1
|
Synaptic Zn 2+ potentiates the effects of cocaine on striatal dopamine neurotransmission and behavior. Transl Psychiatry 2021; 11:570. [PMID: 34750356 PMCID: PMC8575899 DOI: 10.1038/s41398-021-01693-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cocaine binds to the dopamine (DA) transporter (DAT) to regulate cocaine reward and seeking behavior. Zinc (Zn2+) also binds to the DAT, but the in vivo relevance of this interaction is unknown. We found that Zn2+ concentrations in postmortem brain (caudate) tissue from humans who died of cocaine overdose were significantly lower than in control subjects. Moreover, the level of striatal Zn2+ content in these subjects negatively correlated with plasma levels of benzoylecgonine, a cocaine metabolite indicative of recent use. In mice, repeated cocaine exposure increased synaptic Zn2+ concentrations in the caudate putamen (CPu) and nucleus accumbens (NAc). Cocaine-induced increases in Zn2+ were dependent on the Zn2+ transporter 3 (ZnT3), a neuronal Zn2+ transporter localized to synaptic vesicle membranes, as ZnT3 knockout (KO) mice were insensitive to cocaine-induced increases in striatal Zn2+. ZnT3 KO mice showed significantly lower electrically evoked DA release and greater DA clearance when exposed to cocaine compared to controls. ZnT3 KO mice also displayed significant reductions in cocaine locomotor sensitization, conditioned place preference (CPP), self-administration, and reinstatement compared to control mice and were insensitive to cocaine-induced increases in striatal DAT binding. Finally, dietary Zn2+ deficiency in mice resulted in decreased striatal Zn2+ content, cocaine locomotor sensitization, CPP, and striatal DAT binding. These results indicate that cocaine increases synaptic Zn2+ release and turnover/metabolism in the striatum, and that synaptically released Zn2+ potentiates the effects of cocaine on striatal DA neurotransmission and behavior and is required for cocaine-primed reinstatement. In sum, these findings reveal new insights into cocaine's pharmacological mechanism of action and suggest that Zn2+ may serve as an environmentally derived regulator of DA neurotransmission, cocaine pharmacodynamics, and vulnerability to cocaine use disorders.
Collapse
|
2
|
Synaptic Zinc: An Emerging Player in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094724. [PMID: 33946908 PMCID: PMC8125092 DOI: 10.3390/ijms22094724] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023] Open
Abstract
Alterations of zinc homeostasis have long been implicated in Parkinson's disease (PD). Zinc plays a complex role as both deficiency and excess of intracellular zinc levels have been incriminated in the pathophysiology of the disease. Besides its role in multiple cellular functions, Zn2+ also acts as a synaptic transmitter in the brain. In the forebrain, subset of glutamatergic neurons, namely cortical neurons projecting to the striatum, use Zn2+ as a messenger alongside glutamate. Overactivation of the cortico-striatal glutamatergic system is a key feature contributing to the development of PD symptoms and dopaminergic neurotoxicity. Here, we will cover recent evidence implicating synaptic Zn2+ in the pathophysiology of PD and discuss its potential mechanisms of actions. Emphasis will be placed on the functional interaction between Zn2+ and glutamatergic NMDA receptors, the most extensively studied synaptic target of Zn2+.
Collapse
|
3
|
Kang BS, Choi BY, Kho AR, Lee SH, Hong DK, Jeong JH, Kang DH, Park MK, Suh SW. An Inhibitor of the Sodium-Hydrogen Exchanger-1 (NHE-1), Amiloride, Reduced Zinc Accumulation and Hippocampal Neuronal Death after Ischemia. Int J Mol Sci 2020; 21:ijms21124232. [PMID: 32545865 PMCID: PMC7352629 DOI: 10.3390/ijms21124232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acidosis in the brain plays an important role in neuronal injury and is a common feature of several neurological diseases. It has been reported that the sodium–hydrogen exchanger-1 (NHE-1) is a key mediator of acidosis-induced neuronal injury. It modulates the concentration of intra- and extra-cellular sodium and hydrogen ions. During the ischemic state, excessive sodium ions enter neurons and inappropriately activate the sodium–calcium exchanger (NCX). Zinc can also enter neurons through voltage-gated calcium channels and NCX. Here, we tested the hypothesis that zinc enters the intracellular space through NCX and the subsequent zinc accumulation induces neuronal cell death after global cerebral ischemia (GCI). Thus, we conducted the present study to confirm whether inhibition of NHE-1 by amiloride attenuates zinc accumulation and subsequent hippocampus neuronal death following GCI. Mice were subjected to GCI by bilateral common carotid artery (BCCA) occlusion for 30 min, followed by restoration of blood flow and resuscitation. Amiloride (10 mg/kg, intraperitoneally (i.p.)) was immediately injected, which reduced zinc accumulation and neuronal death after GCI. Therefore, the present study demonstrates that amiloride attenuates GCI-induced neuronal injury, likely via the prevention of intracellular zinc accumulation. Consequently, we suggest that amiloride may have a high therapeutic potential for the prevention of GCI-induced neuronal death.
