1
|
Ribeiro Franco PI, do Carmo Neto JR, Guerra RO, Ferreira da Silva PE, Braga YLL, Nunes Celes MR, de Menezes LB, Miguel MP, Machado JR. Melatonin: A look at protozoal and helminths. Biochimie 2024; 219:96-109. [PMID: 37541568 DOI: 10.1016/j.biochi.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Melatonin is a pleiotropic neurohormone found in different animal, plant, and microorganism species. It is a product resulting from tryptophan metabolism in the pineal gland and is widely known for its ability to synchronize the circadian rhythm to antitumor functions in different types of cancers. The molecular mechanisms responsible for its immunomodulatory, antioxidant and cytoprotective effects involve binding to high-affinity G protein-coupled receptors and interactions with intracellular targets that modulate signal transduction pathways. In vitro and in vivo studies have reported the therapeutic potential of melatonin in different infectious and parasitic diseases. In this review, the protective and pathophysiological roles of melatonin in fighting protozoan and helminth infections and the possible mechanisms involved against these stressors will be discussed.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Departamento de Biologia Celular, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Priscilla Elias Ferreira da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Yarlla Loyane Lira Braga
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Mara Rúbia Nunes Celes
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Liliana Borges de Menezes
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marina Pacheco Miguel
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
2
|
Kopustinskiene DM, Bernatoniene J. Molecular Mechanisms of Melatonin-Mediated Cell Protection and Signaling in Health and Disease. Pharmaceutics 2021; 13:129. [PMID: 33498316 PMCID: PMC7909293 DOI: 10.3390/pharmaceutics13020129] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/07/2023] Open
Abstract
Melatonin, an endogenously synthesized indolamine, is a powerful antioxidant exerting beneficial action in many pathological conditions. Melatonin protects from oxidative stress in ischemic/reperfusion injury, neurodegenerative diseases, and aging, decreases inflammation, modulates the immune system, inhibits proliferation, counteracts the Warburg effect, and promotes apoptosis in various cancer models. Melatonin stimulates antioxidant enzymes in the cells, protects mitochondrial membrane phospholipids, especially cardiolipin, from oxidation thus preserving integrity of the membranes, affects mitochondrial membrane potential, stimulates activity of respiratory chain enzymes, and decreases the opening of mitochondrial permeability transition pore and cytochrome c release. This review will focus on the molecular mechanisms of melatonin effects in the cells during normal and pathological conditions and possible melatonin clinical applications.
Collapse
Affiliation(s)
- Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
3
|
Rijo-Ferreira F, Bjorness TE, Cox KH, Sonneborn A, Greene RW, Takahashi JS. Sleeping Sickness Disrupts the Sleep-Regulating Adenosine System. J Neurosci 2020; 40:9306-9316. [PMID: 33097636 PMCID: PMC7687053 DOI: 10.1523/jneurosci.1046-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022] Open
Abstract
Patients with sleeping sickness, caused by the parasite Trypanosoma brucei, have disruptions in both sleep timing and sleep architecture. However, the underlying cause of these sleep disturbances is not well understood. Here, we assessed the sleep architecture of male mice infected with T. brucei and found that infected mice had drastically altered sleep patterns. Interestingly, T. brucei-infected mice also had a reduced homeostatic sleep response to sleep deprivation, a response modulated by the adenosine system. We found that infected mice had a reduced electrophysiological response to an adenosine receptor antagonist and increased adenosine receptor gene expression. Although the mechanism by which T. brucei infection causes these changes remains to be determined, our findings suggest that the symptoms of sleeping sickness may be because of alterations in homeostatic adenosine signaling.SIGNIFICANCE STATEMENT Sleeping sickness is a fatal disease that disrupts the circadian clock, causes disordered temperature regulation, and induces sleep disturbance. To examine the neurologic effects of infection in the absence of other symptoms, in this study, we used a mouse model of sleeping sickness in which the acute infection was treated but brain infection remained. Using this model, we evaluated the effects of the sleeping sickness parasite, Trypanosoma brucei, on sleep patterns in mice, under both normal and sleep-deprived conditions. Our findings suggest that signaling of adenosine, a neuromodulator involved in mediating homeostatic sleep drive, may be reduced in infected mice.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Theresa E Bjorness
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Research Service, VA North Texas Health Care System, Dallas, Texas 75216-7167
