1
|
Zargar SM, Hami A, Manzoor M, Mir RA, Mahajan R, Bhat KA, Gani U, Sofi NR, Sofi PA, Masi A. Buckwheat OMICS: present status and future prospects. Crit Rev Biotechnol 2024; 44:717-734. [PMID: 37482536 DOI: 10.1080/07388551.2023.2229511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Buckwheat (Fagopyrum spp.) is an underutilized resilient crop of North Western Himalayas belonging to the family Polygonaceae and is a source of essential nutrients and therapeutics. Common Buckwheat and Tatary Buckwheat are the two main cultivated species used as food. It is the only grain crop possessing rutin, an important metabolite with high nutraceutical potential. Due to its inherent tolerance to various biotic and abiotic stresses and a short life cycle, Buckwheat has been proposed as a model crop plant. Nutritional security is one of the major concerns, breeding for a nutrient-dense crop such as Buckwheat will provide a sustainable solution. Efforts toward improving Buckwheat for nutrition and yield are limited due to the lack of available: genetic resources, genomics, transcriptomics and metabolomics. In order to harness the agricultural importance of Buckwheat, an integrated breeding and OMICS platforms needs to be established that can pave the way for a better understanding of crop biology and developing commercial varieties. This, coupled with the availability of the genome sequences of both Buckwheat species in the public domain, should facilitate the identification of alleles/QTLs and candidate genes. There is a need to further our understanding of the molecular basis of the genetic regulation that controls various economically important traits. The present review focuses on: the food and nutritional importance of Buckwheat, its various omics resources, utilization of omics approaches in understanding Buckwheat biology and, finally, how an integrated platform of breeding and omics will help in developing commercially high yielding nutrient rich cultivars in Buckwheat.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Kaiser A Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Najeebul Rehman Sofi
- MRCFC, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Parvaze A Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| |
Collapse
|
2
|
Zhang Z, Fan S, Duncan GJ, Morris A, Henderson D, Morrice P, Russell WR, Duncan SH, Neacsu M. Buckwheat ( Fagopyrum esculentum) Hulls Are a Rich Source of Fermentable Dietary Fibre and Bioactive Phytochemicals. Int J Mol Sci 2023; 24:16310. [PMID: 38003497 PMCID: PMC10671810 DOI: 10.3390/ijms242216310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Pseudo-cereals such as buckwheat (Fagopyrum esculentum) are valid candidates to promote diet biodiversity and nutrition security in an era of global climate change. Buckwheat hulls (BHs) are currently an unexplored source of dietary fibre and bioactive phytochemicals. This study assessed the effects of several bioprocessing treatments (using enzymes, yeast, and combinations of both) on BHs' nutrient and phytochemical content, their digestion and metabolism in vitro (using a gastrointestinal digestion model and mixed microbiota from human faeces). The metabolites were measured using targeted LC-MS/MS and GC analysis and 16S rRNA gene sequencing was used to detect the impact on microbiota composition. BHs are rich in insoluble fibre (31.09 ± 0.22% as non-starch polysaccharides), protocatechuic acid (390.71 ± 31.72 mg/kg), and syringaresinol (125.60 ± 6.76 mg/kg). The bioprocessing treatments significantly increased the extractability of gallic acid, vanillic acid, p-hydroxybenzoic acid, syringic acid, vanillin, syringaldehyde, p-coumaric acid, ferulic acid, caffeic acid, and syringaresinol in the alkaline-labile bound form, suggesting the bioaccessibility of these phytochemicals to the colon. Furthermore, one of the treatments, EC_2 treatment, increased significantly the in vitro upper gastrointestinal release of bioactive phytochemicals, especially for protocatechuic acid (p < 0.01). The BH fibre was fermentable, promoting the formation mainly of propionate and, to a lesser extent, butyrate formation. The EM_1 and EC_2 treatments effectively increased the content of insoluble fibre but had no effect on dietary fibre fermentation (p > 0.05). These findings promote the use of buckwheat hulls as a source of dietary fibre and phytochemicals to help meet dietary recommendations and needs.
Collapse
Affiliation(s)
- Zhihong Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK; (S.F.); (G.J.D.); (A.M.); (D.H.); (P.M.); (W.R.R.); (S.H.D.)
| | - Songtao Fan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK; (S.F.); (G.J.D.); (A.M.); (D.H.); (P.M.); (W.R.R.); (S.H.D.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gary J. Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK; (S.F.); (G.J.D.); (A.M.); (D.H.); (P.M.); (W.R.R.); (S.H.D.)
| | - Amanda Morris
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK; (S.F.); (G.J.D.); (A.M.); (D.H.); (P.M.); (W.R.R.); (S.H.D.)
| | - Donna Henderson
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK; (S.F.); (G.J.D.); (A.M.); (D.H.); (P.M.); (W.R.R.); (S.H.D.)
| | - Philip Morrice
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK; (S.F.); (G.J.D.); (A.M.); (D.H.); (P.M.); (W.R.R.); (S.H.D.)
| | - Wendy R. Russell
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK; (S.F.); (G.J.D.); (A.M.); (D.H.); (P.M.); (W.R.R.); (S.H.D.)
| | - Sylvia H. Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK; (S.F.); (G.J.D.); (A.M.); (D.H.); (P.M.); (W.R.R.); (S.H.D.)
| | - Madalina Neacsu
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK; (S.F.); (G.J.D.); (A.M.); (D.H.); (P.M.); (W.R.R.); (S.H.D.)
| |
Collapse
|
3
|
Zaranek M, Pérez-Pérez R, Milewska-Hendel A, Betekhtin A, Grzebelus E. Promotive effect of phytosulfokine - peptide growth factor - on protoplast cultures development in Fagopyrum tataricum (L.) Gaertn. BMC PLANT BIOLOGY 2023; 23:385. [PMID: 37563739 PMCID: PMC10413615 DOI: 10.1186/s12870-023-04402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Fagopyrum tataricum (Tartary buckwheat) is a valuable crop of great nutritional importance due to its high level of bioactive compounds. Excellent opportunities to obtain plants with the high level or the desired profile of valuable metabolites may be provided by in vitro cultures. Among known in vitro techniques, protoplast technology is an exciting tool for genetic manipulation to improve crop traits. In that context, protoplast fusion may be applied to generate hybrid cells between different species of Fagopyrum. To apply protoplast cultures to the aforementioned approaches in this research, we established the protoplast-to-plant system in Tartary buckwheat. RESULTS In this work, cellulase and pectinase activity enabled protoplast isolation from non-morphogenic and morphogenic callus (MC), reaching, on average, 2.3 × 106 protoplasts per g of fresh weight. However, to release protoplasts from hypocotyls, the key step was the application of driselase in the enzyme mixture. We showed that colony formation could be induced after protoplast embedding in agarose compared to the alginate matrix. Protoplasts cultured in a medium based on Kao and Michayluk supplemented with phytosulfokine (PSK) rebuilt cell walls, underwent repeated mitotic division, formed aggregates, which consequently led to callus formation. Plating efficiency, expressing the number of cell aggregate formed, in 10-day-old protoplast cultures varied from 14% for morphogenic callus to 30% for hypocotyls used as a protoplast source. However plant regeneration via somatic embryogenesis and organogenesis occurred only during the cultivation of MC-derived protoplasts. CONCLUSIONS This study demonstrated that the applied protoplast isolation approach facilitated the recovery of viable protoplasts. Moreover, the embedding of protoplasts in an agarose matrix and supplementation of a culture medium with PSK effectively stimulated cell division and further development of Tartary buckwheat protoplast cultures along with the plant regeneration. Together, these results provide the first evidence of developing a protoplast-to-plant system from the MC of Fagopyrum tataricum used as source material. These findings suggest that Tartary buckwheat's protoplast cultures have potential implications for the species' somatic hybridization and genetic improvement.
Collapse
Affiliation(s)
- Magdalena Zaranek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Reneé Pérez-Pérez
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland.
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, 31-120, Poland.
| |
Collapse
|
4
|
Dong Y, Wang N, Wang S, Wang J, Peng W. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front Nutr 2023; 10:1168361. [PMID: 37476405 PMCID: PMC10355155 DOI: 10.3389/fnut.2023.1168361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Compared with the common grain, Tartary buckwheat enjoys higher nutritional value. Some distinctive nutrition associated with physiological activity of Tartary buckwheat is valuable in medicine. In addition, it's a good feed crop. In the paper, the main components (starch, protein, amino acid, fatty acid and mineral) and polyphenol bioactive components in Tartary buckwheat and its sprouts were reviewed, and the accumulation of flavonoids in sprouts during germination, especially the methods, synthetic pathways and mechanisms of flavonoid accumulation was summarized. The research on bioactive components and health benefits of Tartary buckwheat also were reviewed. Besides, the applications of innovative physical technology including microwave, magnetic, electromagnetic, ultrasonic, and light were also mentioned and highlighted, which could promote the enrichment of some active substances during seeds germination and growth of Tartary buckwheat sprouts. It would give a good support and benefit for the research and processing of Tartary buckwheat and its sprouts in next day.
