1
|
Terreros G, Cifuentes-Cabello C, D'Espessailles A, Munoz F. Impact of pesticide exposure on auditory health: Mechanisms, efferent system disruption, and public health implications. Toxicology 2025; 512:154071. [PMID: 39921025 DOI: 10.1016/j.tox.2025.154071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Pesticide exposure has been linked to adverse effects on auditory health, impacting both peripheral and central auditory systems. Studies suggest that organophosphate, carbamate, organochlorine, and pyrethroid pesticides disrupt auditory processing through oxidative stress, neuroinflammation, and interference with cholinergic signaling. These disruptions may compromise sensory hair cells, spiral ganglion neurons, and auditory pathways, impairing precise signal transmission. The auditory efferent system, responsible for cochlear protection and auditory signal modulation, appears particularly susceptible to pesticide-induced alterations. This system relies on cholinergic transmission to regulate cochlear amplification and selective attention, functions that may be disrupted by pesticide exposure. Evidence from epidemiological and experimental studies highlights the potential for long-term auditory dysfunction in populations exposed to pesticides, with agricultural workers and their families facing elevated risks due to prolonged contact with agrochemicals. This review integrates findings on pesticide exposure and its implications for auditory health, discussing potential peripheral and central ototoxicity pathways. The cumulative effects of chronic exposure are emphasized, including the gradual degradation of auditory processing capabilities. Additionally, the need for targeted interventions, such as audiological monitoring and enhanced safety protocols, is addressed. Further research is critical to elucidate the mechanisms underlying pesticide-induced auditory damage and identify protective strategies. Such investigations can inform evidence-based policies to mitigate the public health impact of pesticide exposure while maintaining agricultural productivity. A multidisciplinary approach is essential to safeguard auditory health in vulnerable populations exposed to these environmental hazards.
Collapse
Affiliation(s)
- Gonzalo Terreros
- Laboratorio de Neurociencia Sensorial, Perceptual y Cognitiva, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | | | - Amanda D'Espessailles
- Laboratorio de Neurociencia Sensorial, Perceptual y Cognitiva, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Felipe Munoz
- Laboratorio de Neurociencia Sensorial, Perceptual y Cognitiva, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile; Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
2
|
Carlyon RP, Deeks JM, Delgutte B, Chung Y, Vollmer M, Ohl FW, Kral A, Tillein J, Litovsky RY, Schnupp J, Rosskothen-Kuhl N, Goldsworthy RL. Limitations on Temporal Processing by Cochlear Implant Users: A Compilation of Viewpoints. Trends Hear 2025; 29:23312165251317006. [PMID: 40095543 DOI: 10.1177/23312165251317006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Cochlear implant (CI) users are usually poor at using timing information to detect changes in either pitch or sound location. This deficit occurs even for listeners with good speech perception and even when the speech processor is bypassed to present simple, idealized stimuli to one or more electrodes. The present article presents seven expert opinion pieces on the likely neural bases for these limitations, the extent to which they are modifiable by sensory experience and training, and the most promising ways to overcome them in future. The article combines insights from physiology and psychophysics in cochlear-implanted humans and animals, highlights areas of agreement and controversy, and proposes new experiments that could resolve areas of disagreement.
Collapse
Affiliation(s)
- Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John M Deeks
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Yoojin Chung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Maike Vollmer
- Department of Experimental Audiology, University Clinic of Otolaryngology, Head and Neck Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Frank W Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Andrej Kral
- Institute of Audio-Neuro-Technology & Department of Experimental Otology, Clinics of Otolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Jochen Tillein
- Clinics of Otolaryngology, Head and Neck Surgery, J.W.Goethe University, Frankfurt, Germany
- MedEl Company, Hannover, Germany
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Schnupp
- Gerald Choa Neuroscience Institute and Department of Otolaryngology, Chinese University of Hong Kong, Hong Kong (NB Hong Kong is a Special Administrative Region) of China
| | - Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Oto-Rhino-Laryngology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Raymond L Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Fischl M, Pederson A, Voglewede R, Cheng H, Drew J, Torres Cadenas L, Weisz CJC. Fast Inhibition Slows and Desynchronizes Mouse Auditory Efferent Neuron Activity. J Neurosci 2024; 44:e0382242024. [PMID: 38937103 PMCID: PMC11326868 DOI: 10.1523/jneurosci.0382-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits. However, their modulation of cochlear function occurs over time scales of a slower nature. This suggests the presence of mechanisms that reduce MOC inhibition of cochlear function. To determine how monaural excitatory and inhibitory synaptic inputs integrate to affect the timing of MOC neuron activity, we developed a novel in vitro slice preparation ("wedge-slice"). The wedge-slice maintains the ascending auditory nerve root, the entire CN and projecting axons, while preserving the ability to perform visually guided patch-clamp electrophysiology recordings from genetically identified MOC neurons. The "in vivo-like" timing of the wedge-slice demonstrates that the inhibitory pathway accelerates relative to the excitatory pathway when the ascending circuit is intact, and the CN portion of the inhibitory circuit is precise enough to compensate for reduced precision in later synapses. When combined with machine learning PSC analysis and computational modeling, we demonstrate a larger suppression of MOC neuron activity when the inhibition occurs with in vivo-like timing. This delay of MOC activity may ensure that the MOC system is only engaged by sustained background sounds, preventing a maladaptive hypersuppression of cochlear activity.
Collapse
Affiliation(s)
- Matthew Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Alia Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Rebecca Voglewede
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Hui Cheng
- NIDCD Data Science Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Jordan Drew
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| |
Collapse
|
4
|
Rincón H, Gómez-Martínez M, Gómez-Álvarez M, Saldaña E. Medial superior olive in the rat: Anatomy, sources of input and axonal projections. Hear Res 2024; 449:109036. [PMID: 38797037 DOI: 10.1016/j.heares.2024.109036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Although rats and mice are among the preferred animal models for investigating many characteristics of auditory function, they are rarely used to study an essential aspect of binaural hearing: the ability of animals to localize the sources of low-frequency sounds by detecting the interaural time difference (ITD), that is the difference in the time at which the sound arrives at each ear. In mammals, ITDs are mostly encoded in the medial superior olive (MSO), one of the main nuclei of the superior olivary complex (SOC). Because of their small heads and high frequency hearing range, rats and mice are often considered unable to use ITDs for sound localization. Moreover, their MSO is frequently viewed as too small or insignificant compared to that of mammals that use ITDs to localize sounds, including cats and gerbils. However, recent research has demonstrated remarkable similarities between most morphological and physiological features of mouse MSO neurons and those of MSO neurons of mammals that use ITDs. In this context, we have analyzed the structure and neural afferent and efferent connections of the rat MSO, which had never been studied by injecting neuroanatomical tracers into the nucleus. The rat MSO spans the SOC longitudinally. It is relatively small caudally, but grows rostrally into a well-developed column of stacked bipolar neurons. By placing small, precise injections of the bidirectional tracer biotinylated dextran amine (BDA) into the MSO, we show that this nucleus is innervated mainly by the most ventral and rostral spherical bushy cells of the anteroventral cochlear nucleus of both sides, and by the most ventrolateral principal neurons of the ipsilateral medial nucleus of the trapezoid body. The same experiments reveal that the MSO densely innervates the most dorsolateral region of the central nucleus of the inferior colliculus, the central region of the dorsal nucleus of the lateral lemniscus, and the most lateral region of the intermediate nucleus of the lateral lemniscus of its own side. Therefore, the MSO is selectively innervated by, and sends projections to, neurons that process low-frequency sounds. The structural and hodological features of the rat MSO are notably similar to those of the MSO of cats and gerbils. While these similarities raise the question of what functions other than ITD coding the MSO performs, they also suggest that the rat MSO is an appropriate model for future MSO-centered research.
Collapse
Affiliation(s)
- Héctor Rincón
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
| | - Mario Gómez-Martínez
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
| | - Marcelo Gómez-Álvarez
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Enrique Saldaña
- Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
5
|
Zacher AC, Felmy F. Anatomy of superior olivary complex and lateral lemniscus in Etruscan shrew. Sci Rep 2024; 14:14734. [PMID: 38926520 PMCID: PMC11208622 DOI: 10.1038/s41598-024-65451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Based on the auditory periphery and the small head size, Etruscan shrews (Suncus etruscus) approximate ancestral mammalian conditions. The auditory brainstem in this insectivore has not been investigated. Using labelling techniques, we assessed the structures of their superior olivary complex (SOC) and the nuclei of the lateral lemniscus (NLL). There, we identified the position of the major nuclei, their input pattern, transmitter content, expression of calcium binding proteins (CaBPs) and two voltage-gated ion channels. The most prominent SOC structures were the medial nucleus of the trapezoid body (MNTB), the lateral nucleus of the trapezoid body (LNTB), the lateral superior olive (LSO) and the superior paraolivary nucleus (SPN). In the NLL, the ventral (VNLL), a specific ventrolateral VNLL (VNLLvl) cell population, the intermediate (INLL) and dorsal (DNLL) nucleus, as well as the inferior colliculus's central aspect were discerned. INLL and VNLL were clearly separated by the differential distribution of various marker proteins. Most labelled proteins showed expression patterns comparable to rodents. However, SPN neurons were glycinergic and not GABAergic and the overall CaBPs expression was low. Next to the characterisation of the Etruscan shrew's auditory brainstem, our work identifies conserved nuclei and indicates variable structures in a species that approximates ancestral conditions.
Collapse
Affiliation(s)
- Alina C Zacher
- Institute of Zoology, University of Veterinary Medicine Foundation, Buenteweg 17, 30559, Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), Buenteweg 2, 30559, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Foundation, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
6
|
Liu M, Wang Y, Jiang L, Zhang X, Wang C, Zhang T. Research progress of the inferior colliculus: from Neuron, neural circuit to auditory disease. Brain Res 2024; 1828:148775. [PMID: 38244755 DOI: 10.1016/j.brainres.2024.148775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The auditory midbrain, also known as the inferior colliculus (IC), serves as a crucial hub in the auditory pathway. Comprising diverse cell types, the IC plays a pivotal role in various auditory functions, including sound localization, auditory plasticity, sound detection, and sound-induced behaviors. Notably, the IC is implicated in several auditory central disorders, such as tinnitus, age-related hearing loss, autism and Fragile X syndrome. Accurate classification of IC neurons is vital for comprehending both normal and dysfunctional aspects of IC function. Various parameters, including dendritic morphology, neurotransmitter synthesis, potassium currents, biomarkers, and axonal targets, have been employed to identify distinct neuron types within the IC. However, the challenge persists in effectively classifying IC neurons into functional categories due to the limited clustering capabilities of most parameters. Recent studies utilizing advanced neuroscience technologies have begun to shed light on biomarker-based approaches in the IC, providing insights into specific cellular properties and offering a potential avenue for understanding IC functions. This review focuses on recent advancements in IC research, spanning from neurons and neural circuits to aspects related to auditory diseases.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuyao Wang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Li Jiang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaopeng Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chunrui Wang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianhong Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
7
|
Xie R, Wang M, Zhang C. Mechanisms of age-related hearing loss at the auditory nerve central synapses and postsynaptic neurons in the cochlear nucleus. Hear Res 2024; 442:108935. [PMID: 38113793 PMCID: PMC10842789 DOI: 10.1016/j.heares.2023.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Sound information is transduced from mechanical vibration to electrical signals in the cochlea, conveyed to and further processed in the brain to form auditory perception. During the process, spiral ganglion neurons (SGNs) are the key cells that connect the peripheral and central auditory systems by receiving information from hair cells in the cochlea and transmitting it to neurons of the cochlear nucleus (CN). Decades of research in the cochlea greatly improved our understanding of SGN function under normal and pathological conditions, especially about the roles of different subtypes of SGNs and their peripheral synapses. However, it remains less clear how SGN central terminals or auditory nerve (AN) synapses connect to CN neurons, and ultimately how peripheral pathology links to structural alterations and functional deficits in the central auditory nervous system. This review discusses recent progress about the morphological and physiological properties of different subtypes of AN synapses and associated postsynaptic CN neurons, their changes during aging, and the potential mechanisms underlying age-related hearing loss.