| | - Kimberly H Cox
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Alex Sonneborn
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Robert W Greene
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
4
|
Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium falciparum. Biomolecules 2020; 10:biom10091243. [PMID: 32867164 PMCID: PMC7563138 DOI: 10.3390/biom10091243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
The indoleamine compound melatonin has been extensively studied in the regulation of the circadian rhythm in nearly all vertebrates. The effects of melatonin have also been studied in Protozoan parasites, especially in the synchronization of the human malaria parasite Plasmodium falciparum via a complex downstream signalling pathway. Melatonin activates protein kinase A (PfPKA) and requires the activation of protein kinase 7 (PfPK7), PLC-IP3, and a subset of genes from the ubiquitin-proteasome system. In other parasites, such as Trypanosoma cruzi and Toxoplasma gondii, melatonin increases inflammatory components, thus amplifying the protective response of the host’s immune system and affecting parasite load. The development of melatonin-related indole compounds exhibiting antiparasitic properties clearly suggests this new and effective approach as an alternative treatment. Therefore, it is critical to understand how melatonin confers stimulatory functions in host–parasite biology.
Collapse
|
5
|
Bentivoglio M, Kristensson K, Rottenberg ME. Circumventricular Organs and Parasite Neurotropism: Neglected Gates to the Brain? Front Immunol 2018; 9:2877. [PMID: 30619260 PMCID: PMC6302769 DOI: 10.3389/fimmu.2018.02877] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Circumventricular organs (CVOs), neural structures located around the third and fourth ventricles, harbor, similarly to the choroid plexus, vessels devoid of a blood-brain barrier (BBB). This enables them to sense immune-stimulatory molecules in the blood circulation, but may also increase chances of exposure to microbes. In spite of this, attacks to CVOs by microbes are rarely described. It is here highlighted that CVOs and choroid plexus can be infected by pathogens circulating in the bloodstream, providing a route for brain penetration, as shown by infections with the parasites Trypanosoma brucei. Immune responses elicited by pathogens or systemic infections in the choroid plexus and CVOs are briefly outlined. From the choroid plexus trypanosomes can seed into the ventricles and initiate accelerated infiltration of T cells and parasites in periventricular areas. The highly motile trypanosomes may also enter the brain parenchyma from the median eminence, a CVO located at the base of the third ventricle, by crossing the border into the BBB-protected hypothalamic arcuate nuclei. A gate may, thus, be provided for trypanosomes to move into brain areas connected to networks of regulation of circadian rhythms and sleep-wakefulness, to which other CVOs are also connected. Functional imbalances in these networks characterize human African trypanosomiasis, also called sleeping sickness. They are distinct from the sickness response to bacterial infections, but can occur in common neuropsychiatric diseases. Altogether the findings lead to the question: does the neglect in reporting microbe attacks to CVOs reflect lack of awareness in investigations or of gate-opening capability by microbes?
Collapse
Affiliation(s)
- Marina Bentivoglio
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Martin E. Rottenberg
- Department Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Masocha W, Kristensson K. Human African trypanosomiasis: How do the parasites enter and cause dysfunctions of the nervous system in murine models? Brain Res Bull 2018; 145:18-29. [PMID: 29870779 DOI: 10.1016/j.brainresbull.2018.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 12/27/2022]
Abstract
In this review we describe how Trypanosoma brucei brucei, a rodent pathogenic strain of African trypanosomes, can invade the nervous system, first by localization to the choroid plexus, the circumventricular organs (CVOs) and peripheral ganglia, which have fenestrated vessels, followed by crossing of the blood-brain barrier (BBB) into the white matter, hypothalamus, thalamus and basal ganglia. White blood cells (WBCs) pave the way for the trypanosome neuroinvasion. Experiments with immune deficient mice show that the invasion of WBCs is initiated by the toll-like receptor 9, followed by an augmentation phase that depends on the cytokine IFN-γ and the chemokine CXCL10. Nitric oxide (NO) derived from iNOS then prevents a break-down of the BBB and non-regulated passage of cells. This chain of events is relevant for design of better diagnostic tools to distinguish the different stages of the disease as well as for better understanding of the pathogenesis of the nervous system dysfunctions, which include circadian rhythm changes with sleep pattern disruption, pain syndromes, movement disorders and mental disturbances including dementia.
