1
|
Zaineb T, Uzair B, Rizg WY, Alharbi WS, Alkhalidi HM, Hosny KM, Khan BA, Bano A, Alissa M, Jamil N. Synthesis and Characterization of Calcium Alginate-Based Microspheres Entrapped with TiO 2 Nanoparticles and Cinnamon Essential Oil Targeting Clinical Staphylococcus aureus. Pharmaceutics 2022; 14:pharmaceutics14122764. [PMID: 36559258 PMCID: PMC9782131 DOI: 10.3390/pharmaceutics14122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
It is important to create new generations of materials that can destroy multidrug-resistant bacterial strains, which are a serious public health concern. This study focused on the biosynthesis of an essential oil entrapped in titanium dioxide (TiO2) calcium alginate-based microspheres. In this research, calcium alginate-based microspheres with entrapped TiO2 nanoparticles and cinnamon essential oil (CI-TiO2-MSs) were synthesized, using an aqueous extract of Nigella sativa seeds for TiO2 nanoparticle preparation, and the ionotropic gelation method for microsphere preparation. The microspheres obtained were spherical, uniformly sized, microporous, and rough surfaced, and they were fully loaded with cinnamon essential oil and TiO2 nanoparticles. The synthesized microspheres were analyzed for antibacterial activity against the clinical multidrug-resistant strain of Staphylococcus aureus. Disc diffusion and flow cytometry analysis revealed strong antibacterial activity by CI-TiO2-MSs. The synthesized CI-TiO2-MSs were characterized by the SEM/EDX, X-ray diffraction, and FTIR techniques. Results showed that the TiO2 nanoparticles were spherical and 99 to 150 nm in size, whereas the CI-TiO2-MSs were spherical and rough surfaced. Apoptosis analysis and SEM micrography revealed that the CI-TiO2-MSs had strong bactericidal activity against S. aureus. The in vitro antibacterial experiments proved that the encapsulated CI-TiO2-MSs had strong potential for use as a prolonged controlled release system against multidrug-resistant clinical S. aureus.
Collapse
Affiliation(s)
- Tayyaba Zaineb
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
- Correspondence: (B.U.); (K.M.H.)
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (B.U.); (K.M.H.)
| | - Barkat Ali Khan
- Drug Delivery and Cosmetics Lab (DDCL), GCPS, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Asma Bano
- Department of Microbiology, University of Haripur, Haripur 22620, Pakistan
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nazia Jamil
- Department of Microbiology & Molecular Genetics, Punjab University, Lahore 54000, Pakistan
| |
Collapse
|
2
|
Tuerxun K, He J, Ibrahim I, Yusupu Z, Yasheng A, Xu Q, Tang R, Aikebaier A, Wu Y, Tuerdi M, Nijiati M, Zou X, Xu T. Bioartificial livers: a review of their design and manufacture. Biofabrication 2022; 14. [PMID: 35545058 DOI: 10.1088/1758-5090/ac6e86] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Acute liver failure (ALF) is a rapidly progressive disease with high morbidity and mortality rates. Liver transplantation and artificial liver support systems, such as artificial livers (ALs) and bioartificial livers (BALs), are the two major therapies for ALF. Compared to ALs, BALs are composed of functional hepatocytes that provide essential liver functions, including detoxification, metabolite synthesis, and biotransformation. Furthermore, BALs can potentially provide effective support as a form of bridging therapy to liver transplantation or spontaneous recovery for patients with ALF. In this review, we systematically discussed the currently available state-of-the-art designs and manufacturing processes for BAL support systems. Specifically, we classified the cell sources and bioreactors that are applied in BALs, highlighted the advanced technologies of hepatocyte culturing and bioreactor fabrication, and discussed the current challenges and future trends in developing next generation BALs for large scale clinical applications.
Collapse
Affiliation(s)
- Kahaer Tuerxun
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Jianyu He
- Department of Mechanical Engineering, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, Beijing, 100084, CHINA
| | - Irxat Ibrahim
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Zainuer Yusupu
- Department of Ultrasound, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Abudoukeyimu Yasheng
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Qilin Xu
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Ronghua Tang
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Aizemaiti Aikebaier
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Yuanquan Wu
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Maimaitituerxun Tuerdi
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Mayidili Nijiati
- Medical imaging center, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Xiaoguang Zou
- Hospital Organ, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Tao Xu
- Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, 100084, CHINA
| |
Collapse
|
3
|
Liu W, Zhang M, Xiao Y, Ye Z, Zhou Y, Lang M, Tan WS. Fabrication and in vitro evaluation of a packed-bed bioreactor based on galactosylated poly(ethylene terephthalate) microfibrous scaffolds. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
David B, Doré E, Jaffrin MY, Legallais C. Mass Transfers in a Fluidized Bed Bioreactor using Alginate Beads for a Future Bioartificial Liver. Int J Artif Organs 2018; 27:284-93. [PMID: 15163062 DOI: 10.1177/039139880402700404] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fluidized bed bioreactor with alginate beads may be an alternative to hollow fiber cartridge to host hepatocytes for bioartificial liver purposes. After the bioreactor design and the characterization of fluid mechanics, the present study was aimed at analyzing bi-directional mass transfers of calibrated species between external fluid and empty beads. Static (batch) and dynamic (fluidized bed bioreactor) experimental conditions were analyzed. A simple modelling approach permitted the definition of mass transfer coefficients. The motion of beads within the bioreactor clearly enhanced mass transfer kinetics, but did not alter the amount exchanged. The shear enhanced diffusion coefficient for VitB12 was 20 times higher in the fluidized bed bioreactor than under batch conditions, proving the efficiency of such a device.