Collapse
Affiliation(s)
- Ruili Xie
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA; Department of Neuroscience, The Ohio State University, 420W 12th Ave, Columbus, OH 43210, USA.
| | - Meijian Wang
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA
| | - Chuangeng Zhang
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA
| |
Collapse
|
8
|
Fischl M, Pederson A, Voglewede R, Cheng H, Drew J, Cadenas LT, Weisz CJ. Fast inhibition slows and desynchronizes mouse auditory efferent neuron activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572886. [PMID: 38313270 PMCID: PMC10836066 DOI: 10.1101/2023.12.21.572886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well-suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits. However, their modulation of cochlear function occurs over time scales of a slower nature. This suggests the presence of mechanisms that restrict MOC inhibition of cochlear function. To determine how monaural excitatory and inhibitory synaptic inputs integrate to affect the timing of MOC neuron activity, we developed a novel in vitro slice preparation ('wedge-slice'). The wedge-slice maintains the ascending auditory nerve root, the entire CN and projecting axons, while preserving the ability to perform visually guided patch-clamp electrophysiology recordings from genetically identified MOC neurons. The 'in vivo-like' timing of the wedge-slice demonstrates that the inhibitory pathway accelerates relative to the excitatory pathway when the ascending circuit is intact, and the CN portion of the inhibitory circuit is precise enough to compensate for reduced precision in later synapses. When combined with machine learning PSC analysis and computational modeling, we demonstrate a larger suppression of MOC neuron activity when the inhibition occurs with in vivo-like timing. This delay of MOC activity may ensure that the MOC system is only engaged by sustained background sounds, preventing a maladaptive hyper-suppression of cochlear activity.
Collapse
Affiliation(s)
- Matthew Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: Lafayette College, Neuroscience Program, Easton, PA 18042, USA
| | - Alia Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: The University of Texas at Austin Dell Medical School, Austin, TX 78712, USA
| | - Rebecca Voglewede
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Jordan Drew
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
- Current affiliation: Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Catherine J.C. Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Weingarten DJ, Sebastian E, Winkelhoff J, Patschull-Keiner N, Fischer AU, Wadle SL, Friauf E, Hirtz JJ. An inhibitory glycinergic projection from the cochlear nucleus to the lateral superior olive. Front Neural Circuits 2023; 17:1307283. [PMID: 38107610 PMCID: PMC10722231 DOI: 10.3389/fncir.2023.1307283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
Auditory brainstem neurons in the lateral superior olive (LSO) receive excitatory input from the ipsilateral cochlear nucleus (CN) and inhibitory transmission from the contralateral CN via the medial nucleus of the trapezoid body (MNTB). This circuit enables sound localization using interaural level differences. Early studies have observed an additional inhibitory input originating from the ipsilateral side. However, many of its details, such as its origin, remained elusive. Employing electrical and optical stimulation of afferents in acute mouse brainstem slices and anatomical tracing, we here describe a glycinergic projection to LSO principal neurons that originates from the ipsilateral CN. This inhibitory synaptic input likely mediates inhibitory sidebands of LSO neurons in response to acoustic stimulation.
Collapse
Affiliation(s)
- Dennis J. Weingarten
- Animal Physiology Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eva Sebastian
- Physiology of Neuronal Networks Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jennifer Winkelhoff
- Animal Physiology Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Physiology of Neuronal Networks Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Nadine Patschull-Keiner
- Animal Physiology Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Alexander U. Fischer
- Animal Physiology Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Simon L. Wadle
- Physiology of Neuronal Networks Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jan J. Hirtz
- Physiology of Neuronal Networks Group, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
10
|
Ryugo DK, Milinkeviciute G. Differential projections from the cochlear nucleus to the inferior colliculus in the mouse. Front Neural Circuits 2023; 17:1229746. [PMID: 37554670 PMCID: PMC10405501 DOI: 10.3389/fncir.2023.1229746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
The cochlear nucleus (CN) is often regarded as the gateway to the central auditory system because it initiates all ascending pathways. The CN consists of dorsal and ventral divisions (DCN and VCN, respectively), and whereas the DCN functions in the analysis of spectral cues, circuitry in VCN is part of the pathway focused on processing binaural information necessary for sound localization in horizontal plane. Both structures project to the inferior colliculus (IC), which serves as a hub for the auditory system because pathways ascending to the forebrain and descending from the cerebral cortex converge there to integrate auditory, motor, and other sensory information. DCN and VCN terminations in the IC are thought to overlap but given the differences in VCN and DCN architecture, neuronal properties, and functions in behavior, we aimed to investigate the pattern of CN connections in the IC in more detail. This study used electrophysiological recordings to establish the frequency sensitivity at the site of the anterograde dye injection for the VCN and DCN of the CBA/CaH mouse. We examined their contralateral projections that terminate in the IC. The VCN projections form a topographic sheet in the central nucleus (CNIC). The DCN projections form a tripartite set of laminar sheets; the lamina in the CNIC extends into the dorsal cortex (DC), whereas the sheets to the lateral cortex (LC) and ventrolateral cortex (VLC) are obliquely angled away. These fields in the IC are topographic with low frequencies situated dorsally and progressively higher frequencies lying more ventrally and/or laterally; the laminae nestle into the underlying higher frequency fields. The DCN projections are complementary to the somatosensory modules of layer II of the LC but both auditory and spinal trigeminal terminations converge in the VLC. While there remains much to be learned about these circuits, these new data on auditory circuits can be considered in the context of multimodal networks that facilitate auditory stream segregation, signal processing, and species survival.
Collapse
Affiliation(s)
- David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head and Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Giedre Milinkeviciute
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
11
|
Yu X, Wang Y. Peripheral Fragile X messenger ribonucleoprotein is required for the timely closure of a critical period for neuronal susceptibility in the ventral cochlear nucleus. Front Cell Neurosci 2023; 17:1186630. [PMID: 37305436 PMCID: PMC10248243 DOI: 10.3389/fncel.2023.1186630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Alterations in neuronal plasticity and critical periods are common across neurodevelopmental diseases, including Fragile X syndrome (FXS), the leading single-gene cause of autism. Characterized with sensory dysfunction, FXS is the result of gene silencing of Fragile X messenger ribonucleoprotein 1 (FMR1) and loss of its product, Fragile X messenger ribonucleoprotein (FMRP). The mechanisms underlying altered critical period and sensory dysfunction in FXS are obscure. Here, we performed genetic and surgical deprivation of peripheral auditory inputs in wildtype and Fmr1 knockout (KO) mice across ages and investigated the effects of global FMRP loss on deafferentation-induced neuronal changes in the ventral cochlear nucleus (VCN) and auditory brainstem responses. The degree of neuronal cell loss during the critical period was unchanged in Fmr1 KO mice. However, the closure of the critical period was delayed. Importantly, this delay was temporally coincidental with reduced hearing sensitivity, implying an association with sensory inputs. Functional analyses further identified early-onset and long-lasting alterations in signal transmission from the spiral ganglion to the VCN, suggesting a peripheral site of FMRP action. Finally, we generated conditional Fmr1 KO (cKO) mice with selective deletion of FMRP in spiral ganglion but not VCN neurons. cKO mice recapitulated the delay in the VCN critical period closure in Fmr1 KO mice, confirming an involvement of cochlear FMRP in shaping the temporal features of neuronal critical periods in the brain. Together, these results identify a novel peripheral mechanism of neurodevelopmental pathogenesis.
Collapse
Affiliation(s)
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
12
|
Wang M, Zhang C, Lin S, Xie R. Dendritic Degeneration and Altered Synaptic Innervation of a Central Auditory Neuron During Age-related Hearing Loss. Neuroscience 2023; 514:25-37. [PMID: 36738912 PMCID: PMC9992229 DOI: 10.1016/j.neuroscience.2023.01.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Cellular morphology and synaptic configuration are key determinants of neuronal function and are often modified under pathological conditions. In the first nucleus of the central auditory system, the cochlear nucleus (CN), principal bushy neurons specialize in processing temporal information of sound critical for hearing. These neurons alter their physiological properties during aging that contribute to age-related hearing loss (ARHL). The structural basis of such changes remains unclear, especially age-related modifications in their dendritic morphology and the innervating auditory nerve (AN) synapses. Using young (2-5 months) and aged (28-33 months) CBA/CaJ mice of either sex, we filled individual bushy neurons with fluorescent dye in acute brain slices to characterize their dendritic morphology, followed by immunostaining against vesicular glutamate transporter 1 (VGluT1) and calretinin (CR) to identify innervating AN synapses. We found that dendritic morphology of aged bushy neurons had significantly reduced complexity, suggesting age-dependent dendritic degeneration, especially in neurons with predominantly non-CR-expressing synapses on the soma. These dendrites were innervated by AN bouton synapses, which were predominantly non-CR-expressing in young mice but had increased proportion of CR-expressing synapses in old mice. While somatic AN synapses degenerated substantially with age, as quantified by VGluT1-labeled puncta volume, no significant difference was observed in the total volume of dendritic synapses between young and old mice. Consequently, synaptic density on dendrites was significantly higher in old mice. The findings suggest that dendritic degeneration and altered synaptic innervation in bushy neurons during aging may underlie their changed physiological activity and contribute to the development of ARHL.