Collapse
Affiliation(s)
- Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | | |
Collapse
|
7
|
Tesoriero C, Xu YZ, Mumba Ngoyi D, Bentivoglio M. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: The Suprachiasmatic Nucleus. Front Neuroanat 2018; 12:6. [PMID: 29491832 PMCID: PMC5817918 DOI: 10.3389/fnana.2018.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma brucei (T. b.) gambiense is the parasite subspecies responsible for most reported cases of human African trypanosomiasis (HAT) or sleeping sickness. This severe infection leads to characteristic disruption of the sleep-wake cycle, recalling attention on the circadian timing system. Most animal models of the disease have been hitherto based on infection of laboratory rodents with the T. b. brucei subspecies, which is not infectious to humans. In these animal models, functional, rather than structural, alterations of the master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), have been reported. Information on the SCN after infection with the human pathogenic T. b. gambiense is instead lacking. The present study was aimed at the examination of the SCN after T. b. gambiense infection of a susceptible rodent, the multimammate mouse, Mastomys natalensis, compared with T. b. brucei infection of the same host species. The animals were examined at 4 and 8 weeks post-infection, when parasites (T. b. gambiense or T. b. brucei) were detected in the brain parenchyma, indicating that the disease was in the encephalitic stage. Neuron and astrocyte changes were examined with Nissl staining, immunophenotyping and quantitative analyses. Interestingly, significant neuronal loss (about 30% reduction) was documented in the SCN during the progression of T. b. gambiense infection. No significant neuronal density changes were found in the SCN of T. b. brucei-infected animals. Neuronal cell counts in the hippocampal dentate gyrus of T. b. gambiense-infected M. natalensis did not point out significant changes, indicating that no widespread neuron loss had occurred in the brain. Marked activation of astrocytes was detected in the SCN after both T. b. gambiense and T. b. brucei infections. Altogether the findings reveal that neurons of the biological clock are highly susceptible to the infection caused by human pathogenic African trypanosomes, which have the capacity to cause permanent partial damage of this structure.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Yuan-Zhong Xu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dieudonné Mumba Ngoyi
- Institut National de Recherche Biomedicale (INRB), Kinshasa, Democratic Republic of Congo
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience (INN), Verona Unit, Verona, Italy
| |
Collapse
|
8
|
The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed Pharmacother 2017; 97:948-957. [PMID: 29136773 DOI: 10.1016/j.biopha.2017.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a circadian hormone produced in vertebrates by the pineal gland and other organs. Melatonin is believed to influence immune cells leading to modulation of the proliferative response of stimulated lymphocytes as well as cytokine production. Due to the antioxidant and immunomodulatory effects of melatonin, it is suggested that this molecule could be a therapeutic alternative agent to fight bacterial, viral, and parasitic infections by a variety of mechanisms. Herein, we review the effects of melatonin on the cell biology of protozoan parasites and host's immune response. In toxoplasmosis, African trypanosomiasis and Chagas' disease, melatonin enhances host's immune response against the parasite via regulating the secretion of inflammatory mediators. In amoebiasis, melatonin reduces the amoebic lesions as well as increasing the leukophagocytosis and the number of dead amoebae. In giardiasis, serum melatonin levels are elevated in these patients; this suggests a positive correlation between the level of melatonin and phagocytic activity in the G. duodenalis infected patients, possibly related to melatonin's immunomodulatory effect. In leishmaniasis, melatonin arrests parasite replication accompanied by releasing mitochondrial Ca2+ into the cytosol, increasing the level of mitochondrial nitrites as well as reducing superoxide dismutase (SOD) activity. In malaria, melatonin synchronizes the Plasmodium cell cycle via modulating cAMP-PKA and IP3-Ca2+ pathways. Thus, simultaneous administration of melatonin agonists or giving pharmacological doses of melatonin may be considered a novel approach for treatment of malarial infection.