Collapse
Affiliation(s)
- Yulu Dong
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Nan Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shunmin Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Junzhen Wang
- Academy of Agricultural Science Liang Shan, Liangshan, China
| | - Wenping Peng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
5
|
Noda T, Ishiguro K, Suzuki T, Morishita T. Tartary Buckwheat Bran: A Review of Its Chemical Composition, Processing Methods and Food Uses. PLANTS (BASEL, SWITZERLAND) 2023; 12:1965. [PMID: 37653882 PMCID: PMC10222156 DOI: 10.3390/plants12101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 09/02/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) containing large amounts of functional compounds with antioxidant activity, such as rutin, has attracted substantial research attention due to its industrial applications. Particularly, the functional compounds in Tartary buckwheat bran, an unexploited byproduct of the buckwheat flour milling process, are more concentrated than those in Tartary buckwheat flour. Thus, Tartary buckwheat bran is deemed to be a potential material for making functional foods. However, a review that comprehensively summarizes the research on Tartary buckwheat bran is lacking. Therefore, we highlighted current studies on the chemical composition of Tartary buckwheat bran. Moreover, the processing method and food uses of Tartary buckwheat bran are also discussed.
Collapse
Affiliation(s)
- Takahiro Noda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| | - Koji Ishiguro
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| | - Tatsuro Suzuki
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Suya, Koshi, Kumamoto 861-1192, Japan
| | - Toshikazu Morishita
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| |
Collapse
|
6
|
Kreft I, Golob A, Vombergar B, Germ M. Tartary Buckwheat Grain as a Source of Bioactive Compounds in Husked Groats. PLANTS (BASEL, SWITZERLAND) 2023; 12:1122. [PMID: 36903982 PMCID: PMC10005392 DOI: 10.3390/plants12051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) originates in mountain regions of Western China, and is cultivated in China, Bhutan, Northern India, Nepal, and Central Europe. The content of flavonoids in Tartary buckwheat grain and groats is much higher than in common buckwheat (Fagopyrum esculentum Moench), and depends on ecological conditions, such as UV-B radiation. Buckwheat intake has preventative effects in chronic diseases, such as cardiovascular diseases, diabetes, and obesity, due to its content of bioactive substances. The main bioactive compounds in Tartary buckwheat groats are flavonoids (rutin and quercetin). There are differences in the bioactivities of buckwheat groats obtained using different husking technologies, based on husking raw or pretreated grain. Husking hydrothermally pretreated grain is among the traditional ways of consuming buckwheat in Europe and some parts of China and Japan. During hydrothermal and other processing of Tartary buckwheat grain, a part of rutin is transformed to quercetin, the degradation product of rutin. By adjusting the humidity of materials and the processing temperature, it is possible to regulate the degree of conversion of rutin to quercetin. Rutin is degraded to quercetin in Tartary buckwheat grain due to the enzyme rutinosidase. The high-temperature treatment of wet Tartary buckwheat grain is able to prevent the transformation of rutin to quercetin.
Collapse
Affiliation(s)
- Ivan Kreft
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, Park mladih 3, SI-2000 Maribor, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Kreft I, Germ M, Golob A, Vombergar B, Vollmannová A, Kreft S, Luthar Z. Phytochemistry, Bioactivities of Metabolites, and Traditional Uses of Fagopyrum tataricum. Molecules 2022; 27:7101. [PMID: 36296694 PMCID: PMC9611693 DOI: 10.3390/molecules27207101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 09/02/2023] Open
Abstract
In Tartary buckwheat (Fagopyrum tataricum), the edible parts are mainly grain and sprouts. Tartary buckwheat contains protecting substances, which make it possible for plants to survive on high altitudes and under strong natural ultraviolet radiation. The diversity and high content of phenolic substances are important for Tartary buckwheat to grow and reproduce under unfriendly environmental effects, diseases, and grazing. These substances are mainly flavonoids (rutin, quercetin, quercitrin, vitexin, catechin, epicatechin and epicatechin gallate), phenolic acids, fagopyrins, and emodin. Synthesis of protecting substances depends on genetic layout and on the environmental conditions, mainly UV radiation and temperature. Flavonoids and their glycosides are among Tartary buckwheat plants bioactive metabolites. Flavonoids are compounds of special interest due to their antioxidant properties and potential in preventing tiredness, diabetes mellitus, oxidative stress, and neurodegenerative disorders such as Parkinson's disease. During the processing and production of food items, Tartary buckwheat metabolites are subjected to molecular transformations. The main Tartary buckwheat traditional food products are bread, groats, and sprouts.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia
| | - Alena Vollmannová
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Decontamination and Germination of Buckwheat Grains upon Treatment with Oxygen Plasma Glow and Afterglow. PLANTS 2022; 11:plants11101366. [PMID: 35631791 PMCID: PMC9146572 DOI: 10.3390/plants11101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Buckwheat is an alternative crop known for its many beneficial effects on our health. Fungi are an important cause of plant diseases and food spoilage, often posing a threat to humans and animals. This study reports the effects of low-pressure cold plasma treatment on decontamination and germination of common (CB) and Tartary buckwheat (TB) grains. Both plasma glow and afterglow were applied. The glow treatment was more effective in decontamination: initial contamination was reduced to less than 30% in CB and 10% in TB. Fungal diversity was also affected as only a few genera persisted after the glow treatment; however, it also significantly reduced or even ceased the germination capacity of both buckwheat species. Detailed plasma characterisation by optical spectroscopy revealed extensive etching of outer layers as well as cotyledons. Afterglow treatment resulted in a lower reduction of initial fungal contamination (up to 30% in CB and up to 50% in TB) and had less impact on fungal diversity but did not drastically affect germination: 60–75% of grains still germinated even after few minutes of treatment. The vacuum conditions alone did not affect the fungal population or the germination despite an extensive release of water.
Collapse
|
9
|
Pande S, Ranjan R, Ryazanova M, Shuvaev AN, Salmina AB, Kratasyuk VA. Buckwheat-enriched diet alleviates bisphenol A mediated oxidative stress via modulation of sirtuin 1 and antioxidant status in experimental rats. Food Chem 2021; 373:131507. [PMID: 34763933 DOI: 10.1016/j.foodchem.2021.131507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/04/2022]
Abstract
Present study investigated effect of dietary buckwheat in alleviating bisphenol A (BPA) mediated oxidative stress, concomitant sirtuin1 levels in serum, stomach, and liver of rats. Experimental group A and B ingested standard diet, C and D consumed buckwheat (30%); group A and C drank normal water, B and C had BPA contamination (10 mg L-1). Sirtuin1 mean B/A ratio nearing unity in all tissues reveals inertness of BPA towards sirtuin1. Dietary buckwheat improved sirtuin1 levels both in normal (mean C/A ratio of serum, 1.65; liver, 1.24; stomach, 1.78) and BPA fed state (mean D/B ratio of serum, 1.9; liver, 1.26; stomach, 1.75). Buckwheat augmented antioxidant status in BPA fed rats as seen in mean D/B ratio of serum (catalase, 2.4; glutathione reductase (GR), 1.33; Thiols, 1.2), liver (catalase, 2; GR, 2.5; Thiols, 1.36) and stomach (catalase, 1.31; GR, 1.5; Thiols, 1.33). Therefore, buckwheat counters BPA-led oxidative stress and modulates sirtuin1.
Collapse
Affiliation(s)
- Shubhra Pande
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka 1, Krasnoyarsk 660022, Russia.
| | - Rajeev Ranjan
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| | - Maria Ryazanova
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka 1, Krasnoyarsk 660022, Russia
| | - Alla B Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka 1, Krasnoyarsk 660022, Russia; Laboratory of Experimental Brain Cytology, Research Center of Neurology, Moscow, Russia
| | - Valentina A Kratasyuk
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', Akademgorodok 50/50, Krasnoyarsk 660036, Russia
| |
Collapse
|
10
|
Podolska G, Gujska E, Klepacka J, Aleksandrowicz E. Bioactive Compounds in Different Buckwheat Species. PLANTS (BASEL, SWITZERLAND) 2021; 10:961. [PMID: 34065966 PMCID: PMC8151484 DOI: 10.3390/plants10050961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 01/13/2023]
Abstract
The accumulation of valuable nutrients in cereal grains depends on a number of factors, including species, cultivars, and environment conditions. The aim of this study was to compare protein, some polyphenols and rutin content, as well as mineral composition in Fagopyrum tataricum and Fagopyrum esculentum genotypes growing in Polish conditions. A field experiment was conducted on pseudopodsolic soil in 2017-2018 at the Experimental Station in Osiny (51°35', 21°55'), following randomized complete block method with three replications. Two cultivars of Fagophyrum esculentum (Kora and Panda), two cultivars of Fagopyrum tataricum (LIT1 and 63181) and two forms of Fagopyrum esculentum (Red Corolla and Green Corolla) were used in this experiment. We found differences in the tested compounds (protein, phenolic acids, rutin, and mineral composition) between cultivars and genotypes. Total phenolic acid and rutin contents were higher in the Fagopyrum tataricum compared to Fagopyrum esculentum. Ferulic and coumaric acids were prominent in the Kora and Panda cultivars, however vanillic and syringic acids accumulated more in Green Corolla and Red Corolla. The common buckwheat seeds contained more Cu, Mn, and Mg and less Ca than tartary buckwheat. Moreover Fagopytum esculentum genotype contains more protein compared to Fagopyrum tataricum.