Collapse
Affiliation(s)
- Meijian Wang
- Department of Otolaryngology, The Ohio State University, Columbus, OH, USA
| | - Chuangeng Zhang
- Department of Otolaryngology, The Ohio State University, Columbus, OH, USA
| | - Shengyin Lin
- Department of Otolaryngology, The Ohio State University, Columbus, OH, USA
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
McInturff S, Coen FV, Hight AE, Tarabichi O, Kanumuri VV, Vachicouras N, Lacour SP, Lee DJ, Brown MC. Comparison of Responses to DCN vs. VCN Stimulation in a Mouse Model of the Auditory Brainstem Implant (ABI). J Assoc Res Otolaryngol 2022; 23:391-412. [PMID: 35381872 PMCID: PMC9085982 DOI: 10.1007/s10162-022-00840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/31/2022] [Indexed: 10/18/2022] Open
Abstract
The auditory brainstem implant (ABI) is an auditory neuroprosthesis that provides hearing to deaf patients by electrically stimulating the cochlear nucleus (CN) of the brainstem. Whether such stimulation activates one or the other of the CN's two major subdivisions is not known. Here, we demonstrate clear response differences from the stimulation of the dorsal (D) vs. ventral (V) subdivisions of the CN in a mouse model of the ABI with a surface-stimulating electrode array. For the DCN, low levels of stimulation evoked multiunit responses in the inferior colliculus (IC) that were unimodally distributed with early latencies (avg. peak latency of 3.3 ms). However, high levels of stimulation evoked a bimodal distribution with the addition of a late latency response peak (avg. peak latency of 7.1 ms). For the VCN, in contrast, electrical stimulation elicited multiunit responses that were usually unimodal and had a latency similar to the DCN's late response. Local field potentials (LFP) from the IC showed components that correlated with early and late multiunit responses. Surgical cuts to sever the output of the DCN, the dorsal acoustic stria (DAS), gave insight into the origin of these early and late responses. Cuts eliminated early responses but had little-to-no effect on late responses. The early responses thus originate from cells that project through the DAS, such as DCN's pyramidal and giant cells. Late responses likely arise from the spread of stimulation from a DCN-placed electrode array to the VCN and could originate in bushy and/or stellate cells. In human ABI users, the spread of stimulation in the CN may result in abnormal response patterns that could hinder performance.
Collapse
Affiliation(s)
- Stephen McInturff
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA.
| | - Florent-Valéry Coen
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Osama Tarabichi
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Vivek V Kanumuri
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Nicolas Vachicouras
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Daniel J Lee
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Nieder C, Rosene DL, Mortazavi F, Oblak AL, Ketten DR. Morphology and unbiased stereology of the lateral superior olive in the short‐beaked common dolphin,
Delphinus delphis
(Cetacea, Delphinidae). J Morphol 2022; 283:446-461. [DOI: 10.1002/jmor.21453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Carolin Nieder
- Institute of Marine Science, University of Auckland, Leigh Marine Laboratory, 160 Goat Island Road, Leigh New Zealand
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology Boston University School of Medicine 72 East, Concord St (L 1004), Boston Massachusetts
| | - Farzad Mortazavi
- Department of Anatomy and Neurobiology Boston University School of Medicine 72 East, Concord St (L 1004), Boston Massachusetts
| | - Adrian L. Oblak
- Indiana University School of Medicine, Stark Neurosciences Research Institute, Department of Radiology & Imaging Sciences, 320 W. 15th Street Indianapolis IN
| | - Darlene R. Ketten
- Woods Hole Oceanographic Institution, Biology Department, Marine Research Facility, MS #50 Woods Hole MA USA
| |
Collapse
|
15
|
Wallace MN, Shackleton TM, Thompson Z, Palmer AR. Juxtacellular Labeling of Stellate, Disk and Basket Neurons in the Central Nucleus of the Guinea Pig Inferior Colliculus. Front Neural Circuits 2021; 15:721015. [PMID: 34790099 PMCID: PMC8592287 DOI: 10.3389/fncir.2021.721015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
We reconstructed the intrinsic axons of 32 neurons in the guinea pig inferior colliculus (IC) following juxtacellular labeling. Biocytin was injected into cells in vivo, after first analyzing physiological response properties. Based on axonal morphology there were two classes of neuron: (1) laminar cells (14/32, 44%) with an intrinsic axon and flattened dendrites confined to a single fibrodendritic lamina and (2) translaminar cells (18/32, 56%) with axons that terminated in two or more laminae in the central nucleus (ICc) or the surrounding cortex. There was also one small, low-frequency cell with bushy-like dendrites that was very sensitive to interaural timing differences. The translaminar cells were subdivided into three groups of cells with: (a) stellate dendrites that crossed at least two laminae (8/32, 25%); (b) flattened dendrites confined to one lamina and that had mainly en passant axonal swellings (7/32, 22%) and (c) short, flattened dendrites and axons with distinctive clusters of large terminal boutons in the ICc (3/32, 9%). These terminal clusters were similar to those of cortical basket cells. The 14 laminar cells all had sustained responses apart from one offset response. Almost half the non-basket type translaminar cells (7/15) had onset responses while the others had sustained responses. The basket cells were the only ones to have short-latency (7–9 ms), chopper responses and this distinctive temporal response should allow them to be studied in more detail in future. This is the first description of basket cells in the auditory brainstem, but more work is required to confirm their neurotransmitter and precise post-synaptic targets.
Collapse
Affiliation(s)
- Mark N Wallace
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Trevor M Shackleton
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Zoe Thompson
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
16
|
Hsiao CJ, Galazyuk AV. Effect of Unilateral Acoustic Trauma on Neuronal Firing Activity in the Inferior Colliculus of Mice. Front Synaptic Neurosci 2021; 13:684141. [PMID: 34239435 PMCID: PMC8258394 DOI: 10.3389/fnsyn.2021.684141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/01/2022] Open
Abstract
Neural hyperactivity induced by sound exposure often correlates with the development of hyperacusis and/or tinnitus. In laboratory animals, hyperactivity is typically induced by unilateral sound exposure to preserve one ear for further testing of hearing performance. Most ascending fibers in the auditory system cross into the superior olivary complex and then ascend contralaterally. Therefore, unilateral exposure should be expected to mostly affect the contralateral side above the auditory brain stem. On the other hand, it is well known that a significant number of neurons have crossing fibers at every level of the auditory pathway, which may spread the effect of unilateral exposure onto the ipsilateral side. Here we demonstrate that unilateral sound exposure causes development of hyperactivity in both the contra and ipsilateral inferior colliculus in mice. We found that both the spontaneous firing rate and bursting activity were increased significantly compared to unexposed mice. The neurons with characteristic frequencies at or above the center frequency of exposure showed the greatest increase. Surprisingly, this increase was more pronounced in the ipsilateral inferior colliculus. This study highlights the importance of considering both ipsi- and contralateral effects in future studies utilizing unilateral sound exposure.
Collapse
Affiliation(s)
- Chun-Jen Hsiao
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alexander V Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
17
|
Lin Z, Bian T, Zhou W, Wang Y, Huang X, Zou J, Zhou H, Niu L, Tang J, Meng L. Modulation of Neuronal Excitability by Low- Intensity Ultrasound in Two Principal Neurons of Rat Anteroventral Cochlear Nucleus. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1752-1761. [PMID: 33460373 DOI: 10.1109/tuffc.2021.3052203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasonic neuromodulation has proved to be a promising new approach for direct neuromodulation or potential noninvasive deep brain stimulation technology for treating various neurological disorders. Previous studies have demonstrated that ultrasonic waves can noninvasively diffuse through the intact skull and thus precisely target specific brain regions with high spatial resolution. However, its neuromodulatory effects over different cell types of target nuclei have not been fully elucidated. In the present study, we investigated the neuronal excitability resulted from ultrasound stimulation on the two major neurons of anteroventral cochlear nucleus (AVCN) in vitro. Our results demonstrated that bushy cells (BCs) were well maintaining one action potential (AP) in response to the pairing of a sequence of depolarizing current pulses and 60-s continuous low-intensity ultrasound (LIUS), and meanwhile, stellate cells (SCs) significantly increased the firing rate. The ultrasonic waves with an acoustic pressure of 0.13 MPa were elicited by an on-chip ultrasonic stimulation system compatible with patch-clamp recording. Furthermore, LIUS significantly improved the neuronal excitability in both BCs and SCs based on their intrinsic excitability. Modulation of membrane properties among cell types was due to the LIUS-induced increase in the total inward sodium currents ( INa ) and outward potassium currents ( IKv ). LIUS significantly, at a similar rate, increased the amplitude of total inward sodium currents in both cell types. Meanwhile, LIUS induces a higher rate of the outward potassium currents in the BCs compared with SCs. Therefore, this study could provide new evidence for safe use of ultrasonic neuromodulation and its potential therapy for many auditory diseases, such as the central auditory processing disorder.
Collapse
|
18
|
Robustness to Noise in the Auditory System: A Distributed and Predictable Property. eNeuro 2021; 8:ENEURO.0043-21.2021. [PMID: 33632813 PMCID: PMC7986545 DOI: 10.1523/eneuro.0043-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
Background noise strongly penalizes auditory perception of speech in humans or vocalizations in animals. Despite this, auditory neurons are still able to detect communications sounds against considerable levels of background noise. We collected neuronal recordings in cochlear nucleus (CN), inferior colliculus (IC), auditory thalamus, and primary and secondary auditory cortex in response to vocalizations presented either against a stationary or a chorus noise in anesthetized guinea pigs at three signal-to-noise ratios (SNRs; −10, 0, and 10 dB). We provide evidence that, at each level of the auditory system, five behaviors in noise exist within a continuum, from neurons with high-fidelity representations of the signal, mostly found in IC and thalamus, to neurons with high-fidelity representations of the noise, mostly found in CN for the stationary noise and in similar proportions in each structure for the chorus noise. The two cortical areas displayed fewer robust responses than the IC and thalamus. Furthermore, between 21% and 72% of the neurons (depending on the structure) switch categories from one background noise to another, even if the initial assignment of these neurons to a category was confirmed by a severe bootstrap procedure. Importantly, supervised learning pointed out that assigning a recording to one of the five categories can be predicted up to a maximum of 70% based on both the response to signal alone and noise alone.
Collapse
|
19
|
Wang M, Zhang C, Lin S, Wang Y, Seicol BJ, Ariss RW, Xie R. Biased auditory nerve central synaptopathy is associated with age-related hearing loss. J Physiol 2021; 599:1833-1854. [PMID: 33450070 DOI: 10.1113/jp281014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/03/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sound information is transmitted by different subtypes of spiral ganglion neurons (SGN) from the ear to the brain. Selective damage of SGN peripheral synapses (cochlear synaptopathy) is widely recognized as one of the primary mechanisms of hearing loss, whereas the mechanisms at the SGN central synapses remain unclear. We report that different subtypes of SGN central synapses converge at different ratios onto individual target cochlear nucleus neurons with distinct physiological properties, and show biased morphological and physiological changes during age-related hearing loss (ARHL). The results reveal a new dimension in cochlear nucleus neural circuitry that systematically reassembles and processes auditory information from different SGN subtypes, which is altered during ageing and probably contributes to the development of ARHL. In addition to known cochlear synaptopathy, the present study shows that SGN central synapses are also pathologically changed during ageing, which collectively helps us better understand the structure and function of SGNs during ARHL. ABSTRACT Sound information is transmitted from the cochlea to the brain by different subtypes of spiral ganglion neurons (SGN), which show varying degrees of vulnerability under pathological conditions. Selective cochlear synaptopathy, the preferential damage of certain subtypes of SGN peripheral synapses, has been recognized as one of the main mechanisms of hearing loss. The organization and function of the auditory nerve (AN) central synapses from different subtypes of SGNs remain unclear, including how different AN synapses reassemble onto individual neurons in the cochlear nucleus, as well as how they differentially change during hearing loss. Combining immunohistochemistry with electrophysiology, we investigated the convergence pattern and subtype-specific synaptopathy of AN synapses at the endbulb of Held, as well as the response properties of their postsynaptic bushy neurons in CBA/CaJ mice of either sex under normal hearing and age-related hearing loss (ARHL). We found that calretinin-expressing (type Ia ) and non-calretinin-expressing (type Ib /Ic ) endbulbs converged along a continuum of different ratios onto individual bushy neurons with varying physiological properties. Endbulbs degenerated during ageing in parallel with ARHL. Furthermore, the degeneration was more severe in non-calretinin-expressing synapses, which correlated with a gradual decrease in bushy neuron subpopulation predominantly innervated by these inputs. These synaptic and cellular changes were profound in middle-aged mice when their hearing thresholds were still relatively normal and prior to severe ARHL. Our findings suggest that biased AN central synaptopathy and the correlated shift in cochlear nucleus neuronal composition play significant roles in weakened auditory input and altered central auditory processing during ARHL.