Collapse
|
9
|
Laperchia C, Tesoriero C, Seke-Etet PF, La Verde V, Colavito V, Grassi-Zucconi G, Rodgers J, Montague P, Kennedy PGE, Bentivoglio M. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis. PLoS Negl Trop Dis 2017; 11:e0005854. [PMID: 28821016 PMCID: PMC5576758 DOI: 10.1371/journal.pntd.0005854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/30/2017] [Accepted: 08/04/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. METHODOLOGY/PRINCIPAL FINDINGS The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. CONCLUSIONS/SIGNIFICANCE The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.
Collapse
Affiliation(s)
- Claudia Laperchia
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Tesoriero
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paul F. Seke-Etet
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina La Verde
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Valeria Colavito
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gigliola Grassi-Zucconi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Montague
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Peter G. E. Kennedy
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- National Institute of Neuroscience (INN), Verona Unit, Verona, Italy
| |
Collapse
|
10
|
Darsaud A, Bourdon L, Chevrier C, Keita M, Bouteille B, Queyroy A, Canini F, Cespuglio R, Dumas M, Buguet A. Clinical Follow-Up in the Rat Experimental Model of African-Trypanosomiasis. Exp Biol Med (Maywood) 2016; 228:1355-62. [PMID: 14681551 DOI: 10.1177/153537020322801114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Animal models of Human African Trypanosomiasis (HAT) have been developed to understand the pathogenic mechanisms leading to the passage into the neurological phase, most of them referring to histological aspects but not clinical or behavioral data. Our study aimed at defining simple clinical and/or behavioral markers of the passage between the hemolymphatic phase and the meningo-encephalitic stage of the disease. Sprague-Dawley rats (n=24) were infected with Trypanosoma brucei brucei AnTat 1.1E. Food intake and body weight were measured daily from the day of infection until death. Hematocrit was measured twice a week. Behavioral disturbances were evaluated through an Open-field test. A sudden weight loss occurred on the twelfth day after infection, due to a significant drop of food intake starting two days before. The rats developed an anemic state shown by the hematocrit measurements. The Open-field test showed them to be less active and reactive as soon as the second week after infestation. A complementary histological study observed trypanosomes and inflammatory cells in the choroid plexus at the same period. These results are in favor of central nervous system functional disturbances. The observed weight loss is discussed as being a parameter of the entry in the meningo-encephalitic phase. The rat model reproduces neurological symptoms observed in the human disease and may prove to be useful for further neurohistological and therapeutic studies.