Collapse
Affiliation(s)
- Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Jeong Hyun Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Dong Hyeon Kang
- Department of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
- Correspondence: ; Tel.: +82-10-8573-6364
| |
Collapse
|
4
|
Sikora J, Kieffer BL, Paoletti P, Ouagazzal AM. Synaptic zinc contributes to motor and cognitive deficits in 6-hydroxydopamine mouse models of Parkinson's disease. Neurobiol Dis 2019; 134:104681. [PMID: 31759136 DOI: 10.1016/j.nbd.2019.104681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
Hyperactivity of glutamatergic corticostrial pathways is recognized as a key pathophysiological mechanism contributing to development of PD symptoms and dopaminergic neurotoxicity. Subset of corticostriatal projection neurons uses Zn2+ as a co-transmitter alongside glutamate, but the role of synaptically released Zn2+ in PD remains unexplored. We used genetically modified mice and pharmacological tools in combination with 6-hydroxydopamine (6-OHDA) lesion models of PD to investigate the contribution of synaptic zinc to disease associated behavioral deficits and neurodegeneration. Vesicular zinc transporter-3 (ZnT3) knockout mice lacking releasable Zn2+ were more resistant to locomotor deficit and memory impairment of nigrostriatal dopamine (DA) denervation compared to wildtype littermates. The loss of striatal dopaminergic fibers was comparable between genotypes, indicating that synaptically released Zn2+ contributes to behavioral deficits but not neurotoxic effects of 6-OHDA. To gain further insight into the mechanisms of Zn2+ actions, we used the extracellular Zn2+ chelator CaEDTA and knock-in mice lacking the high affinity Zn2+ inhibition of GluN2A-containing NMDA receptors (GluN2A-NMDARs). Acute chelation of extracellular Zn2+ in the striatum restored locomotor deficit of 6-OHDA lesion, confirming that synaptic Zn2+ suppresses locomotor behavior. Disruption of the Zn2+-GluN2A interaction had, on the other hand, no impact on locomotor deficit or neurotoxic effect of 6-OHDA. Collectively, these findings provide clear evidence for the implication of striatal synaptic Zn2+ in the pathophysiology of PD. They unveil that synaptic Zn2+ plays predominantly a detrimental role by promoting motor and cognitive deficits caused by nigrostriatal DA denervation, pointing towards new therapeutic interventions.
Collapse
Affiliation(s)
- Joanna Sikora
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Univ, CNRS, LNC, UMR 7291, 13331 Marseille, France; Aix-marseille Université, Marseille, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Canada
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Abdel-Mouttalib Ouagazzal
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Univ, CNRS, LNC, UMR 7291, 13331 Marseille, France.
| |
Collapse
|
5
|
Affiliation(s)
- Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University
| |
Collapse
|
6
|
ZnT3 Gene Deletion Reduces Colchicine-Induced Dentate Granule Cell Degeneration. Int J Mol Sci 2017; 18:ijms18102189. [PMID: 29048371 PMCID: PMC5666870 DOI: 10.3390/ijms18102189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/02/2022] Open
Abstract
Our previous study demonstrated that colchicine-induced dentate granule cell death is caused by blocking axonal flow and the accumulation of intracellular zinc. Zinc is concentrated in the synaptic vesicles via zinc transporter 3 (ZnT3), which facilitates zinc transport from the cytosol into the synaptic vesicles. The aim of the present study was to identify the role of ZnT3 gene deletion on colchicine-induced dentate granule cell death. The present study used young (3–5 months) mice of the wild-type (WT) or the ZnT3−/− genotype. Colchicine (10 µg/kg) was injected into the hippocampus, and then brain sections were evaluated 12 or 24 h later. Cell death was evaluated by Fluoro-Jade B; oxidative stress was analyzed by 4-hydroxy-2-nonenal; and dendritic damage was detected by microtubule-associated protein 2. Zinc accumulation was detected by N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) staining. Here, we found that ZnT3−/− reduced the number of degenerating cells after colchicine injection. The ZnT3−/−-mediated inhibition of cell death was accompanied by suppression of oxidative injury, dendritic damage and zinc accumulation. In addition, ZnT3−/− mice showed more glutathione content than WT mice and inhibited neuronal glutathione depletion by colchicine. These findings suggest that increased neuronal glutathione by ZnT3 gene deletion prevents colchicine-induced dentate granule cell death.