Collapse
Affiliation(s)
- Meijian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Chuangeng Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Shengyin Lin
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Yong Wang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Benjamin J Seicol
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Robert W Ariss
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ruili Xie
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Koert E, Kuenzel T. Small dendritic synapses enhance temporal coding in a model of cochlear nucleus bushy cells. J Neurophysiol 2021; 125:915-937. [PMID: 33471627 DOI: 10.1152/jn.00331.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spherical bushy cells (SBCs) in the anteroventral cochlear nucleus receive a single or very few powerful axosomatic inputs from the auditory nerve. However, SBCs are also contacted by small regular bouton synapses of the auditory nerve, located in their dendritic tree. The function of these small inputs is unknown. It was speculated that the interaction of axosomatic inputs with small dendritic inputs improved temporal precision, but direct evidence for this is missing. In a compartment model of spherical bushy cells with a stylized or realistic three-dimensional (3-D) representation of the bushy dendrite, we explored this hypothesis. Phase-locked dendritic inputs caused both tonic depolarization and a modulation of the model SBC membrane potential at the frequency of the stimulus. For plausible model parameters, dendritic inputs were subthreshold. Instead, the tonic depolarization increased the excitability of the SBC model and the modulation of the membrane potential caused a phase-dependent increase in the efficacy of the main axosomatic input. This improved response rate and entrainment for low-input frequencies and temporal precision of output at and above the characteristic frequency. A careful exploration of morphological and biophysical parameters of the bushy dendrite suggested a functional explanation for the peculiar shape of the bushy dendrite. Our model for the first time directly implied a role for the small excitatory dendritic inputs in auditory processing: they modulate the efficacy of the main input and are thus a plausible mechanism for the improvement of temporal precision and fidelity in these central auditory neurons.NEW & NOTEWORTHY We modeled dendritic inputs from the auditory nerve that spherical bushy cells of the cochlear nucleus receive. Dendritic inputs caused both tonic depolarization and modulation of the membrane potential at the input frequency. This improved the rate, entrainment, and temporal precision of output action potentials. Our simulations suggest a role for small dendritic inputs in auditory processing: they modulate the efficacy of the main input supporting temporal precision and fidelity in these central auditory neurons.
Collapse
Affiliation(s)
- Elisabeth Koert
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
21
|
Ventral cochlear nucleus bushy cells encode hyperacusis in guinea pigs. Sci Rep 2020; 10:20594. [PMID: 33244141 PMCID: PMC7693270 DOI: 10.1038/s41598-020-77754-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Psychophysical studies characterize hyperacusis as increased loudness growth over a wide-frequency range, decreased tolerance to loud sounds and reduced behavioral reaction time latencies to high-intensity sounds. While commonly associated with hearing loss, hyperacusis can also occur without hearing loss, implicating the central nervous system in the generation of hyperacusis. Previous studies suggest that ventral cochlear nucleus bushy cells may be putative neural contributors to hyperacusis. Compared to other ventral cochlear nucleus output neurons, bushy cells show high firing rates as well as lower and less variable first-spike latencies at suprathreshold intensities. Following cochlear damage, bushy cells show increased spontaneous firing rates across a wide-frequency range, suggesting that they might also show increased sound-evoked responses and reduced latencies to higher-intensity sounds. However, no studies have examined bushy cells in relationship to hyperacusis. Herein, we test the hypothesis that bushy cells may contribute to the neural basis of hyperacusis by employing noise-overexposure and single-unit electrophysiology. We find that bushy cells exhibit hyperacusis-like neural firing patterns, which are comprised of enhanced sound-driven firing rates, reduced first-spike latencies and wideband increases in excitability.
Collapse
|
22
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
23
|
Hockley A, Berger JI, Palmer AR, Wallace MN. Nitric oxide increases gain in the ventral cochlear nucleus of guinea pigs with tinnitus. Eur J Neurosci 2020; 52:4057-4080. [PMID: 32686192 DOI: 10.1111/ejn.14913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/21/2022]
Abstract
Previous work has led to the hypothesis that, during the production of noise-induced tinnitus, higher levels of nitric oxide (NO), in the ventral cochlear nucleus (VCN), increase the gain applied to a reduced input from the cochlea. To test this hypothesis, we noise-exposed 26 guinea pigs, identified evidence of tinnitus in 12 of them and then compared the effects of an iontophoretically applied NO donor or production inhibitor on VCN single unit activity. We confirmed that the mean driven firing rate for the tinnitus and control groups was the same while it had fallen in the non-tinnitus group. By contrast, the mean spontaneous rate had increased for the tinnitus group relative to the control group, while it remained the same for the non-tinnitus group. A greater proportion of units responded to exogenously applied NO in the tinnitus (56%) and non-tinnitus groups (71%) than a control population (24%). In the tinnitus group, endogenous NO facilitated the driven firing rate in 37% (7/19) of neurons and appeared to bring the mean driven rate back up to control levels by a mechanism involving N-methyl-D-aspartic acid (NMDA) receptors. By contrast, in the non-tinnitus group, endogenous NO only facilitated the driven firing rate in 5% (1/22) of neurons and there was no facilitation of driven rate in the control group. The effects of endogenous NO on spontaneous activity were unclear. These results suggest that NO is involved in increasing the gain applied to driven activity, but other factors are also involved in the increase in spontaneous activity.
Collapse
Affiliation(s)
- Adam Hockley
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK.,Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joel I Berger
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mark N Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.,Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
24
|
Fröhlich F, Gröschel M, Strübing I, Ernst A, Basta D. Apoptosis in the cochlear nucleus and inferior colliculus upon repeated noise exposure. Noise Health 2020; 20:223-231. [PMID: 31823909 PMCID: PMC6924190 DOI: 10.4103/nah.nah_30_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The time course of apoptosis and the corresponding neuronal loss was previously shown in central auditory pathway of mice after a single noise exposure. However, repeated acoustic exposure is a major risk factor for noise-induced hearing loss. The present study investigated apoptosis by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) assay after a second noise trauma in the ventral and dorsal cochlear nucleus and central nucleus of the inferior colliculus. Mice [Naval Medical Research Institute (NMRI) strain] were noise exposed [115 dB sound pressure level, 5-20 kHz, 3 h) at day 0. A double group received the identical noise exposure a second time at day 7 post-exposure and apoptosis was either analyzed immediately (7-day group-double) or 1 week later (14-day group-double). Corresponding single exposure groups were chosen as controls. No differences in TUNEL were seen between 7-day or 14-day single and double-trauma groups. Interestingly, independent of the second noise exposure, apoptosis increased significantly in the 14-day groups compared to the 7-day groups in all investigated areas. It seems that the first noise trauma has a long-lasting effect on apoptotic mechanisms in the central auditory pathway that were not largely influenced by a second trauma. Homeostatic mechanisms induced by the first trauma might protect the central auditory pathway from further damage during a specific time slot. These results might help to understand the underlying mechanisms of different psychoacoustic phenomena in noise-induced hearing loss.
Collapse
Affiliation(s)
- Felix Fröhlich
- Department of Otolaryngology, Unfallkrankenhaus, Charité Medical School, Berlin, Germany
| | - Moritz Gröschel
- Department of Otolaryngology, Unfallkrankenhaus, Charité Medical School, Berlin, Germany
| | - Ira Strübing
- Department of Otolaryngology, Unfallkrankenhaus, Charité Medical School, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology, Unfallkrankenhaus, Charité Medical School, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology, Unfallkrankenhaus, Charité Medical School, Berlin, Germany
| |
Collapse
|
25
|
Eggermont JJ. Separate auditory pathways for the induction and maintenance of tinnitus and hyperacusis? PROGRESS IN BRAIN RESEARCH 2020; 260:101-127. [PMID: 33637214 DOI: 10.1016/bs.pbr.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tinnitus and hyperacusis often occur together, however tinnitus may occur without hyperacusis or hyperacusis without tinnitus. Based on animal research one could argue that hyperacusis results from noise exposures that increase central gain in the lemniscal, tonotopically organized, pathways, whereas tinnitus requires increased burst firing and neural synchrony in the extra-lemniscal pathway. However, these substrates are not sufficient and require involvement of the central nervous system. The dominant factors in changing cortical networks in tinnitus patients are foremost the degree and type of hearing loss, and comorbidities such as distress and mood. So far, no definite changes have been established for tinnitus proper, albeit that changes in connectivity between the dorsal attention network and the parahippocampal area, as well as the default-mode network-precuneus decoupling, appear to be strong candidates. I conclude that there is still a strong need for further integrating animal and human research into tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Psychology, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
26
|
Expression and Localization of Kv1.1 and Kv3.1b Potassium Channels in the Cochlear Nucleus and Inferior Colliculus after Long-Term Auditory Deafferentation. Brain Sci 2020; 10:brainsci10010035. [PMID: 31936259 PMCID: PMC7017294 DOI: 10.3390/brainsci10010035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Deafness affects the expression and distribution of voltage-dependent potassium channels (Kvs) of central auditory neurons in the short-term, i.e., hours to days, but the consequences in the expression of Kvs after long-term deafness remain unknown. We tested expression and distribution of Kv1.1 and Kv3.1b, key for auditory processing, in the rat cochlear nucleus (CN), and in the inferior colliculus (IC), at 1, 15 and 90 days after mechanical lesion of the cochlea, using a combination of qRT-PCR and Western blot in the whole CN, along with semi-quantitative immunocytochemistry in the AVCN, where the role of both Kvs in the control of excitability for accurate auditory timing signal processing is well established. Neither Kv1.1/Kv3.1b mRNA or protein expression changed significantly in the CN between 1 and 15 days after deafness. At 90 days post-lesion, however, mRNA and protein expression for both Kvs increased, suggesting that regulation of Kv1.1 and Kv3.1b expression is part of cellular mechanisms for long-term adaptation to auditory deprivation in the CN. Consistent with these findings, immunocytochemistry showed increased labeling intensity for both Kvs in the AVCN at day 90 after cochlear lesion. This increase argues that up-regulation of Kv1.1 and Kv3.1b in AVCN neurons may be required to adapt intrinsic excitability to altered input over the long term after auditory deprivation. Contrary to these findings in the CN, expression levels of Kv1.1 and Kv3.1b in the IC did not undergo major changes after cochlear lesion. In particular, there was no evidence of long-term up-regulation of either Kv1.1 or Kv3.1b, supporting that such post-lesion adaptive mechanism may not be needed in the IC. These results reveal that post-lesion adaptations do not necessarily involve stereotyped plastic mechanisms along the entire auditory pathway.
