Lapphanichayakool P, Tiyaboonchai W, Limpeanchob N. Vegetable Juices and Fibers Reduce Lipid Digestion or Absorption by Inhibiting Pancreatic Lipase, Cholesterol Solubility and Bile Acid Binding. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/19315260.2016.1258604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kanittaporn Trisat
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Matusorn Wong-on
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Phakhamon Lapphanichayakool
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Waree Tiyaboonchai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Nanteetip Limpeanchob
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
27
|
Siow HL, Choi SB, Gan CY. Structure–activity studies of protease activating, lipase inhibiting, bile acid binding and cholesterol-lowering effects of pre-screened cumin seed bioactive peptides. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
28
|
Panith N, Wichaphon J, Lertsiri S, Niamsiri N. Effect of physical and physicochemical characteristics of chitosan on fat-binding capacities under in vitro gastrointestinal conditions. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Pérez-Gálvez R, García-Moreno PJ, Morales-Medina R, Guadix A, Guadix EM. Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea. Food Funct 2016; 6:1261-7. [PMID: 25756593 DOI: 10.1039/c4fo01171f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fish protein hydrolysates (FPH), produced from the six main discard species from the West Mediterranean Sea (sardine, horse mackerel, axillary seabream, bogue, small-spotted catshark and blue whiting) were tested for their bile acid binding capacity. This capacity is directly linked to the ability to inhibit bile reabsorption in the ileum and therefore to lower cholesterol levels in the bloodstream. From each species, FPH were obtained by three different enzymatic treatments employing two serine endoproteases (subtilisin and trypsin) sequentially or in combination. The results show statistically significant differences among the fish species, attaining interesting average values of bile acid binding capacity for blue whiting (27.32% relative to cholestyramine on an equal protein basis) and horse mackerel (27.42% relative to cholestyramine on an equal protein basis). The enzymatic treatments did not significantly affect the ability of a given species to bind bile acids. These results are similar to other protein sources, such as soy protein or casein, of proven hypocholesterolemic effect. It can be concluded that fish protein hydrolysates from these discard species are suitable as ingredients in the formulation of cholesterol-lowering supplements.
Collapse
Affiliation(s)
- Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
30
|
Isolation, preliminary structural characterization and hypolipidemic effect of polysaccharide fractions from Fortunella margarita (Lour.) Swingle. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.05.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
- Y, Indrati R, Utami T, Marsono Y. Binding of Bile Salts by Fermented Soymilk and Its Stability Against Pepsin and Pancreatin. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2013. [DOI: 10.6066/jtip.2013.24.1.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Hu JL, Nie SP, Li C, Xie MY. In vitro effects of a novel polysaccharide from the seeds of Plantago asiatica L. on intestinal function. Int J Biol Macromol 2013; 54:264-9. [DOI: 10.1016/j.ijbiomac.2012.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/27/2012] [Accepted: 12/05/2012] [Indexed: 11/17/2022]
|
33
|
Mendonça PV, Serra AC, Silva CL, Simões S, Coelho JF. Polymeric bile acid sequestrants—Synthesis using conventional methods and new approaches based on “controlled”/living radical polymerization. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2012.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Pak VV, Kwon DY, Yun LM, Yili A, Aisa HA, Shakhidoyatov KM. Conformational analysis of yvae peptide derivatives. Chem Nat Compd 2012. [DOI: 10.1007/s10600-012-0399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Huang YL, Chow CJ, Tsai YH. Composition, characteristics, and in-vitro physiological effects of the water-soluble polysaccharides from Cassia seed. Food Chem 2012; 134:1967-72. [DOI: 10.1016/j.foodchem.2012.03.127] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/22/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
|
36
|
Kelkar S, Siddiq M, Harte J, Dolan K, Nyombaire G, Suniaga H. Use of low-temperature extrusion for reducing phytohemagglutinin activity (PHA) and oligosaccharides in beans (Phaseolus vulgaris L.) cv. Navy and Pinto. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Yang L, Chen JH, Zhang H, Qiu W, Liu QH, Peng X, Li YN, Yang HK. Alkali treatment affects in vitro digestibility and bile acid binding activity of rice protein due to varying its ratio of arginine to lysine. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.11.068] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Forster GM, Hill D, Gregory G, Weishaar KM, Lana S, Bauer JE, Ryan EP. Effects of cooked navy bean powder on apparent total tract nutrient digestibility and safety in healthy adult dogs. J Anim Sci 2012; 90:2631-8. [PMID: 22367072 DOI: 10.2527/jas.2011-4324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dry beans (Phaseolus vulgaris L., Fabaceae) are a low glycemic index food containing protein, fiber, minerals, essential vitamins, and bioactive compounds and have not been evaluated for inclusion in commercial canine diets. The objective of this study was to establish the apparent total tract digestibility and safety of cooked navy bean powder when incorporated into a canine diet formulation at 25% (wt/wt) compared with a macro- and micro-nutrient matched control. Twenty-one healthy, free-living, male and female adult dogs of different breeds were used in a randomized, blinded, placebo controlled, 28-d dietary intervention study. Apparent total tract energy and nutrient digestibility of the navy bean powder diet were compared with the control diet. Digestibilities and ME content were 68.58 and 68.89% DM, 78.22 and 79.49% CP, 77.57 and 74.91% OM, 94.49 and 93.85% acid hydrolyzed fat, and 3,313 and 3,195 kcal ME/kg for the navy bean diet and control diet, respectively. No differences were observed between the groups. No increased flatulence or major change in fecal consistency was observed. Navy bean powder at 25% (wt/wt) of total diet was determined to be palatable (on the basis of intake and observation) and digestible in a variety of dog breeds. No changes were detected in clinical laboratory values, including complete blood counts, blood biochemical profiles, and urinalysis in either the bean or control diet groups. These results indicate that cooked navy bean powder can be safely included as a major food ingredient in canine diet formulations and provide a novel quality protein source, and its use warrants further investigation as a functional food for chronic disease control and prevention.