Collapse
Affiliation(s)
- B David
- Université de Technologie de Compiègne, Laboratoire de Biomécanique et Génie Biomedical, Compiègne, France
| | | | | | | |
Collapse
|
5
|
Annesini MC, Di Paola L, Marrelli L, Piemonte V, Turchetti L. Bilirubin Removal from Albumin - Containing Solution by Adsorption on Polymer Resin. Int J Artif Organs 2018; 28:686-93. [PMID: 16049902 DOI: 10.1177/039139880502800707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Adsorption equilibrium of bilirubin onto polymeric resins is studied. Solutions containing albumin are used in order to simulate the behavior of systems for removal of albumin-bound substances from blood, serum or dialysis fluids. The effect of albumin pre-loading on the resin is also analysed. Results are explained by a chemically based model that accounts for binding reaction between albumin and bilirubin in the liquid phase. Thermodynamic equilibria and physical models are essential tools for designing adsorption columns aimed at detoxification treatments.
Collapse
Affiliation(s)
- M C Annesini
- Department of Chemical Engineering, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | |
Collapse
|
6
|
Selden C, Bundy J, Erro E, Puschmann E, Miller M, Kahn D, Hodgson H, Fuller B, Gonzalez-Molina J, Le Lay A, Gibbons S, Chalmers S, Modi S, Thomas A, Kilbride P, Isaacs A, Ginsburg R, Ilsley H, Thomson D, Chinnery G, Mankahla N, Loo L, Spearman CW. A clinical-scale BioArtificial Liver, developed for GMP, improved clinical parameters of liver function in porcine liver failure. Sci Rep 2017; 7:14518. [PMID: 29109530 PMCID: PMC5674071 DOI: 10.1038/s41598-017-15021-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
Liver failure, whether arising directly from acute liver failure or from decompensated chronic liver disease is an increasing problem worldwide and results in many deaths. In the UK only 10% of individuals requiring a liver transplant receive one. Thus the need for alternative treatments is paramount. A BioArtificial Liver machine could temporarily replace the functions of the liver, buying time for the patient's liver to repair and regenerate. We have designed, implemented and tested a clinical-scale BioArtificial Liver machine containing a biomass derived from a hepatoblastoma cell-line cultured as three dimensional organoids, using a fluidised bed bioreactor, together with single-use bioprocessing equipment, with complete control of nutrient provision with feedback BioXpert recipe processes, and yielding good phenotypic liver functions. The methodology has been designed to meet specifications for GMP production, required for manufacture of advanced therapy medicinal products (ATMPs). In a porcine model of severe liver failure, damage was assured in all animals by surgical ischaemia in pigs with human sized livers (1.2-1.6 kg liver weights). The BioArtificial liver (UCLBAL) improved important prognostic clinical liver-related parameters, eg, a significant improvement in coagulation, reduction in vasopressor requirements, improvement in blood pH and in parameters of intracranial pressure (ICP) and oxygenation.
Collapse
Affiliation(s)
- Clare Selden
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom.
| | - James Bundy
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Eloy Erro
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Eva Puschmann
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Malcolm Miller
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Delawir Kahn
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Humphrey Hodgson
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Barry Fuller
- Dept. of Surgery, UCL Medical School, Royal Free Hospital, London, NW3 2QG, UK
| | - Jordi Gonzalez-Molina
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Aurelie Le Lay
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Stephanie Gibbons
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Sherri Chalmers
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Sunil Modi
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Amy Thomas
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Peter Kilbride
- UCL Institute for Liver and Digestive Health, UCL - Royal Free Hospital Campus, UCL Medical School, London, United Kingdom
| | - Agnes Isaacs
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Richard Ginsburg
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Helen Ilsley
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - David Thomson
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Galya Chinnery
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Ncedile Mankahla
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Lizel Loo
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - C Wendy Spearman
- Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
7
|
Lu J, Zhang X, Li J, Yu L, Chen E, Zhu D, Zhang Y, Li L. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems. PLoS One 2016; 11:e0147376. [PMID: 26840840 PMCID: PMC4739599 DOI: 10.1371/journal.pone.0147376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022] Open
Abstract
A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianzhou Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ermei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yimin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - LanJuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
8
|
Deng F, Chen L, Zhang Y, Zhao S, Wang Y, Li N, Li S, Guo X, Ma X. Development of a bioreactor based on magnetically stabilized fluidized bed for bioartificial liver. Bioprocess Biosyst Eng 2015; 38:2369-77. [PMID: 26391509 DOI: 10.1007/s00449-015-1472-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
Bioartificial liver (BAL) based on microcapsules has been proposed as a potential treatment for acute liver failure. The bioreactors used in such BAL are usually expected to achieve sufficient flow rate and minimized void volume for effective application. Due to the superiorities in bed pressure drop and operation velocity, magnetically stabilized fluidized beds (MSFBs) show the potential to serve as ideal microcapsule-based bioreactors. In the present study, we attempted to develop a microcapsule-based MSFB bioreactor for bioartificial liver device. Compared to conventional-fluidized bed bioreactors, the bioreactor presented here increased perfusion velocity and decreased void volume significantly. Meanwhile, the mechanical stability as well as the immunoisolation property of magnetite microcapsules were well maintained during the fluidization. Besides, the magnetite microcapsules were found no toxicity to cell survival. Therefore, our study might provide a novel approach for the design of microcapsule-based bioartificial liver bioreactors.