Collapse
|
27
|
Neuronal population model of globular bushy cells covering unit-to-unit variability. PLoS Comput Biol 2019; 15:e1007563. [PMID: 31881018 PMCID: PMC6934273 DOI: 10.1371/journal.pcbi.1007563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
Computations of acoustic information along the central auditory pathways start in the cochlear nucleus. Bushy cells in the anteroventral cochlear nucleus, which innervate monaural and binaural stations in the superior olivary complex, process and transfer temporal cues relevant for sound localization. These cells are categorized into two groups: spherical and globular bushy cells (SBCs/GBCs). Spontaneous rates of GBCs innervated by multiple auditory nerve (AN) fibers are generally lower than those of SBCs that receive a small number of large AN synapses. In response to low-frequency tonal stimulation, both types of bushy cells show improved phase-locking and entrainment compared to AN fibers. When driven by high-frequency tones, GBCs show primary-like-with-notch or onset-L peristimulus time histograms and relatively irregular spiking. However, previous in vivo physiological studies of bushy cells also found considerable unit-to-unit variability in these response patterns. Here we present a population of models that can simulate the observed variation in GBCs. We used a simple coincidence detection model with an adaptive threshold and systematically varied its six parameters. Out of 567000 parameter combinations tested, 7520 primary-like-with-notch models and 4094 onset-L models were selected that satisfied a set of physiological criteria for a GBC unit. Analyses of the model parameters and output measures revealed that the parameters of the accepted model population are weakly correlated with each other to retain major GBC properties, and that the output spiking patterns of the model are affected by a combination of multiple parameters. Simulations of frequency-dependent temporal properties of the model GBCs showed a reasonable fit to empirical data, supporting the validity of our population modeling. The computational simplicity and efficiency of the model structure makes our approach suitable for future large-scale simulations of binaural information processing that may involve thousands of GBC units. In the auditory system, specialized neuronal circuits process various types of acoustic information. A group of neurons, called globular bushy cells (GBCs), faithfully transfer timing information of acoustic signals to their downstream neurons responsible for the perception of sound location. Previous physiological studies found representative activity patterns of GBCs, but with substantial individual variations among them. In this study, we present a population of models, instead of creating one best model, to account for the observed variations of GBCs. We varied all six parameters of a simple auditory neuron model and selected the combinations of parameters that led to acceptable activity patterns of GBCs. In total, we tested more than half a million combinations and accepted ~11600 GBC models. Temporal spiking patterns of real GBCs depend on the sound frequency, and our model population was able to replicate this trend. The model used here is computationally efficient and can thus serve as a building block for future large-scale simulations of auditory information processing.
Collapse
|
28
|
Kuenzel T. Modulatory influences on time-coding neurons in the ventral cochlear nucleus. Hear Res 2019; 384:107824. [DOI: 10.1016/j.heares.2019.107824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
|
29
|
D-Stellate Neurons of the Ventral Cochlear Nucleus Decrease in Auditory Nerve-Evoked Activity during Age-Related Hearing Loss. Brain Sci 2019; 9:brainsci9110302. [PMID: 31683609 PMCID: PMC6896102 DOI: 10.3390/brainsci9110302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Age-related hearing loss (ARHL) is associated with weakened inhibition in the central auditory nervous system including the cochlear nucleus. One of the main inhibitory neurons of the cochlear nucleus is the D-stellate neuron, which provides extensive glycinergic inhibition within the local neural network. It remains unclear how physiological activities of D-stellate neurons change during ARHL and what are the underlying mechanisms. Using in vitro whole-cell patch clamp technique, we studied the intrinsic membrane properties of D-stellate neurons, the changes of their firing properties, and the underlying mechanisms in CBA/CaJ mice at the ages of 3–4 months (young), 17–19 months (middle age), and 27–33 months (aged). We found that the intrinsic membrane properties of D-stellate neurons were unchanged among these three age groups. However, these neurons showed decreased firing rate with age in response to sustained auditory nerve stimulation. Further investigation showed that auditory nerve-evoked excitatory postsynaptic currents (EPSCs) were significantly reduced in strength with age. These findings suggest that D-stellate neurons receive weakened synaptic inputs from the auditory nerve and decreased sound driven activity with age, which are expected to reduce the overall inhibition and enhance the central gain in the cochlear nucleus during ARHL.
Collapse
|
30
|
Shore SE, Wu C. Mechanisms of Noise-Induced Tinnitus: Insights from Cellular Studies. Neuron 2019; 103:8-20. [PMID: 31271756 DOI: 10.1016/j.neuron.2019.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/25/2019] [Accepted: 05/03/2019] [Indexed: 01/21/2023]
Abstract
Tinnitus, sound perception in the absence of physical stimuli, occurs in 15% of the population and is the top-reported disability for soldiers after combat. Noise overexposure is a major factor associated with tinnitus but does not always lead to tinnitus. Furthermore, people with normal audiograms can get tinnitus. In animal models, equivalent cochlear damage occurs in animals with and without behavioral evidence of tinnitus. But cochlear-nerve-recipient neurons in the brainstem demonstrate distinct, synchronized spontaneous firing patterns only in animals that develop tinnitus, driving activity in central brain regions and ultimately giving rise to phantom perception. Examining tinnitus-specific changes in single-cell populations enables us to begin to distinguish neural changes due to tinnitus from those that are due to hearing loss.
Collapse
Affiliation(s)
- Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Calvin Wu
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Waxholm Space atlas of the rat brain auditory system: Three-dimensional delineations based on structural and diffusion tensor magnetic resonance imaging. Neuroimage 2019; 199:38-56. [DOI: 10.1016/j.neuroimage.2019.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
|
32
|
Presynaptic Mitochondria Volume and Abundance Increase during Development of a High-Fidelity Synapse. J Neurosci 2019; 39:7994-8012. [PMID: 31455662 DOI: 10.1523/jneurosci.0363-19.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
The calyx of Held, a large glutamatergic presynaptic terminal in the auditory brainstem undergoes developmental changes to support the high action-potential firing rates required for auditory information encoding. In addition, calyx terminals are morphologically diverse, which impacts vesicle release properties and synaptic plasticity. Mitochondria influence synaptic plasticity through calcium buffering and are crucial for providing the energy required for synaptic transmission. Therefore, it has been postulated that mitochondrial levels increase during development and contribute to the morphological-functional diversity in the mature calyx. However, the developmental profile of mitochondrial volumes and subsynaptic distribution at the calyx of Held remains unclear. To provide insight on this, we developed a helper-dependent adenoviral vector that expresses the genetically encoded peroxidase marker for mitochondria, mito-APEX2, at the mouse calyx of Held. We developed protocols to detect labeled mitochondria for use with serial block face scanning electron microscopy to carry out semiautomated segmentation of mitochondria, high-throughput whole-terminal reconstruction, and presynaptic ultrastructure in mice of either sex. Subsequently, we measured mitochondrial volumes and subsynaptic distributions at the immature postnatal day (P)7 and the mature (P21) calyx. We found an increase of mitochondria volumes in terminals and axons from P7 to P21 but did not observe differences between stalk and swelling subcompartments in the mature calyx. Based on these findings, we propose that mitochondrial volumes and synaptic localization developmentally increase to support high firing rates required in the initial stages of auditory information processing.SIGNIFICANCE STATEMENT Elucidating the developmental processes of auditory brainstem presynaptic terminals is critical to understanding auditory information encoding. Additionally, morphological-functional diversity at these terminals is proposed to enhance coding capacity. Mitochondria provide energy for synaptic transmission and can buffer calcium, impacting synaptic plasticity; however, their developmental profile to ultimately support the energetic demands of synapses following the onset of hearing remains unknown. Therefore, we created a helper-dependent adenoviral vector with the mitochondria-targeting peroxidase mito-APEX2 and expressed it at the mouse calyx of Held. Volumetric reconstructions of serial block face electron microscopy data of immature and mature labeled calyces reveal that mitochondrial volumes are increased to support high firing rates upon maturity.
Collapse
|
33
|
Principal Neurons in the Anteroventral Cochlear Nucleus Express Cell-Type Specific Glycine Receptor α Subunits. Neuroscience 2019; 415:77-88. [PMID: 31325562 DOI: 10.1016/j.neuroscience.2019.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022]
Abstract
Signal processing in the principal neurons of the anteroventral cochlear nucleus (AVCN) is modulated by glycinergic inhibition. The kinetics of IPSCs are specific to the target neurons. It remains unclear what glycine receptor subunits are involved in generating such target-specific IPSC kinetics in AVCN principal neurons. We investigated the expression patterns of glycine receptor α (GlyRα) subunits in AVCN using immunohistochemical labeling of four isoforms of GlyRα subunits (GlyRα1-α4), and found that AVCN neurons express GlyRα1 and GlyRα4, but not GlyRα2 and GlyRα3 subunits. To further identify the cell type-specific expression patterns of GlyRα subunits, we combined whole-cell patch clamp recording with immunohistochemistry by recording from all three types of AVCN principal neurons, characterizing the synaptic properties of their glycinergic inhibition, dye-filling the neurons, and processing the slice for immunostaining of different GlyRα subunits. We found that AVCN bushy neurons express both GlyRα1 and GlyRα4 subunits that underlie their slow IPSC kinetics, whereas both T-stellate and D-stellate neurons express only GlyRα1 subunit that underlies their fast IPSC kinetics. In conclusion, AVCN principal neurons express cell-type specific GlyRα subunits that underlie their distinct IPSC kinetics, which enables glycinergic inhibition from the same source to exert target cell-specific modulation of activity to support the unique physiological function of these neurons.
Collapse
|
34
|
Michalski N, Petit C. Genes Involved in the Development and Physiology of Both the Peripheral and Central Auditory Systems. Annu Rev Neurosci 2019; 42:67-86. [DOI: 10.1146/annurev-neuro-070918-050428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic approach, based on the study of inherited forms of deafness, has proven to be particularly effective for deciphering the molecular mechanisms underlying the development of the peripheral auditory system, the cochlea and its afferent auditory neurons, and how this system extracts the physical parameters of sound. Although this genetic dissection has provided little information about the central auditory system, scattered data suggest that some genes may have a critical role in both the peripheral and central auditory systems. Here, we review the genes controlling the development and function of the peripheral and central auditory systems, focusing on those with demonstrated intrinsic roles in both systems and highlighting the current underappreciation of these genes. Their encoded products are diverse, from transcription factors to ion channels, as are their roles in the central auditory system, mostly evaluated in brainstem nuclei. We examine the ontogenetic and evolutionary mechanisms that may underlie their expression at different sites.
