1
|
Jeong I, Park S, Park J, Kim OK. Adipose tissue-derived extracellular vesicles from obese mice suppressed splenocyte-mediated pancreatic cancer cell death. Food Nutr Res 2024; 68:10545. [PMID: 39376903 PMCID: PMC11457911 DOI: 10.29219/fnr.v68.10545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/09/2024] Open
Abstract
Background Obesity is a risk factor for pancreatic cancer and negatively contributes to the immune system. However, the mechanisms by which obesity mediates these actions are still poorly understood. Recent studies have demonstrated that extracellular vesicles (EVs) are key mediators of communication between cells and may influence various aspects of cancer progression. Objectives We aim to explore the influence of EVs derived from adipose tissue of obese mice on cytokine production within the interactions between cancer cells and immune cells. Design We isolated EVs from the adipose tissue of both C57BL6/J mice and Ob/Ob mice. Subsequently, we treated EVs with Panc02 cells, the murine ductal pancreatic cancer cell line, which were co-cultured with splenocytes. Viability and SMAD4 gene expression were examined in Panc02 cells, and cytokine concentrations of IL-6, IL-4, IL-12, and IL-12p70 were measured in the cultured medium. Results Interestingly, we observed a significant reduction in splenocyte-mediated Panc02 cell death when treated with EVs derived from the adipose tissue of Ob/Ob mice, compared to those from C57BL6/J mice. Additionally, EVs from Ob/Ob mice-derived adipose tissue significantly increased the levels of IL-4, IL-2, and IL-12p70 in the culture media of Panc02 cells co-cultured with splenocytes, compared to EVs from C57BL6/J mice-derived adipose tissue. Conclusion Adipose tissue-derived EVs from obese mice suppressed splenocyte-mediated Panc02 cell death and upregulated IL-4, IL-2, and IL-12p70 in cultured medium.
Collapse
Affiliation(s)
| | | | - Jinbum Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Wu F, Simonetti FR. Learning from Persistent Viremia: Mechanisms and Implications for Clinical Care and HIV-1 Cure. Curr HIV/AIDS Rep 2023; 20:428-439. [PMID: 37955826 PMCID: PMC10719122 DOI: 10.1007/s11904-023-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss what persistent viremia has taught us about the biology of the HIV-1 reservoir during antiretroviral therapy (ART). We will also discuss the implications of this phenomenon for HIV-1 cure research and its clinical management. RECENT FINDINGS While residual viremia (RV, 1-3 HIV-1 RNA copies/ml) can be detected in most of people on ART, some individuals experience non-suppressible viremia (NSV, > 20-50 copies/mL) despite optimal adherence. When issues of drug resistance and pharmacokinetics are ruled out, this persistent virus in plasma is the reflection of virus production from clonally expanded CD4+ T cells carrying proviruses. Recent work has shown that a fraction of the proviruses source of NSV are not infectious, due to defects in the 5'-Leader sequence. However, additional viruses and host determinants of NSV are not fully understood. The study of NSV is of prime importance because it represents a challenge for the clinical care of people on ART, and it sheds light on virus-host interactions that could advance HIV-1 remission research.
Collapse
Affiliation(s)
- Fengting Wu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Francesco R Simonetti
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Reeves DB, Bacchus-Souffan C, Fitch M, Abdel-Mohsen M, Hoh R, Ahn H, Stone M, Hecht F, Martin J, Deeks SG, Hellerstein MK, McCune JM, Schiffer JT, Hunt PW. Estimating the contribution of CD4 T cell subset proliferation and differentiation to HIV persistence. Nat Commun 2023; 14:6145. [PMID: 37783718 PMCID: PMC10545742 DOI: 10.1038/s41467-023-41521-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
Persistence of HIV in people living with HIV (PWH) on suppressive antiretroviral therapy (ART) has been linked to physiological mechanisms of CD4+ T cells. Here, in the same 37 male PWH on ART we measure longitudinal kinetics of HIV DNA and cell turnover rates in five CD4 cell subsets: naïve (TN), stem-cell- (TSCM), central- (TCM), transitional- (TTM), and effector-memory (TEM). HIV decreases in TTM and TEM but not in less-differentiated subsets. Cell turnover is ~10 times faster than HIV clearance in memory subsets, implying that cellular proliferation consistently creates HIV DNA. The optimal mathematical model for these integrated data sets posits HIV DNA also passages between CD4 cell subsets via cellular differentiation. Estimates are heterogeneous, but in an average participant's year ~10 (in TN and TSCM) and ~104 (in TCM, TTM, TEM) proviruses are generated by proliferation while ~103 proviruses passage via cell differentiation (per million CD4). In simulations, therapies blocking proliferation and/or enhancing differentiation could reduce HIV DNA by 1-2 logs over 3 years. In summary, HIV exploits cellular proliferation and differentiation to persist during ART but clears faster in more proliferative/differentiated CD4 cell subsets and the same physiological mechanisms sustaining HIV might be temporarily modified to reduce it.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
- Department of Global Health, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| | | | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, University Avenue and Oxford St, Berkeley, CA, 94720, USA
| | | | - Rebecca Hoh
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Haelee Ahn
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Mars Stone
- Vitalant Research Institute, 360 Spear St Suite 200, San Francisco, CA, 94105, USA
| | - Frederick Hecht
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Jeffrey Martin
- Epidemiology & Biostatistics, University of California San Francisco School of Medicine, 550 16th Street, San Francisco, CA, 94158, USA
| | - Steven G Deeks
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, University Avenue and Oxford St, Berkeley, CA, 94720, USA
| | - Joseph M McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Allergy and Infectious Diseases, School of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94100, USA
| |
Collapse
|
4
|
Jalili A, Hajifathali A, Mohammadian M, Sankanian G, Sayahinouri M, Dehghani Ghorbi M, Roshandel E, Aghdami N. Virus-Specific T Cells: Promising Adoptive T Cell Therapy Against Infectious Diseases Following Hematopoietic Stem Cell Transplantation. Adv Pharm Bull 2023; 13:469-482. [PMID: 37646062 PMCID: PMC10460803 DOI: 10.34172/apb.2023.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/25/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a life-saving therapy for various hematologic disorders. Due to the bone marrow suppression and its long recovery period, secondary infections, like cytomegalovirus (CMV), Epstein-Bar virus (EBV), and adenovirus (AdV), are the leading causes of morbidity and mortality in HSCT cases. Drug resistance to the antiviral pharmacotherapies makes researchers develop adoptive T cell therapies like virus-specific T cell therapy. These studies have faced major challenges such as finding the most effective T cell expansion methods, isolating the expected subtype, defining the functionality of the end-cell population, product quality control, and clinical complications after the injection. This review discusses the viral infections after HSCT, T cells characteristics during chronic viral infection, application of virus-specific T cells (VSTs) for refractory infections, standard methods for producing VSTs and their limitation, clinical experiences on VSTs, focusing on outcomes and side effects that can be helpful in decision-making for patients and further researches.
Collapse
Affiliation(s)
- Arsalan Jalili
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghazaleh Sankanian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sayahinouri
- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Parvaz Research Ideas Supporter institute, Tehran, Iran
| | - Mahmoud Dehghani Ghorbi
- Department of Internal Medicine, Imam Hossein Hospital, School of Medicine Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Sharma S, Woods M, Mehta NU, Sauer T, Parikh KS, Schmuck-Henneresse M, Zhang H, Mehta B, Brenner MK, Heslop HE, Rooney CM. Naive T cells inhibit the outgrowth of intractable antigen-activated memory T cells: implications for T-cell immunotherapy. J Immunother Cancer 2023; 11:e006267. [PMID: 37072346 PMCID: PMC10124261 DOI: 10.1136/jitc-2022-006267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The wider application of T cells targeting viral tumor-antigens via their native receptors is hampered by the failure to expand potent tumor-specific T cells from patients. Here, we examine reasons for and solutions to this failure, taking as our model the preparation of Epstein-Barr virus (EBV)-specific T cells (EBVSTs) for the treatment of EBV-positive lymphoma. EBVSTs could not be manufactured from almost one-third of patients, either because they failed to expand, or they expanded, but lacked EBV specificity. We identified an underlying cause of this problem and established a clinically feasible approach to overcome it. METHODS CD45RO+CD45RA- memory compartment residing antigen-specific T cells were enriched by depleting CD45RA positive (+) peripheral blood mononuclear cells (PBMCs) that include naïve T cells, among other subsets, prior to EBV antigen stimulation. We then compared the phenotype, specificity, function and T-cell receptor (TCR) Vβ repertoire of EBVSTs expanded from unfractionated whole (W)-PBMCs and CD45RA-depleted (RAD)-PBMCs on day 16. To identify the CD45RA component that inhibited EBVST outgrowth, isolated CD45RA+ subsets were added back to RAD-PBMCs followed by expansion and characterization. The in vivo potency of W-EBVSTs and RAD-EBVSTs was compared in a murine xenograft model of autologous EBV+ lymphoma. RESULTS Depletion of CD45RA+ PBMCs before antigen stimulation increased EBVST expansion, antigen-specificity and potency in vitro and in vivo. TCR sequencing revealed a selective outgrowth in RAD-EBVSTs of clonotypes that expanded poorly in W-EBVSTs. Inhibition of antigen-stimulated T cells by CD45RA+ PBMCs could be reproduced only by the naïve T-cell fraction, while CD45RA+ regulatory T cells, natural killer cells, stem cell memory and effector memory subsets lacked inhibitory activity. Crucially, CD45RA depletion of PBMCs from patients with lymphoma enabled the outgrowth of EBVSTs that failed to expand from W-PBMCs. This enhanced specificity extended to T cells specific for other viruses. CONCLUSION Our findings suggest that naïve T cells inhibit the outgrowth of antigen-stimulated memory T cells, highlighting the profound effects of intra-T-cell subset interactions. Having overcome our inability to generate EBVSTs from many patients with lymphoma, we have introduced CD45RA depletion into three clinical trials: NCT01555892 and NCT04288726 using autologous and allogeneic EBVSTs to treat lymphoma and NCT04013802 using multivirus-specific T cells to treat viral infections after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Sandhya Sharma
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Mae Woods
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Naren U Mehta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Tim Sauer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Kathan S Parikh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Michael Schmuck-Henneresse
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin, Germany
| | - Huimin Zhang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Birju Mehta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Helen E Heslop
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Cliona M Rooney
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology-Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Interleukin-15 augments NK cell-mediated ADCC of alemtuzumab in patients with CD52+ T-cell malignancies. Blood Adv 2022; 7:384-394. [PMID: 35475910 PMCID: PMC9898617 DOI: 10.1182/bloodadvances.2021006440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Interleukin-15 (IL-15) monotherapy substantially increases the number and activity of natural killer (NK) cells and CD8+ T cells but has not produced clinical responses. In a xenograft mouse model, IL-15 enhanced the NK cell-mediated antibody-dependent cell cytotoxicity (ADCC) of the anti-CD52 antibody alemtuzumab and led to significantly more durable responses than alemtuzumab alone. To evaluate whether IL-15 potentiates ADCC in humans, we conducted a phase 1 single-center study of recombinant human IL-15 and alemtuzumab in patients with CD52-positive mature T-cell malignances. We gave IL-15 subcutaneously 5 days per week for 2 weeks in a 3 + 3 dose escalation scheme (at 0.5, 1, and 2 μg/kg), followed by standard 3 times weekly alemtuzumab IV for 4 weeks. There were no dose-limiting toxicities or severe adverse events attributable to IL-15 in the 11 patients treated. The most common adverse events were lymphopenia (100%), alemtuzumab-related infusion reactions (90%), anemia (90%), and neutropenia (72%). There were 3 partial and 2 complete responses, with an overall response rate of 45% and median duration of response 6 months. Immediately after 10 days of IL-15, there was a median 7.2-fold increase in NK cells and 2.5-fold increase in circulating CD8+ T cells, whereas the number of circulating leukemic cells decreased by a median 38% across all dose levels. Treatment with IL-15 was associated with increased expression of NKp46 and NKG2D, markers of NK-cell activation, and increased ex vivo ADCC activity of NK cells, whereas inhibitory receptors PD1 and Tim3 were decreased. This trial was registered at www.clinicaltrials.gov as #NCT02689453.