Collapse
Affiliation(s)
- Fei Deng
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Li Chen
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Ying Zhang
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
| | - Shan Zhao
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yu Wang
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Na Li
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Shen Li
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xin Guo
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaojun Ma
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
9
|
Abstract
INTRODUCTION Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. AREAS COVERED This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. EXPERT OPINION Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.
Collapse
Affiliation(s)
- Alice Anna Tomei
- University of Miami Miller School of Medicine, Diabetes Research Institute , 1450 NW 10th Avenue, Miami, FL 33136 , USA +1 305 243 3469 ;
| | | | | |
Collapse
|
10
|
Sandvig I, Karstensen K, Rokstad AM, Aachmann FL, Formo K, Sandvig A, Skjåk-Braek G, Strand BL. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. J Biomed Mater Res A 2014; 103:896-906. [DOI: 10.1002/jbm.a.35230] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Ioanna Sandvig
- MI Lab and Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
| | - Kristin Karstensen
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Anne Mari Rokstad
- Department of Cancer Research and Molecular Medicine; Norwegian University of Science and Technology; Trondheim Norway
- Central Norwegian Regional Health Authority; St. Olav's Hospital, Trondheim University Hospital; Trondheim Norway
| | - Finn Lillelund Aachmann
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Kjetil Formo
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Axel Sandvig
- MI Lab and Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- Department of Neurosurgery; Umeå University Hospital; Umeå Sweden
| | - Gudmund Skjåk-Braek
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Berit Løkensgard Strand
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
- Department of Cancer Research and Molecular Medicine; Norwegian University of Science and Technology; Trondheim Norway
- Central Norwegian Regional Health Authority; St. Olav's Hospital, Trondheim University Hospital; Trondheim Norway
| |
Collapse
|
11
|
Shen C, Zhang G, Meng Q. Regulation of epithelial cell morphology and functions approaching to more in vivo-like by modifying polyethylene glycol on polysulfone membranes. PLoS One 2012; 7:e36110. [PMID: 22558349 PMCID: PMC3338612 DOI: 10.1371/journal.pone.0036110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/30/2012] [Indexed: 11/28/2022] Open
Abstract
Cytocompatibility is critically important in design of biomaterials for application in tissue engineering. However, the currently well-accepted “cytocompatible" biomaterials are those which promote cells to sustain good attachment/spreading. The cells on such materials usually lack the self-assembled cell morphology and high cell functions as in vivo. In our view, biomaterials that can promote the ability of cells to self-assemble and demonstrate cell-specific functions would be cytocompatible. This paper examined the interaction of polyethylene glycol (PEG) modified polysulfone (PSf) membranes with four epithelial cell types (primary liver cells, a liver tumor cell line, and two renal tubular cell lines). Our results show that PSf membranes modified with proper PEG promoted the aggregation of both liver and renal cells, but the liver cells more easily formed aggregates than the renal tubular cells. The culture on PEG-modified PSf membranes also enhanced cell-specific functions. In particular, the cells cultured on F127 membranes with the proper PEG content mimicked the in vivo ultrastructure of liver cells or renal tubules cells and displayed the highest cell functions. Gene expression data for adhesion proteins suggest that the PEG modification impaired cell-membrane interactions and increased cell-cell interactions, thus facilitating cell self-assembly. In conclusion, PEG-modified membrane could be a cytocompatible material which regulates the morphology and functions of epithelial cells in mimicking cell performance in vivo.
Collapse
Affiliation(s)
- Chong Shen
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Guoliang Zhang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qin Meng
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
12
|
Kostadinova A, Seifert B, Albrecht W, Malsch G, Groth T, Lendlein A, Altankov G. Novel Polymer Blends for the Preparation of Membranes for Biohybrid Liver Systems. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:821-39. [DOI: 10.1163/156856209x427005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Aneliya Kostadinova
- a Institute of Biophysics, Bulgarian Academy of Science, Akad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Barbara Seifert
- b GKSS Research Center, Institute of Polymer Research, Kantstrasse 55, 14513 Teltow, Germany
| | - Wolfgang Albrecht
- c GKSS Research Center, Institute of Polymer Research, Kantstrasse 55, 14513 Teltow, Germany
| | - Guenter Malsch
- d GKSS Research Center, Institute of Polymer Research, Kantstrasse 55, 14513 Teltow, Germany
| | - Thomas Groth
- e Biomedical Materials Group, Dept. Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 1, 06120 Halle (Saale), Germany
| | - Andreas Lendlein
- f GKSS Research Center, Institute of Polymer Research, Kantstrasse 55, 14513 Teltow, Germany
| | - George Altankov
- g ICREA and Institute for Bioengineering of Catalonia, Parc Scientific de Barcelona, Josep Samitier 1/5, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Krasteva N, Seifert B, Hopp M, Malsch G, Albrecht W, Altankov G, Groth T. Membranes for biohybrid liver support: the behaviour of C3A hepatoblastoma cells is dependent on the composition of acrylonitrile copolymers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 16:1-22. [PMID: 15796302 DOI: 10.1163/1568562052843348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Co-polymers based on acrylonitrile, N-vinylpyrrolidone, aminoethylmethacrylate and sodium methallylsulfonate were used to prepare flat membranes by phase inversion. The surface properties of membranes were characterised by water contact angle measurements, atomic force microscopy and X-ray photoelectron spectroscopy (XPS). Membrane permeability was estimated by porosity measurements with water as test liquid. Human C3A hepatoblastoma cells were plated on these materials. Cell-material interaction was characterised by overall cell morphology, formation of focal adhesion contacts and intercellular junctions. Furthermore, cell proliferation was measured and compared with the functional activity of cells as indicated by 7-ethoxycoumarin-O-deethylation. More hydrophilic materials reduced spreading of cells, formation of focal adhesion and subsequent proliferation while homotypic cell adhesion was facilitated in correlation with stronger expressions of intercellular junctions and improved functional activity. In contrast, membranes with stronger adhesivity enhanced cell proliferation but reduced the functional activity of cells. It was concluded that the co-polymerisation of acrylonitrile with hydrophilic co-monomers, such as N-vinylpyrrolidone, could be used to tailor membrane materials for the application in biohybrid liver support systems.