Collapse
Affiliation(s)
- Nicolas Michalski
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France;,
- Institut National de la Santé et de la Recherche Médicale, UMRS 1120, 75015 Paris, France
- Sorbonne Universités, 75005 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France;,
- Institut National de la Santé et de la Recherche Médicale, UMRS 1120, 75015 Paris, France
- Sorbonne Universités, 75005 Paris, France
- Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
- Collège de France, 75005 Paris, France
| |
Collapse
|
35
|
McCormick CA. Immunocytochemical Evidence for Electrical Synapses in the Dorsal Descending and Dorsal Anterior Octaval Nuclei in the Goldfish, Carassius auratus. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:34-50. [PMID: 31189161 DOI: 10.1159/000499687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/13/2019] [Indexed: 11/19/2022]
Abstract
The dorsal portion of the descending octaval nucleus (dDO), the main first-order auditory nucleus in jawed fish, includes four lateral and three medial neuronal populations that project to the auditory midbrain. One medial population and one lateral population contain neurons that receive a remarkably large axon terminal from the utricular branch of the octaval nerve. Immunocytochemistry for connexin 35 (Cx35) was used to determine whether this connection includes electrical synapses. Although Cx35 was not localized to these large contacts, it was observed in the three other lateral dDO populations. Another first-order nucleus, the dorsal portion of the anterior octaval nucleus (dAO), primitively projects to the auditory midbrain in jawed fishes and contains neurons positive for Cx35. Utricular branch terminals were coincident with some Cx35 puncta in dDO and dAO. The results are discussed in light of what is known about the occurrence of electrical synapses in first-order auditory and vestibular nuclei in fish and tetrapods.
Collapse
Affiliation(s)
- Catherine A McCormick
- Department of Biology and Department of Neuroscience, Oberlin College, Oberlin, Ohio, USA,
| |
Collapse
|
36
|
Müller MK, Jovanovic S, Keine C, Radulovic T, Rübsamen R, Milenkovic I. Functional Development of Principal Neurons in the Anteroventral Cochlear Nucleus Extends Beyond Hearing Onset. Front Cell Neurosci 2019; 13:119. [PMID: 30983974 PMCID: PMC6447607 DOI: 10.3389/fncel.2019.00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 01/23/2023] Open
Abstract
Sound information is transduced into graded receptor potential by cochlear hair cells and encoded as discrete action potentials of auditory nerve fibers. In the cochlear nucleus, auditory nerve fibers convey this information through morphologically distinct synaptic terminals onto bushy cells (BCs) and stellate cells (SCs) for processing of different sound features. With expanding use of transgenic mouse models, it is increasingly important to understand the in vivo functional development of these neurons in mice. We characterized the maturation of spontaneous and acoustically evoked activity in BCs and SCs by acquiring single-unit juxtacellular recordings between hearing onset (P12) and young adulthood (P30) of anesthetized CBA/J mice. In both cell types, hearing sensitivity and characteristic frequency (CF) range are mostly adult-like by P14, consistent with rapid maturation of the auditory periphery. In BCs, however, some physiological features like maximal firing rate, dynamic range, temporal response properties, recovery from post-stimulus depression, first spike latency (FSL) and encoding of sinusoid amplitude modulation undergo further maturation up to P18. In SCs, the development of excitatory responses is even more prolonged, indicated by a gradual increase in spontaneous and maximum firing rates up to P30. In the same cell type, broadly tuned acoustically evoked inhibition is immediately effective at hearing onset, covering the low- and high-frequency flanks of the excitatory response area. Together, these data suggest that maturation of auditory processing in the parallel ascending BC and SC streams engages distinct mechanisms at the first central synapses that may differently depend on the early auditory experience.
Collapse
Affiliation(s)
- Maria Katharina Müller
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sasa Jovanovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Keine
- Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States.,Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Tamara Radulovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ivan Milenkovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
37
|
Baashar A, Robertson D, Yates NJ, Mulders WHAM. Targets of olivocochlear collaterals in cochlear nucleus of rat and guinea pig. J Comp Neurol 2019; 527:2273-2290. [PMID: 30861121 DOI: 10.1002/cne.24681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/11/2022]
Abstract
Descending auditory pathways can modify afferent auditory input en route to cortex. One component of these pathways is the olivocochlear system which originates in brainstem and terminates in cochlea. Medial olivocochlear (MOC) neurons also project collaterals to cochlear nucleus and make synaptic contacts with dendrites of multipolar neurons. Two broadly distinct populations of multipolar cells exist: T-stellate and D-stellate neurons, thought to project to inferior colliculus and contralateral cochlear nucleus, respectively. It is unclear which of these neurons receive direct MOC collateral input due to conflicting results between in vivo and in vitro studies. This study used anatomical techniques to identify which multipolar cell population receives synaptic innervation from MOC collaterals. The retrograde tracer Fluorogold was injected into inferior colliculus or cochlear nucleus to label T-stellate and D-stellate neurons, respectively. Axonal branches of MOC neurons were labeled by biocytin injections at the floor of the fourth ventricle. Fluorogold injections resulted in labeled cochlear nucleus multipolar neurons. Biocytin abundantly labeled MOC collaterals which entered cochlear nucleus. Microscopic analysis revealed that MOC collaterals made some putative synaptic contacts with the retrogradely labeled neurons but many more putative contacts were observed on unidentified neural targets. This suggest that both T- and D-stellate neurons receive synaptic innervation from the MOC collaterals on their somata and proximal dendrites. The prevalence of these contacts cannot be stated with certainty because of technical limitations, but the possibility exists that the collaterals may also make contacts with neurons not projecting to inferior colliculus or the contralateral cochlear nucleus.
Collapse
Affiliation(s)
- Ahmaed Baashar
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Department of Anatomy, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Donald Robertson
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Nathanael James Yates
- Preclinical Intensive Care Research Unit, School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Wilhelmina Henrica Antonia Maria Mulders
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Ear Science Institute Australia, The Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
38
|
Guex AA, Hight AE, Narasimhan S, Vachicouras N, Lee DJ, Lacour SP, Brown MC. Auditory brainstem stimulation with a conformable microfabricated array elicits responses with tonotopically organized components. Hear Res 2019; 377:339-352. [PMID: 30867111 DOI: 10.1016/j.heares.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/11/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Auditory brainstem implants (ABIs) restore hearing to deaf individuals not eligible for cochlear implants. Speech comprehension in ABI users is generally poor compared to that of cochlear implant users, and side effects are common. The poor performance may result from activating broad areas and multiple neuronal populations of the cochlear nucleus, however detailed studies of the responses to surface stimulation of the cochlear nucleus are lacking. A conformable electrode array was microfabricated to fit on the rat's dorsal cochlear nucleus (DCN). It hosts 20 small electrodes (each 100 μm diam.). The array was tested by recording evoked potentials and neural activity along the tonotopic axis of the inferior colliculus (IC). Almost all bipolar electrode pairs elicited responses, in some cases with an even, or relatively constant, pattern of thresholds and supra-threshold measures along the long axis of the array. This pattern suggests that conformable arrays can provide relatively constant excitation along the surface of the DCN and thus might decrease the ABI side effects caused by spread of high current to adjacent structures. We also examined tonotopic patterns of the IC responses. Compared to sound-evoked responses, electrically-evoked response mappings had less tonotopic organization and were broader in width. They became more tonotopic when the evoked activity common to all electrodes and the late phase of response were subtracted out, perhaps because the remaining activity is from tonotopically organized principal cells of the DCN. Responses became less tonotopic when inter-electrode distance was increased from 400 μm to 800 μm but were relatively unaffected by changing to monopolar stimulation. The results illustrate the challenges of using a surface array to present tonotopic cues and improve speech comprehension in humans who use the ABI.
Collapse
Affiliation(s)
- Amélie A Guex
- Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, School of Engineering, Institute of Microengineering & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Ariel Edward Hight
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Shreya Narasimhan
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Nicolas Vachicouras
- Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, School of Engineering, Institute of Microengineering & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Daniel J Lee
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, School of Engineering, Institute of Microengineering & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - M Christian Brown
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons. Hear Res 2018; 376:33-46. [PMID: 30606624 DOI: 10.1016/j.heares.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 11/20/2022]
Abstract
The auditory part of the brainstem is composed of several nuclei specialized in the computation of the different spectral and temporal features of the sound before it reaches the higher auditory regions. There are a high diversity of neuronal types in these nuclei, many with remarkable electrophysiological and synaptic properties unique to these structures. This diversity reflects specializations necessary to process the different auditory signals in order to extract precisely the acoustic information necessary for the auditory perception by the animal. Low threshold Kv1 channels and HCN channels are expressed in neurons that use timing clues for auditory processing, like bushy and octopus cells, in order to restrict action potential firing and reduce input resistance and membrane time constant. Kv3 channels allow principal neurons of the MNTB and pyramidal DCN neurons to fire fast trains of action potentials. Calcium channels on cartwheel DCN neurons produce complex spikes characteristic of these neurons. Calyceal synapses compensate the low input resistance of bushy and principal neurons of the MNTB by releasing hundreds of glutamate vesicles resulting in large EPSCs acting in fast ionotropic glutamate receptors, in order to reduce temporal summation of synaptic potentials, allowing more precise correspondence of pre- and post-synaptic potentials, and phase-locking. Pre-synaptic calyceal sodium channels have fast recovery from inactivation allowing extremely fast trains of action potential firing, and persistent sodium channels produce spontaneous activity of fusiform neurons at rest, which expands the dynamic range of these neurons. The unique combinations of different ion channels, ionotropic receptors and synaptic structures create a unique functional diversity of neurons extremely adapted to their complex functions in the auditory processing.