Collapse
|
7
|
Fromentin R, Chomont N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol 2021; 51:101438. [PMID: 33272901 PMCID: PMC8164644 DOI: 10.1016/j.smim.2020.101438] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Antiretroviral therapy controls HIV replication but does not eliminate the virus from the infected host. The persistence of a small pool of cells harboring integrated and replication-competent HIV genomes impedes viral eradication efforts. The HIV reservoir was originally described as a relatively homogeneous pool of resting memory CD4+ T cells. Over the past 20 years, the identification of multiple cellular subsets of CD4+ T cells endowed with distinct biological properties shed new lights on the heterogeneity of HIV reservoirs. It is now clear that HIV persists in a large variety of CD4+ T cells, which contribute to HIV persistence through different mechanisms. In this review, we summarize recent findings indicating that specific biological features of well-characterized subsets of CD4+ T cells individually contribute to the persistence of HIV. These include an increased sensitivity to HIV infection, specific tissue locations, enhanced survival and heightened capacity to proliferate. We also discuss the relative abilities of these cellular reservoirs to contribute to viral rebound upon ART interruption. Together, these findings reveal that the HIV reservoir is not homogeneous and should be viewed as a mosaic of multiple cell types that all contribute to HIV persistence through different mechanisms.
Collapse
Affiliation(s)
- Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
The combination of C C chemokine receptor type 5(CCR5) and Treg cells predicts prognosis in patients with ischemic stroke. J Neuroimmunol 2020; 349:577404. [DOI: 10.1016/j.jneuroim.2020.577404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
|
9
|
Kim D, Lo E, Kim D, Kang J. Regulatory T Cells Conditioned Media Stimulates Migration in HaCaT Keratinocytes: Involvement of Wound Healing. Clin Cosmet Investig Dermatol 2020; 13:443-453. [PMID: 32753927 PMCID: PMC7351635 DOI: 10.2147/ccid.s252778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/10/2020] [Indexed: 01/06/2023]
Abstract
Purpose Regulatory T (Treg) cells, a type of immune cell, play a very important role in the immune response as a subpopulation of T cells. In this study, we investigated the effects of Treg cells conditioned media (CM) on cell migration. Various cytokines and growth factors of Treg cells CM can effect on re-epithelialization stage during the wound healing. Methods Isolated CD4+CD25+ Treg cells from Peripheral Blood Mononuclear Cells (PBMCs) were cultured and CM obtained. HaCaT keratinocytes were treated with various concentration of Treg cells CM. Cell migration, proliferation and expression of proteins that are related to the Epithelial-Mesenchymal Transition (EMT) process, matrix metalloproteinase-1 (MMP-1) were analyzed. Results Above 90% CD4+CD25+ Treg cells were obtained from CD8+ depleted PBMCs and the CM have various cytokines and growth factors.One percent and 5% concentration of Treg cells CM increased HaCaT keratinocytes migration. The Treg cells CM stimulated EMT, which led to the down-regulation of E-cadherin in the HaCaT keratinocytes at the wound edge. The Treg cells CM increased MMP-1, which is involved in tissue remodeling. Conclusion Our results suggest that Treg cells CM which has various cytokines and growth factors promote wound healing by stimulating HaCaT keratinocytes migration.
Collapse
Affiliation(s)
- Dongsoo Kim
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| | - Eunji Lo
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| | - Dongju Kim
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| | - Junghwa Kang
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| |
Collapse
|
10
|
Waldmann TA, Miljkovic MD, Conlon KC. Interleukin-15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer. J Exp Med 2020; 217:132622. [PMID: 31821442 PMCID: PMC7037239 DOI: 10.1084/jem.20191062] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
IL-15 supports NK, NK-T, γδ, ILC1, and memory CD8 T cell function, and dysregulated IL-15 is associated with many autoimmune diseases. Striking IL-15–driven increases in NK and CD8 T cells in patients highlight the potential for combination therapy of cancers. IL-15, a pleiotropic cytokine, stimulates generation of NK, NK-T, γδ, ILC1, and memory CD8 T cells. IL-15 disorders play pathogenetic roles in organ-specific autoimmune diseases including celiac disease. Diverse approaches are developed to block IL-15 action. IL-15 administered to patients with malignancy yielded dramatic increases in NK numbers and modest increases in CD8 T cells. Due to immunological checkpoints, to achieve major cancer therapeutic efficacy, IL-15 will be used in combination therapy, and combination trials with checkpoint inhibitors, with anti-CD40 to yield tumor-specific CD8 T cells, and with anticancer monoclonal antibodies to increase ADCC and antitumor efficacy, have been initiated.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
11
|
Cole KE, Ly QP, Hollingsworth MA, Cox JL, Stromnes IM, Padussis JC, Foster JM, Vargas LM, Talmadge JE. Comparative phenotypes of peripheral blood and spleen cells from cancer patients. Int Immunopharmacol 2020; 85:106655. [PMID: 32521493 DOI: 10.1016/j.intimp.2020.106655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Patients with resectable tumor, either in the body or the tail of the pancreas, and cancer patients with a primary tumor adjacent to the splenic vasculature frequently undergo a splenectomy as standard of care during resection. The spleen provides an unutilized source of lymphocytes with potential utility for adoptive cellular therapy (ACT). In this report, spleen and peripheral blood (PB) cells from cancer patients were compared to one another and normal PB by flow cytometry with a focus on CD8+ T-cells, memory phenotype, and their relative expression of checkpoint proteins including program death ligand-1 (PD1). PD1 is both an activation marker for T-cells including antigen (Ag) specific responses, as well as a marker of T-cell exhaustion associated with co-expression of other checkpoint molecules such as lymphocyte activating gene-3 (LAG-3) and T-cell immunoglobulin and mucin domain containing-3 (TIM-3). In summary, the spleen is a rich source of CD8+PD1+ T-cells, with an 8-fold higher frequency compared to the PB. These CD8+ T-cells are predominantly central and transitional memory T-cells with associated effector phenotypes and low expression of TIM-3 and LAG-3 with potential utility for ACT".
Collapse
Affiliation(s)
- Kathryn E Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ingunn M Stromnes
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55414, USA
| | - James C Padussis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Jason M Foster
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Luciano M Vargas
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
12
|
Waldmann TA, Dubois S, Miljkovic MD, Conlon KC. IL-15 in the Combination Immunotherapy of Cancer. Front Immunol 2020; 11:868. [PMID: 32508818 PMCID: PMC7248178 DOI: 10.3389/fimmu.2020.00868] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
We completed clinical trials of rhIL-15 by bolus, subcutaneous, and continuous intravenous infusions (CIV). IL-15 administered by CIV at 2 mcg/kg/day yielded a 38-fold increase in 10- day number of circulating NK cells, a 358-fold increase in CD56bright NK cells and a 5.8-fold increase in CD8 T cells. However, IL-15 preparations administered as monotherapy were ineffective, due to actions of immunological checkpoints and due to the lack of tumor specific targeting by NK cells. To circumvent checkpoints, trials of IL-15 in combination with other anticancer agents were initiated. Tumor-bearing mice receiving IL-15 with antibodies to CTLA-4 and PD-L1 manifested marked prolongation of survival compared to mice receiving IL-15 with either agent alone. In translation, a phase I trial was initiated involving IL-15 (rhIL-15), nivolumab and ipilimumab in patients with malignancy (NCT03388632). In rhesus macaques CIV IL-15 at 20 μg/kg/day for 10 days led to an 80-fold increase in number of circulating effector memory CD8 T cells. However, administration of γc cytokines such as IL-15 led to paralysis/depression of CD4 T-cells that was mediated through transient expression of SOCS3 that inhibited the STAT5 signaling pathway. This lost CD4 helper role could be restored alternatively by CD40 agonists. In the TRAMP-C2 prostate tumor model the combination of IL-15 with agonistic anti-CD40 produced additive effects in terms of numbers of TRAMP-C2 tumor specific Spas/SCNC/9H tetramer positive CD8 T cells expressed and tumor responses. A clinical trial is being initiated for patients with cancer using an intralesional anti-CD40 in combination with CIV rhIL-15. To translate IL-15-mediated increases in NK cells, we investigated combination therapy of IL-15 with anticancer monoclonal antibodies including rituximab in mouse models of EL-4 lymphoma transfected with human CD20 and with alemtuzumab (CAMPATH-1H) in a xenograft model of adult T cell leukemia (ATL). IL-15 enhanced the ADCC and therapeutic efficacy of both antibodies. These results provided the scientific basis for trials of IL-15 combined with alemtuzumab (anti-CD52) for patients with ATL (NCT02689453), with obinutuzumab (anti-CD20) for patients with CLL (NCT03759184), and with avelumab (anti-PD-L1) in patients with T-cell lymphoma (NCT03905135) and renal cancer (NCT04150562). In the first trial, there was elimination of circulating ATL and CLL leukemic cells in select patients.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
14
|
Characterization of local and circulating bovine γδ T cell responses to respiratory BCG vaccination. Sci Rep 2019; 9:15996. [PMID: 31690788 PMCID: PMC6831659 DOI: 10.1038/s41598-019-52565-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
The Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine is administered parenterally to infants and young children to prevent tuberculosis (TB) infection. However, the protection induced by BCG is highly variable and the vaccine does not prevent pulmonary TB, the most common form of the illness. Until improved TB vaccines are available, it is crucial to use BCG in a manner which ensures optimal vaccine performance. Immunization directly to the respiratory mucosa has been shown to promote greater protection from TB in animal models. γδ T cells play a major role in host defense at mucosal sites and are known to respond robustly to mycobacterial infection. Their positioning in the respiratory mucosa ensures their engagement in the response to aerosolized TB vaccination. However, our understanding of the effect of respiratory BCG vaccination on γδ T cell responses in the lung is unknown. In this study, we used a calf model to investigate the immunogenicity of aerosol BCG vaccination, and the phenotypic profile of peripheral and mucosal γδ T cells responding to vaccination. We observed robust local and systemic M. bovis-specific IFN-γ and IL-17 production by both γδ and CD4 T cells. Importantly, BCG vaccination induced effector and memory cell differentiation of γδ T cells in both the lower airways and peripheral blood, with accumulation of a large proportion of effector memory γδ T cells in both compartments. Our results demonstrate the potential of the neonatal calf model to evaluate TB vaccine candidates that are to be administered via the respiratory tract, and suggest that aerosol immunization is a promising strategy for engaging γδ T cells in vaccine-induced immunity against TB.
