1
|
Jiang X, Wang W, Wang Z, Wang Z, Shi H, Meng L, Pang S, Fan M, Lin R. Gamma-glutamyl transferase secreted by Helicobacter pylori promotes the development of gastric cancer by affecting the energy metabolism and histone methylation status of gastric epithelial cells. Cell Commun Signal 2024; 22:402. [PMID: 39148040 PMCID: PMC11328474 DOI: 10.1186/s12964-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is critical in the development and occurrence of gastric cancer. H. pylori secretes gamma-glutamyl transferase (GGT), which affects energy metabolism and histone methylation in mesenchymal stem cells. However, its effect on human gastric epithelial cells remains unclear. This study aimed to investigate the effects of GGT on energy metabolism and histone methylation in gastric epithelial cells and determine its role in the development and progression of H. pylori-induced gastric cancer. METHODS A GGT knockout H. pylori strain and mouse gastric cancer model were constructed, and alpha-ketoglutarate (α-KG) was added. The underlying mechanism was investigated using proteomics, immunohistochemistry, Western blotting, and other experimental assays. RESULTS H. pylori can colonize the host's stomach and destroy the gastric epithelium. GGT secreted by H. pylori decreased the concentration of glutamine in the stomach and increased H3K9me3 and H3K27me3 expression, which promoted the proliferation and migration of gastric epithelial cells. Additionally, α-KG reversed this effect. GGT increased the tumorigenic ability of nude mice. GGT, secreted by H. pylori, promoted the expression of ribosomal protein L15 (RPL15), while GGT knockout and supplementation with α-KG and trimethylation inhibitors reduced RPL15 expression and Wnt signaling pathway expression. CONCLUSIONS H. pylori secreted GGT decreased the expression of glutamine and α-KG in gastric epithelial cells, increased the expression of histones H3K9me3 and H3K27me3, and activated the Wnt signaling pathway through RPL15 expression, ultimately changing the biological characteristics of the gastric epithelium and promoting the occurrence of gastric cancer. Altered energy metabolism and histone hypermethylation are important factors involved in this process.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeyu Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingjun Meng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Chen Z, Wang C, Ding J, Yu T, Li N, Ye C. Construction and analysis of competitive endogenous RNA networks and prognostic models associated with ovarian cancer based on the exoRBase database. PLoS One 2024; 19:e0291149. [PMID: 38603733 PMCID: PMC11008902 DOI: 10.1371/journal.pone.0291149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE To construct a competitive endogenous RNA (ceRNA) regulatory network in blood exosomes of patients with ovarian cancer (OC) using bioinformatics and explore its pathogenesis. METHODS The exoRbase2.0 database was used to download blood exosome gene sequencing data from patients OC and normal controls and the expression profiles of exosomal mRNA, long non-coding RNA (lncRNA), and circular RNA (circRNA) were detected independently using R language for differential expression analysis. TargetScan and miRanda databases were combined for the prediction and differential expression of mRNA-binding microRNAs (miRNA). The miRcode and starBase databases were used to predict miRNAs that bind to differentially expressed lncRNAs and circRNAs repectively. The relevant mRNA, circRNA, lncRNA and their corresponding miRNA prediction data were imported into Cytoscape software for visualization of the ceRNA network. The R language and KEGG Orthology-based Annotation System (KOBAS) were used to execute and illustrate the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Hub genes were identified using The CytoHubba plugin. RESULTS Thirty-one differentially expressed mRNAs, 17 differentially expressed lncRNAs, and 24 differentially expressed circRNAs were screened. Cytoscape software was used to construct the ceRNA network with nine mRNA nodes, two lncRNA nodes, eight circRNA nodes, and 51 miRNA nodes. Both GO and KEGG were focused on the Spliceosome pathway, indicating that spliceosomes are closely linked with the development of OC, while heterogenous nuclear ribonucleoprotein K and RNA