Collapse
Affiliation(s)
- Grażyna Podolska
- Department of Cereals Crop Production, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8 Str, 24-100 Puławy, Poland;
| | - Elżbieta Gujska
- Department of Commodity Science and Food Analysis, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-719 Olsztyn, Poland; (E.G.); (J.K.)
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-719 Olsztyn, Poland; (E.G.); (J.K.)
| | - Edyta Aleksandrowicz
- Department of Cereals Crop Production, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8 Str, 24-100 Puławy, Poland;
| |
Collapse
|
11
|
Mravlje J, Regvar M, Starič P, Mozetič M, Vogel-Mikuš K. Cold Plasma Affects Germination and Fungal Community Structure of Buckwheat Seeds. PLANTS (BASEL, SWITZERLAND) 2021; 10:851. [PMID: 33922511 PMCID: PMC8145130 DOI: 10.3390/plants10050851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023]
Abstract
Crop seeds are frequently colonised by fungi from the field or storage places. Some fungi can cause plant diseases or produce mycotoxins, compromising the use of seeds as seeding material, food or feed. We have investigated the effects of cold plasma (CP) on seed germination and diversity of seed-borne fungi in common and Tartary buckwheat. The seeds were treated with CP for 15, 30, 45, 60, 90, and 120 s in a low-pressure radiofrequency system using oxygen as the feed gas. The fungi from the seed surface and fungal endophytes were isolated using potato dextrose agar plates. After identification by molecular methods, the frequency and diversity of fungal strains were compared between CP treated and chemically surface-sterilised (30% of H2O2) seeds. CP treatments above 60 s negatively affected the germination of both buckwheat species. A significant reduction in fungal frequency and diversity was observed after 90 s and 120 s in common and Tartary buckwheat, respectively. The filamentous fungi of genera Alternaria and Epicoccum proved to be the most resistant to CP. The results of our study indicate that CP treatment used in our study may be applicable in postharvest and food production, but not for further seed sowing.
Collapse
Affiliation(s)
- Jure Mravlje
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.R.); (K.V.-M.)
| | - Marjana Regvar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.R.); (K.V.-M.)
| | - Pia Starič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (P.S.); (M.M.)
| | - Miran Mozetič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (P.S.); (M.M.)
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.R.); (K.V.-M.)
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (P.S.); (M.M.)
| |
Collapse
|
12
|
Luthar Z, Golob A, Germ M, Vombergar B, Kreft I. Tartary Buckwheat in Human Nutrition. PLANTS (BASEL, SWITZERLAND) 2021; 10:700. [PMID: 33916396 PMCID: PMC8066602 DOI: 10.3390/plants10040700] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/29/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) originates in mountain areas of western China, and it is mainly cultivated in China, Bhutan, northern India, Nepal, and central Europe. Tartary buckwheat shows greater cold resistance than common buckwheat, and has traits for drought tolerance. Buckwheat can provide health benefits due to its contents of resistant starch, mineral elements, proteins, and in particular, phenolic substances, which prevent the effects of several chronic human diseases, including hypertension, obesity, cardiovascular diseases, and gallstone formation. The contents of the flavonoids rutin and quercetin are very variable among Tartary buckwheat samples from different origins and parts of the plants. Quercetin is formed after the degradation of rutin by the Tartary buckwheat enzyme rutinosidase, which mainly occurs after grain milling during mixing of the flour with water. High temperature treatments of wet Tartary buckwheat material prevent the conversion of rutin to quercetin.
Collapse
Affiliation(s)
- Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.); (M.G.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.); (M.G.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.G.); (M.G.)
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia;
| | - Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Laser light as a promising approach to improve the nutritional value, antioxidant capacity and anti-inflammatory activity of flavonoid-rich buckwheat sprouts. Food Chem 2020; 345:128788. [PMID: 33340896 DOI: 10.1016/j.foodchem.2020.128788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Buckwheat sprouts are rich in several nutrients such as antioxidant flavonoids that have a positive impact on human health. Although there are several studies reported the positive impact of laser light on crop plants, no studies have applied laser light to enhance the nutritive values of buckwheat sprouts. Herein, the contents of health-promoting minerals, metabolites and enzymes as well as the antioxidant and anti-inflammatory activities were determined in laser-treated (He-Ne laser, 632 nm, 5 mW) common buckwheat (CBW) and tartarybuckwheat (TBW) sprouts. Out of 49 targeted minerals, vitamins, pigments and antioxidants, more than 35 parameters were significantly increased in CBW and/or TBW sprouts by laser light treatment. Also, laser light boosted the antioxidant capacity and anti-inflammatory activities through inhibiting cyclooxygenase-2 and lipoxygenase activities, particularly in TBW sprouts. Accordingly, laser light could be recommended as a promising method to improve the nutritional and health-promoting values of buckwheat sprouts.
Collapse
|
14
|
Dziedzic K, Kurek S, Mildner–Szkudlarz S, Kreft I, Walkowiak J. Fatty acids profile, sterols, tocopherol and squalene content in Fagopyrum tataricum seed milling fractions. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Raguindin PF, Adam Itodo O, Stoyanov J, Dejanovic GM, Gamba M, Asllanaj E, Minder B, Bussler W, Metzger B, Muka T, Glisic M, Kern H. A systematic review of phytochemicals in oat and buckwheat. Food Chem 2020; 338:127982. [PMID: 32950005 DOI: 10.1016/j.foodchem.2020.127982] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 12/29/2022]
Abstract
Consumption of oat and buckwheat have been associated with various health benefits that may be attributed to their nutritional composition. We performed a systematic review to evaluate the profile and quantity of bioactive compounds present in oat and buckwheat. Among 154 studies included in final analysis, 113 and 178 bioactive compounds were reported in oat and buckwheat, respectively. Total phytosterols, tocols, flavonoids and rutin content were generally higher in buckwheat, β-glucans were significantly higher in oat, while avenanthramides and saponins were characteristically present in oat. The majority of studies included in current review were published before 2010s. The heterogeneous methodological procedures used across the studies precluded our possibility to meta-analyse the evidence and raises the need for harmonization of separation and extraction methods in future studies. Our findings should further stimulate the exploration of metabolites related to identified phytochemicals and their roles in human health.
Collapse
Affiliation(s)
- Peter Francis Raguindin
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland
| | - Oche Adam Itodo
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland
| | | | - Gordana M Dejanovic
- Department of Ophthalmology, University of Novi Sad, Faculty of Medicine, Hajduk Veljkova 1-3, 21000 Novi Sad, Serbia
| | - Magda Gamba
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Eralda Asllanaj
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Weston Bussler
- Standard Process Nutrition Innovation Center, Kannapolis, NC 28018, USA
| | - Brandon Metzger
- Standard Process Nutrition Innovation Center, Kannapolis, NC 28018, USA
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Marija Glisic
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland.
| | - Hua Kern
- Standard Process Nutrition Innovation Center, Kannapolis, NC 28018, USA
| |
Collapse
|
16
|
Silicon biostimulant enhances the growth characteristics and fortifies the bioactive compounds in common and Tartary buckwheat plant. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s12892-020-00058-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Klepacka J, Najda A, Klimek K. Effect of Buckwheat Groats Processing on the Content and Bioaccessibility of Selected Minerals. Foods 2020; 9:E832. [PMID: 32630374 PMCID: PMC7353638 DOI: 10.3390/foods9060832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Adequate supply of minerals in the diet is necessary for the proper functioning of the human body. In recent years gluten-free diet, which rigorous forms may lead to deficiencies of mineral components (especially Mg, Mn, Zn and Cu), is becoming more and more popular. Buckwheat grains do not contain gluten, and their nutritional value is very high. They are often consumed in the form of groats, which are obtained from roasted and dehulled seeds. The purpose of the work was to determine how conducting the buckwheat groats production in industrial conditions affects the content and availability of magnesium, manganese, zinc and copper. The results indicated that husk removal had a particularly adverse effect on the total manganese content and its amount released by enzymatic digestion, whereas it had a positive effect on the post-digestion zinc level by increasing it by nearly half. Hydrothermal processes especially affected the release of analysed elements simulated by the in vitro method, and the extent of changes depended on the processing parameters. It was shown that bioaccessibility of minerals may be increased by treating buckwheat at a lower temperature for a short time, which has a particularly beneficial effect on the manganese and magnesium. Treating grains at a higher temperature reduces the bioaccessibility of all analysed elements, which was particularly noted for zinc and copper. Based on the obtained results, it should be stated that buckwheat groats should be a regular part of human diet, because they are a good source of easily digestible mineral compounds. Their consumption should be especially considered by people on a rigorous gluten-free diet, as they can prevent mineral deficiencies associated with its use.