Collapse
|
15
|
Hani L, Chaillon A, Nere ML, Ruffin N, Alameddine J, Salmona M, Lopez Zaragoza JL, Smith DM, Schwartz O, Lelièvre JD, Delaugerre C, Lévy Y, Seddiki N. Proliferative memory SAMHD1low CD4+ T cells harbour high levels of HIV-1 with compartmentalized viral populations. PLoS Pathog 2019; 15:e1007868. [PMID: 31220191 PMCID: PMC6605680 DOI: 10.1371/journal.ppat.1007868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/02/2019] [Accepted: 05/24/2019] [Indexed: 11/24/2022] Open
Abstract
We previously reported the presence of memory CD4+ T cells that express low levels of SAMHD1 (SAMHD1low) in peripheral blood and lymph nodes from both HIV-1 infected and uninfected individuals. These cells are enriched in Th17 and Tfh subsets, two populations known to be preferentially targeted by HIV-1. Here we investigated whether SAMHD1low CD4+ T-cells harbour replication-competent virus and compartimentalized HIV-1 genomes. We sorted memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected patients on anti-retroviral therapy (c-ART) and performed HIV-1 DNA quantification, ultra-deep-sequencing of partial env (C2/V3) sequences and phenotypic characterization of the cells. We show that SAMHD1low cells include novel Th17 CCR6+ subsets that lack CXCR3 and CCR4 (CCR6+DN). There is a decrease of the % of Th17 in SAMHD1low compartment in infected compared to uninfected individuals (41% vs 55%, p<0.05), whereas the % of CCR6+DN increases (7.95% vs 3.8%, p<0.05). Moreover, in HIV-1 infected patients, memory SAMHD1low cells harbour high levels of HIV-1 DNA compared to memory SAMHD1+ cells (4.5 vs 3.8 log/106cells, respectively, p<0.001), while naïve SAMHD1+ showed significantly lower levels (3.1 log/106cells, p<0.0001). Importantly, we show that SAMHD1low cells contain p24-producing cells. Moreover, phylogenetic analyses revealed well-segregated HIV-1 DNA populations with compartmentalization between SAMHD1low and SAMHD1+ memory cells, and limited viral exchange. As expected, the % of Ki67+ cells was significantly higher in SAMHD1low compared to SAMHD1+ cells. There was positive association between levels of HIV-1 DNA and Ki67+ in memory SAMHD1low cells, but not in memory and naïve SAMHD1+ CD4+ T-cells. Altogether, these data suggest that proliferative memory SAMHD1low cells contribute to viral persistence. In our previous results we reported that memory CD4+ T cells expressing low levels of SAMHD1 (SAMHD1low) are present in peripheral blood and lymph nodes from HIV-1 infected and uninfected individuals. These cells were enriched in Th17 and Tfh, two populations targeted by HIV-1. Here we used purified memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected and treated patients to perform cell-associated HIV-1 DNA quantification, p24-producing cells detection, ultra-deep-sequencing of partial env (C2/V3) HIV-1 DNA and further phenotypic characterization. Our results demonstrate that (i) Th17 and CCR6+DN-expressing transcriptional signature of early Th17, two major populations that are susceptible to HIV-1 infection, are present in SAMHD1low cells, and while the former decreased significantly in c-ART HIV-1 infected compared to uninfected individuals, the latter significantly increased; (ii) memory SAMHD1low cells from c-ART patients carry high levels of HIV-1 DNA compared to SAMHD1+ cells, and these levels positively and significantly correlated with Ki67 expression; (iii) memory SAMHD1low cells from patients harbour p24-producing cells; (iv) phylogenetic analyses revealed well-segregated HIV-1 DNA populations with significant compartmentalization between SAMHD1low and SAMHD1+ cells and limited viral exchange. Our data demonstrate that memory SAMHD1low cells contribute to HIV-1 persistence.
Collapse
Affiliation(s)
- Lylia Hani
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Antoine Chaillon
- Vaccine Research Institute (VRI), Créteil, France
- Department of Medicine, University of California San Diego, CA, United States of America
| | - Marie-Laure Nere
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - Nicolas Ruffin
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Joudy Alameddine
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Maud Salmona
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - José-Luiz Lopez Zaragoza
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, CA, United States of America
| | - Olivier Schwartz
- Vaccine Research Institute (VRI), Créteil, France
- Unité Virus et Immunité, Département de Virologie, Institut Pasteur, Paris, France
| | - Jean-Daniel Lelièvre
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Constance Delaugerre
- Vaccine Research Institute (VRI), Créteil, France
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - Yves Lévy
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Nabila Seddiki
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- * E-mail:
| |
Collapse
|
16
|
Hiener B, Horsburgh BA, Eden JS, Barton K, Schlub TE, Lee E, von Stockenstrom S, Odevall L, Milush JM, Liegler T, Sinclair E, Hoh R, Boritz EA, Douek D, Fromentin R, Chomont N, Deeks SG, Hecht FM, Palmer S. Identification of Genetically Intact HIV-1 Proviruses in Specific CD4 + T Cells from Effectively Treated Participants. Cell Rep 2018; 21:813-822. [PMID: 29045846 DOI: 10.1016/j.celrep.2017.09.081] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023] Open
Abstract
Latent replication-competent HIV-1 persists in individuals on long-term antiretroviral therapy (ART). We developed the Full-Length Individual Proviral Sequencing (FLIPS) assay to determine the distribution of latent replication-competent HIV-1 within memory CD4+ T cell subsets in six individuals on long-term ART. FLIPS is an efficient, high-throughput assay that amplifies and sequences near full-length (∼9 kb) HIV-1 proviral genomes and determines potential replication competency through genetic characterization. FLIPS provides a genome-scale perspective that addresses the limitations of other methods that also genetically characterize the latent reservoir. Using FLIPS, we identified 5% of proviruses as intact and potentially replication competent. Intact proviruses were unequally distributed between T cell subsets, with effector memory cells containing the largest proportion of genetically intact HIV-1 proviruses. We identified multiple identical intact proviruses, suggesting a role for cellular proliferation in the maintenance of the latent HIV-1 reservoir.
Collapse
Affiliation(s)
- Bonnie Hiener
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
| | - Bethany A Horsburgh
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - John-Sebastian Eden
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kirston Barton
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Timothy E Schlub
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Susanne von Stockenstrom
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Lina Odevall
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Jeffrey M Milush
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Teri Liegler
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Elizabeth Sinclair
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20814, USA
| | - Daniel Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20814, USA
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Frederick M Hecht
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
17
|
Okutani M, Tsukahara T, Kato Y, Fukuta K, Inoue R. Gene expression profiles of CD4/CD8 double-positive T cells in porcine peripheral blood. Anim Sci J 2018; 89:979-987. [PMID: 29740910 DOI: 10.1111/asj.13021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/27/2017] [Indexed: 12/01/2022]
Abstract
A characteristic subset of T cells, known as double positive T cells (DPTC) and expressing both cluster of differentiation 4 (CD4) and CD8, is observed in porcine peripheral blood. Previous studies suggested that DPTC might be memory cells. However, detailed phenotypes and functions of DPTC are yet to be fully elucidated and thus, the relatedness of DPTC with memory phenotypes remains unclear. In this study, DPTC gene expression profiles in peripheral blood were analyzed by DNA microarray in Experiment 1 and compared with those of CD4 single positive T cells (4SPTC) and CD8 single positive T cells (8SPTC). Expressions of IFNG, CCL5, NCK2, CCR2 and ITGB1 were higher than that of 4SPTC and 8SPTC. In contrast, expressions of CCR7 and SELL were lower than that of 4SPTC and 8SPTC. These results suggested that DPTC were either effector T cells or effector memory T cells (TEM ). Next, to determine whether DPTC were effector T cells or TEM , differences in the response of DPTC and 8SPTC against immunized/primed antigens were compared (Experiment 2). While DPTC showed quick elevation of IL2 and CD25 gene expressions against in vitro stimulation of primed/immunized antigens, 8SPTC did not. These results suggest that at least some DPTC likely belong to TEM .