Collapse
|
7
|
Sheida E, Sipailova O, Miroshnikov S, Sizova E, Lebedev S, Rusakova E, Notova S. The effect of iron nanoparticles on performance of cognitive tasks in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8700-8710. [PMID: 28210948 DOI: 10.1007/s11356-017-8531-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
To assess the influence of 62.5 ± 0.6 nm iron nanoparticles on the status of central nervous system, a study was conducted on Wistar rats, which were subjected to abdominal injection of the studied nanoparticles at doses of 2 and 14 mg/kg. Based on the analysis of the structural and functional status of the cerebral cortex of rats, behavioral reactions of animals, and the elemental composition of the cerebral cortex, we investigated the nanoparticles' neurotoxic effect, whose degree and nature varied depending on the dosage and the time elapsed after the injection. We identified pathological changes in motor and somatosensory areas of the rats' cerebral cortex and established pronounced changes in the elemental homeostasis of the animals' cerebral cortex in experimental groups. Identified structural changes were accompanied by an increase in exploratory activity, locomotor activity, and emotional status of the animals. At that, these activities were more pronounced in rats, which were administered iron nanoparticles at a dose of 14 mg/kg. By the end of the experiment, the excitation processes prevailed over the inhibition processes that have led to the inhibition of central nervous system activity in experimental animals against the adaptation to stress in rats of the control group.
Collapse
Affiliation(s)
| | | | - Sergei Miroshnikov
- Federal State Budgetary Scientific Institution "All-Russian Research Institute of Beef Cattle Breeding", Orenburg, Russia
| | - Elena Sizova
- Orenburg State University, Orenburg, Russia
- Federal State Budgetary Scientific Institution "All-Russian Research Institute of Beef Cattle Breeding", Orenburg, Russia
| | | | | | | |
Collapse
|
8
|
Choi BY, Lee BE, Kim JH, Kim HJ, Sohn M, Song HK, Chung TN, Suh SW. Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration. Metallomics 2015; 6:1513-20. [PMID: 24874779 DOI: 10.1039/c4mt00067f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, 1-Okcheon Dong, Chuncheon, Korea 200-702.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lo HS, Chiang HC, Lin AMY, Chiang HY, Chu YC, Kao LS. Synergistic effects of dopamine and Zn2+ on the induction of PC12 cell death and dopamine depletion in the striatum: possible implication in the pathogenesis of Parkinson's disease. Neurobiol Dis 2004; 17:54-61. [PMID: 15350965 DOI: 10.1016/j.nbd.2004.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 03/15/2004] [Accepted: 05/04/2004] [Indexed: 11/22/2022] Open
Abstract
The mechanism that underlies the progressive degeneration of the dopaminergic neurons in Parkinson's disease (PD) is not clear. The Zn(2+) level in the substantia nigra of Parkinson's patients is increased. However, it is unknown whether Zn(2+) has a role in the degeneration of dopaminergic neurons. This study identifies an interaction between dopamine and Zn(2+) that induces cell death. When PC12 cells were pretreated with Zn(2+) before dopamine treatment, dopamine and Zn(2+) synergistically increased cell death, while Zn(2+) and H(2)O(2) had only additive effects on cell death. The synergistic effect appeared to be caused by increased apoptosis rather than necrosis. The synergistic effect was specific for Zn(2+). The synergistic effect was inhibited by thiol antioxidants but was not significantly affected by calcium channel blockers. There is a similar synergistic effect when dopamine and Zn(2+) were coinfused into the striatum, resulting in striatal dopamine content depletion in vivo. Thus, both dopamine oxidation and Zn(2+) are possibly linked to the degeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Hsiao-Sui Lo
- Department of Neurology, Taiwan Adventist Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Trace metals such as zinc, manganese, and iron are necessary for the growth and function of the brain. The transport of trace metals into the brain is strictly regulated by the brain barrier system, i.e., the blood-brain and blood-cerebrospinal fluid barriers. Trace metals usually serve the function of metalloproteins in neurons and glial cells, while a portion of trace metals exists in the presynaptic vesicles and may be released with neurotransmitters into the synaptic cleft. Zinc and manganese influence the concentration of neurotransmitters in the synaptic cleft, probably via the action against neurotransmitter receptors and transporters and ion channels. Zinc may be an inhibitory neuromodulator of glutamate release in the hippocampus, while neuromodulation by manganese might mean functional and toxic aspects in the synapse. Dietary zinc deficiency affects zinc homeostasis in the brain, followed by an enhanced susceptibility to the excitotoxicity of glutamate in the hippocampus. Transferrin may be involved in the physiological transport of iron and manganese into the brain and their utilization there. It is reported that the brain transferrin concentration is decreased in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease and that brain iron metabolism is also altered. The homeostasis of trace metals in the brain is important for brain function and also for the prevention of brain diseases.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan.