Collapse
Affiliation(s)
- Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland;
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Kamila Klimek
- Department of Applied Mathematics and Informatics, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland;
| |
Collapse
|
18
|
Li Z, Li Z, Huang Y, Jiang Y, Liu Y, Wen W, Li H, Shao J, Wang C, Zhu X. Antioxidant Capacity, Metal Contents, and Their Health Risk Assessment of Tartary Buckwheat Teas. ACS OMEGA 2020; 5:9724-9732. [PMID: 32391459 PMCID: PMC7203710 DOI: 10.1021/acsomega.9b04007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/12/2020] [Indexed: 05/04/2023]
Abstract
Tartary buckwheat tea (TBT) is the most popular and widely consumed buckwheat product in many countries. However, the perfect quality control standards for TBT were still lacking, and the content of heavy metals in TBT and their health risks to consumers were still unknown. In this research, the total phenolic content, total flavonoid content, and antioxidant capacity as well as six metal contents and their health risks in TBT were detected. The results showed that the total phenolic content, total flavonoid content, and antioxidant capacity varied significantly among different types of TBT. Meanwhile, six metal concentrations in TBT leaves and infusions decreased in the order of Zn, Cu, Cr, Ni, Pb, and Cd. Health risk assessment indicated that the heavy metal intake only from TBT would not cause a noncarcinogenic risk to consumers. However, a strong carcinogenic risk of Cr in TBT for consumers should be paid more attention.
Collapse
Affiliation(s)
- Zhiqiang Li
- College
of Environmental Science, Sichuan Agricultural
University, Chengdu 611130, China
| | - Zhijian Li
- College
of Environmental Science, Sichuan Agricultural
University, Chengdu 611130, China
| | - Yue Huang
- College
of Life Science, Sichuan Agricultural University, Yaan 625014 China
| | - Yunchuan Jiang
- College
of Environmental Science, Sichuan Agricultural
University, Chengdu 611130, China
| | - Yongfu Liu
- College
of Environmental Science, Sichuan Agricultural
University, Chengdu 611130, China
| | - Wen Wen
- College
of Environmental Science, Sichuan Agricultural
University, Chengdu 611130, China
- Industrial
Technology Institute of Chengdu Urban Modern Agriculture Industrial
Technology Institute, Chengdu 611130, China
| | - Hanhan Li
- College
of Environmental Science, Sichuan Agricultural
University, Chengdu 611130, China
| | - Jirong Shao
- College
of Life Science, Sichuan Agricultural University, Yaan 625014 China
- Sichuan
Xichen Guanghua Environment Testing Co. Ltd., 611130 Chengdu, China
| | - Chenglong Wang
- College
of Environmental Science, Sichuan Agricultural
University, Chengdu 611130, China
- Plateau Biological Resources R&D
Platform of Xichen Co. Ltd., National Agricultural
High-tech Innovation Center, Chengdu 611130, China
| | - Xuemei Zhu
- College
of Environmental Science, Sichuan Agricultural
University, Chengdu 611130, China
| |
Collapse
|
19
|
Kumari A, Chaudhary HK. Nutraceutical crop buckwheat: a concealed wealth in the lap of Himalayas. Crit Rev Biotechnol 2020; 40:539-554. [PMID: 32290728 DOI: 10.1080/07388551.2020.1747387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Buckwheat is a crop that has gained considerable interest worldwide due to its nutritional, economical, and pharmaceutical values. To ensure food and nutritional security in a scenario of global climate change, this pseudocereal is a competent alternative to staple crops. With rising knowledge regarding the nutraceutical potential, the popularity of this species is expected to increase further in coming years. The main bioactive component of this species is rutin that has been proven to have a wide range of health-promoting benefits. Due to breeding constraints, asynchronous maturity, seed shattering, and restricted distribution, this species holds the status of an underutilized or neglected crop in many parts of the world. In the North-western Himalayan zone, it is an integral part of local dietary intake and is grown as a second crop after harvesting barley and peas. Fagopyrum esculentum and F. tataricum are the species of buckwheat cultivated in the North-western Himalayas. However, more studies in the direction of conservation, utilization, and genetic amelioration of plant genetic resources are needed to sustain food security in Southeast Asia. The present review paper accentuates the multicore potential of buckwheat besides highlighting the commercial and pharmaceutical perspective. This article also focuses on the conservation and sustainable utilization of Himalayan gene pools, desirable agronomic traits, and genetic diversity besides focusing on the biochemical and molecular response of Fagopyrum to biotic and abiotic stress including modulation of the rutin content. The role of biotechnological interventions and future prospects are also summarized.
Collapse
Affiliation(s)
- Anita Kumari
- Molecular Cytogenetics and Tissue Culture Lab, Department of Crop Improvement, CSK HP Agricultural University, Palampur, Himachal Pradesh, India
| | - Harinder Kumar Chaudhary
- Molecular Cytogenetics and Tissue Culture Lab, Department of Crop Improvement, CSK HP Agricultural University, Palampur, Himachal Pradesh, India
| |
Collapse
|
20
|
Kreft I, Zhou M, Golob A, Germ M, Likar M, Dziedzic K, Luthar Z. Breeding buckwheat for nutritional quality. BREEDING SCIENCE 2020; 70:67-73. [PMID: 32351305 PMCID: PMC7180143 DOI: 10.1270/jsbbs.19016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/01/2019] [Indexed: 05/30/2023]
Abstract
Common buckwheat (Fagopyrum esculentum Moench, CB) and Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn., TB) are used in human nutrition. The idea to screen in the haploid phase for genes affecting low amylose concentration opens the possibility for the effective search of low amylose (waxy) genotypes in CB populations. Self-pollinated homozygous plants of TB might allow us to use a part of endosperm for screening of amylose content. Phenolic substances have a significant inhibitory effect on the digestion of CB and TB proteins, thus metabolites may have impact on protein digestibility. Digestion-resistant peptides are largely responsible for the bile acid elimination. Breeding to diminish polyphenols and anti-nutritional substances might have negative effects on the resistance of plants against pests, diseases and UV-radiation. Bread and pasta are popular CB and TB dishes. During dough making most of CB or TB rutin is degraded to quercetin by rutin-degrading enzymes. The new trace-rutinosidase TB variety makes possible making TB bread with considerable amount of rutin, preserving the initial rutin from flour. Breeding CB and TB for larger embryos would make it possible to increase protein, rutin, and essential minerals concentration in CB and TB grain.
Collapse
Affiliation(s)
- Ivan Kreft
- Research Project, Nutrition Institute, Tržaška cesta 40, SI-1000 Ljubljana, Slovenia
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Krzysztof Dziedzic
- Institute of Food Technology and Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-572 Poznań, Poland
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Rodríguez JP, Rahman H, Thushar S, Singh RK. Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability. Front Genet 2020; 11:49. [PMID: 32174958 PMCID: PMC7056906 DOI: 10.3389/fgene.2020.00049] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/16/2020] [Indexed: 11/13/2022] Open
Abstract
With the ever-increasing world population, an extra 1.5 billion mouths need to be fed by 2050 with continuously dwindling arable land. Hence, it is imperative that extra food come from the marginal lands that are expected to be unsuitable for growing major staple crops under the adverse climate change scenario. Crop diversity provides right alternatives for marginal environments to improve food, feed, and nutritional security. Well-adapted and climate-resilient crops will be the best fit for such a scenario to produce seed and biomass. The minor millets are known for their high nutritional profile and better resilience for several abiotic stresses that make them the suitable crops for arid and salt-affected soils and poor-quality waters. Finger millet (Eleucine coracana) and foxtail millet (Setaria italica), also considered as orphan crops, are highly tolerant grass crop species that grow well in marginal and degraded lands of Africa and Asia with better nutritional profile. Another category of grains, called pseudo-cereals, is considered as rich foods because of their protein quality and content, high mineral content, and healthy and balance food quality. Quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.), and buckwheat (Fagopyrum esculentum) fall under this category. Nevertheless, both minor millets and pseudo-cereals are morphologically different, although similar for micronutrient bioavailability, and their grains are gluten-free. The cultivation of these millets can make dry lands productive and ensure future food as well as nutritional security. Although the natural nutrient profile of these crop plant species is remarkably good, little development has occurred in advances in molecular genetics and breeding efforts to improve the bioavailability of nutrients. Recent advances in NGS have enabled the genome and transcriptome sequencing of these millets and pseudo-cereals for the faster development of molecular markers and application in molecular breeding. Genomic information on finger millet (1,196 Mb with 85,243 genes); S. italica, a model small millet (well-annotated draft genome of 420 Mb with 38,801 protein-coding genes); amaranth (466 Mb genome and 23,059 protein-coding genes); buckwheat (genome size of 1.12 Gb with 35,816 annotated genes); and quinoa (genome size of 1.5 Gb containing 54,438 protein-coding genes) could pave the way for the genetic improvement of these grains. These genomic resources are an important first step toward genetic improvement of these crops. This review highlights the current advances and available resources on genomics to improve nutrient bioavailability in these five suitable crops for the sustained healthy livelihood.