Collapse
Affiliation(s)
- Mie Okutani
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Sakyo, Kyoto, Japan
| | | | - Yoshihiro Kato
- Technical Center, Toyohashi Feed Mills, Shinshiro, Aichi, Japan
| | - Kikuto Fukuta
- Technical Center, Toyohashi Feed Mills, Shinshiro, Aichi, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Sakyo, Kyoto, Japan
| |
Collapse
|
18
|
A unique tolerizing dendritic cell phenotype induced by the synthetic triterpenoid CDDO-DFPA (RTA-408) is protective against EAE. Sci Rep 2017; 7:9886. [PMID: 28851867 PMCID: PMC5575165 DOI: 10.1038/s41598-017-06907-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Tolerogenic dendritic cells (DCs) have emerged as relevant clinical targets for the treatment of multiple sclerosis and other autoimmune disorders. However, the pathways essential for conferring the tolerizing DC phenotype and optimal methods for their induction remain an intense area of research. Triterpenoids are a class of small molecules with potent immunomodulatory activity linked to activation of Nrf2 target genes, and can also suppress the manifestations of experimental autoimmune encephalomyelitis (EAE). Here we demonstrate that DCs are a principal target of the immune modulating activity of triterpenoids in the context of EAE. Exposure of DCs to the new class of triterpenoid CDDO-DFPA (RTA-408) results in the induction of HO-1, TGF-β, and IL-10, as well as the repression of NF-κB, EDN-1 and pro-inflammatory cytokines IL-6, IL-12, and TNFα. CDDO-DFPA exposed DCs retained expression of surface ligands and capacity for antigen uptake but were impaired to induce Th1 and Th17 cells. TGF-β was identified as the factor mediating suppression of T cell proliferation by CDDO-DFPA pretreated DCs, which failed to passively induce EAE. These findings demonstrate the potential therapeutic utility of CDDO-DFPA in the treatment and prevention of autoimmune disorders, and its capacity to induce tolerance via modulation of the DC phenotype.
Collapse
|
19
|
Colado A, Almejún MB, Podaza E, Risnik D, Stanganelli C, Elías EE, Dos Santos P, Slavutsky I, Fernández Grecco H, Cabrejo M, Bezares RF, Giordano M, Gamberale R, Borge M. The kinase inhibitors R406 and GS-9973 impair T cell functions and macrophage-mediated anti-tumor activity of rituximab in chronic lymphocytic leukemia patients. Cancer Immunol Immunother 2017; 66:461-473. [PMID: 28011996 PMCID: PMC11028675 DOI: 10.1007/s00262-016-1946-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
Small molecules targeting kinases involved in B cell receptor signaling are showing encouraging clinical activity in chronic lymphocytic leukemia (CLL) patients. Fostamatinib (R406) and entospletinib (GS-9973) are ATP-competitive inhibitors designed to target spleen tyrosine kinase (Syk) that have shown clinical activity with acceptable toxicity in trials with CLL patients. Preclinical studies with these inhibitors in CLL have focused on their effect in patient-derived leukemic B cells. In this work we show that clinically relevant doses of R406 and GS-9973 impaired the activation and proliferation of T cells from CLL patients. This effect could not be ascribed to Syk-inhibition given that we show that T cells from CLL patients do not express Syk protein. Interestingly, ζ-chain-associated protein kinase (ZAP)-70 phosphorylation was diminished by both inhibitors upon TCR stimulation on T cells. In addition, we found that both agents reduced macrophage-mediated phagocytosis of rituximab-coated CLL cells. Overall, these results suggest that in CLL patients treated with R406 or GS-9973 T cell functions, as well as macrophage-mediated anti-tumor activity of rituximab, might be impaired. The potential consequences for CLL-treated patients are discussed.
Collapse
Affiliation(s)
- Ana Colado
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - María Belén Almejún
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Enrique Podaza
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Denise Risnik
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Carmen Stanganelli
- Servicio de Patología Molecular, Instituto de Investigaciones Hematológicas-ANM, Buenos Aires, Argentina
| | - Esteban Enrique Elías
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Patricia Dos Santos
- Laboratorio de Genética de Neoplasias Linfoides, IMEX-CONICET-ANM, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, IMEX-CONICET-ANM, Buenos Aires, Argentina
| | | | - María Cabrejo
- Departamento de Hematología, Sanatorio Julio Méndez, Buenos Aires, Argentina
| | | | - Mirta Giordano
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina Gamberale
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Borge
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina (ANM), Pacheco de Melo 3081, 1425, Buenos Aires, Argentina.
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Mori M, Hashimoto M, Matsuo T, Fujii T, Furu M, Ito H, Yoshitomi H, Hirose J, Ito Y, Akizuki S, Nakashima R, Imura Y, Yukawa N, Yoshifuji H, Ohmura K, Mimori T. Cell-contact-dependent activation of CD4 + T cells by adhesion molecules on synovial fibroblasts. Mod Rheumatol 2016; 27:448-456. [PMID: 27623446 DOI: 10.1080/14397595.2016.1220353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4+ T cells. METHODS Naïve CD4+ T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4+ T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4+ T cells, CD161+ or CD161- naïve CD4+ T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. RESULTS SF enhanced naïve CD4+ T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4+ T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161+ naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CONCLUSION CD4+ T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.
Collapse
Affiliation(s)
- Masato Mori
- a Department of Rheumatology and Clinical Immunology
| | | | | | - Takao Fujii
- b Department for the Control for Rheumatic Diseases
| | | | - Hiromu Ito
- b Department for the Control for Rheumatic Diseases.,c Department of Orthopedic Surgery , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Hiroyuki Yoshitomi
- c Department of Orthopedic Surgery , Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Jun Hirose
- d Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University , Kyoto , Japan.,e Immunology Research Unit , Astellas Pharma Inc., Drug Discovery Research , Tsukuba , Japan , and
| | - Yoshinaga Ito
- f Department of Experimental Pathology , Institute for Frontier Medical Sciences, Kyoto University , Kyoto , Japan
| | - Shuji Akizuki
- a Department of Rheumatology and Clinical Immunology
| | - Ran Nakashima
- a Department of Rheumatology and Clinical Immunology
| | | | | | | | | | | |
Collapse
|
21
|
Li K, Baird M, Yang J, Jackson C, Ronchese F, Young S. Conditions for the generation of cytotoxic CD4(+) Th cells that enhance CD8(+) CTL-mediated tumor regression. Clin Transl Immunology 2016; 5:e95. [PMID: 27588200 PMCID: PMC5007627 DOI: 10.1038/cti.2016.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022] Open
Abstract
Adoptive cell therapies (ACTs) using tumor-reactive T cells have shown clinical benefit and potential for cancer treatment. While the majority of the current ACT are focused on using CD8+ cytotoxic T lymphocytes (CTL), others have shown that the presence of tumor-reactive CD4+ T helper (Th) cells can greatly enhance the anti-tumor activity of CD8+ CTL. However, difficulties in obtaining adequate numbers of CD4+ Th cells through in vitro expansion can limit the application of CD4 Th cells in ACT. This study aims to optimize the culture conditions for mouse CD4 T cells to provide basic information for animal studies of ACT using CD4 T cells. Taking advantage of the antigen-specificity of CD4+ Th cells from OT-II transgenic mice, we examined different methodologies for generating antigen-specific CD4+ Th1 cells in vitro. We found that cells grown in complete advanced-DMEM/F12 medium supplemented with low-dose IL-2 and IL-7 induced substantial cell expansion. These Th cells were Th1-like, as they expressed multiple Th1-cytokines and exhibited antigen-specific cytotoxicity. In addition co-transfer of these CD4+ Th1-like cells with CD8+ CTL significantly enhanced tumor regression, leading to complete cure in 80% of mice bearing established B16-OVA. These observations indicate that the CD4+ Th1-like cells generated using the method we optimized are functionally active to eliminate their target cells, and can also assist CD8+ CTL to enhance tumor regression. The findings of this study provide valuable data for further research into in vitro expansion of CD4+ Th1-like cells, with potential applications to cancer treatment involving ACT.
Collapse
Affiliation(s)
- Kunyu Li
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
| | - Margaret Baird
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
| | - Jianping Yang
- Malaghan Institute of Research , Wellington, New Zealand
| | - Chris Jackson
- Departmemt of Medicine, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
| | | | - Sarah Young
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
| |
Collapse
|
22
|
Aberle JH, Schwaiger J, Aberle SW, Stiasny K, Scheinost O, Kundi M, Chmelik V, Heinz FX. Human CD4+ T Helper Cell Responses after Tick-Borne Encephalitis Vaccination and Infection. PLoS One 2015; 10:e0140545. [PMID: 26465323 PMCID: PMC4605778 DOI: 10.1371/journal.pone.0140545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a human-pathogenic flavivirus that is endemic in large parts of Europe and Asia and causes severe neuroinvasive illness. A formalin-inactivated vaccine induces strong neutralizing antibody responses and confers protection from TBE disease. CD4+ T cell responses are essential for neutralizing antibody production, but data on the functionalities of TBEV-specific CD4+ T cells in response to vaccination or infection are lacking. This study provides a comprehensive analysis of the cytokine patterns of CD4+ T cell responses in 20 humans after TBE vaccination in comparison to those in 18 patients with TBEV infection. Specifically, Th1-specific cytokines (IFN-γ, IL-2, TNF-α), CD40 ligand and the Th1 lineage-specifying transcription factor Tbet were determined upon stimulation with peptides covering the TBEV structural proteins contained in the vaccine (C-capsid, prM/M-membrane and E-envelope). We show that TBEV-specific CD4+ T cell responses are polyfunctional, but the cytokine patterns after vaccination differed from those after infection. TBE vaccine responses were characterized by lower IFN-γ responses and high proportions of TNF-α+IL-2+ cells. In vaccine-induced responses—consistent with the reduced IFN-γ expression patterns—less than 50% of TBEV peptides were detected by IFN-γ+ cells as compared to 96% detected by IL-2+ cells, indicating that the single use of IFN-γ as a read-out strongly underestimates the magnitude and breadth of such responses. The results provide important insights into the functionalities of CD4+ T cells that coordinate vaccine responses and have direct implications for future studies that address epitope specificity and breadth of these responses.