Collapse
Affiliation(s)
- N Krasteva
- Institute of Biophysics, Bulgarian Academy of Sciences, Str. Acad. G. Bonchev, bl. 21, BG-1113 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
14
|
Kopf F, Schlüter M, Kaufhold D, Hilterhaus L, Liese A, Wolff C, Beutel S, Scheper T. Laminares Mischen in Miniatur-Hohlfasermembranreaktoren durch Ausnutzung von Sekundärströmungen (Teil 1). CHEM-ING-TECH 2011. [DOI: 10.1002/cite.201100044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Kumar A, Jain E, Srivastava A. Macroporous Polymeric Scaffolds for Tissue Engineering Applications. MACROPOROUS POLYMERS 2009:405-466. [DOI: 10.1201/9781420084627-c15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Gautier A, Ould-Dris A, Dufresne M, Paullier P, Von Harten B, Lemke HD, Legallais C. Hollow fiber bioartificial liver: Physical and biological characterization with C3A cells. J Memb Sci 2009. [DOI: 10.1016/j.memsci.2009.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Dai J, Zhang GL, Meng Q. Interaction between hepatocytes and collagen gel in hollow fibers. Cytotechnology 2009; 60:133-41. [PMID: 19784829 PMCID: PMC2780553 DOI: 10.1007/s10616-009-9228-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 09/09/2009] [Indexed: 11/27/2022] Open
Abstract
Gel entrapment culture of primary mammalian cells within collagen gel is one important configuration for construction of bioartificial organ as well as in vitro model for predicting drug situation in vivo. Gel contraction in entrapment culture, resulting from cell-mediated reorganization of the extracellular matrix, was commonly used to estimate cell viability. However, the exact influence of gel contraction on cell activities has rarely been addressed. This paper investigated the gel contraction under varying culture conditions and its effect on the activities of rat hepatocyte entrapped in collagen gel within hollow fibers. The hepatocyte activities were reflected by cell viability together with liver-specific functions on urea secretion and cytochrome P450 2E1. Unexpectedly, no gel contraction occurred during gel entrapment culture of hepatocyte under a high collagen concentration, but hepatocytes still maintained cell viability and liver-specific functions at a similar level to the other cultures with normal gel contraction. It seems that cell activities are unassociated with gel contraction. Alternatively, the mass transfer resistance induced by the combined effect of collagen concentration, gel contraction and cell density could be a side effect to reduce cell activities. The findings with gel entrapment culture of hepatocytes would be also informative for the other cell culture targeting pathological studies and tissue engineering.
Collapse
Affiliation(s)
- Jing Dai
- Department of Chemical Engineering and Biochemical Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, Zhejiang Peoples Republic of China
| | - Guo-liang Zhang
- Institute of Biological and Environmental Engineering, Zhejiang University of Technology, 310032 Zhejiang, Peoples Republic of China
| | - Qin Meng
- Department of Chemical Engineering and Biochemical Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, Zhejiang Peoples Republic of China
| |
Collapse
|
18
|
Transport advances in disposable bioreactors for liver tissue engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 115:117-43. [PMID: 19499208 DOI: 10.1007/10_2008_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acute liver failure (ALF) is a devastating diagnosis with an overall survival of approximately 60%. Liver transplantation is the therapy of choice for ALF patients but is limited by the scarce availability of donor organs. The prognosis of ALF patients may improve if essential liver functions are restored during liver failure by means of auxiliary methods because liver tissue has the capability to regenerate and heal. Bioartificial liver (BAL) approaches use liver tissue or cells to provide ALF patients with liver-specific metabolism and synthesis products necessary to relieve some of the symptoms and to promote liver tissue regeneration. The most promising BAL treatments are based on the culture of tissue engineered (TE) liver constructs, with mature liver cells or cells that may differentiate into hepatocytes to perform liver-specific functions, in disposable continuous-flow bioreactors. In fact, adult hepatocytes perform all essential liver functions. Clinical evaluations of the proposed BALs show that they are safe but have not clearly proven the efficacy of treatment as compared to standard supportive treatments. Ambiguous clinical results, the time loss of cellular activity during treatment, and the presence of a necrotic core in the cell compartment of many bioreactors suggest that improvement of transport of nutrients, and metabolic wastes and products to or from the cells in the bioreactor is critical for the development of therapeutically effective BALs. In this chapter, advanced strategies that have been proposed over to improve mass transport in the bioreactors at the core of a BAL for the treatment of ALF patients are reviewed.