Collapse
Affiliation(s)
| | | | | | - Rakesh K. Singh
- Crop Diversification and Genetics Program, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| |
Collapse
|
22
|
Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol 2020; 137:111178. [PMID: 32035214 DOI: 10.1016/j.fct.2020.111178] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, consumers are more conscious of the environmental and nutritional benefits of foods. Pseudocereals grains, edible seeds belonging to dicotyledonous plant species, are becoming a current trend in human diets as gluten-free (GF) grains with excellent nutritional and nutraceutical value. Pseudocereals are a good source of starch, fiber, proteins, minerals, vitamins, and phytochemicals such as saponins, polyphenols, phytosterols, phytosteroids, and betalains with potential health benefits. The present review aims to summarize the nutritional quality and phytochemical profile of the three main pseudocereal grains: quinoa, amaranth and buckwheat. In addition, current evidence about their health benefits in animal models and human studies is also provided in detail. Based on the accumulating research supporting the inclusion of pseudocereals grains in the diet of celiac persons, this review discusses the recent advances in their application for the development of new GF products. Future directions for a wider cultivation and commercial exploitation of these crops are also highlighted.
Collapse
|
23
|
Ma H, Bian Z, Wang S. Effects of Different Treatments on the Germination, Enzyme Activity, and Nutrient Content of Buckwheat. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hui Ma
- Biological and Chemical Engineering Institute, Anhui Polytechnic University
| | - Zixiu Bian
- Biological and Chemical Engineering Institute, Anhui Polytechnic University
| | - Shunmin Wang
- Biological and Chemical Engineering Institute, Anhui Polytechnic University
| |
Collapse
|
24
|
Scented Tartary Buckwheat Tea: Aroma Components and Antioxidant Activity. Molecules 2019; 24:molecules24234368. [PMID: 31795356 PMCID: PMC6930618 DOI: 10.3390/molecules24234368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, the aroma compounds of Huantai tartary buckwheat tea (TBH), three laboratory-produced scented tartary buckwheat teas, as well as the antioxidant activity of tea infusion was investigated. In total, 103 aroma components were isolated and identified from all samples. Tartary buckwheat rose tea (TBR) contained 57 aroma components and tartary buckwheat jasmine tea (TBJ) had 53, both of which were higher than those in others. In addition, the total flavonoid content (TFC) and the total phenolic content (TPC) of scented tartary buckwheat tea were much higher than those of TBH. After the tartary buckwheat tea (TBT) was soaked in hot water twice, the antioxidant activity of all samples decreased, and the antioxidant activity of TBR and TBJ infusions was more stable than those of others. Further, the antioxidant activity of the first tea infusion (FTI) of the TBT was higher than that of the second tea infusion (STI). Overall, considering the diverse aroma compounds of scented tartary buckwheat tea and higher antioxidant activity of tea infusions, the combination of scented tea and tartary buckwheat is a feasible approach to develop tartary buckwheat scented tea.
Collapse
|
25
|
Joshi DC, Chaudhari GV, Sood S, Kant L, Pattanayak A, Zhang K, Fan Y, Janovská D, Meglič V, Zhou M. Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach. PLANTA 2019; 250:783-801. [PMID: 30623242 DOI: 10.1007/s00425-018-03080-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/20/2018] [Indexed: 05/09/2023]
Abstract
Emerging insights in buckwheat molecular genetics allow the integration of genomics driven breeding to revive this ancient crop of immense nutraceutical potential from Asia. Out of several thousand known edible plant species, only four crops-rice, wheat, maize and potato provide the largest proportion of daily nutrition to billions of people. While these crops are the primary supplier of carbohydrates, they lack essential amino acids and minerals for a balanced nutrition. The overdependence on only few crops makes the future cropping systems vulnerable to the predicted climate change. Diversifying food resources through incorporation of orphan or minor crops in modern cropping systems is one potential strategy to improve the nutritional security and mitigate the hostile weather patterns. One such crop is buckwheat, which can contribute to the agricultural sustainability as it grows in a wide range of environments, requires relatively low inputs and possess balanced amino acid and micronutrient profiles. Additionally, gluten-free nature of protein and nutraceutical properties of secondary metabolites make the crop a healthy alternative of wheat-based diet in developed countries. Despite enormous potential, efforts for the genetic improvement of buckwheat are considerably lagged behind the conventional cereal crops. With the draft genome sequences in hand, there is a great scope to speed up the progress of genetic improvement of buckwheat. This article outlines the state of the art in buckwheat research and provides concrete perspectives how modern breeding approaches can be implemented to accelerate the genetic gain. Our suggestions are transferable to many minor and underutilized crops to address the issue of limited genetic gain and low productivity.
Collapse
Affiliation(s)
- D C Joshi
- Indian Council of Agricultural Research-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India.
| | - Ganesh V Chaudhari
- Indian Council of Agricultural Research-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Salej Sood
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Lakshmi Kant
- Indian Council of Agricultural Research-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - A Pattanayak
- Indian Council of Agricultural Research-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dagmar Janovská
- Department of Gene Bank, Crop Research Institute, Drnovská, Prague, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica, Ljubljana, Slovenia
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
26
|
Fang X, Zhang Y, Zhang Y, Huang K, Yang W, Li X, Zhang Z, Wu K, Xu X, Ruan R, Yuan X, Zhang Z, Yi Z. De novo transcriptome assembly and identification of genes related to seed size in common buckwheat ( Fagopyrum esculentum M.). BREEDING SCIENCE 2019; 69:487-497. [PMID: 31598082 PMCID: PMC6776140 DOI: 10.1270/jsbbs.18194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/15/2019] [Indexed: 05/23/2023]
Abstract
Common buckwheat (Fagopyrum esculentum M.) belongs to the eudicot family Polygonaceae, Fagopyrum Mill, and its seeds have high nutritional value. The mechanism of seed development of common buckwheat remains unclear at the molecular level and no genes related to seed size have been identified. In this study, we performed genome-wide transcriptome sequencing and analysis using common buckwheat seeds at 5 days post anthesis (DPA) and 10 DPA from two cultivars (large-seeded and small-seeded). A total of 259,895 transcripts were assembled, resulting in 187,034 unigenes with average length of 1097 bp and N50 of 1538 bp. Based on gene expression profiles, 9127 differentially expressed genes (DEGs) were identified and analyzed in GO enrichment and KEGG analysis. In addition, genes related to seed size in the IKU pathway, ubiquitin-proteasome pathway, MAPK signaling pathway, TFs and phytohormones were identified and analyzed. AP2 and bZIP transcription factors, BR-signal and ABA were considered to be important regulators of seed size. This study provides a valuable genetic resource for future identification and functional analysis of candidate genes regulating seed size in common buckwheat and will be useful for improving seed yield in common buckwheat through molecular breeding in the future.