Collapse
Affiliation(s)
- G M Forster
- Department of Clinical Sciences, Colorado State University, Fort Collins, C0 80523, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Tiengo A, Motta EMP, Netto FM. Chemical composition and bile acid binding activity of products obtained from amaranth (Amaranthus cruentus) seeds. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2011; 66:370-375. [PMID: 21901402 DOI: 10.1007/s11130-011-0253-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cardiovascular diseases are currently the greatest cause of mortality in the world, and dislipidemia is appearing as one of the most important risk factors. The binding of bile acids (BAs) has been hypothesized as a possible mechanism by which dietary fibers lower blood cholesterol levels. Besides the fibers, other components in the amaranth seeds may be related to this hypocholesterolemic effect. The objective of the present study was to evaluate the BA binding capacity of some products obtained from defatted amaranth flour (DAF) and from the amaranth protein concentrate (APC). The alkaline residue, rich in fibers (8.6%), presented the lowest binding activity for the BAs tested, with the exception of glycocholic acid. The DAF showed intermediary binding activity for all the BAs tested, although similar to that of the APC for deoxycholic acid, and to that of the amaranth protein hydrolysate (APH) for taurocholic acid. The DAF and APC showed binding activity for secondary bile acids toxic to the intestinal mucus. From the results, amaranth products were shown to have the ability to bind BAs, but it was not possible to affirm whether the main component responsible for this activity was the proteins, fibers or eventually some other non-evaluated component.
Collapse
Affiliation(s)
- Andréa Tiengo
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, R. Monteiro Lobato 80, Campinas, SP, Brazil
| | | | | |
Collapse
|
40
|
|
41
|
Barbana C, Boucher AC, Boye JI. In vitro binding of bile salts by lentil flours, lentil protein concentrates and lentil protein hydrolysates. Food Res Int 2011. [DOI: 10.1016/j.foodres.2010.10.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Fodje AM, Chang PR, Leterme P. In VitroBile Acid Binding and Short-Chain Fatty Acid Profile of Flax Fiber and Ethanol Co-Products. J Med Food 2009; 12:1065-73. [DOI: 10.1089/jmf.2008.0242] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Adele M.L. Fodje
- Biobased Platforms, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Peter R. Chang
- Biobased Platforms, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
43
|
The mechanism of the cholesterol-lowering effect of water-insoluble fish protein in ovariectomised rats. Br J Nutr 2009; 102:816-24. [PMID: 19335928 DOI: 10.1017/s0007114509316153] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of the present study was to investigate whether water-insoluble fish protein (IFP) from Alaska pollock (Theragra chalcogramma) prevents hypercholesterolaemia induced by ovarian hormone deficiency. Wistar female rats, aged 6 months, were subjected to sham-operation or ovariectomy, and fed a cholesterol-free diet containing casein or IPF as a protein source for 28 d. Body-weight gain and food intake increased in the ovariectomised rats as compared with the sham-operated rats. Plasma total cholesterol concentration was decreased and faecal bile acid excretion was increased by IFP in the ovariectomised rats, but not in the sham-operated rats. Plasma homocysteine concentration was decreased by IFP in the ovariectomised rats, but not in the sham-operated rats. Liver lipids and liver cholesterol concentrations were increased and cholesterol 7alpha-hydroxylase (CYP7A1) activity was decreased by ovariectomy, but not by diet. Bile acid content and the ratio of cholic acid groups to chenodeoxycholic acid groups in bile were increased by ovariectomy, but decreased by IFP. Bile acid content in the small intestine was increased by IFP in the ovariectomised rats, but not in the sham-operated rats. 3-Hydroxy-3-methylglutaryl-CoA reductase and microsomal TAG transfer protein mRNA levels were decreased by ovariectomy and IFP, whereas LDL-receptor mRNA level was decreased by ovariectomy but unaffected by diet. Thus, the preventive effect of IFP on the ovarian hormone deficiency-associated increase in plasma cholesterol concentration seems to be mediated by accelerated faecal excretion of bile acids, coupled with an increase in the intestinal pool of bile acids.