Collapse
Affiliation(s)
- Judith H. Aberle
- Department of Virology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Julia Schwaiger
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W. Aberle
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | - Ondrej Scheinost
- Laboratory of Molecular Genetics, Hospital České Budĕjovice, České Budĕjovice, Czech Republic
| | - Michael Kundi
- Centre for Public Health, Medical University of Vienna, Vienna, Austria
| | - Vaclav Chmelik
- Department of Infectious Diseases, Hospital České Budĕjovice, České Budĕjovice, Czech Republic
| | - Franz X. Heinz
- Department of Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Zhang Y, Liang S, Li X, Wang L, Zhang J, Xu J, Huo S, Cao X, Zhong Z, Zhong F. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation. Vaccine 2015; 33:3480-7. [PMID: 26055295 DOI: 10.1016/j.vaccine.2015.05.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023]
Abstract
Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Shuang Liang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Xiujin Li
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Liyue Wang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Jian Xu
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China
| | - Xuebin Cao
- Department of Cardiology, 252 Hospital of Chinese PLA, Baoding 071000, Hebei, China
| | - Zhenyu Zhong
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Agricultural University of Hebei, Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071000, China.
| |
Collapse
|
24
|
von Stockenstrom S, Odevall L, Lee E, Sinclair E, Bacchetti P, Killian M, Epling L, Shao W, Hoh R, Ho T, Faria NR, Lemey P, Albert J, Hunt P, Loeb L, Pilcher C, Poole L, Hatano H, Somsouk M, Douek D, Boritz E, Deeks SG, Hecht FM, Palmer S. Longitudinal Genetic Characterization Reveals That Cell Proliferation Maintains a Persistent HIV Type 1 DNA Pool During Effective HIV Therapy. J Infect Dis 2015; 212:596-607. [PMID: 25712966 DOI: 10.1093/infdis/jiv092] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/09/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The stability of the human immunodeficiency virus type 1 (HIV-1) reservoir and the contribution of cellular proliferation to the maintenance of the reservoir during treatment are uncertain. Therefore, we conducted a longitudinal analysis of HIV-1 in T-cell subsets in different tissue compartments from subjects receiving effective antiretroviral therapy (ART). METHODS Using single-proviral sequencing, we isolated intracellular HIV-1 genomes derived from defined subsets of CD4(+) T cells from peripheral blood, gut-associated lymphoid tissue and lymph node tissue specimens from 8 subjects with virologic suppression during long-term ART at 2 time points (time points 1 and 2) separated by 7-9 months. RESULTS DNA integrant frequencies were stable over time (<4-fold difference) and highest in memory T cells. Phylogenetic analyses showed that subjects treated during chronic infection contained viral populations with up to 73% identical sequence expansions, only 3 of which were observed in specimens obtained before therapy. At time points 1 and 2, such clonally expanded populations were found predominantly in effector memory T cells from peripheral blood and lymph node tissue specimens. CONCLUSIONS Memory T cells maintained a relatively constant HIV-1 DNA integrant pool that was genetically stable during long-term effective ART. These integrants appear to be maintained by cellular proliferation and longevity of infected cells, rather than by ongoing viral replication.
Collapse
Affiliation(s)
- Susanne von Stockenstrom
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Odevall
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet
| | - Eunok Lee
- Westmead Millennium Institute for Medical Research University of Sydney, Westmead, Australia
| | | | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California-San Francisco
| | | | | | - Wei Shao
- Leidos Biomedical Research, INC, Frederick National Laboratory for Cancer Research
| | | | | | - Nuno R Faria
- Department of Microbiology and Immunology, Rega Institute, KU Leuven-University of Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven-University of Leuven, Belgium
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | - Daniel Douek
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Eli Boritz
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | - Sarah Palmer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Westmead Millennium Institute for Medical Research University of Sydney, Westmead, Australia
| |
Collapse
|
25
|
Gaber T, Strehl C, Sawitzki B, Hoff P, Buttgereit F. Cellular energy metabolism in T-lymphocytes. Int Rev Immunol 2014; 34:34-49. [PMID: 25259409 DOI: 10.3109/08830185.2014.956358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Energy homeostasis is a hallmark of cell survival and maintenance of cell function. Here we focus on the impact of cellular energy metabolism on T-lymphocyte differentiation, activation, and function in health and disease. We describe the role of transcriptional and posttranscriptional regulation of lymphocyte metabolism on immune functions of T cells. We also summarize the current knowledge about T-lymphocyte adaptations to inflammation and hypoxia, and the impact on T-cell behavior of pathophysiological hypoxia (as found in tumor tissue, chronically inflamed joints in rheumatoid arthritis and during bone regeneration). A better understanding of the underlying mechanisms that control immune cell metabolism and immune response may provide therapeutic opportunities to alter the immune response under conditions of either immunosuppression or inflammation, potentially targeting infections, vaccine response, tumor surveillance, autoimmunity, and inflammatory disorders.
Collapse
Affiliation(s)
- Timo Gaber
- 1Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany
| | | | | | | | | |
Collapse
|
26
|
Choufi B, Thiant S, Trauet J, Cliquennois M, Cherrel M, Boulanger F, Coiteux V, Magro L, Labalette M, Yakoub-Agha I. Impact de la composition du greffon sur le devenir des patients après une allogreffe de cellules souches hématopoïétiques : corrélation entre proportion des lymphocytes T CD4+ du greffon exprimant le CCR7 et la survenue d’une GVH aiguë. ACTA ACUST UNITED AC 2014; 62:123-8. [DOI: 10.1016/j.patbio.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/19/2014] [Indexed: 01/27/2023]
|
27
|
Geng X, Doitsh G, Yang Z, Galloway NLK, Greene WC. Efficient delivery of lentiviral vectors into resting human CD4 T cells. Gene Ther 2014; 21:444-9. [PMID: 24572792 DOI: 10.1038/gt.2014.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 02/07/2023]
Abstract
Resting human CD4 T cells are highly resistant to transfection or infection with lentiviral vectors derived from the human immunodeficiency virus. We now describe a flexible and efficient approach involving virus-like particles containing simian immunodeficiency virus lentiviral gene product protein X and pseudotyping with CXCR4-tropic HIV Env. This method permits effective genetic manipulation of these cells while preserving their naturally quiescent state. This technology can also be extended to primary lymphoid cultures where authentic cellular composition and functional relationships are preserved.
Collapse
Affiliation(s)
- X Geng
- Virology & Immunology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - G Doitsh
- Virology & Immunology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Z Yang
- Virology & Immunology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - N L K Galloway
- Virology & Immunology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - W C Greene
- 1] Virology & Immunology, J. David Gladstone Institutes, San Francisco, CA, USA [2] Department of Medicine, University of California, San Francisco, San Francisco, CA, USA [3] Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| |
Collapse
|
28
|
Gavegnano C, Detorio M, Montero C, Bosque A, Planelles V, Schinazi RF. Ruxolitinib and tofacitinib are potent and selective inhibitors of HIV-1 replication and virus reactivation in vitro. Antimicrob Agents Chemother 2014; 58:1977-86. [PMID: 24419350 PMCID: PMC4023721 DOI: 10.1128/aac.02496-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/08/2014] [Indexed: 12/18/2022] Open
Abstract
The JAK-STAT pathway is activated in both macrophages and lymphocytes upon human immunodeficiency virus type 1 (HIV-1) infection and thus represents an attractive cellular target to achieve HIV suppression and reduced inflammation, which may impact virus sanctuaries. Ruxolitinib and tofacitinib are JAK1/2 inhibitors that are FDA approved for rheumatoid arthritis and myelofibrosis, respectively, but their therapeutic application for treatment of HIV infection was unexplored. Both drugs demonstrated submicromolar inhibition of infection with HIV-1, HIV-2, and a simian-human immunodeficiency virus, RT-SHIV, across primary human or rhesus macaque lymphocytes and macrophages, with no apparent significant cytotoxicity at 2 to 3 logs above the median effective antiviral concentration. Combination of tofacitinib and ruxolitinib increased the efficacy by 53- to 161-fold versus that observed for monotherapy, respectively, and each drug applied alone to primary human lymphocytes displayed similar efficacy against HIV-1 containing various polymerase substitutions. Both drugs inhibited virus replication in lymphocytes stimulated with phytohemagglutinin (PHA) plus interleukin-2 (IL-2), but not PHA alone, and inhibited reactivation of latent HIV-1 at low-micromolar concentrations across the J-Lat T cell latency model and in primary human central memory lymphocytes. Thus, targeted inhibition of JAK provided a selective, potent, and novel mechanism to inhibit HIV-1 replication in lymphocytes and macrophages, replication of drug-resistant HIV-1, and reactivation of latent HIV-1 and has the potential to reset the immunologic milieu in HIV-infected individuals.
Collapse
Affiliation(s)
- Christina Gavegnano
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Mervi Detorio
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Catherine Montero
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Alberto Bosque
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
29
|
CD4 and CD8 T cells participate in the immune memory response against Vaccinia virus after a previous natural infection. RESULTS IN IMMUNOLOGY 2013; 3:104-13. [PMID: 24600565 DOI: 10.1016/j.rinim.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 11/23/2022]
Abstract
The present study evaluates the immune response of memory CD4(+) and CD8(+) T cells from patients following a natural Vaccinia virus (VACV) infection. A total of 42 individuals were involved in the study being: 22 previously infected individuals (vaccinated or not against smallpox) and 20 non-infected individuals (vaccinated or not). A short-term in vitro stimulation with UV-inactivated VACV of whole blood cells was performed. Our study showed that previously infected individuals have a lower percentage of CD4(+) T cells expressing lymph-node homing receptors (CD4(+)CD62L(+)CCR7(+)) and higher percentage of memory CD4(+) T cells subsets (CD4(+)CD45RO(High)) when compared with non-infected subjects, after in vitro viral stimulation. We also showed that infected individuals presented higher percentages of CD4(+) and CD8(+) memory T lymphocytes expressing IFN-γ when compared to non-infected individuals. We verified that the percentage of CD4(+) and CD8(+) T memory cells expressing TNF-α was higher in infected and non-infected vaccinated subjects when compared with non-infected unvaccinated individual. We also observed that previously infected individuals have higher percentages of CD8(+) T cells expressing lymph-node homing receptors (CCR7(+) and CD62L(+)) and that the memory T cells expressing IFN-γ and TNF-α were at higher percentages in the whole blood cells from infected and non-infected vaccinated individuals, when compared to unvaccinated non-infected subjects. Thus, our findings suggest that CD4(+) and CD8(+) T cells are involved in the immune memory response against Vaccinia virus natural infection.