Collapse
Affiliation(s)
| | | | | | - Kehui Huang
- College of Agronomy and Biotechnology, Southwest University,
Chongqing, 400716,
People’s Republic of China
| | - Wenjuan Yang
- College of Agronomy and Biotechnology, Southwest University,
Chongqing, 400716,
People’s Republic of China
| | - Xiaoyu Li
- College of Agronomy and Biotechnology, Southwest University,
Chongqing, 400716,
People’s Republic of China
| | - Zhiyong Zhang
- College of Agronomy and Biotechnology, Southwest University,
Chongqing, 400716,
People’s Republic of China
| | - Kanghong Wu
- College of Agronomy and Biotechnology, Southwest University,
Chongqing, 400716,
People’s Republic of China
| | - Xin Xu
- College of Agronomy and Biotechnology, Southwest University,
Chongqing, 400716,
People’s Republic of China
| | - Renwu Ruan
- College of Agronomy and Biotechnology, Southwest University,
Chongqing, 400716,
People’s Republic of China
| | - Xiaohui Yuan
- College of Agronomy and Biotechnology, Southwest University,
Chongqing, 400716,
People’s Republic of China
| | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University,
Chongqing, 400716,
People’s Republic of China
| | - Zelin Yi
- College of Agronomy and Biotechnology, Southwest University,
Chongqing, 400716,
People’s Republic of China
| |
Collapse
|
27
|
Ma Z, Liu M, Sun W, Huang L, Wu Q, Bu T, Li C, Chen H. Genome-wide identification and expression analysis of the trihelix transcription factor family in tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2019; 19:344. [PMID: 31390980 PMCID: PMC6686422 DOI: 10.1186/s12870-019-1957-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In the study, the trihelix family, also referred to as GT factors, is one of the transcription factor families. Trihelix genes play roles in the light response, seed maturation, leaf development, abiotic and biological stress and other biological activities. However, the trihelix family in tartary buckwheat (Fagopyrum tataricum), an important usable medicinal crop, has not yet been thoroughly studied. The genome of tartary buckwheat has recently been reported and provides a theoretical basis for our research on the characteristics and expression of trihelix genes in tartary buckwheat based at the whole level. RESULTS In the present study, a total of 31 FtTH genes were identified based on the buckwheat genome. They were named from FtTH1 to FtTH31 and grouped into 5 groups (GT-1, GT-2, SH4, GTγ and SIP1). FtTH genes are not evenly distributed on the chromosomes, and we found segmental duplication events of FtTH genes on tartary buckwheat chromosomes. According to the results of gene and motif composition, FtTH located in the same group contained analogous intron/exon organizations and motif organizations. qRT-PCR showed that FtTH family members have multiple expression patterns in stems, roots, leaves, fruits, and flowers and during fruit development. CONCLUSIONS Through our study, we identified 31 FtTH genes in tartary buckwheat and synthetically further analyzed the evolution and expression pattern of FtTH proteins. The structure and motif organizations of most genes are conserved in each subfamily, suggesting that they may be functionally conserved. The FtTH characteristics of the gene expression patterns indicate functional diversity in the time and space in the tartary buckwheat life process. Based on the discussion and analysis of FtTH gene function, we screened some genes closely related to the growth and development of tartary buckwheat. This will help us to further study the function of FtTH genes through experimental exploration in tartary buckwheat growth and improve the fruit of tartary buckwheat.
Collapse
Affiliation(s)
- Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
28
|
Ji X, Han L, Liu F, Yin S, Peng Q, Wang M. A mini-review of isolation, chemical properties and bioactivities of polysaccharides from buckwheat (Fagopyrum Mill). Int J Biol Macromol 2019; 127:204-209. [DOI: 10.1016/j.ijbiomac.2019.01.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/13/2018] [Accepted: 01/09/2019] [Indexed: 01/04/2023]
|
29
|
A Novel and Validated Chemical-Enzymatic Strontium Fractionation Method for Wheat Flour from Celestite Mining Area: the First Approach for Sequential Fractionation. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-018-1362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
HUSSAIN ANWAR, KAUL RAJKUMARI. Formulation and Characterization of Buckwheat-Barley Supplemented Multigrain Biscuits. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2018. [DOI: 10.12944/crnfsj.6.3.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current study was carried out on biscuits by incorporating barley flour (10%) and buckwheat flour (10%, 20%, 30%, 40% and 50%) into wheat flour. Biscuits were evaluated for physico-chemical, functional and sensory attributes. All the blended samples exhibited high fiber, fat, ash, carbohydrate and mineral contents when compared to those prepared from 100% wheat flour. Considering the taste, flavour, texture and overall acceptability, 10% buckwheat flour incorporated biscuit (70:20:10::WF:BF:BWF) was found to be at the top among the blends. The incorporation of buckwheat flour increased the DPPH scavenging potential hence increased the functional property of blended product.
Collapse
Affiliation(s)
- ANWAR HUSSAIN
- Krishi Vigyan Kendra, Nyoma (SKUAST-K)Ladakh, 194404, India
| | - RAJKUMARI KAUL
- Division of Food Science and Technology, SKUAST-J,180009, India
| |
Collapse
|
31
|
Liu M, Ma Z, Zheng T, Sun W, Zhang Y, Jin W, Zhan J, Cai Y, Tang Y, Wu Q, Tang Z, Bu T, Li C, Chen H. Insights into the correlation between Physiological changes in and seed development of tartary buckwheat (Fagopyrum tataricum Gaertn.). BMC Genomics 2018; 19:648. [PMID: 30170551 PMCID: PMC6119279 DOI: 10.1186/s12864-018-5036-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum Gaertn.) is a widely cultivated medicinal and edible crop with excellent economic and nutritional value. The development of tartary buckwheat seeds is a very complex process involving many expression-dependent physiological changes and regulation of a large number of genes and phytohormones. In recent years, the gene regulatory network governing the physiological changes occurring during seed development have received little attention. RESULTS Here, we characterized the seed development of tartary buckwheat using light and electron microscopy and measured phytohormone and nutrient accumulation by using high performance liquid chromatography (HPLC) and by profiling the expression of key genes using RNA sequencing with the support of the tartary buckwheat genome. We first divided the development of tartary buckwheat seed into five stages that include complex changes in development, morphology, physiology and phytohormone levels. At the same time, the contents of phytohormones (gibberellin, indole-3-acetic acid, abscisic acid, and zeatin) and nutrients (rutin, starch, total proteins and soluble sugars) at five stages were determined, and their accumulation patterns in the development of tartary buckwheat seeds were analyzed. Second, gene expression patterns of tartary buckwheat samples were compared during three seed developmental stages (13, 19, and 25 days postanthesis, DPA), and 9 765 differentially expressed genes (DEGs) were identified. We analyzed the overlapping DEGs in different sample combinations and measured 665 DEGs in the three samples. Furthermore, expression patterns of DEGs related to phytohormones, flavonoids, starch, and storage proteins were analyzed. Third, we noted the correlation between the trait (physiological changes, nutrient changes) and metabolites during seed development, and discussed the key genes that might be involved in the synthesis and degradation of each of them. CONCLUSION We provided abundant genomic resources for tartary buckwheat and Polygonaceae communities and revealed novel molecular insights into the correlations between the physiological changes and seed development of tartary buckwheat.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yanjun Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Weiqiong Jin
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Junyi Zhan
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yuntao Cai
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yujia Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
32
|
The Effects of Buckwheat Leaf and Flower Extracts on Antioxidant Status in Mouse Organs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6712407. [PMID: 30013721 PMCID: PMC6022333 DOI: 10.1155/2018/6712407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/07/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022]
Abstract
This study was undertaken to investigate the effects of the extracts of buckwheat leaf and flower on the antioxidant status of the brain and liver tissue. The administration of buckwheat extracts (both concentrations were 10%) to mice (at the dose 10 mL/kg of body weight) for 21 days significantly decreased superoxide dismutase (SOD) activity and reduced the amount of glutathione (GSH) and malondialdehyde (MDA) in the mouse brain, while catalase (CAT) activity significantly increased. In the mouse liver, the amount of GSH and activity of SOD increased, while the CAT activity after administering buckwheat leaf and flower extracts was lower in experimental mice than in the control group. However, the administration of 10% ethanol (for 21 days) to control animals also had a significant effect on the antioxidant system in brain and liver cells. Experimental animals demonstrated rather marked changes in the activities of the antioxidant enzymes SOD and CAT in their liver and brain cells, and changes in the levels of GSH and MDA were observed when compared with the control group.
Collapse
|
33
|
Franzaring J, Damsohn W, Fangmeier A, Schlosser S, Kurz H, Büttner P. Phytotoxicity of tin mine waste and accumulation of involved heavy metals in common buckwheat (Fagopyrum esculentum Moench). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:462-470. [PMID: 29053347 DOI: 10.1080/15226514.2017.1365349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Extraction and processing of cassiterite (SnO2) left large tailings with high concentrations of tin, tungsten, molybdenum and lithium. Information on the phytotoxicity of mine waste is important with regard to ecological hazards. Exposure studies help to identify plants useful for the stabilization of waste tips and the phytomining of metals. A greenhouse study was performed using a dilution series of mine waste and four crops, a halophytic and a metallophytic species to derive dose response curves. Based on effective doses for growth reductions, sensitivity increased in the following order: maize > common buckwheat > quinoa > garden bean. Element analyses in different species and compartments of common buckwheat grown in a mixture of standard soil and 25% of the mine waste showed that only low levels of the metals were taken up and that transfer to seed tissues was negligible. As indicated by soil metal levels prior to and after the experiment, only lithium and arsenic proved to be plant available and reached high levels in green tissues while seed levels were low. The experiment confirmed differences in the uptake of metals with regard to elements and species. Common buckwheat is a suited candidate for cultivation on metal polluted soils.