Collapse
|
40
|
Lipovsek M, Wingate RJ. Conserved and divergent development of brainstem vestibular and auditory nuclei. eLife 2018; 7:40232. [PMID: 30566077 PMCID: PMC6317910 DOI: 10.7554/elife.40232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
Vestibular function was established early in vertebrates and has remained, for the most part, unchanged. In contrast, each group of tetrapods underwent independent evolutionary processes to solve the problem of hearing on land, resulting in a remarkable mixture of conserved, divergent and convergent features that define extant auditory systems. The vestibuloacoustic nuclei of the hindbrain develop from a highly conserved ground plan and provide an ideal framework on which to address the participation of developmental processes to the evolution of neuronal circuits. We employed an electroporation strategy to unravel the contribution of two dorsoventral and four axial lineages to the development of the chick hindbrain vestibular and auditory nuclei. We compare the chick developmental map with recently established genetic fate-maps of the developing mouse hindbrain. Overall, we find considerable conservation of developmental origin for the vestibular nuclei. In contrast, a comparative analysis of the developmental origin of hindbrain auditory structures echoes the complex evolutionary history of the auditory system. In particular, we find that the developmental origin of the chick auditory interaural time difference circuit supports its emergence from an ancient vestibular network, unrelated to the analogous mammalian counterpart.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richard Jt Wingate
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Puncta of Neuronal Nitric Oxide Synthase (nNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J Neurosci 2018; 39:876-887. [PMID: 30530507 DOI: 10.1523/jneurosci.1918-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) is a neurotransmitter synthesized in the brain by neuronal nitric oxide synthase (nNOS). Using immunohistochemistry and confocal imaging in the inferior colliculus (IC, auditory midbrain) of the guinea pig (Cavia porcellus, male and female), we show that nNOS occurs in two distinct cellular distributions. We confirm that, in the cortices of the IC, a subset of neurons show cytoplasmic labeling for nNOS, whereas in the central nucleus (ICc), such neurons are not present. However, we demonstrate that all neurons in the ICc do in fact express nNOS in the form of discrete puncta found at the cell membrane. Our multi-labeling studies reveal that nNOS puncta form multiprotein complexes with NMDA receptors, soluble guanylyl cyclase (sGC), and PSD95. These complexes are found apposed to glutamatergic terminals, which is indicative of synaptic function. Interestingly, these glutamatergic terminals express both vesicular glutamate transporters 1 and 2 denoting a specific source of brainstem inputs. With in vivo electrophysiological recordings of multiunit activity in the ICc, we found that local application of NMDA enhances sound-driven activity in a concentration-dependent and reversible fashion. This response is abolished by blockade of nNOS or sGC, indicating that the NMDA effect is mediated solely via the NO and cGMP signaling pathway. This discovery of a ubiquitous, but highly localized, expression of nNOS throughout the ICc and demonstration of the dramatic influence of the NMDA activated NO pathway on sound-driven neuronal activity imply a key role for NO signaling in auditory processing.SIGNIFICANCE STATEMENT We show that neuronal nitric oxide synthase (nNOS), the enzyme that synthesizes nitric oxide (NO), occurs as puncta in apparently all neurons in the central nucleus of the inferior colliculus (ICc) in the auditory midbrain. Punctate nNOS appears at glutamatergic synapses in a complex with glutamate NMDA receptors (NMDA-Rs), soluble guanylyl cyclase (sGC, the NO receptor), and PSD95 (a protein that anchors receptors and enzymes at the postsynaptic density). We show that NMDA-R modulation of sound-driven activity in the ICc is solely mediated by activation of nNOS and sGC. The presence of nNOS throughout this sensory nucleus argues for a major role of NO in hearing. Furthermore, this punctate form of nNOS expression may exist and have gone unnoticed in other brain regions.
Collapse
|
42
|
Gjoni E, Zenke F, Bouhours B, Schneggenburger R. Specific synaptic input strengths determine the computational properties of excitation-inhibition integration in a sound localization circuit. J Physiol 2018; 596:4945-4967. [PMID: 30051910 DOI: 10.1113/jp276012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/18/2018] [Indexed: 02/03/2023] Open
Abstract
KEY POINTS During the computation of sound localization, neurons of the lateral superior olive (LSO) integrate synaptic excitation arising from the ipsilateral ear with inhibition from the contralateral ear. We characterized the functional connectivity of the inhibitory and excitatory inputs onto LSO neurons in terms of unitary synaptic strength and convergence. Unitary IPSCs can generate large conductances, although their strength varies over a 10-fold range in a given recording. By contrast, excitatory inputs are relatively weak. The conductance associated with IPSPs needs to be at least 2-fold stronger than the excitatory one to guarantee effective inhibition of action potential (AP) firing. Computational modelling showed that strong unitary inhibition ensures an appropriate slope and midpoint of the tuning curve of LSO neurons. Conversely, weak but numerous excitatory inputs filter out spontaneous AP firing from upstream auditory neurons. ABSTRACT The lateral superior olive (LSO) is a binaural nucleus in the auditory brainstem in which excitation from the ipsilateral ear is integrated with inhibition from the contralateral ear. It is unknown whether the strength of the unitary inhibitory and excitatory inputs is adapted to allow for optimal tuning curves of LSO neuron action potential (AP) firing. Using electrical and optogenetic stimulation of afferent synapses, we found that the strength of unitary inhibitory inputs to a given LSO neuron can vary over a ∼10-fold range, follows a roughly log-normal distribution, and, on average, causes a large conductance (9 nS). Conversely, unitary excitatory inputs, stimulated optogenetically under the bushy-cell specific promoter Math5, were numerous, and each caused a small conductance change (0.7 nS). Approximately five to seven bushy cell inputs had to be active simultaneously to bring an LSO neuron to fire. In double stimulation experiments, the effective inhibition window caused by IPSPs was short (1-3 ms) and its length depended on the inhibitory conductance; an ∼2-fold stronger inhibition than excitation was needed to suppress AP firing. Computational modelling suggests that few, but strong, unitary IPSPs create a tuning curve of LSO neuron firing with an appropriate slope and midpoint. Furthermore, weak but numerous excitatory inputs reduce the spontaneous AP firing that LSO neurons would otherwise inherit from their upstream auditory neurons. Thus, the specific connectivity and strength of unitary excitatory and inhibitory inputs to LSO neurons is optimized for the computations performed by these binaural neurons.
Collapse
Affiliation(s)
- Enida Gjoni
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Friedemann Zenke
- Laboratory of Computational Neuroscience, Brain Mind Institute, School of Life Science and School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Brice Bouhours
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
43
|
Carney LH. Supra-Threshold Hearing and Fluctuation Profiles: Implications for Sensorineural and Hidden Hearing Loss. J Assoc Res Otolaryngol 2018; 19:331-352. [PMID: 29744729 PMCID: PMC6081887 DOI: 10.1007/s10162-018-0669-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
An important topic in contemporary auditory science is supra-threshold hearing. Difficulty hearing at conversational speech levels in background noise has long been recognized as a problem of sensorineural hearing loss, including that associated with aging (presbyacusis). Such difficulty in listeners with normal thresholds has received more attention recently, especially associated with descriptions of synaptopathy, the loss of auditory nerve (AN) fibers as a result of noise exposure or aging. Synaptopathy has been reported to cause a disproportionate loss of low- and medium-spontaneous rate (L/MSR) AN fibers. Several studies of synaptopathy have assumed that the wide dynamic ranges of L/MSR AN fiber rates are critical for coding supra-threshold sounds. First, this review will present data from the literature that argues against a direct role for average discharge rates of L/MSR AN fibers in coding sounds at moderate to high sound levels. Second, the encoding of sounds at supra-threshold levels is examined. A key assumption in many studies is that saturation of AN fiber discharge rates limits neural encoding, even though the majority of AN fibers, high-spontaneous rate (HSR) fibers, have saturated average rates at conversational sound levels. It is argued here that the cross-frequency profile of low-frequency neural fluctuation amplitudes, not average rates, encodes complex sounds. As described below, this fluctuation-profile coding mechanism benefits from both saturation of inner hair cell (IHC) transduction and average rate saturation associated with the IHC-AN synapse. Third, the role of the auditory efferent system, which receives inputs from L/MSR fibers, is revisited in the context of fluctuation-profile coding. The auditory efferent system is hypothesized to maintain and enhance neural fluctuation profiles. Lastly, central mechanisms sensitive to neural fluctuations are reviewed. Low-frequency fluctuations in AN responses are accentuated by cochlear nucleus neurons which, either directly or via other brainstem nuclei, relay fluctuation profiles to the inferior colliculus (IC). IC neurons are sensitive to the frequency and amplitude of low-frequency fluctuations and convert fluctuation profiles from the periphery into a phase-locked rate profile that is robust across a wide range of sound levels and in background noise. The descending projection from the midbrain (IC) to the efferent system completes a functional loop that, combined with inputs from the L/MSR pathway, is hypothesized to maintain "sharp" supra-threshold hearing, reminiscent of visual mechanisms that regulate optical accommodation. Examples from speech coding and detection in noise are reviewed. Implications for the effects of synaptopathy on control mechanisms hypothesized to influence supra-threshold hearing are discussed. This framework for understanding neural coding and control mechanisms for supra-threshold hearing suggests strategies for the design of novel hearing aid signal-processing and electrical stimulation patterns for cochlear implants.
Collapse
Affiliation(s)
- Laurel H Carney
- Departments of Biomedical Engineering, Neuroscience, and Electrical & Computer Engineering, Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Ave., Box 603, Rochester, NY, 14642, USA.
| |
Collapse
|
44
|
Golestanirad L, Gale JT, Manzoor NF, Park HJ, Glait L, Haer F, Kaltenbach JA, Bonmassar G. Solenoidal Micromagnetic Stimulation Enables Activation of Axons With Specific Orientation. Front Physiol 2018; 9:724. [PMID: 30140230 PMCID: PMC6094965 DOI: 10.3389/fphys.2018.00724] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023] Open
Abstract
Electrical stimulation of the central and peripheral nervous systems - such as deep brain stimulation, spinal cord stimulation, and epidural cortical stimulation are common therapeutic options increasingly used to treat a large variety of neurological and psychiatric conditions. Despite their remarkable success, there are limitations which if overcome, could enhance outcomes and potentially reduce common side-effects. Micromagnetic stimulation (μMS) was introduced to address some of these limitations. One of the most remarkable properties is that μMS is theoretically capable of activating neurons with specific axonal orientations. Here, we used computational electromagnetic models of the μMS coils adjacent to neuronal tissue combined with axon cable models to investigate μMS orientation-specific properties. We found a 20-fold reduction in the stimulation threshold of the preferred axonal orientation compared to the orthogonal direction. We also studied the directional specificity of μMS coils by recording the responses evoked in the inferior colliculus of rodents when a pulsed magnetic stimulus was applied to the surface of the dorsal cochlear nucleus. The results confirmed that the neuronal responses were highly sensitive to changes in the μMS coil orientation. Accordingly, our results suggest that μMS has the potential of stimulating target nuclei in the brain without affecting the surrounding white matter tracts.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - John T Gale
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Nauman F Manzoor
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.,Ear, Nose and Throat Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Hyun-Joo Park
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Lyall Glait
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.,Ear, Nose and Throat Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | | | - James A Kaltenbach
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Chronic Deafness Degrades Temporal Acuity in the Electrically Stimulated Auditory Pathway. J Assoc Res Otolaryngol 2018; 19:541-557. [PMID: 29968099 PMCID: PMC6226412 DOI: 10.1007/s10162-018-0679-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/29/2018] [Indexed: 11/28/2022] Open
Abstract
Electrical stimulation of the auditory nerve with a penetrating intraneural (IN) electrode in acutely deafened cats produces much more restricted spread of excitation than is obtained in that preparation with a conventional cochlear implant (CI) as reported by Middlebrooks and Snyder (J Assoc Res Otolaryngol 8:258–279, 2007). That suggests that a future auditory prosthesis employing IN stimulation might offer human patients greater frequency selectivity than is available with a present-day CI. Nevertheless, it is a concern that the electrical field produced by an IN electrode might be too restricted to produce adequate stimulation of the partially depopulated auditory nerve of a deaf patient. We evaluated this by testing responses to IN and CI stimulation in adult-deafened cats. Activation of the auditory pathway was monitored by recording from the central nucleus of the inferior colliculus (ICC). Cats deaf for 153–277 days exhibited a ~ 30 % loss of auditory nerve fibers compared to cats deaf for < 18 h. Contrary to our concern, measures of thresholds and dynamic ranges showed no significant deafness-related impairment of excitation by IN or CN stimulation. Surprisingly, however, temporal acuity decreased dramatically in these adult-deafened cats, as demonstrated by a marked decrease in the maximum rate of electrical cochlear stimulation to which ICC neurons synchronized to IN or CI stimulation. For instance, half of ICC neurons synchronized to IN stimulation up to 203 pulses per second (pps) in acute deafness, whereas that number dropped to 79 pps for chronic deafness. Such a loss of temporal acuity might contribute to the poor sensitivity to temporal fine structure that has been reported in human CI users. Seemingly, the degraded temporal acuity that we observed in cats was even worse than the fine-structure sensitivity of human CI users, suggesting that most patients experience some improvement of temporal acuity resulting from restoration of patterned auditory nerve stimulation by a CI.