Collapse
Affiliation(s)
- A Darsaud
- Centre de recherches du Service de santé des armées, département des facteurs humains, La Tronche cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mogk S, Boßelmann CM, Mudogo CN, Stein J, Wolburg H, Duszenko M. African trypanosomes and brain infection - the unsolved question. Biol Rev Camb Philos Soc 2016; 92:1675-1687. [PMID: 27739621 DOI: 10.1111/brv.12301] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
African trypanosomes induce sleeping sickness. The parasites are transmitted during the blood meal of a tsetse fly and appear primarily in blood and lymph vessels, before they enter the central nervous system. During the latter stage, trypanosomes induce a deregulation of sleep-wake cycles and some additional neurological disorders. Historically, it was assumed that trypanosomes cross the blood-brain barrier and settle somewhere between the brain cells. The brain, however, is a strictly controlled and immune-privileged area that is completely surrounded by a dense barrier that covers the blood vessels: this is the blood-brain barrier. It is known that some immune cells are able to cross this barrier, but this requires a sophisticated mechanism and highly specific cell-cell interactions that have not been observed for trypanosomes within the mammalian host. Interestingly, trypanosomes injected directly into the brain parenchyma did not induce an infection. Likewise, after an intraperitoneal infection of rats, Trypanosoma brucei brucei was not observed within the brain, but appeared readily within the cerebrospinal fluid (CSF) and the meninges. Therefore, the parasite did not cross the blood-brain barrier, but the blood-CSF barrier, which is formed by the choroid plexus, i.e. the part of the ventricles where CSF is produced from blood. While there is no question that trypanosomes are able to invade the brain to induce a deadly encephalopathy, controversy exists about the pathway involved. This review lists experimental results that support crossing of the blood-brain barrier and of the blood-CSF barrier and discuss the implications that either pathway would have on infection progress and on the survival strategy of the parasite. For reasons discussed below, we prefer the latter pathway and suggest the existence of an additional distinct meningeal stage, from which trypanosomes could invade the brain via the Virchow-Robin space thereby bypassing the blood-brain barrier. We also consider healthy carriers, i.e. people living symptomless with the disease for up to several decades, and discuss implications the proposed meningeal stage would have for new anti-trypanosomal drug development. Considering the re-infection of blood, a process called relapse, we discuss the likely involvement of the newly described glymphatic connection between the meningeal space and the lymphatic system, that seems also be important for other infectious diseases.
Collapse
Affiliation(s)
- Stefan Mogk
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany
| | - Christian M Boßelmann
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany
| | - Celestin N Mudogo
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany.,Department of Basic Sciences, School of Medicine, University of Kinshasa, BP 834 KIN XI, Kinshasa, D.R. Congo
| | - Jasmin Stein
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany
| | - Hartwig Wolburg
- Medical Department, Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, 72076, Liebermeister Str. 8, Germany
| | - Michael Duszenko
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany.,Medical Department, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, P.R. China
| |
Collapse
|
12
|
Bagnaresi P, Nakabashi M, Thomas AP, Reiter RJ, Garcia CRS. The role of melatonin in parasite biology. Mol Biochem Parasitol 2011; 181:1-6. [PMID: 21982826 DOI: 10.1016/j.molbiopara.2011.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Regarded as the circadian hormone in mammals, melatonin is a highly conserved molecule, present in nearly all species. In this review, we discuss the role of this indolamine and its precursors in the cell biology of parasites and the role of the molecule in the physiology of the host. In Plasmodium, melatonin can modulate intracellular concentrations of calcium and cAMP, which in turn can regulate kinase activity and cell cycle. In Trypanosoma infections, modulation of the immune system by melatonin is extremely important in controlling the parasite population. Melatonin also contributes to the inflammatory response to Toxoplasma gondii infection. Thus, there are a number of unique adaptations involving intricate connections between melatonin and the biology of the parasite-host relationship.
Collapse
Affiliation(s)
- Piero Bagnaresi
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
13
|
Grab DJ, Garcia-Garcia JC, Nikolskaia OV, Kim YV, Brown A, Pardo CA, Zhang Y, Becker KG, Wilson BA, de A Lima APC, Scharfstein J, Dumler JS. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Negl Trop Dis 2009; 3:e479. [PMID: 19621073 PMCID: PMC2707606 DOI: 10.1371/journal.pntd.0000479] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/04/2009] [Indexed: 12/25/2022] Open
Abstract
Background Using human brain microvascular endothelial cells (HBMECs) as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB) we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain). In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs) known as protease activated receptors (PARs) that might be implicated in calcium signaling by African trypanosomes. Methodology/Principal Findings Using RNA interference (RNAi) we found that in vitro PAR-2 gene (F2RL1) expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%–49%) and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Gαq with Pasteurella multocida toxin (PMT). PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain) and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified. Conclusions/Significance Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Gαq-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease. Human African trypanosomiasis, or sleeping sickness, occurs when single-cell trypanosome protozoan parasites spread from the blood to brain over the blood-brain barrier (BBB). This barrier is composed of brain microvascular endothelial cells (BMECs) especially designed to keep pathogens out. Safe drugs for treating sleeping sickness are lacking and alternative treatments are urgently required. Using our human BMEC BBB model, we previously found that a parasite protease, brucipain, induced calcium activation signals that allowed this barrier to open up to parasite crossing. Because human BMECs express protease-activated receptors (PARs) that trigger calcium signals in BMECs, we hypothesized a functional link between parasite brucipain and BMEC PARs. Utilizing RNA interference to block the production of one type of PAR called PAR-2, we hindered the ability of trypanosomes to both open up and cross human BMECs. Using gene-profiling methods to interrogate candidate BMEC pathways specifically triggered by brucipain, several pathways that potentially link brain inflammatory processes were identified, a finding congruent with the known role of PAR-2 as a mediator of inflammation. Overall, our data support a role for brucipain and BMEC PARs in trypanosome BBB transmigration, and as potential triggers for brain inflammation associated with the disease.