Collapse
Affiliation(s)
- Jürgen Franzaring
- a University of Hohenheim, Institute for Landscape and Plant Ecology , Stuttgart , Germany
| | - Walter Damsohn
- a University of Hohenheim, Institute for Landscape and Plant Ecology , Stuttgart , Germany
| | - Andreas Fangmeier
- a University of Hohenheim, Institute for Landscape and Plant Ecology , Stuttgart , Germany
| | | | - Hannes Kurz
- b Core Facility Hohenheim (CFH) , Stuttgart , Germany
| | - Philipp Büttner
- c Helmholtz Institute Freiberg for Resource Technology , Freiberg , Germany
| |
Collapse
|
34
|
Sun X, Li W, Hu Y, Zhou X, Ji M, Yu D, Fujita K, Tatsumi E, Luan G. Comparison of pregelatinization methods on physicochemical, functional and structural properties of tartary buckwheat flour and noodle quality. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.01.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Gao J, Wang T, Liu M, Liu J, Zhang Z. Transcriptome analysis of filling stage seeds among three buckwheat species with emphasis on rutin accumulation. PLoS One 2017; 12:e0189672. [PMID: 29261741 PMCID: PMC5738128 DOI: 10.1371/journal.pone.0189672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/29/2017] [Indexed: 12/30/2022] Open
Abstract
Buckwheat is an important minor crop with pharmaceutical functions due to rutin enrichment in the seed. Seeds of common buckwheat cultivars (Fagopyrum esculentum, Fes) usually have much lower rutin content than tartary buckwheat (F. tartaricum, Ft). We previously found a wild species of common buckwheat (F. esculentum ssp. ancestrale, Fea), with seeds that are high in rutin, similar to Ft. In the present study, we investigated the mechanism by which rutin production varies among different buckwheat cultivars, Fea, a Ft variety (Xide) and a Fes variety (No.2 Pingqiao) using RNA sequencing of filling stage seeds. Sequencing data generated approximately 43.78-Gb of clean bases, all these data were pooled together and assembled 180,568 transcripts, and 109,952 unigenes. We established seed gene expression profiles of each buckwheat sample and assessed genes involved in flavonoid biosynthesis, storage proteins production, CYP450 family, starch and sucrose metabolism, and transcription factors. Differentially expressed genes between Fea and Fes were further analyzed due to their close relationship than with Ft. Expression levels of flavonoid biosynthesis gene FLS1 (Flavonol synthase 1) were similar in Fea and Ft, and much higher than in Fes, which was validated by qRT-PCR. This suggests that FLS1 transcript levels may be associated with rutin accumulation in filling stage seeds of buckwheat species. Further, we explored transcription factors by iTAK, and multiple gene families were identified as being involved in the coordinate regulation of metabolism and development. Our extensive transcriptomic data sets provide a complete description of metabolically related genes that are differentially expressed in filling stage buckwheat seeds and suggests that FLS1 is a key controller of rutin synthesis in buckwheat species. FLS1 can effectively convert dihydroflavonoids into flavonol products. These findings provide a basis for further studies of flavonoid biosynthesis in buckwheat breeding to help accelerate flavonoid metabolic engineering that would increase rutin content in cultivars of common buckwheat.
Collapse
Affiliation(s)
- Jia Gao
- The Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingting Wang
- The Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Minxuan Liu
- The Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Liu
- The Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zongwen Zhang
- The Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- China Office of Biodiversity International, Beijing, China
- * E-mail: ,
| |
Collapse
|
36
|
Wang X, Fan D, Zhang T. Effects of hydrothermal processing on rutin retention and physicochemical properties of Tartary buckwheat enriched dough and Chinese steamed bread. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xia Wang
- School of Public Health; Weifang Medical University; Weifang 261053 China
| | - Dong Fan
- Huangdao Entry-Exit Inspection and Quarantine Bureau; Qingdao 266555 China
| | - Tianliang Zhang
- Medicine Research Center; Weifang Medical University; Weifang 261053 China
| |
Collapse
|
37
|
Zhang W, Liu D, Liu Y, Chen X, Zou C. Overuse of Phosphorus Fertilizer Reduces the Grain and Flour Protein Contents and Zinc Bioavailability of Winter Wheat (Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1473-1482. [PMID: 28171726 DOI: 10.1021/acs.jafc.6b04778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To supplement human dietary nutrition, it is necessary to evaluate the effects of phosphorus (P) fertilizer application on grain and flour protein contents and especially on the bioavailability of zinc (Zn). A field experiment of winter wheat with six P application rates (0, 25, 50, 100, 200, 400 kg/ha) was conducted from 2013 to 2015. The grain yield increased with P application but was not further enhanced when P rates exceeded 50 kg/ha. As P application increased, the protein concentration in grain and standard flour and the viscosity of standard flour decreased. Phosphorus and phytic acid (PA) concentrations in grain and flours increased and then plateaued, whereas Zn concentration decreased and then plateaued as P application increased from 0 to 100 kg/ha. Estimated Zn bioavailability in grain and flours decreased as P application increased from 0 to 100 kg/ha and then plateaued. Estimated Zn bioavailability was greater in standard flour, bread flour, and refined flour than in grain or coarse flour. Phosphorus supply in the intensive cropping of wheat can be optimized to simultaneously obtain high grain yields, high grain and flour protein contents, and high Zn bioavailability.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Plant-Soil Interactions, Ministry of Education; Center for Resources, Environment and Food Security, China Agricultural University , Beijing 100193, People's Republic of China
| | - Dunyi Liu
- Key Laboratory of Plant-Soil Interactions, Ministry of Education; Center for Resources, Environment and Food Security, China Agricultural University , Beijing 100193, People's Republic of China
| | - Yumin Liu
- Key Laboratory of Plant-Soil Interactions, Ministry of Education; Center for Resources, Environment and Food Security, China Agricultural University , Beijing 100193, People's Republic of China
| | - Xinping Chen
- Key Laboratory of Plant-Soil Interactions, Ministry of Education; Center for Resources, Environment and Food Security, China Agricultural University , Beijing 100193, People's Republic of China
| | - Chunqin Zou
- Key Laboratory of Plant-Soil Interactions, Ministry of Education; Center for Resources, Environment and Food Security, China Agricultural University , Beijing 100193, People's Republic of China
| |
Collapse
|
38
|
Chemical composition and health effects of Tartary buckwheat. Food Chem 2016; 203:231-245. [PMID: 26948610 DOI: 10.1016/j.foodchem.2016.02.050] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 11/20/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum) contains a range of nutrients including bioactive carbohydrates and proteins, polyphenols, phytosterols, vitamins, carotenoids, and minerals. The unique composition of Tartary buckwheat contributes to their various health benefits such as anti-oxidative, anti-cancer, anti-hypertension, anti-diabetic, cholesterol-lowering, and cognition-improving. Compared with the more widely cultivated and utilised common buckwheat (F. esculentum), Tartary buckwheat tends to contain higher amounts of certain bioactive components such as rutin, therefore, showing higher efficiency in preventing/treating various disorders. This review summarises the current knowledge of the chemical composition of Tartary buckwheat, and their bio-functions as studied by both in vitro and in vivo models. Tartary buckwheat can be further developed as a sustainable crop for functional food production to improve human health.
Collapse
|
39
|
Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing. Carbohydr Polym 2015; 132:237-44. [PMID: 26256346 DOI: 10.1016/j.carbpol.2015.06.071] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/16/2015] [Accepted: 06/20/2015] [Indexed: 11/23/2022]
Abstract
Heat-moisture treatment (HMT) and annealing (ANN) were applied in the test to investigate how they can affect the physicochemical properties and in vitro digestibility of common buckwheat starch (CBS). In the practice, these two modification methods did not change typical 'A'-type X-ray diffraction pattern of CBS. However, the gelatinization temperature, amylose content, and relative crystallinity increased and peak viscosity value and gelatinization enthalpy of CBS declined significantly. Both the solubility and swelling power, which were temperature dependent, progressively decreased along with the treatments. Remarkable increase in slowly digested starch and resistant starch level was found at the same time. Besides, the decreases of rapidly digested starch and total hydrolysis content by using HMT were greater than by using ANN. The results indicated that the ANN and HMT efficiently modified physicochemical properties and in vitro digestibility of CBS and were able to improve its thermal stability, healthy benefits and application value.
Collapse
|
40
|
Choi JY, Lee JM, Lee DG, Cho S, Yoon YH, Cho EJ, Lee S. The n-Butanol Fraction and Rutin from Tartary Buckwheat Improve Cognition and Memory in an In Vivo Model of Amyloid-β-Induced Alzheimer's Disease. J Med Food 2015; 18:631-41. [PMID: 25785882 DOI: 10.1089/jmf.2014.3292] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study examined the beneficial effects of the n-butanol fraction and rutin extracted from tartary buckwheat (TB) on learning and memory deficits in a mouse model of amyloid β (Aβ)-induced Alzheimer's disease (AD). Learning and memory were assessed using the T-maze, object recognition, and Morris water maze tests. Animals administered Aβ showed impaired cognition and memory, which were alleviated by oral administration of an n-butanol fraction and rutin extracted from TB. Similarly, Aβ-induced increases in nitric oxide formation and lipid peroxidation in the brain, liver, and kidneys were attenuated by treatment with n-butanol fraction and rutin from TB in addition to antioxidant effects observed in control (nonAβ-treated) animals. The results of the present study suggest that the n-butanol fraction and rutin extracted from TB are protective against and have possible therapeutic applications for the treatment of AD.