Collapse
|
19
|
Kinasiewicz A, Gautier A, Lewiska D, Smietanka A, Legallais C, Weryński A. Three-dimensional growth of human hepatoma C3A cells within alginate beads for fluidized bioartificial liver. Int J Artif Organs 2008; 31:340-7. [PMID: 18432591 DOI: 10.1177/039139880803100411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Alginate beads allow cultivation of cells in a 3-dimensional environment. The aim of our study was to assess the influence of a 3-dimensional culture in alginate microbeads, on hepatic cell metabolism. METHODS We used 2 types of alginate: low viscosity (LV) and medium viscosity (MV). The hepatic cell line C3A was encapsulated in alginate beads. Cells were cultured for 2 weeks. Using scanning electron microscopy, the morphology of 3D structures and the surfaces of cells were analyzed. Fluidized bed bioartificial liver experiments were performed 24 hours, 7, and 14 days after bead formation. RESULTS Two different cell growth types in alginate beads were observed: channel-like structures and spherical aggregates characteristic of LV and MV alginate, respectively. A significant increase in albumin synthesis was observed in long-term culture. Formation of characteristic hepatic cell microvilli on cell surfaces was observed under scanning electron microscopy for both types of alginate. Prolonged static cultivation of C3A cells within the alginate beads in both types of alginates caused significant increases in albumin production in the fluidized bioreactor. CONCLUSIONS Cultivation of the hepatic C3A cells within the alginate microbeads significantly improved bioreactor effectiveness in albumin production. The presence of extensions of cell membranes on the surface of hepatoma cells in 3-dimensional culture within the alginate beads indicated formation of microvilli-like structures characteristic of normal hepatocytes.
Collapse
Affiliation(s)
- A Kinasiewicz
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
20
|
Mateus AYP, Barrias CC, Ribeiro C, Ferraz MP, Monteiro FJ. Comparative study of nanohydroxyapatite microspheres for medical applications. J Biomed Mater Res A 2008; 86:483-93. [PMID: 17975824 DOI: 10.1002/jbm.a.31634] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study concerns the preparation, physical, and in vitro characterization of two different types of hydroxyapatite (HA) microspheres, which are intended to be used as drug-delivery systems and bone-regeneration matrices. Hydroxyapatite nanoparticles (HA-1 and HA-2) were prepared using the chemical precipitation synthesis with H(3)PO(4), Ca(OH)(2), and a surfactant, SDS (sodium dodecyl sulfate), as starting reagents. The HA powders were dispersed in a sodium alginate solution, and spherical particles were obtained by droplet extrusion coupled with ionotropic gelation in the presence of Ca(2+). These were subsequently sintered to produce HA-1 and HA-2 microspheres with a uniform size and interconnected microporosity. Both powders and microspheres were characterized using FTIR and X-ray diffraction. Moreover, SEM and mercury intrusion porosimetry were used to analyze the microspheres, and TEM was used to analyze the powders. Results showed that pure HA and mixtures of HA/beta-TCP in the nanometer range and needlelike shape were obtained for HA-1 and HA-2 powders, respectively. Neutral Red, scanning electron microscopy and confocal microscopy were used to evaluate the behavior of osteoblastic-like MG-63 cells cultured on HA microspheres surfaces for 7 days. Results showed that good adhesion and proliferation of osteoblasts on the HA microspheres surface. Cells built bridges between adjacent microspheres, forming microspheres-cells clusters in both types of materials.
Collapse
Affiliation(s)
- Alis Yovana Pataquiva Mateus
- INEB-Instituto de Engenharia Biomédica, Laboratório de Biomateriais, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | | | | | | | | |
Collapse
|
21
|
Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Int J Radiat Biol 2008; 83:849-71. [PMID: 18058370 DOI: 10.1080/09553000701727531] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To give a state-of-the-art overview on the promise of three-dimensional (3-D) culture systems for anticancer drug development, with particular emphasis on multicellular tumor spheroids (MCTS). RESULTS AND CONCLUSIONS Cell-based assays have become an integral component in many stages of routine anti-tumor drug testing. However, they are almost always based on homogenous monolayer or suspension cultures and thus represent a rather artificial cellular environment. 3-D cultures--such as the well established spheroid culture system--better reflect the in vivo behavior of cells in tumor tissues and are increasingly recognized as valuable advanced tools for evaluating the efficacy of therapeutic intervention. The present article summarizes past and current applications and particularly discusses technological challenges, required improvements and recent progress with the use of the spheroid model in experimental therapeutics, as a basis for sophisticated drug/therapy screening. A brief overview is given focusing on the nomenclature of spherical 3-D cultures, their potential to mimic many aspects of the pathophysiological situation in tumors, and currently available protocols for culturing and analysis. A list of spheroid-forming epithelial cancer cell lines of different origin is provided and the recent trend to use spheroids for testing combination treatment strategies is highlighted. Finally, various spheroid co-culture approaches are presented that have been established to study heterologous cell interactions in solid tumors and thereby are able to reflect the cellular tumor environment with increasing accuracy. The intriguing observation that in order to retain certain tumor initiating cell properties, some primary tumor cell populations must be maintained exclusively in 3-D culture is mentioned, adding a new but fascinating challenge for future therapeutic campaigns.
Collapse
|
22
|
Legallais C, Gautier A, Dufresne M, Carpentier B, Baudoin R. The place of adsorption and biochromatography in extracorporeal liver support systems. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 861:171-6. [PMID: 17766201 DOI: 10.1016/j.jchromb.2007.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/15/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
Artificial and bioartificial liver devices aim at replacing some or all liver functions in the cases of end stage or fulminant disorders. Among all of its function, liver plays a key role in detoxification of substances that are hydrosoluble or bound to albumin. In this paper, the authors first reviewed the requirements for temporary liver support, then the adsorption-based systems that can be found on the market and finally propose new applications of biochromatography using perfusion-based bioartificial systems.