Collapse
|
30
|
Weaver JM, Yang H, Roumanes D, Lee FEH, Wu H, Treanor JJ, Mosmann TR. Increase in IFNγ(-)IL-2(+) cells in recent human CD4 T cell responses to 2009 pandemic H1N1 influenza. PLoS One 2013; 8:e57275. [PMID: 23526940 PMCID: PMC3603952 DOI: 10.1371/journal.pone.0057275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/22/2013] [Indexed: 12/12/2022] Open
Abstract
Human CD4 T cell recall responses to influenza virus are strongly biased towards Type 1 cytokines, producing IFNγ, IL-2 and TNFα. We have now examined the effector phenotypes of CD4 T cells in more detail, particularly focusing on differences between recent versus long-term, multiply-boosted responses. Peptides spanning the proteome of temporally distinct influenza viruses were distributed into pools enriched for cross-reactivity to different influenza strains, and used to stimulate antigen-specific CD4 T cells representing recent or long-term memory. In the general population, peptides unique to the long-circulating influenza A/New Caledonia/20/99 (H1N1) induced Th1-like responses biased toward the expression of IFNγ(+)TNFα(+) CD4 T cells. In contrast, peptide pools enriched for non-cross-reactive peptides of the pandemic influenza A/California/04/09 (H1N1) induced more IFNγ(-)IL-2(+)TNFα(+) T cells, similar to the IFNγ(-)IL-2(+) non-polarized, primed precursor T cells (Thpp) that are a predominant response to protein vaccination. These results were confirmed in a second study that compared samples taken before the 2009 pandemic to samples taken one month after PCR-confirmed A/California/04/09 infection. There were striking increases in influenza-specific TNFα(+), IFNγ(+), and IL-2(+) cells in the post-infection samples. Importantly, peptides enriched for non-cross-reactive A/California/04/09 specificities induced a higher proportion of Thpp-like IFNγ(-)IL-2(+)TNFα(+) CD4 T cells than peptide pools cross-reactive with previous influenza strains, which induced more Th1 (IFNγ(+)TNFα(+)) responses. These IFNγ(-)IL-2(+)TNFα(+) CD4 T cells may be an important target population for vaccination regimens, as these cells are induced upon infection, may have high proliferative potential, and may play a role in providing future effector cells during subsequent infections.
Collapse
Affiliation(s)
- Jason M. Weaver
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - David Roumanes
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - F. Eun-Hyung Lee
- Division of Pulmonary Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hulin Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - John J. Treanor
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Levels of interferon-gamma increase after treatment for latent tuberculosis infection in a high-transmission setting. Pulm Med 2012; 2012:757152. [PMID: 23320165 PMCID: PMC3539439 DOI: 10.1155/2012/757152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022] Open
Abstract
Objectives. We investigated IFN-γ levels before and after a six month course of isoniazid among individuals with latent tuberculosis infection (LTBI) in a high-transmission setting. Design. A total of 26 household contacts of pulmonary tuberculosis patients who were positive for LTBI by tuberculin skin test completed six months of treatment and submitted a blood sample for a follow-up examination. The IFN-γ response to Mycobacterium tuberculosis-specific antigens was measured, and the results before and after the completion of LTBI treatment were compared. Results. Of the 26 study participants, 25 (96%) showed an IFN-γ level higher than their baseline level before treatment (P ≤ 0.001). Only one individual had a decreased IFN-γ level after treatment but remained positive for LTBI. Conclusion. In a high-transmission setting, the IFN-γ level has increased after LTBI treatment. Further studies must be undertaken to understand if this elevation is transient.
Collapse
|
32
|
Muul LM, Heine G, Silvin C, James SP, Candotti F, Radbruch A, Worm M. Measurement of Proliferative Responses of Cultured Lymphocytes. ACTA ACUST UNITED AC 2011; Chapter 7:Unit7.10. [DOI: 10.1002/0471142735.im0710s94] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Guido Heine
- Klinik für Dermatologie, Venerologie und Allergologie Charité ‐ Universitätsmedizin Berlin Berlin, Germany
- Deutsches Rheuma‐Forschungszentrum Berlin Berlin Germany
| | | | | | | | | | - Margitta Worm
- Deutsches Rheuma‐Forschungszentrum Berlin Berlin Germany
| |
Collapse
|
33
|
Fu X, Liu Y, Li L, Li Q, Qiao D, Wang H, Lao S, Fan Y, Wu C. Human natural killer cells expressing the memory-associated marker CD45RO from tuberculous pleurisy respond more strongly and rapidly than CD45RO- natural killer cells following stimulation with interleukin-12. Immunology 2011; 134:41-9. [PMID: 21711347 DOI: 10.1111/j.1365-2567.2011.03464.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are known as innate immune lymphocytes that respond rapidly when challenged by pathogens but little is known about adaptive immune features including memory related to NK cells from human beings. In the present study, we demonstrate for the first time that human NK cells expressing the memory-associated marker CD45RO were persistent in pleural fluid cells (PFCs) from tuberculous patients. CD45RO(+) NK cells produced significantly more interferon-γ and were more cytotoxic compared with CD45RO(-) NK cells from PFCs when stimulated with interleukin-12 (IL-12). Consistently, IL-12 enhanced the expression of granzyme B, CD69, CD25, NKG2D, IL-12 receptors β1 and β2 on CD45RO(+) NK cells from PFCs. Our experiments contribute to a better understanding of the NK cells from PFCs and indicate that human CD45RO(+) NK cells from PFCs expressing a 'memory-like' phenotype may have an important role in defending against infection by Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Xiaoying Fu
- Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou Chest Hospital of Guangzhou, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Advanced glycation end products of human β₂ glycoprotein I modulate the maturation and function of DCs. Blood 2011; 117:6152-61. [PMID: 21498672 DOI: 10.1182/blood-2010-12-325514] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In chronic disorders related to endothelial cell dysfunction, plasma β₂ glycoprotein I (β₂GPI) plays a role as a target antigen of pathogenetic autoimmune responses. However, information is still lacking to clarify why β₂GPI triggers autoimmunity. It is possible that posttranslational modification of the protein, such as nonenzymatic glycosylation, leads to the formation of advanced glycation end products (AGEs). The aim of our study was to explore whether glucose-modified β₂GPI is able to interact and activate monocyte-derived immature dendritic cells (iDCs) from healthy human donors. SDS-PAGE and spectrofluorometric analyses indicated that β₂GPI incubated with glucose was sugar modified, and that this modification likely consisted of AGE formation, resulting in AGE-β₂GPI. AGE-β₂GPI caused phenotypical and functional maturation of iDCs involving the activation of p38 MAPK, ERK, and NF-κB. It also induced on DCs a significant up-regulation of RAGE, the receptor for AGEs. Evidence for RAGE involvement comes from blocking experiments with an anti-RAGE mAb, confocal analysis, and coimmunoprecipitation experiments. AGE-β₂GPI-stimulated DCs had increased allostimulatory ability and primed naive T lymphocytes toward a Th2 polarization. These findings might explain in part the interactive role of β₂GPI, AGEs, and DCs in chronic disorders related to endothelial cell dysfunction.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The present review summarizes the current challenges for the design of new therapeutic strategies toward HIV eradication in individuals receiving suppressive highly active antiretroviral therapy (HAART). We will focus on the experimental evidence suggesting that immunological mechanisms involved in the generation and maintenance of memory CD4+ T cells are also responsible for the establishment and persistence of a stable reservoir for HIV. RECENT FINDINGS Recent studies performed on clinical samples obtained from virally suppressed HIV-infected individuals indicate that T-cell survival and homeostatic proliferation, two major mechanisms involved in the maintenance of immunological memory, contribute to the persistence of latently infected memory CD4+ T cells. Thus, the long lifespan characteristic of the HIV reservoir is likely a consequence of the capacity of the immune system to generate and maintain memory CD4+ T cells for a long period. SUMMARY These findings suggest that strategies aimed at reducing the pool of latently infected cells should interfere with the survival pathways responsible for the long-term maintenance of memory CD4+ T cells. Because memory CD4+ T cells are critical for appropriate immune defense, targeted approaches are needed to interfere only with the long-term survival of discrete fractions of memory T cells carrying proviral DNA.
Collapse
|
36
|
Bere A, Denny L, Hanekom W, Burgers WA, Passmore JAS. Comparison of polyclonal expansion methods to improve the recovery of cervical cytobrush-derived T cells from the female genital tract of HIV-infected women. J Immunol Methods 2010; 354:68-79. [PMID: 20149794 PMCID: PMC2854893 DOI: 10.1016/j.jim.2010.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 12/02/2022]
Abstract
Cervical cytobrushing is a useful and non-invasive method for obtaining mucosal mononuclear cells from the female genital tract, but yields few cells. The aim of this study was to compare in vitro expansion protocols (anti-CD3, anti-CD3/CD28 or Dynal anti-CD3/CD28 beads) and cytokine combinations (IL-2, IL-7 and IL-15) to improve cervical T cell yields and viability. Eighteen HIV-infected women were included in this study to compare methods for polyclonal expansion of T cells from the female genital tract and blood. Comparison of T cell yields, viability and maturational status (by differential staining with CD45RO, CCR7 and CD27) was determined following 7 days of in vitro expansion. Anti-CD3 and IL-2 resulted in a 4.5-fold (range 3.7–5.3) expansion of cervical CD3+ T cells in 7 days compared to day 0. Inclusion of anti-CD28 or addition of IL-7 and IL-15 to this combination did not improve expansion. Culturing cells with Dynal beads (1:1) and IL-2, IL-7 and IL-15 gave rise to the highest yields after 7 days in both blood (7.1-fold) and cervix (5.6-fold). While expansion with anti-CD3 led to the accumulation of effector memory T cells (CD45RO+CCR7−CD27−), expansion with Dynabeads selected for accumulation of central memory T cells (CD45RO+CCR7+CD27+). We conclude that in vitro expansion with Dynabeads (1:1) in the presence of IL-2, IL-7 and IL-15 resulted in the greatest increase in viable T cells from both blood and cytobrush. Irrespective of the expansion method used, the T cell memory profile was altered following expansion.
Collapse
Affiliation(s)
- Alfred Bere
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | | | | | | | | |
Collapse
|
37
|
Colin L, Van Lint C. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 2009; 6:111. [PMID: 19961595 PMCID: PMC2797771 DOI: 10.1186/1742-4690-6-111] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway.