Collapse
|
44
|
Marambe PWMLHK, Shand PJ, Wanasundara JPD. An In-vitro Investigation of Selected Biological Activities of Hydrolysed Flaxseed (Linum usitatissimum L.) Proteins. J AM OIL CHEM SOC 2008. [DOI: 10.1007/s11746-008-1293-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Winham DM, Hutchins AM, Johnston CS. Pinto Bean Consumption Reduces Biomarkers for Heart Disease Risk. J Am Coll Nutr 2007; 26:243-9. [PMID: 17634169 DOI: 10.1080/07315724.2007.10719607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To determine effects of daily intake of 1/2 cup pinto beans, black-eyed peas or carrots (placebo) on risk factors for coronary heart disease (CHD) and diabetes mellitus (DM) in free-living, mildly insulin resistant adults over an 8 week period. METHODS Randomized, crossover 3x3 block design. Sixteen participants (7 men, 9 women) received each treatment for eight-weeks with two-week washouts. Fasting blood samples collected at beginning and end of periods were analyzed for total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol, triacylglycerols, high-sensitivity C-reactive protein, insulin, glucose, and hemoglobin A1c. RESULTS A significant treatment-by-time effect impacted serum TC (p = 0.026) and LDL (p = 0.033) after eight weeks. Paired t-tests indicated that pinto beans were responsible for this effect (p = 0.003; p = 0.008). Mean change of serum TC for pinto bean, black-eyed pea and placebo were -19 +/- 5, 2.5 +/- 6, and 1 +/- 5 mg/dL, respectively (p = 0.011). Mean change of serum LDL-C for pinto bean, black-eyed pea and placebo were -14 +/- 4, 4 +/- 5, and 1 +/- 4 mg/dL, in that order (p = 0.013). Pinto beans differed significantly from placebo (p = 0.021). No significant differences were seen with other blood concentrations across the 3 treatment periods. CONCLUSIONS Pinto bean intake should be encouraged to lower serum TC and LDL-C, thereby reducing risk for CHD.
Collapse
Affiliation(s)
- Donna M Winham
- Department of Nutrition, Arizona State University Polytechnic, Mesa, Arizona 85212, USA.
| | | | | |
Collapse
|
46
|
Dongowski G. Interactions between dietary fibre-rich preparations and glycoconjugated bile acids in vitro. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.11.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Yoshie-Stark Y, Bez J, Wäsche A. Effect of different pasteurization conditions on bioactivities of Lupinus albus protein isolates. Lebensm Wiss Technol 2006. [DOI: 10.1016/j.lwt.2004.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Kahlon T, Smith G, Shao Q. In vitro binding of bile acids by kidney bean (Phaseolus vulgaris), black gram (Vigna mungo), bengal gram (Cicer arietinum) and moth bean (Phaseolus aconitifolins). Food Chem 2005. [DOI: 10.1016/j.foodchem.2004.03.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Yoshie-Stark Y, Bez J, Wada Y, Wäsche A. Functional properties, lipoxygenase activity, and health aspects of Lupinus albus protein isolates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:7681-7689. [PMID: 15675820 DOI: 10.1021/jf049583c] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To utilize lupin seeds for food and pharmaceutical applications, lupin seeds were pretreated to remove oil using hexane or carbon dioxide. Two types of lupin protein isolate were prepared. Both types of protein isolate showed good foaming activity, comparable to egg white. Protein isolate extracted under acid conditions showed higher foaming activity than protein isolate extracted at neutral pH. The lipoxygenase activity was much reduced in both of the protein isolates. The protein isolate extracted at neutral pH showed a stronger angiotensin converting enzyme inhibition than the protein isolate extracted under acidic pH. In contrast, the protein isolate extracted under acid conditions had a greater sodium cholate binding capacity, comparable to that of cholestyramine. Lupin samples showed less DPPH radical scavenging activity than deoiled soybean. The deoiling method did not affect the functional properties, lipoxygenase activity, angiotensin converting enzyme inhibition, sodium cholate binding, and radical scavenging activity.
Collapse
Affiliation(s)
- Yumiko Yoshie-Stark
- Department of Process Engineering, Fraunhofer Institute for Process Engineering and Packaging, Freising, Germany.
| | | | | | | |
Collapse
|
50
|
Yoshie-Stark Y, Wäsche A. In vitro binding of bile acids by lupin protein isolates and their hydrolysates. Food Chem 2004. [DOI: 10.1016/j.foodchem.2004.01.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|