Collapse
Affiliation(s)
- Dennis J Grab
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kennedy PGE. Diagnostic and neuropathogenesis issues in human African trypanosomiasis. Int J Parasitol 2006; 36:505-12. [PMID: 16546191 DOI: 10.1016/j.ijpara.2006.01.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/23/2006] [Accepted: 01/30/2006] [Indexed: 11/17/2022]
Abstract
Human African trypanosomiasis, also known as sleeping sickness, is caused by protozoan parasites of the genus Trypanosoma, and is a major cause of human mortality and morbidity. The East African and West African variants, caused by Trypanosma brucei rhodesiense and Trypanosoma brucei gambiense, respectively, differ in their presentation but the disease is fatal if untreated. Accurate staging of the disease into the early haemolymphatic stage and the late encephalitic stage is critical as the treatment for the two stages is different. The only effective drug for late stage disease, melarsoprol, which crosses the blood-brain barrier, is followed by a severe post-treatment reactive encephalopathy in 10% of cases of which half die. There is no current consensus on the diagnostic criteria for CNS involvement and the specific indications for melarsoprol therapy also differ. There is a pressing need for a quick, simple, cheap and reliable diagnostic test to diagnose Human African trypanosomiasis in the field and also to determine CNS invasion. Cerebrospinal fluid and plasma analyses in patients with Human African trypanosomiasis have indicated a role for both pro-inflammatory and counter-inflammatory cytokines in determining the severity of the meningoencephalitis of late stage disease, and, at least in T. b. rhodesiense infection, the balance of these opposing cytokines may be critical. Rodent models of Human African trypanosomiasis have proved very useful in modelling the post-treatment reactive encephalopathy of humans and have demonstrated the central role of astrocyte activation and cytokine balances in determining CNS disease. Such animal models have also allowed a greater understanding of the more direct mechanisms of trypanosome infection on CNS function including the disruption of circadian rhythms, as well as the immunological determinants of passage of trypanosomes across the blood-brain barrier.
Collapse
Affiliation(s)
- Peter G E Kennedy
- Division of Clinical Neurosciences, Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, University of Glasgow, Glasgow G51 4TF, Scotland, UK.
| |
Collapse
|
15
|
Chevrier C, Canini F, Darsaud A, Cespuglio R, Buguet A, Bourdon L. Clinical assessment of the entry into neurological state in rat experimental African trypanosomiasis. Acta Trop 2005; 95:33-9. [PMID: 15882835 DOI: 10.1016/j.actatropica.2005.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/24/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
Human African trypanosomiasis, caused by Trypanosoma brucei (T.b.) gambiense or rhodesiense, evolves in two stages: haemolymphatic stage and meningo-encephalitic stages, the latter featuring numerous neurological disorders. In experimental models infected with diverse T.b. sub-species, body weight (BW) loss, drop in food intake (FI), and hypo-activity after an asymptomatic period suggest the occurrence of a similar two-stage organization. In addition to daily measurement of BW and FI, body core temperature (T(co)) and spontaneous activity (SA) were recorded by telemetry in T.b. brucei-infected rats. After a 10--12-day symptom-free period, a complex clinical syndrome occurred suddenly. If the animal survived the access, the syndrome re-occurred at approximately 5-day intervals until death. The syndrome was made of a drop in FI and BW, a sharp decrease in T(co) and a loss of SA, suggesting a brisk alteration of the central nervous system functioning. Such events confirm the existence of a two-stage disease development in experimental trypanosomiasis. The entry into the second stage is marked by the occurrence of the first access, BW follow-up being essential and often sufficient its determination.