Collapse
Affiliation(s)
- C Legallais
- Technological University of Compiègne, UMR CNRS 6600 Biomechanics and Biomedical Engineering, BP 20529, 60205 Compiègne Cedex, France. cecile@
| | | | | | | | | |
Collapse
|
23
|
Hidalgo R, Vizioli N, Smolko E, Argibay P, Grasselli M. Radiosynthesis of hydrogel confined to hollow-fiber membranes for the design of a bioartificial extra-corporeal liver. Radiat Phys Chem Oxf Engl 1993 2007. [DOI: 10.1016/j.radphyschem.2007.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
David B, Barbe L, Barthès-Biesel D, Legallais C. Mechanical properties of alginate beads hosting hepatocytes in a fluidized bed bioreactor. Int J Artif Organs 2007; 29:756-63. [PMID: 16969753 DOI: 10.1177/039139880602900805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluidized bed bioartificial liver has been proposed as a temporary support to bridge patients suffering from acute liver failure to transplantation. In such a bioreactor, alginate beads hosting hepatocytes are in continuous motion during at least six hours. After having shown in vitro the functionality of such a device, the present study aims at analyzing the potential mechanical alterations of the beads in the bioreactor, perfused by different surrounding media. Compression experiments are performed and coupled for analysis with Hertz theory. They provide qualitative and quantitative data. The average value of the shear modulus, calculated for the different cases studied varied from 2.4 to 10.4 kPa, and could therefore be considered as a quantitative measure of the beads mechanical properties. From the compression experiments and the estimated values of the shear modulus, we could now evaluate the effect of different operating conditions (fluidization, presence of cells, surrounding medium) on the mechanical behavior of alginate beads. On the one hand, the motion during six hours in the bioreactor does not alter the beads significantly. On the other hand, the presence of different substances in the fluid phase might change their mechanical strength. These results can be considered as new encouragements to use such a device as a bioartificial organ.
Collapse
Affiliation(s)
- B David
- Compiègne University of Technology, Laboratory of Biomechanics and Biomedical Engineering, Compiègne, France
| | | | | | | |
Collapse
|
25
|
Park JK, Lee DH. Bioartificial liver systems: current status and future perspective. J Biosci Bioeng 2005; 99:311-9. [PMID: 16233796 DOI: 10.1263/jbb.99.311] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 02/12/2005] [Indexed: 12/30/2022]
Abstract
Because the liver is a multifunctional and a vital organ for survival, the management of acute liver failure requires the support of a huge number of metabolic functions performed by the organ. Many early detoxification-based artificial liver techniques failed to treat the patients owing to the inadequate support of the many essential hepatic functions. For this reason, a bioartificial liver (BAL) comprising of viable hepatocytes on a mechanical support is believed to more likely provide these essential functions than a purely mechanical device. From 1990, nine clinical studies of various BAL systems have been reported, most of which utilize a hollow fiber technology, and a much larger number of various BAL systems have been suggested to show an enhanced performance. Safety issues such as immunological reactions, zoonosis and tumorgenicity have been successfully addressed for regulatory approval, but a recent report from a large-scale, randomized, and controlled phase III trial of a leading BAL system (HepatAssist) failed to meet our expectation of efficacy in terms of the overall survival rate. In this paper, we review the current BAL systems actively studied and discuss critical issues such as the hepatocyte bioreactor configuration and the hepatocyte source. On the basis of the insights gained from previously developed BAL systems and the rapid progress in stem cell technology, the short-term and long-term future perspectives of BAL systems are suggested.
Collapse
Affiliation(s)
- Jung-Keug Park
- Department of Chemical and Biochemical Engineering, Dongguk University, 3-26 Pil-dong, Choong-gu, Seoul 100-715, Korea.
| | | |
Collapse
|
26
|
Ho Ye S, Watanabe J, Takai M, Iwasaki Y, Ishihara K. High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor. Biomaterials 2005; 27:1955-62. [PMID: 16239028 DOI: 10.1016/j.biomaterials.2005.09.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 09/26/2005] [Indexed: 01/30/2023]
Abstract
For practical application of a liver assist system with a tissue-conjugated hollow fiber membrane (HFM) bioreactor used in an extracorporeal therapy, it would require a highly sophisticated HFM which has both hemocompatibility on one side and cytocompatibility on the other side. In this study, we present a cellulose acetate (CA) HFM modified with 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymers (PMB30 (MPC-co-n-butyl methacrylate) and PMA30 (MPC-co-methacrylic acid) for preparing a novel liver assist HFM bioreactor. A CA/PMB-PMA30 HFM modified asymmetrically on the inner and outer surface with the PMB30 and PMA30 was prepared successfully. Analysis with an X-ray photoelectron spectroscope showed that the intensity of the phosphorus atom attributed to the MPC units on the outer surface of the modified HFM was stronger than that of the inner surface. The PMA30 was immobilized on the outer surface of the CA/PMB30 blend HFM by a chemical condensation reaction. The CA/PMB-PMA30 HFM showed good water and solute permeability in comparison with the CA HFM. The morphologies of the adherent hepatocytes were round in shape in comparison with the cells that adhered on CA HFM. Furthermore, hepatocytes cultured on the inner surface of the CA/PMB-PMA30 HFM showed higher functional expression in terms of urea synthesis and albumin synthesis than that of the CA HFM.