binding motif protein X-linked genes were the top 10 score Hub genes screened by Cytoscape software, including two lncRNAs, four mRNAs, and four circRNAs. In patients with OC, the expression of eukaryotic translation initiation factor 4 gamma 2 (EIF4G2), SERPINE 1 mRNA binding protein 1 (SERBP1), ribosomal protein L15 (RPL15) and human leukocyte antigen complex P5 (HCP5) was significantly higher whereas that of testis expressed transcript, Y-linked 15 and DEAD-box helicase 3 Y-linked genes was lower compared to normal controls Immunocorrelation scores revealed that SERBP1 was significantly and negatively correlated with endothelial cells and CD4+ T cells and positively correlated with natural killer (NK) cells and macrophages, respectively; RPL15 was significantly positively correlated with macrophages and endothelial cells and negatively correlated with CD8+ T cells and uncharacterized cells, respectively. EIF4G2 was significantly and negatively correlated with endothelial cells and CD4+ T cells, and positively correlated with uncharacterized cells, respectively. Based on the survival data and the significant correlation characteristics derived from the multifactorial Cox analysis (P < 0.05), the survival prediction curves demonstrated that the prognostic factors associated with 3-year survival in patients with OC were The prognostic factors associated with survival were Macrophage, RPL15. CONCLUSION This study successfully constructs a ceRNA regulatory network in blood exosomes of OV patients, which provides the specific targets for diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Zanhao Chen
- Department of Medicine, Xinglin College, Nantong University, Nantong City, Jiangsu Province, China
| | - Chongyu Wang
- Department of Medicine, Xinglin College, Nantong University, Nantong City, Jiangsu Province, China
| | - Jianing Ding
- Department of Medicine, Xinglin College, Nantong University, Nantong City, Jiangsu Province, China
| | - Tingting Yu
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People’s Hospital of Taicang), Suzhou City, Jiangsu Province, China
| | - Na Li
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People’s Hospital of Taicang), Suzhou City, Jiangsu Province, China
| | - Cong Ye
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People’s Hospital of Taicang), Suzhou City, Jiangsu Province, China
| |
Collapse
|
3
|
Xu W, Sun Y, Zhao S, Zhao J, Zhang J. Identification and validation of autophagy-related genes in primary open-angle glaucoma. BMC Med Genomics 2023; 16:287. [PMID: 37968618 PMCID: PMC10648356 DOI: 10.1186/s12920-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND As the most common type of glaucoma, the etiology of primary open-angle glaucoma (POAG) has not been unified. Autophagy may affect the occurrence and development of POAG, while the specific mechanism and target need to be further explored. METHODS The GSE27276 dataset from the Gene Expression Omnibus (GEO) database and the autophagy gene set from the GeneCards database were selected to screen differentially expressed autophagy-related genes (DEARGs) of POAG. Hub DEARGs were selected by constructing protein-protein interaction (PPI) networks and utilizing GSE138125 dataset. Subsequently, immune cell infiltration analysis, genome-wide association study (GWAS) analysis, gene set enrichment analysis (GSEA) and other analyses were performed on the hub genes. Eventually, animal experiments were performed to verify the mRNA levels of the hub genes by quantitative real time polymerase chain reaction (qRT-PCR). RESULTS A total of 67 DEARGs and 2 hub DEARGs, HSPA8 and RPL15, were selected. The hub genes were closely related to the level of immune cell infiltration. GWAS analysis confirmed that the causative regions of the 2 hub genes in glaucoma were on chromosome 11 and chromosome 3, respectively. GSEA illustrated that pathways enriched for highly expressed HSPA8 and RPL15 contained immunity, autophagy, gene expression and energy metabolism-related pathways. qRT-PCR confirmed that the expression of Hspa8 and Rpl15 in the rat POAG model was consistent with the results of bioinformatics analysis. CONCLUSIONS This study indicated that HSPA8 and RPL15 may affect the progression of POAG by regulating autophagy and provided new ideas for the pathogenesis and treatment of POAG.