Collapse
Affiliation(s)
- Céline Chevrier
- Centre de recherches du service de santé des armées, Département des Facteurs Humains, 24, avenue des Maquis du Grésivaudan, B.P. 87 38702 La Tronche, France.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
African trypanosomiasis or sleeping sickness is hallmarked by sleep and wakefulness disturbances. In contrast to other infections, there is no hypersomnia, but the sleep pattern is fragmented. This overview discusses that the causative agents, the parasites Trypanosoma brucei, target circumventricular organs in the brain, causing inflammatory responses in hypothalamic structures that may lead to dysfunctions in the circadian-timing and sleep-regulatory systems.
Collapse
|
17
|
Fernández Alfonso T, Celentano AM, Gonzalez Cappa SM, Golombek DA. The circadian system of Trypanosoma cruzi-infected mice. Chronobiol Int 2003; 20:49-64. [PMID: 12638690 DOI: 10.1081/cbi-120017687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effects of Chagas disease on the mammalian circadian system were studied in Trypanosoma cruzi-infected C57-B16J mice. Animals were inoculated with CAI or RA strains of T. cruzi or vehicle, parasitism confirmed by blood specimen visualization and locomotor activity rhythms analyzed by wheel-running recording. RA-strain infected mice exhibited significantly decreased amplitude of circadian rhythms, both under light-dark and constant dark conditions, probably due to motor deficiencies. CAI-treated animals showed normal locomotor activity rhythms. However, in these mice, reentrainment to a 6h phase shift of the LD cycle took significantly longer than controls, and application of 15min light pulses in DD produced smaller phase delays of the rhythms. All groups exhibited light-induced Fos expression in the suprachiasmatic nuclei. We conclude that the main effect of T. cruzi infection on the circadian system is an impairment of the motor output from the clock toward controlled rhythms, together with an effect on circadian visual sensitivity.
Collapse
|
18
|
Lundkvist GB, Hill RH, Kristensson K. Disruption of circadian rhythms in synaptic activity of the suprachiasmatic nuclei by African trypanosomes and cytokines. Neurobiol Dis 2002; 11:20-7. [PMID: 12460543 DOI: 10.1006/nbdi.2002.0536] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disturbances in biological rhythms pose a major disease problem, not the least in the aging population. Experimental sleeping sickness, caused by Trypanosoma brucei brucei, in rats constitutes a unique and robust chronic model for studying mechanisms of such disturbances. The spontaneous postsynaptic activity was recorded in slice preparations of the suprachiasmatic nuclei (SCN), which contain the master pacemaker for circadian rhythms in mammals, from trypanosome-infected rats. The excitatory synaptic events, which in normal rats show a daily variation, were reduced in frequency, while the inhibitory synaptic events did not significantly differ. This indicates selective disturbances in glutamate receptor-mediated neurotransmission in the SCN. Treatment with interferon-gamma in combination with lipopolysaccharide, which has synergistic actions with cytokines, and tumor necrosis factor-alpha similarly caused a reduction in excitatory synaptic SCN activity. We suggest that changes in the synaptic machinery of SCN neurons play an important pathogenetic role in sleeping sickness, and that proinflammatory cytokines can mimic these changes.
Collapse
Affiliation(s)
- G B Lundkvist
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Kristensson K, Mhlanga JDM, Bentivoglio M. Parasites and the brain: neuroinvasion, immunopathogenesis and neuronal dysfunctions. Curr Top Microbiol Immunol 2002; 265:227-57. [PMID: 12014192 DOI: 10.1007/978-3-662-09525-6_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- K Kristensson
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|