Collapse
Affiliation(s)
- Laurence Colin
- Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| | | |
Collapse
|
38
|
Bere A, Denny L, Burgers WA, Passmore JAS. Polyclonal expansion of cervical cytobrush-derived T cells to investigate HIV-specific responses in the female genital tract. Immunology 2009; 130:23-33. [PMID: 20201983 DOI: 10.1111/j.1365-2567.2009.03172.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Human immunodeficiency virus (HIV) -specific T-cell responses are detectable in the female genital tract of HIV-infected women but little is known about their frequency or the factors that influence their detection. We investigated the feasibility of polyclonal in vitro expansion of cervical cytobrush-derived T cells to investigate HIV-specific responses in the female genital tract in HIV-infected women. Cytobrush-derived cervical cells were isolated from 22 HIV-infected women and expanded with anti-CD3 and recombinant interleukin-2. Cervical T-cell lines were investigated for Gag-specific responses by interferon-gamma ELISPOT and compared with those detected in matched blood samples. Cervical T-cell lines were established from 16/22 (72.7%) participants. Although the absolute number of CD3(+/-) cells recovered after expansion was positively associated with the number of cells isolated ex vivo (P = 0.01; R = 0.62), we observed a significant negative correlation between fold expansion and ex vivo cell number (P = 0.004; R = -0.68). We show that both the magnitude (P = 0.002; R = 0.7) and specific Gag regions targeted by cervical T-cell lines (P < 0.0001; R = 0.5) correlated significantly with those detected in blood. With one exception, cervical interferon-gamma T-cell responses to Gag were detected only in HIV-infected women with blood Gag-specific response > 1000 spot-forming units/10(6) cells. We conclude that cervical Gag-specific T-cell responses in expanded lines are most easily detectable in women who have corresponding high-magnitude Gag-specific T-cell responses in blood.
Collapse
Affiliation(s)
- Alfred Bere
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | | | | | | |
Collapse
|
39
|
Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, Boucher G, Boulassel MR, Ghattas G, Brenchley JM, Schacker TW, Hill BJ, Douek DC, Routy JP, Haddad EK, Sékaly RP. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 2009; 15:893-900. [PMID: 19543283 DOI: 10.1038/nm.1972] [Citation(s) in RCA: 1381] [Impact Index Per Article: 92.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 04/29/2009] [Indexed: 12/15/2022]
Abstract
HIV persists in a reservoir of latently infected CD4(+) T cells in individuals treated with highly active antiretroviral therapy (HAART). Here we identify central memory (T(CM)) and transitional memory (T(TM)) CD4(+) T cells as the major cellular reservoirs for HIV and find that viral persistence is ensured by two different mechanisms. HIV primarily persists in T(CM) cells in subjects showing reconstitution of the CD4(+) compartment upon HAART. This reservoir is maintained through T cell survival and low-level antigen-driven proliferation and is slowly depleted with time. In contrast, proviral DNA is preferentially detected in T(TM) cells from aviremic individuals with low CD4(+) counts and higher amounts of interleukin-7-mediated homeostatic proliferation, a mechanism that ensures the persistence of these cells. Our results suggest that viral eradication might be achieved through the combined use of strategic interventions targeting viral replication and, as in cancer, drugs that interfere with the self renewal and persistence of proliferating memory T cells.
Collapse
Affiliation(s)
- Nicolas Chomont
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal Saint-Luc, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Muul LM, Silvin C, James SP, Candotti F. Measurement of proliferative responses of cultured lymphocytes. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 7:Unit 7.10.1-7.10.24. [PMID: 18729064 DOI: 10.1002/0471142735.im0710s82] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Measurement of proliferative responses of human lymphocytes is a fundamental technique for the assessment of their biological responses to various stimuli. Most simply, this involves measurement of the number of cells present in a culture before and after the addition of a stimulating agent. This unit contains several different prototype protocols to measure the proliferative response of lymphocytes following exposure to mitogens, antigens, allogeneic or autologous cells, or soluble factors. Each of these protocols can be used in conjunction with an accompanying support protocol which contains methods for pulsing cultures with [3H]thymidine and determining incorporation of [3H]thymidine into DNA or assessing cell proliferation by nonradioactive methods, e.g., reduction of tetrazolium salts (MTT). The protocols described here provide an estimate of DNA synthesis and cell proliferation in an entire cell population, but do not provide information on the proliferation of individual cells. A protocol for CFSE labeling allows specific subpopulations of cells to be separated viably for further analysis.
Collapse
|
41
|
Strauss L, Bergmann C, Whiteside TL. Functional and phenotypic characteristics of CD4+CD25highFoxp3+ Treg clones obtained from peripheral blood of patients with cancer. Int J Cancer 2007; 121:2473-83. [PMID: 17691114 DOI: 10.1002/ijc.23001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Circulating human CD4(+)CD25(high)Foxp3(+) T cell populations (Treg) may contain activated CD4(+)CD25(+) T cells interfering with Treg evaluation. To gain insights into the phenotypic and functional characteristics of Treg in patients with cancer, we have analyzed CD4(+)CD25(high) populations at the clonal level. Single-cell sorted (SCS) CD4(+)CD25(high) T cells obtained from PBMC of normal controls (NC) or patients with squamous cell carcinoma of the head and neck (HNSCC) were plated at 1 cell/well in 96 well plates and expanded with anti-CD3/anti-CD28 Abs and 1,000 IU IL-2/mL in the presence or absence of rapamycin (1 nM). All generated clones were evaluated for the phenotype by flow cyometry and suppressor function in CFSE-based proliferation assays. Clones had heterogeneous CD25 expression levels. Cloning efficiency of CD4(+)CD25(high) T cells was low. CD25(high) clones expressed CTLA-4, Foxp3, CD62L, but little GITR and suppressed proliferation of autologous CD4(+)CD25(-) responder cells. Clones of activated CD4(+)CD25(interm./low) cells expressed intermediate to high levels of GITR and HLA-DR and did not suppress proliferation of responder cells. The number, suppressor phenotype and function of CD25(high) Treg clones were significantly enhanced in HNSCC patients relative to NC (p </= 0.001). CD4(+)CD25(+) populations comprise phenotypically and functionally distinct subsets of CD25(+) cells. Only a small fraction of these activated CD4(+) T cells are potent suppressor cells characterized by high expression levels of CD25, Foxp3, CTLA-4 and CD62L. The number of expandable Treg is increased in HNSCC patients.
Collapse
Affiliation(s)
- Laura Strauss
- Department of Pathology, University of Pittsburgh School of Medicine and Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
42
|
Abstract
The pool of memory T cells is regulated by homeostatic mechanisms to persist for prolonged periods at a relatively steady overall size. Recent work has shown that two members of the common gamma chain (gammac) family of cytokines, interleukin-7 (IL-7) and IL-15, govern homeostasis of memory T cells. These two cytokines work in conjunction to support memory T-cell survival and intermittent background proliferation. Normal animals contain significant numbers of spontaneously arising memory-phenotype (MP) cells, though whether these cells are representative of true antigen-specific memory T cells is unclear. Nevertheless, it appears that the two types of memory cells do not display identical homeostatic requirements. For antigen-specific memory CD8+ T cells, IL-7 is primarily important for survival while IL-15 is crucial for their background proliferation. For memory CD4+ T cells, IL-7 has an important role, whereas the influence of IL-15 is still unclear.
Collapse
Affiliation(s)
- Charles D Surh
- The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
43
|
von Geldern M, Simm B, Braun M, Weiss EH, Schendel DJ, Falk CS. TCR-independent cytokine stimulation induces non-MHC-restricted T cell activity and is negatively regulated by HLA class I. Eur J Immunol 2006; 36:2347-58. [PMID: 16909431 DOI: 10.1002/eji.200535387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that the functional status of T cells activated independently from their TCR differs substantially from classical MHC-restricted T cells. Here, we show that TCR-independent, short-term stimulation via the common gamma-chain of the IL-2/IL-15 receptor induces non-MHC-restricted cytotoxicity and sustained cytokine secretion in purified CD4+ or CD8+ T cells. NK-like cytotoxicity is directed against MHC class I-negative targets and can be inhibited by classical and non-classical HLA class I molecules. Known inhibitory receptors, such as CD85j (ILT2) and leukocyte-associated Ig-like receptor-1, are not responsible for this HLA-mediated inhibition. NK-like cytotoxicity can be costimulated by NKG2D (CD314) triggering, but 2B4 (CD244) and DNAM-1 (CD226) are not involved. NK-like T cells display an activated phenotype and secrete various cytokines, including IFN-gamma, TNF-alpha, IL-5, IL-13 and MIP-1beta. Under normal conditions, HLA class I-mediated inhibition may function as a safety mechanism to prevent unbalanced cytokine production and effector killing mechanisms by T cells that were activated independently from their TCR. Non-MHC-restricted activity represents a functional status rather than a property of distinct T cell subpopulations. Thus, cytokine-induced, non-MHC-restricted T cells may be relevant in immune responses against tumors showing aberrant MHC expression through their capacities of cytokine production and direct tumor cell eradication.
Collapse
Affiliation(s)
- Marion von Geldern
- Institute of Molecular Immunology, GSF National Research Center for Environment and Health, Munich, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Huster KM, Koffler M, Stemberger C, Schiemann M, Wagner H, Busch DH. Unidirectional development of CD8+ central memory T cells into protective Listeria-specific effector memory T cells. Eur J Immunol 2006; 36:1453-64. [PMID: 16637009 DOI: 10.1002/eji.200635874] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three distinct subsets of antigen-experienced CD8(+) T cells have been identified so far: short-living effector T cells (T(EC)) and two long-living subsets, described as central (T(CM)) and effector memory (T(EM)) T cells. The lineage relationships of these subpopulations as well as their involvement in protection have not yet been conclusively determined. We recently described a novel marker combination (CD127 and CD62L) to identify all three major CD8(+) T cell subsets in mice infected with Listeria monocytogenes (L.m.). Extensive lineage relationship analyses on highly purified subpopulations after in vitro and in vivo stimulation demonstrated that T(CM) can develop into T(EM) or T(EC), whereas T(EM) can only progress to T(EC) cells. Short-living T(EC) never regained a T(EM) or T(CM) phenotype. These data strongly suggest a hierarchical and unidirectional order of developmental stages. In vivo priming protocols that preferentially induced one of the different CD8(+) T cell subsets demonstrated that predominance of T(EM) (CD40 stimulation) correlated best with effective protection against L.m., whereas generation of neither T(CM) (by immunization with heat-killed L.m.) nor T(EC) (by systemic co-administration of CpG during primary infection) conferred substantial long-term protective immunity. These findings have important implications for the design of more effective T cell-based vaccines.