Collapse
Affiliation(s)
- Wanjing Xu
- Ophthalmology Department of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Yuhao Sun
- Otolaryngology Department of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuang Zhao
- Graduate School of Shandong First Medical University, Jinan, China
| | - Jun Zhao
- Ophthalmology Department of Linyi People's Hospital, Linyi, China
| | - Juanmei Zhang
- Ophthalmology Department of Linyi People's Hospital, Linyi, China
| |
Collapse
|
4
|
Jamshidi V, Nobakht M Gh BF, Parvin S, Bagheri H, Ghanei M, Shahriary A, Davoudi SM, Arabfard M. Proteomics analysis of chronic skin injuries caused by mustard gas. BMC Med Genomics 2022; 15:175. [PMID: 35933451 PMCID: PMC9357330 DOI: 10.1186/s12920-022-01328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Sulfur mustard (SM) is an alkylating and forming chemical that was widely used by Iraqi forces during the Iran–Iraq wars. One of the target organs of SM is the skin. Understanding the mechanisms involved in the pathogenesis of SM may help better identify complications and find appropriate treatments. The current study collected ten SM-exposed patients with long-term skin complications and ten healthy individuals. Proteomics experiments were performed using the high-efficiency TMT10X method to evaluate the skin protein profile, and statistical bioinformatics methods were used to identify the differentially expressed proteins. One hundred twenty-nine proteins had different expressions between the two groups. Of these 129 proteins, 94 proteins had increased expression in veterans' skins, while the remaining 35 had decreased expression. The hub genes included RPS15, ACTN1, FLNA, HP, SDHC, and RPL29, and three modules were extracted from the PPI network analysis. Skin SM exposure can lead to oxidative stress, inflammation, apoptosis, and cell proliferation.
Collapse
Affiliation(s)
- Vahid Jamshidi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Fatemeh Nobakht M Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Education Office, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
6
|
RPL15 promotes hepatocellular carcinoma progression via regulation of RPs-MDM2-p53 signaling pathway. Cancer Cell Int 2022; 22:150. [PMID: 35410346 PMCID: PMC9003963 DOI: 10.1186/s12935-022-02555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/18/2022] [Indexed: 01/30/2023] Open
Abstract
Backround RPL15 has been found to participate in human tumorigenesis. However, its function and regulatory mechanism in hepatocellular carcinoma (HCC) development are still unclear. Current study investigated the effects of RPL15 in HCC. Methods The expression of RPL15 in clinical tissues and cell lines of HCC was detected by RT-qPCR, Western blotting, and Immunohistochemistry (IHC). Colony formation, CCK-8, flow cytometry, Wound healing and Transwell invasion assays, were used to detect the carcinoma progression of HCC cells with RPL15 overexpression or knockdown in vitro. A xenograft model was constructed to assess the effect of RPL15 knockdown on HCC cells in vivo. The expression of CDK2 and Cyclin E1 related to cell cycles, Bax and Bcl-2 related to cell apoptosis, E-cadherin, N-cadherin and Vimentin related to epithelial–mesenchymal transition (EMT), p53 and p21 related to p53 signaling pathway, were detected by Western blotting. The connection between p53, MDM2 and RPL5/11 affected by RPL15 was analyzed using immunoprecipitation and Cycloheximide (CHX) chase assay. Results Elevated RPL15 was identified in HCC tissues, which was not only a prediction for the poor prognosis of HCC patients, but also associated with the malignant progression of HCC. RPL15 silencing arrested HCC cell cycle, suppressed HCC cell colony formation, proliferation, invasion, and migration, and induce cell apoptosis. On the contrary, RPL15 upregulation exerted opposite effects. Results also indicated that HCC cell invasion and migration were associated with EMT, and that the RPs-MDM2-p53 pathway was implicated in RPL15-mediated oncogenic transformation. In addition, RPL15 knockdown significantly suppressed HCC xenografts growth. Conclusions RPL15 played crucial roles in HCC progression and metastasis, serving as a promising candidate for targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02555-5.