| |
Collapse
|
11
|
Tarohda T, Yamamoto M, Amamo R. Regional distribution of manganese, iron, copper, and zinc in the rat brain during development. Anal Bioanal Chem 2004; 380:240-6. [PMID: 15322797 DOI: 10.1007/s00216-004-2697-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/27/2004] [Accepted: 05/28/2004] [Indexed: 11/29/2022]
Abstract
Manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn) concentrations were determined in the brain regions of normal 1-, 3-, 5-, 7-, 14-, 21-, 42-, 77-, and 147-day-old Wistar rats using inductively coupled plasma mass spectrometry (ICP-MS), and their maps were illustrated in color to visually compare the distribution of the elements at various stages of the growth process. Sagittal slices (1-mm thickness) sectioned at the level of the substantia nigra were divided into 18 regions, and the small slice samples were digested in microwave-assisted closed vessels for ICP-MS measurement. Mn, Fe, Cu, and Zn concentrations increased region-specifically with age, and their distributional maps showed some characteristics. These findings are discussed in terms of needs for these trace elements in the normal brain. Among new findings about their brain distribution, it is especially noteworthy that higher concentrations of Mn, Fe, and Zn were observed in the substantia nigra compared with those in neighboring regions. The mapping method in this work is expected to open up possibilities for screening of the in vivo element-element interrelationships among these essential elements.
Collapse
Affiliation(s)
- Tohru Tarohda
- Division of Physical Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, 920-1192 Kanazawa, Japan
| | | | | |
Collapse
|
12
|
Takeda A. Analysis of Brain Function and Prevention of Brain Diseases: the Action of Trace Metals. ACTA ACUST UNITED AC 2004. [DOI: 10.1248/jhs.50.429] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
13
|
Wang ZY, Li JY, Varea E, Danscher G, Dahlström A. Is the postganglionic sympathetic neuron zinc-enriched? A stop-flow nerve crush study on rat sciatic nerve. Neuroreport 2001; 12:2247-50. [PMID: 11447343 DOI: 10.1097/00001756-200107200-00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Axonal transport of endogenous zinc ions in the rat sciatic nerve was studied by a stop-flow/nerve crush technique combined with zinc selenide autometallography (ZnSeAMG) at light and electron microscopic levels. Distinct accumulations of ZnSeAMG grains were detected, in particular proximal but also distal to the crushes, 1.5 h after the operation, and the amounts of zinc ions increased further in the following 3-8 h. Ultrastructurally, ZnSeAMG grains were located predominantly in unmyelinated axons. The data suggest that a subpopulation of sciatic nerve axons contains and transports zinc ions both antero- and retrogradely, indicating that the second neuron in the sympathetic nervous system is zinc enriched (ZEN).
Collapse
Affiliation(s)
- Z Y Wang
- Department of Anatomy and Cell Biology, University of Gothenburg, Box 420, SE 405 30, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
14
|
Abstract
The brain distribution of 109CdCl2 following administration into either the tail vein, the lateral ventricle or the olfactory bulb was studied to clarify permeability of the brain barrier system to cadmium (Cd) and Cd movement in the cerebrospinal fluid (CSF) and the brain extracellular fluid. One hour after intravenous (i.v.) injection, 109Cd was largely concentrated in the choroid plexus, and 109Cd concentration in the major part of the brain parenchyma, except for the circumventricular organs such as the pineal gland and the regions around them, was low. Six days after i.v. injection, 109Cd concentration in the choroid plexus was still high, and 109Cd was also detected highly in the pineal gland and small part around the median eminence. 109Cd concentration in the major part of the brain parenchyma was decreased in parallel with that in the blood. In the case of injection of 109CdCl2 into the lateral ventricle, a large portion of 109Cd was detected in the ventricular system 6 days after injection, and 109Cd concentration in the major part of the brain parenchyma was less than the detection limit. These results suggest that Cd cannot easily get into the brain and is blocked not only by the blood- brain and the blood-CSF barriers, but also by the ependymal and pial surfaces. In the case of injection of 109CdCl2 into the olfactory bulb, a large portion of 109Cd was detected in the injected area 24 h after injection, and, the next 24 h later, 109Cd distribution in the brain was not changed appreciably. These results suggest that Cd cannot easily move in the brain extracelular space, and is taken up into the brain parenchyma.
Collapse
Affiliation(s)
- A Takeda
- Department of Radiobiochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Yada, Japan.
| | | | | | | | | |
Collapse
|