Collapse
Affiliation(s)
- Katharina M Huster
- Clinical Cooperation Group 'Antigen-Specific Immunotherapy', GSF - National Research Center of Environment and Health and Technical University Munich, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Buttari B, Profumo E, Mattei V, Siracusano A, Ortona E, Margutti P, Salvati B, Sorice M, Riganò R. Oxidized β2-glycoprotein I induces human dendritic cell maturation and promotes a T helper type 1 response. Blood 2005; 106:3880-7. [PMID: 16099886 DOI: 10.1182/blood-2005-03-1201] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human plasma protein β2-glycoprotein I (β2-GPI) is the most common target for antiphospholipid antibodies associated with thrombotic events in chronic disorders related to endothelial cell dysfunction. Crucial information is needed to clarify why this self-abundant protein is targeted by autoimmune responses. In this study, we investigated whether oxidative modification of β2-GPI, either spontaneous in culture wells or induced by treatment with H2O2, renders this self-protein able to activate immature monocyte-derived dendritic cells (DCs) from healthy human donors. Oxidized β2-GPI caused DCs to mature so that CD83 appeared and CD80, CD86, human leukocyte antigen-D region related (HLA-DR), and CD40 increased. The interaction between oxidized β2-GPI and DCs specifically stimulated these cells to secrete interleukin 12 (IL-12), IL-1β, IL-6, IL-8, tumor necrosis factor α (TNF-α), and IL-10. Oxidized β2-GPI-stimulated DCs had increased allostimulatory ability and primed naive T lymphocytes, thus inducing T helper 1 (Th1) polarization. The interaction between oxidized β2-GPI and DCs involved interleukin-1 receptor associated kinase (IRAK) phosphorylation and nuclear factor κB (NFκB) activation. Pretreatment of β2-GPI with the antioxidant α-tocopherol prevented DC maturation. These findings show that human oxidized β2-GPI, probably by interacting with a member of the Toll-like receptor (TLR) family, causes DCs to mature. Because this key β2-GPI function requires oxidative modification, in several chronic disorders related to endothelial cell dysfunction oxidative stress might trigger the “autoimmune spiral.”
Collapse
Affiliation(s)
- Brigitta Buttari
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Talayev VY, Zaichenko IY, Babaykina ON, Lomunova MA, Talayeva EB, Nikonova MF. Ex vivo stimulation of cord blood mononuclear cells by dexamethasone and interleukin-7 results in the maturation of interferon-gamma-secreting effector memory T cells. Clin Exp Immunol 2005; 141:440-8. [PMID: 16045733 PMCID: PMC1809458 DOI: 10.1111/j.1365-2249.2005.02863.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The effects of dexamethasone phosphate and interleukin-7 upon the proliferation of T-cells and the production of interferon-gamma in the newborn's cord blood mononuclear cell cultures were studied. The capability of dexamethasone to enhance T-cell proliferation induced by anti-CD3 with interleukin-7 in some newborn cord blood mononuclear cell cultures was identified. Dexamethasone suppressed production of interferon-gamma in 68-h cell cultures stimulated with anti-CD3 both in the presence of interleukin-7 and without it. However, a 68-h cultivation of newborn blood cells with dexamethasone, anti-CD3 and interleukin-7 resulted in the accumulation of T-lymphocytes capable of producing interferon-gamma after restimulation. As a result of it the amount of interferon-gamma producing CD7(+) T-cells and the concentration of interferon-gamma in cultural supernatants were maximal in the cell cultures incubated with anti-CD3, interleukin-7 and dexamethasone during the first 68 h and subsequently restimulated with phorbol 12-myristate 13-acetate and ionomycin. The stimulation of neonatal or adult blood cells by dexamethasone, anti-CD3 and interleukine-7 also causes a decrease in the number of naïve T-cells and central memory cells and an increase in the number of effector memory CD7(+)CD45RA(+)CD62L(-) cells in cultures. It is possible that these effects are caused by the influence of dexamethasone on IL-7 receptor expression: it is known that IL-7 receptor alpha-chain gene is a glucocorticoid-inducible gene.
Collapse
Affiliation(s)
- V Yu Talayev
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Ministry of Health of Russian Federation, Nizhny Novgorod, Russia.
| | | | | | | | | | | |
Collapse
|
47
|
Singh AK, Jiang Y. Lipopolysaccharide (LPS) induced activation of the immune system in control rats and rats chronically exposed to a low level of the organothiophosphate insecticide, acephate. Toxicol Ind Health 2005; 19:93-108. [PMID: 15697179 DOI: 10.1191/0748233703th181oa] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lipopolysaccharide (LPS), a key inflammatory component of gram-negative bacteria, induces a distinctive pattern of cytokine release that regulates inflammation. An alteration in the LPS response may play a fundamental role in the pathogenesis of a number of inflammatory diseases. Therefore, this study was conducted to determine whether chronic exposure to a low level of acephate (Ace), a commonly used organophosphate insecticide, impaired the LPS response in rats. This study showed that LPS injection in control rats caused (1) a time-dependent increase in blood lymphocyte enumeration and differentiation, and (2) a sequential increase the pro-inflammatory (interleukin-1beta (IL1beta), tumor necrosis factor-alpha (TNFalpha), interferon-gamma (INTgamma), and inducible nitric oxide synthase (iNOS)) and anti-inflammatory (interleukin-4 (IL-4), corticotropin-releasing factor (CRF), and blood corticosterone (Cort)) cytokines. The pro-inflammatory cytokines increased after 30 min, while the anti-inflammatory cytokines increased 3 h after LPS injection. An increase in proinflammatory cytokines increased lymphocyte enumeration and differentiation, while the increase in anti-inflammatory cytokines re-established homeostasis. In comparison to the control rats, the Ace-exposed rats exhibited (1) lower levels of IL1beta, TNFalpha and iNOS, (2) higher levels of CRF and Cort, and (3) lower levels of IL-4 in blood and/or brain samples. The abnormal cytokine production may be associated with abnormal phenotypic distribution of B and T cells. Blood IgMhi IgDhi, IgMlo IgDlo and CD8+ CD45RA- CCR7+ cells were elevated, while IgMlo IgDhi, IgMhi IgDlo, IgMin IgDlo, CD8+ CD45RA+ CCR7+ and CD8+ CD45RA- CCR7 cells were depressed in Ace-exposed rats. Thus, chronic low-level Ace exposure may impair the lineage commitment in lymphocytes, possibly by altering cytokine signaling in the brain.
Collapse
Affiliation(s)
- A K Singh
- Department of Veterinary Diagnostic Medicine, College of Veterinary Medicine, University of Minnesota, St Paul Campus, St Paul, MN, USA.
| | | |
Collapse
|
48
|
Zhang X, Nakajima T, Goronzy JJ, Weyand CM. Tissue trafficking patterns of effector memory CD4+ T cells in rheumatoid arthritis. ACTA ACUST UNITED AC 2005; 52:3839-49. [PMID: 16329093 DOI: 10.1002/art.21482] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Clonal populations of CD4+,CD28- T cells accumulating in rheumatoid arthritis functionally resemble end-differentiated, nondividing, short-lived effector memory cells that reside in peripheral tissues. We undertook this study to examine the tissue niche for CD4+,CD28- T cells and the signals regulating their survival and tissue homing patterns. METHODS Chemokine receptor expression on CD4+,CD28- T cell clones and peripheral blood lymphocytes was assessed by multicolor cytometry. In vitro chemotaxis and transendothelial migration were examined in a Transwell system. In vivo tissue-homing patterns were established by adoptively transferring fluorescence-labeled T cell clones into SCID mice engrafted either with rheumatoid synovium or with human lymph nodes. RESULTS CD4+,CD28- T cell clones adoptively transferred into human tissue-SCID mouse chimeras infiltrated rheumatoid synovium but preferentially homed to lymph nodes. Such T cells coexpressed the chemokine receptors CCR7, CCR5, and CXCR4 and migrated in response to both inflammatory chemokines (CCL5) and homing chemokines (CXCL12). T cell receptor crosslinking abrogated chemotactic responsiveness. In contrast, interleukin-12 stimulation induced the up-regulation of CCR5 and a shift in the in vivo homing pattern away from the lymph nodes toward the inflamed synovium. CONCLUSION CD4+,CD28- T cells resemble both short-lived effector memory cells and long-lived central memory cells, and they find a niche both in inflamed synovium and in lymph nodes. Nonspecific cytokine stimulation, not antigen recognition, triggers the transition from the lymph node to the synovium. By maintaining CCR7 expression, these end-differentiated T cells can home to lymphoid organs, enhance their survival, support clonal expansion, and perpetuate autoreactivity.
Collapse
|
49
|
Abstract
T-cell immunological memory consists largely of clones of proliferating lymphocytes maintained by antigenic stimulation and the survival and proliferative effects of cytokines. The duration of survival of memory clones in humans is determine by the Hayflick limit on the number of cell divisions, the rate of cycling of memory cells and factors that control erosion of telomeres, including mechanisms that control telomerase.
Collapse
Affiliation(s)
- Peter C L Beverley
- The Edward Jenner Institute for Vaccine Research, Compton, Berkshire RG207NN, UK.
| |
Collapse
|
50
|
Meiklejohn DA, Karlsson RK, Karlsson AC, Chapman JM, Nixon DF, Schweighardt B. ELISPOT cell rescue. J Immunol Methods 2004; 288:135-47. [PMID: 15183092 DOI: 10.1016/j.jim.2004.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 02/27/2004] [Accepted: 03/21/2004] [Indexed: 10/26/2022]
Abstract
The enzyme-linked immunospot (ELISPOT) assay is a highly sensitive and reproducible method for quantifying T cell-mediated immune responses, and has been used to measure antigen-specific responses post-vaccination. While there are several advantages of the ELISPOT assay for use in field settings for large-scale vaccination trials, blood draw volumes are often limited, and the number of antigen-specific responses that can be measured is constrained by the limited cell number. We reasoned that it should be possible to salvage and rescue viable cells from a completed ELISPOT assay post-incubation, to use for further experimentation. Here, we show that cells rescued from an ELISPOT plate after assay are viable, and may be used in a second cytokine-producing assay, in a proliferation assay, or to provide a source of DNA for genetic studies such as human leukocyte antigen (HLA) typing. Rescue of cells after an ELISPOT assay will be particularly useful for increasing sample utility and maximizing data collection from T cell assays in vaccine trials.
Collapse
Affiliation(s)
- Duncan A Meiklejohn
- Gladstone Institute of Virology and Immunology, University of California, PO Box 419100, San Francisco, CA 94141-9100, USA
| | | | | | | | | | | |
Collapse
|