Collapse
|
7
|
Gerber N, Brunner MAT, Jagannathan V, Leeb T, Gerhards NM, Welle MM, Dettwiler M. Transcriptional Differences between Canine Cutaneous Epitheliotropic Lymphoma and Immune-Mediated Dermatoses. Genes (Basel) 2021; 12:160. [PMID: 33504055 PMCID: PMC7912288 DOI: 10.3390/genes12020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Canine cutaneous epitheliotropic T-cell lymphoma (CETL) and immune-mediated T-cell predominant dermatoses (IMD) share several clinical and histopathological features, but differ substantially in prognosis. The discrimination of ambiguous cases may be challenging, as diagnostic tests are limited and may prove equivocal. This study aimed to investigate transcriptional differences between CETL and IMD, as a basis for further research on discriminating diagnostic biomarkers. We performed 100bp single-end sequencing on RNA extracted from formalin-fixed and paraffin-embedded skin biopsies from dogs with CETL and IMD, respectively. DESeq2 was used for principal component analysis (PCA) and differential gene expression analysis. Genes with significantly different expression were analyzed for enriched pathways using two different tools. The expression of selected genes and their proteins was validated by RT-qPCR and immunohistochemistry. PCA demonstrated the distinct gene expression profiles of CETL and IMD. In total, 503 genes were upregulated, while 4986 were downregulated in CETL compared to IMD. RT-qPCR confirmed the sequencing results for 5/6 selected genes tested, while the protein expression detected by immunohistochemistry was not entirely consistent. Our study revealed transcriptional differences between canine CETL and IMD, with similarities to human cutaneous lymphoma. Differentially expressed genes are potential discriminatory markers, but require further validation on larger sample collections.
Collapse
Affiliation(s)
- Nadja Gerber
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (N.G.); (M.A.T.B.); (N.M.G.); (M.M.W.)
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
- Grosstierpraxis Weibel + Werner, Oberdorfstrasse 15, 3438 Lauperswil, Switzerland
| | - Magdalena A. T. Brunner
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (N.G.); (M.A.T.B.); (N.M.G.); (M.M.W.)
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
| | - Vidhya Jagannathan
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3001 Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3001 Bern, Switzerland
| | - Nora M. Gerhards
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (N.G.); (M.A.T.B.); (N.M.G.); (M.M.W.)
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Monika M. Welle
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (N.G.); (M.A.T.B.); (N.M.G.); (M.M.W.)
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
| | - Martina Dettwiler
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (N.G.); (M.A.T.B.); (N.M.G.); (M.M.W.)
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
| |
Collapse
|
8
|
Ebright RY, Lee S, Wittner BS, Niederhoffer KL, Nicholson BT, Bardia A, Truesdell S, Wiley DF, Wesley B, Li S, Mai A, Aceto N, Vincent-Jordan N, Szabolcs A, Chirn B, Kreuzer J, Comaills V, Kalinich M, Haas W, Ting DT, Toner M, Vasudevan S, Haber DA, Maheswaran S, Micalizzi DS. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 2020; 367:1468-1473. [PMID: 32029688 DOI: 10.1126/science.aay0939] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/01/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are shed into the bloodstream from primary tumors, but only a small subset of these cells generates metastases. We conducted an in vivo genome-wide CRISPR activation screen in CTCs from breast cancer patients to identify genes that promote distant metastasis in mice. Genes coding for ribosomal proteins and regulators of translation were enriched in this screen. Overexpression of RPL15, which encodes a component of the large ribosomal subunit, increased metastatic growth in multiple organs and selectively enhanced translation of other ribosomal proteins and cell cycle regulators. RNA sequencing of freshly isolated CTCs from breast cancer patients revealed a subset with strong ribosome and protein synthesis signatures; these CTCs expressed proliferation and epithelial markers and correlated with poor clinical outcome. Therapies targeting this aggressive subset of CTCs may merit exploration as potential suppressors of metastatic progression.