Collapse
Affiliation(s)
- Ji Yeon Choi
- 1Department of Food Science and Nutrition, Research Institute of Ecology for the Elderly, Pusan National University, Busan, Korea
| | - Jeong Min Lee
- 2Department of Integrative Plant Science, Chung-Ang University, Anseong, Korea.,3Department of Functional Crops, National Institute of Crop Science, Rural Development Administration, Miryang, Korea
| | - Dong Gu Lee
- 2Department of Integrative Plant Science, Chung-Ang University, Anseong, Korea
| | - Sunghun Cho
- 2Department of Integrative Plant Science, Chung-Ang University, Anseong, Korea
| | - Young-Ho Yoon
- 3Department of Functional Crops, National Institute of Crop Science, Rural Development Administration, Miryang, Korea
| | - Eun Ju Cho
- 1Department of Food Science and Nutrition, Research Institute of Ecology for the Elderly, Pusan National University, Busan, Korea
| | - Sanghyun Lee
- 2Department of Integrative Plant Science, Chung-Ang University, Anseong, Korea
| |
Collapse
|
41
|
Choi SY, Choi JY, Lee JM, Lee S, Cho EJ. Tartary buckwheat on nitric oxide-induced inflammation in RAW264.7 macrophage cells. Food Funct 2015; 6:2664-70. [DOI: 10.1039/c5fo00639b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigated the effects of tartary buckwheat (TB, Fagopyrum tataricum) on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)- and interferon (IFN)-γ-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Soo Yeon Choi
- Department of Food Science and Nutrition
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Ji Yeon Choi
- Department of Food Science and Nutrition
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Jeong Min Lee
- Department of Integrative Plant Science
- Chung-Ang University
- Anseong 456-756
- Republic of Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science
- Chung-Ang University
- Anseong 456-756
- Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition
- Pusan National University
- Busan 609-735
- Republic of Korea
| |
Collapse
|
42
|
Influence of Buckwheat Addition on Physical Properties, Texture and Sensory Characteristics of Extruded Corn Snacks. POL J FOOD NUTR SCI 2013. [DOI: 10.2478/v10222-012-0076-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Wang X, Feng B, Xu Z, Sestili F, Zhao G, Xiang C, Lafiandra D, Wang T. Identification and characterization of granule bound starch synthase I (GBSSI) gene of tartary buckwheat (Fagopyrum tataricum Gaertn.). Gene 2013; 534:229-35. [PMID: 24211386 DOI: 10.1016/j.gene.2013.10.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/08/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is increasingly considered as an important functional food material because of its rich nutraceutical compounds. Reserve starch is the major component of tartary buckwheat seed. However, the gene sequences and the molecular mechanism of tartary buckwheat starch synthesis are unknown so far. In this study, the complete genomic sequence and full-size cDNA coding tartary buckwheat granule-bound starch synthase I (FtGBSSI), which is responsible for amylose synthesis, were isolated and analyzed. The genomic sequence of the FtGBSSI contained 3947 nucleotides and was composed of 14 exons and 13 introns. The cDNA coding sequence of FtGBSSI shared 63.3%-75.1% identities with those of dicots and 56.6%-57.5% identities with monocots (Poaceae). In deduced amino acid sequence of FtGBSSI, eight motifs conserved among plant starch synthases were identified. A cleavage at the site IVC↓G of FtGBSSI protein produces the chloroplast transit sequence of 78 amino acids and the mature protein of 527 amino acids. The FtGBSSI mature protein showed an identity of 73.4%-77.8% with dicot plants, and 67.6%-70.4% with monocot plants (Poaceae). The mature protein was composed of 20 α-helixes and 16 β-strands, and folds into two main domains, N- and C-terminal domains. The critical residues which are involved in ADP and sugar binding were predicted. These results will be useful to modulate starch composition of buckwheat kernels with the aim to produce novel improved varieties in future breeding programs.
Collapse
Affiliation(s)
- Xun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Francesco Sestili
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Viterbo, Italy
| | - Guojun Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chao Xiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Domenico Lafiandra
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Viterbo, Italy
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
44
|
Pongrac P, Vogel-Mikuš K, Jeromel L, Vavpetič P, Pelicon P, Kaulich B, Gianoncelli A, Eichert D, Regvar M, Kreft I. Spatially resolved distributions of the mineral elements in the grain of tartary buckwheat (Fagopyrum tataricum). Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.06.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
The gluten-free diet: testing alternative cereals tolerated by celiac patients. Nutrients 2013; 5:4250-68. [PMID: 24152755 PMCID: PMC3820072 DOI: 10.3390/nu5104250] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023] Open
Abstract
A strict gluten-free diet (GFD) is the only currently available therapeutic treatment for patients with celiac disease, an autoimmune disorder of the small intestine associated with a permanent intolerance to gluten proteins. The complete elimination of gluten proteins contained in cereals from the diet is the key to celiac disease management. However, this generates numerous social and economic repercussions due to the ubiquity of gluten in foods. The research presented in this review focuses on the current status of alternative cereals and pseudocereals and their derivatives obtained by natural selection, breeding programs and transgenic or enzymatic technology, potential tolerated by celiac people. Finally, we describe several strategies for detoxification of dietary gluten. These included enzymatic cleavage of gliadin fragment by Prolyl endopeptidases (PEPs) from different organisms, degradation of toxic peptides by germinating cereal enzymes and transamidation of cereal flours. This information can be used to search for and develop cereals with the baking and nutritional qualities of toxic cereals, but which do not exacerbate this condition.
Collapse
|
46
|
Lu L, Murphy K, Baik BK. Genotypic Variation in Nutritional Composition of Buckwheat Groats and Husks. Cereal Chem 2013. [DOI: 10.1094/cchem-07-12-0090-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lu Lu
- School of Food Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Kevin Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, U.S.A
| | - Byung-Kee Baik
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, U.S.A
- Corresponding author. Phone: (509) 335-8230. Fax: (509) 335-8674. E-mail:
| |
Collapse
|
47
|
Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model. Food Chem Toxicol 2013; 53:105-11. [DOI: 10.1016/j.fct.2012.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 01/07/2023]
|
48
|
Perharič L, Koželj G, Družina B, Stanovnik L. Risk assessment of buckwheat flour contaminated by thorn-apple (Datura stramoniumL.) alkaloids: a case study from Slovenia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:321-30. [DOI: 10.1080/19440049.2012.743189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Lee S, Kim S, Kim S, Lee I. Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:848-54. [PMID: 22814961 PMCID: PMC3555345 DOI: 10.1007/s11356-012-1069-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/04/2012] [Indexed: 05/21/2023]
Abstract
Fagopyrum esculentum commonly named as buckwheat plant is pseudocereal food crops and healthy herbs but is not known as a bioindicator of environmental condition. In the present study, the effects of ZnO nanoparticles (NPs) and microparticles (MPs) on plant growth, bioaccumulation, and antioxidative enzyme activity in buckwheat were estimated under hydroponic culture. The significant biomass reduction at concentrations of 10-2,000 mg/L was 7.7-26.4 % for the ZnO NP and 11.4-23.5 % for the ZnO MP treatment, (p < 0.05). ZnO NPs were observed in root cells and root cell surface by scanning electron microscopy and transmission electron microscopy analysis. Zn bioaccumulation in plant increased with increasing treatment concentrations. The upward translocation (translocation factor <0.2) of Zn in plant was higher with the ZnO NP treatment than that with the ZnO MP treatment. Additionally, reactive oxygen species generation by ZnO NPs was estimated as the reduced glutathione level and catalase activity, which would be a predictive biomarker of nanotoxicity. The results are the first study to evaluate the phytotoxicity of ZnO NPs to medicinal plant. F. esculentum can be as a good indicator of plant species in NP-polluted environment.
Collapse
Affiliation(s)
- Sooyeon Lee
- Division of EcoScience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750 South Korea
| | - Sunghyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Saeyeon Kim
- Division of EcoScience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750 South Korea
| | - Insook Lee
- Division of EcoScience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750 South Korea
| |
Collapse
|
50
|
Li X, Park NI, Kim YB, Kim HH, Park CH, Wu Q, Park SU. Accumulation of flavonoids and expression of flavonoid biosynthetic genes in tartary and rice-tartary buckwheat. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|