Collapse
|
46
|
Singh M, Miura P, Renden R. Age-related defects in short-term plasticity are reversed by acetyl-L-carnitine at the mouse calyx of Held. Neurobiol Aging 2018; 67:108-119. [PMID: 29656010 PMCID: PMC5955853 DOI: 10.1016/j.neurobiolaging.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
Hearing acuity and sound localization are affected by aging and may contribute to cognitive dementias. Although loss of sensorineural conduction is well documented to occur with age, little is known regarding short-term synaptic plasticity in central auditory nuclei. Age-related changes in synaptic transmission properties were evaluated at the mouse calyx of Held, a sign-inverting relay synapse in the circuit for sound localization, in juvenile adults (1 month old) and late middle-aged (18-21 months old) mice. Synaptic timing and short-term plasticity were severely disrupted in older mice. Surprisingly, acetyl-l-carnitine (ALCAR), an anti-inflammatory agent that facilitates mitochondrial function, fully reversed synaptic transmission delays and defects in short-term plasticity in aged mice to reflect transmission similar to that seen in juvenile adults. These findings support ALCAR supplementation as an adjuvant to improve short-term plasticity and potentially central nervous system performance in animals compromised by age and/or neurodegenerative disease.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
47
|
Baizer JS, Wong KM, Salvi RJ, Manohar S, Sherwood CC, Hof PR, Baker JF, Witelson SF. Species Differences in the Organization of the Ventral Cochlear Nucleus. Anat Rec (Hoboken) 2018; 301:862-886. [PMID: 29236365 PMCID: PMC5902649 DOI: 10.1002/ar.23751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/18/2017] [Accepted: 09/17/2017] [Indexed: 01/18/2023]
Abstract
The mammalian cochlear nuclei (CN) consist of two major subdivisions, the dorsal (DCN) and ventral (VCN) nuclei. We previously reported differences in the structural and neurochemical organization of the human DCN from that in several other species. Here we extend this analysis to the VCN, considering both the organization of subdivisions and the types and distributions of neurons. Classically, the VCN in mammals is composed of two subdivisions, the anteroventral (VCA) and posteroventral cochlear nuclei (VCP). Anatomical and electrophysiological data in several species have defined distinct neuronal types with different distributions in the VCA and VCP. We asked if VCN subdivisions and anatomically defined neuronal types might be distinguished by patterns of protein expression in humans. We also asked if the neurochemical characteristics of the VCN are the same in humans as in other mammalian species, analyzing data from chimpanzees, macaque monkeys, cats, rats and chinchillas. We examined Nissl- and immunostained sections, using antibodies that had labeled neurons in other brainstem nuclei in humans. Nissl-stained sections supported the presence of both VCP and VCA in humans and chimpanzees. However, patterns of protein expression did not differentiate classes of neurons in humans; neurons of different soma shapes and dendritic configurations all expressed the same proteins. The patterns of immunostaining in macaque monkey, cat, rat, and chinchilla were different from those in humans and chimpanzees and from each other. The results may correlate with species differences in auditory function and plasticity. Anat Rec, 301:862-886, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | - Keit Men Wong
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | - Richard J Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, Buffalo, New York
| | - Senthilvelan Manohar
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, Buffalo, New York
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James F Baker
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
48
|
Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol 2018; 9:197. [PMID: 29632514 PMCID: PMC5879449 DOI: 10.3389/fneur.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Olivocochlear efferents allow the central auditory system to adjust the functioning of the inner ear during active and passive listening. While many aspects of efferent anatomy, physiology and function are well established, others remain controversial. This article reviews the current knowledge on olivocochlear efferents, with emphasis on human medial efferents. The review covers (1) the anatomy and physiology of olivocochlear efferents in animals; (2) the methods used for investigating this auditory feedback system in humans, their limitations and best practices; (3) the characteristics of medial-olivocochlear efferents in humans, with a critical analysis of some discrepancies across human studies and between animal and human studies; (4) the possible roles of olivocochlear efferents in hearing, discussing the evidence in favor and against their role in facilitating the detection of signals in noise and in protecting the auditory system from excessive acoustic stimulation; and (5) the emerging association between abnormal olivocochlear efferent function and several health conditions. Finally, we summarize some open issues and introduce promising approaches for investigating the roles of efferents in human hearing using cochlear implants.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
49
|
McCreery D, Yadev K, Han M. Responses of neurons in the feline inferior colliculus to modulated electrical stimuli applied on and within the ventral cochlear nucleus; Implications for an advanced auditory brainstem implant. Hear Res 2018; 363:85-97. [PMID: 29573880 DOI: 10.1016/j.heares.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 11/25/2022]
Abstract
Auditory brainstem implants (ABIs) can restore useful hearing to persons with deafness who cannot benefit from cochlear implants. However, the quality of hearing restored by ABIs rarely is comparable to that provided by cochlear implants in persons for whom those are appropriate. In an animal model, we evaluated elements of a prototype of an ABI in which the functions of macroelectrodes on the surface of the dorsal cochlear nucleus would be integrated with the function of multiple penetrating microelectrodes implanted into the ventral cochlear nucleus. The surface electrodes would convey most of the range of loudness percepts while the intranuclear microelectrodes would sharpen and focus pitch percepts. In the present study, stimulating electrodes were implanted chronically on the surface of the animal's dorsal cochlear nucleus (DCN) and also within their ventral cochlear nucleus (VCN). Recording microelectrodes were implanted into the central nucleus of the inferior colliculus (ICC). The electrical stimuli were sinusoidally modulated stimulus pulse trains applied on the DCN and within the VCN. Temporal encoding of neuronal responses was quantified as vector strength (VS) and as full-cycle rate of neuronal activity in the ICC. VS and full-cycle AP rate were measured for 4 stimulation modes; continuous and transient amplitude modulation of the stimulus pulse trains, each delivered via the macroelectrode on the surface of the DCN and then by the intranuclear penetrating microelectrodes. In the proposed clinical device the functions of the surface and intranuclear microelectrodes could best be integrated if there is minimal variation in the neuronal responses across the range of modulation depth, modulation frequencies, and across the four stimulation modes. In this study VS did vary as much as 34% across modulation frequency and modulation depth within a stimulation mode, and up to 40% between modulation modes. However, these intra- and inter-mode variances differed for different stimulation rates, and at 500 Hz the inter-mode differences in VS and across the range of modulation frequencies and modulation depths was<Roman> = </Roman>24% and the intra-modal differences were<Roman> = </Roman>15%. The findings were generally similar for rate encoding of modulation depth, although the depth of transient amplitude modulation delivered by the surface electrode was weakly encoded as full-cycle rate. Overall, our findings support the concept of a clinical ABI that employs surface stimulation and intranuclear microstimulation in an integrated manner.
Collapse
Affiliation(s)
- Douglas McCreery
- Neural Engineering Program at Huntington Medical Research Institutes, 734 Fairmount Ave, Pasadena, CA 91105, USA.
| | - Kamal Yadev
- Rigetti Computing, 775Heinz Avenue, Berkeley, CA 94710, USA.
| | - Martin Han
- Biomedical Engineering Department, School of Engineering & Institute of Material Sciences, The University of Connecticut at Storrs, 260Glenbrook Rd, Unit 3247, Storrs, Connecticut 06269-3247, USA.
| |
Collapse
|
50
|
Multisensory Integration Enhances Temporal Coding in Ventral Cochlear Nucleus Bushy Cells. J Neurosci 2018; 38:2832-2843. [PMID: 29440557 DOI: 10.1523/jneurosci.2244-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 11/21/2022] Open
Abstract
Temporal coding of auditory stimuli is critical for understanding communication signals. The bushy cell, a major output neuron of the ventral cochlear nucleus, can "phase-lock" precisely to pure tones and the envelopes of complex stimuli. Bushy cells are also putative recipients of brainstem somatosensory projections and could therefore play a role in perception of communication signals because multisensory integration is required for such complex sound processing. Here, we examine the role of multisensory integration in temporal coding in bushy cells by activating the spinal trigeminal nucleus (Sp5) while recording responses from bushy cells. In normal-hearing guinea pigs of either sex, bushy cell single unit responses to amplitude-modulated (AM) broadband noise were compared with those in the presence of preceding Sp5 electrical stimulation (i.e., bimodal stimuli). Responses to the AM stimuli were also compared with those obtained 45 min after the bimodal stimulation. Bimodal auditory-Sp5 stimulation resulted in enhanced envelope coding for low modulation frequencies, which persisted for up to 45 min. AM detection thresholds were significantly improved 45 min after bimodal auditory-Sp5 stimulation, but not during bimodal auditory-Sp5 stimulation. Anterograde labeling of Sp5 projections was found within the dendritic fields of bushy cells and their inhibitory interneurons, D-stellate cells. Therefore, enhanced AM responses and improved AM sensitivity of bushy cells were likely facilitated by Sp5 neurons through monosynaptic excitatory projections and indirect inhibitory projections. These somatosensory projections may be involved in the improved perception of communication stimuli with multisensory stimulation, consistent with psychophysical studies in humans.SIGNIFICANCE STATEMENT Multisensory integration is crucial for sensory coding because it improves sensitivity to unimodal stimuli and enhances responses to external stimuli. Although multisensory integration has typically been described in the cerebral cortex, the cochlear nucleus in the brainstem is also innervated by multiple sensory systems, including the somatosensory and auditory systems. Here, we showed that convergence of these two sensory systems in the cochlear nucleus results in improved temporal coding in bushy cells, principal output neurons that send projections to higher auditory structures. The improved temporal coding instilled by bimodal auditory-Sp5 stimulation may be important in priming the neurons for coding biologically relevant sounds such as communication signals.
Collapse
|