Collapse
Affiliation(s)
- Sang Ho Ye
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | |
Collapse
|
27
|
Grant MH, Morgan C, Henderson C, Malsch G, Seifert B, Albrecht W, Groth T. The viability and function of primary rat hepatocytes cultured on polymeric membranes developed for hybrid artificial liver devices. J Biomed Mater Res A 2005; 73:367-75. [PMID: 15834932 DOI: 10.1002/jbm.a.30306] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bioartificial liver devices require membranes to support the function and viability of hepatocytes because they are anchorage-dependent cells. This study investigated the ability of several polymeric membranes to support the functions of primary hepatocyte cultures. Tailor-made membranes were sought by synthesizing acrylonitrile copolymers with different comonomers resulting in ionic, hydrophilic, or reactive functional groups on the polymer surface. Hepatocyte morphology and viability were assessed by confocal microscopy, and function by the content and activities of cytochrome P450, and the expression of glutathione S-transferases. Hydrophilic membranes (polyacrylonitrile and acrylonitrile copolymerized with 2-acrylamino-2-methyl-propane sulfonic acid) were more biocompatible than hydrophobic membranes such as polysulfone. The chemistry of the hydrophilic group was important; amine groups had a deleterious effect on maintenance of the primary hepatocytes. The biocompatibility of hydrophobic membranes was improved by collagen coating. Improving the chemistry of membranes for artificial liver devices will enhance the phenotypic stability of the cells, enabling us to prolong treatment times for patients.
Collapse
Affiliation(s)
- M Helen Grant
- Bioengineering Unit, Strathclyde University, Wolfson Centre, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Polymeric artificial cells have the potential to be used for a wide variety of therapeutic applications, such as the encapsulation of transplanted islet cells to treat diabetic patients. Recent advances in biotechnology, molecular biology, nanotechnology and polymer chemistry are now opening up further exciting possibilities in this field. However, it is also recognized that there are several key obstacles to overcome in bringing such approaches into routine clinical use. This review describes the historical development and principles behind polymeric artificial cells, the present state of the art in their therapeutic application, and the promises and challenges for the future.
Collapse
Affiliation(s)
- Thomas Ming Swi Chang
- Artificial Cells and Organs Research Center, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, 3655, Drummond Street, Montreal, Quebec, Canada H3G 1H6.
| |
Collapse
|
29
|
Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. ACTA ACUST UNITED AC 2004; 9:273-85. [PMID: 15191644 DOI: 10.1177/1087057104265040] [Citation(s) in RCA: 541] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss Allee 11, D-93042 Regensburg, Germany.
| | | | | | | |
Collapse
|
30
|
Cellesi F, Tirelli N, Hubbell JA. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Biomaterials 2004; 25:5115-24. [PMID: 15109835 DOI: 10.1016/j.biomaterials.2003.12.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 12/04/2003] [Indexed: 12/15/2022]
Abstract
We have previously described a gelation process based on the occurrence of both physical and a chemical mechanisms ('tandem process'), in which a telechelic linear poly(propylene glycol)-bl-poly(ethylene glycol)-bl-poly(propylene glycol) is first thermally gelled and subsequently covalently cross-linked by the reaction of polymer end groups at the termini of the copolymer. The quick kinetics of the reverse thermal gelation and the harmless character of the Michael-type addition between two sets of terminal groups, acrylates on one set and thiols on the other, allows irreversibly cross-linked hydrogels to be obtained in a rapid and biocompatible fashion, even when gelation was conducted in direct contact with cells. This allows in principle for an application of the tandem process in cell encapsulation. In the present work, we have optimized the macromolecular architecture and functionality of the precursors for allowing the use of the tandem process in encapsulation devices designed for calcium alginate. The mechanical, diffusional and biocompatibility properties of these materials were characterized; the comparison of mass transport properties of the tandem gels with those of calcium alginate suggests a similar or even better immunoisolation effect.
Collapse
Affiliation(s)
- Francesco Cellesi
- Department of Materials, Swiss Federal Institute of Technology, 8044 Zurich, Switzerland
| | | | | |
Collapse
|
31
|
Moolman F, Rolfes H, Merwe SD, Focke W. Optimization of perfluorocarbon emulsion properties for enhancing oxygen mass transfer in a bio-artificial liver support system. Biochem Eng J 2004. [DOI: 10.1016/j.bej.2004.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Lu HF, Lim WS, Wang J, Tang ZQ, Zhang PC, Leong KW, Chia SM, Yu H, Mao HQ. Galactosylated PVDF membrane promotes hepatocyte attachment and functional maintenance. Biomaterials 2003; 24:4893-903. [PMID: 14559002 DOI: 10.1016/s0142-9612(03)00404-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
One of the major challenges in BLAD design is to develop functional substrates suitable for hepatocyte attachment and functional maintenance. In the present study, we designed a poly(vinylidene difluoride) (PVDF) surface coated with galactose-tethered Pluronic polymer. The galactose-derived Pluronic F68 (F68-Gal) was adsorbed on PVDF membrane through hydrophobic-hydrophobic interaction between PVDF and the polypropylene oxide segment in Pluronic. The galactose density on the modified PVDF surface increased with the concentration of the F68-Gal solution, reaching 15.4 nmol galactosyl groups per cm2 when a 1 mg/ml of F68-Gal solution was used. The adsorbed F68-Gal remained relatively stable in culture medium. Rat hepatocytes attachment efficiency on F68-Gal modified PVDF membrane was similar to that on collagen-coated surface. The attached hepatocytes on PVDF/F68-Gal membrane self-assembled into multi-cellular spheroids after 1 day of culture. These attached hepatocytes in spheroids exhibited higher cell functions such as albumin synthesis and P450 1A1 detoxification function compared to unmodified PVDF membrane and collagen-coated surface. These results suggest the potential of this galactose-immobilized PVDF membrane as a suitable substrate for hepatocyte culture.
Collapse
Affiliation(s)
- Hong-Fang Lu
- Tissue and Therapeutic Engineering Laboratory, Johns Hopkins Singapore, Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
King A, Strand B, Rokstad AM, Kulseng B, Andersson A, Skjåk-Braek G, Sandler S. Improvement of the biocompatibility of alginate/poly-L-lysine/alginate microcapsules by the use of epimerized alginate as a coating. J Biomed Mater Res A 2003; 64:533-9. [PMID: 12579568 DOI: 10.1002/jbm.a.10276] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alginate/poly-L-lysine(PLL)/alginate capsules are used widely for the microencapsulation of cells. Alginate consists of guluronic acid and mannuronic acid, the ratio and sequence of which affect the properties of the alginate. Using C5-epimerases, mannuronic acid can be converted to guluronic acid in the alginate polymer. Such an enzyme, AlgE4, was used to convert blocks of mannuronic acid (M-blocks) to blocks of alternating sequence (MG-blocks). The aims of this study were 1) to investigate whether the use of epimerized alginate as a coating could improve the biocompatibility of alginate/PLL/alginate capsules and 2) to study the biocompatibility of simple alginate beads prepared with epimerized alginate. Four different capsules, two of which contained epimerized alginate, were investigated after implantation in C57BL/6 mice for 1 week. The biocompatibility of alginate/PLL/alginate capsules, as measured by retrieval rates of the capsules and DNA contents and glucose oxidation rates of the cellular overgrowth, was improved when an epimerized coating alginate was used. There were, however, no statistically significant differences in the biocompatibility of simple alginate beads made from epimerized alginate when compared with non-epimerized alginate beads. In general, such beads produced without a PLL coating swelled to a higher extent than the conventional alginate/PLL/alginate capsules. In conclusion, the use of an epimerized coating on alginate-PLL-alginate can improve the biocompatibility of such capsules but still cannot completely eliminate the detrimental effects of PLL on the biocompatibility of the capsules.
Collapse
Affiliation(s)
- Aileen King
- Department of Medical Cell Biology, Uppsala University, Box 571, Biomedical Centre, SE 751 23 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
34
|
Groth T, Seifert B, Malsch G, Albrecht W, Paul D, Kostadinova A, Krasteva N, Altankov G. Interaction of human skin fibroblasts with moderate wettable polyacrylonitrile--copolymer membranes. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 61:290-300. [PMID: 12007210 DOI: 10.1002/jbm.10191] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The development of a bioartificial skin is a step toward the treatment of patients with deep burns or nonhealing skin ulcers. One possible approach is based on growing dermal cells on membranes to obtain appropriate living cellular stroma (sheets) to cover the wound. New membrane-forming copolymers were synthesized, based on acrylonitrile (AN) copolymerization with hydrophilic N-vinylpyrrolidone (NVP) monomer, in different percentage ratios, such as 5, 20, and 30% w/w, and with two other relatively high polar comonomers--namely, sodium 2-methyl-2-propene-1-sulfonic acid (NaMAS) and aminoethylmethacrylate (AeMA). All these copolymers were characterized for their bulk composition and number average molecular weight, and used to prepare ultrafiltration membranes. Water contact angles and water uptake were estimated to characterize the wettability and scanning force microscopy to visualize the morphology of the resulting polymer surface. Cytotoxicity was estimated according to the international standard regulations, and the materials were found to be nontoxic. The interaction of the membranes with human skin fibroblasts was investigated considering that these cells are among the first to colonize membranes upon implantation or with prolonged external contact. The overall cell morphology, formation of focal adhesion contacts, and cell proliferation were estimated to characterize the cell material interactions. It was found that the pure polyacrylonitrile homopolymer (PAN) membrane provides excellent conditions for seeding with fibroblasts, comparable only to a copolymer containing AeMA. In contrast, the presence of NaMAS with acidic ionic groups decreased both the attachment and proliferation of fibroblasts. Low content of NVP in the copolymer, up to about 5%, still enabled good attachment and spreading of cells, as well as subsequent proliferation of fibroblasts, but higher ratios of 20 and 30% resulted in a significant decrease of these cellular activities.
Collapse
Affiliation(s)
- Thomas Groth
- Department of Biomaterials, Institute of Chemistry, GKSS Research Centre, Kantstrasse 55, D-14513 Teltow, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A, Upadhyaya A, Kurzawski P, Wack KE, Stolz DB, Kamm R, Griffith LG. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 2002; 78:257-69. [PMID: 11920442 DOI: 10.1002/bit.10143] [Citation(s) in RCA: 307] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe the design, fabrication, and performance of a bioreactor that enables both morphogenesis of 3D tissue structures under continuous perfusion and repeated in situ observation by light microscopy. Three-dimensional scaffolds were created by deep reactive ion etching of silicon wafers to create an array of channels (through-holes) with cell-adhesive walls. Scaffolds were combined with a cell-retaining filter and support in a reactor housing designed to deliver a continuous perfusate across the top of the array and through the 3D tissue mass in each channel. Reactor dimensions were constructed so that perfusate flow rates meet estimated values of cellular oxygen demands while providing fluid shear stress at or below a physiological range (<2 dyne cm(2)), as determined by comparison of numerical models of reactor fluid flow patterns to literature values of physiological shear stresses. We studied the behavior of primary rat hepatocytes seeded into the reactors and cultured for up to 2 weeks, and found that cells seeded into the channels rearranged extensively to form tissue like structures and remained viable throughout the culture period. We further observed that preaggregation of the cells into spheroidal structures prior to seeding improved the morphogenesis of tissue structure and maintenance of viability. We also demonstrate repeated in situ imaging of tissue structure and function using two-photon microscopy.
Collapse
Affiliation(s)
- Mark J Powers
- Division of Bioengineering & Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|