Collapse
Affiliation(s)
- Richard Y Ebright
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sooncheol Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kira L Niederhoffer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Benjamin T Nicholson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Truesdell
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Devon F Wiley
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Benjamin Wesley
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Selena Li
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andy Mai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicola Aceto
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicole Vincent-Jordan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Annamaria Szabolcs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Brian Chirn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Valentine Comaills
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mark Kalinich
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. .,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Douglas S Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
9
|
Circular RNA hsa_circ_0006848 Related to Ribosomal Protein L6 Acts as a Novel Biomarker for Early Gastric Cancer. DISEASE MARKERS 2019; 2019:3863458. [PMID: 31565098 PMCID: PMC6746163 DOI: 10.1155/2019/3863458] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Objective Circular RNAs (circRNAs) have been reported to be widely involved in pathological processes of various cancers. However, little is known about their diagnostic values in early gastric cancer (EGC). This study is aimed at exploring whether circulating circRNAs in plasma could act as biomarkers for EGC diagnosis. Materials and Methods Mass spectrometry (MS) was performed to identify the proteins that at significantly aberrantly levels in gastric cancer (GC) tissues. The target circRNA was identified by bioinformatics analysis. A receiver operating characteristic (ROC) curve was generated to evaluate the diagnostic utility. Results MS revealed that the ribosomal protein L6 (RPL6) expression was significantly downregulated only in EGC tissues vs. nontumorous tissues; this was validated by western blotting (n = 30, p = 0.0094). Bioinformatics analysis predicted that there is a hsa_circ_0006848/hsa_miR-329-5p/RPL6 axis in GC progression. The hsa_circ_0006848 expression was significantly downregulated in EGC tissues (vs. nontumorous tissues, n = 30, p = 0.0073) and plasma samples from EGC patients (vs. paired healthy volunteers, n = 30, p = 0.0089). In addition, the hsa_circ_0006848 plasma level in postoperative patients was significantly higher than that of preoperative patients (n = 30, p = 0.047). Furthermore, the decreased hsa_circ_0006848 expression in plasma was negatively correlated with poor differentiation (p = 0.037) and tumor size (p = 0.046). The area under the ROC curve (AUC) of hsa_circ_0006848 in plasma was 0.733, suggesting a good diagnostic value. The plasma hsa_circ_0006848 level combined with the carcinoembryonic antigen (CEA), carbohydrate-associated antigen 19-9 (CA19-9), and carbohydrate-associated antigen 72-4 (CA72-4) level increased the AUC to 0.825. Conclusion Our results indicated that plasma hsa_circ_0006848 may be a novel noninvasive biomarker in EGC diagnosis.
Collapse
|
10
|
Zhao H, He L, Yin D, Song B. Identification of β-catenin target genes in colorectal cancer by interrogating gene fitness screening data. Oncol Lett 2019; 18:3769-3777. [PMID: 31516589 PMCID: PMC6733007 DOI: 10.3892/ol.2019.10724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/12/2019] [Indexed: 11/06/2022] Open
Abstract
β-catenin regulates its target genes which are associated with proliferation, differentiation, migration and angiogenesis, and the dysregulation of Wnt/β-catenin signaling facilitates hallmarks of colorectal cancer (CRC). Identification of β-catenin targets and their potential roles in tumorigenesis has gained increased interest. However, the number of identified targets remains limited. The present study implemented a novel strategy, interrogating gene fitness profiles derived from large-scale RNA interference and CRISPR-CRISPR associated protein 9 screening data to identify β-catenin target genes in CRC cell lines. Using these data sets, pair wise gene fitness similarities were determined which highlighted a total of 13 genes whose functions were highly correlated with β-catenin. It was further demonstrated that the expression of these genes were altered in CRC, illustrating their potential roles in the progression of CRC. The present study further demonstrated that these targets could be used to predict disease-free survival in CRC. In conclusion, the findings provided novel approaches for the identification of β-catenin targets, which may become prognostic biomarkers or drug targets for the management of CRC.
Collapse
Affiliation(s)
- Haomin Zhao
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liang He
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dexin Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Song
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
11
|
Liang Z, Mou Q, Pan Z, Zhang Q, Gao G, Cao Y, Gao Z, Pan Z, Feng W. Identification of candidate diagnostic and prognostic biomarkers for human prostate cancer: RPL22L1 and RPS21. Med Oncol 2019; 36:56. [DOI: 10.1007/s12032-019-1283-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
|
12
|
Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. J Food Drug Anal 2018; 26:1180-1191. [PMID: 29976410 PMCID: PMC9303038 DOI: 10.1016/j.jfda.2018.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Flavonoids luteolin and quercetin can inhibit growth and metastasis of cancer cells. In our previous report, luteolin and quercetin was shown to block Akt/mTOR/c-Myc signaling. Here, we found luteolin and quercetin reduced protein level and transactivation activity of RPS19 in A431-III cells, which is isolated from parental A431 (A431-P) cell line. Further investigation the inhibitory mechanism of luteolin and quercetin on RPS19, we found c-Myc binding sites on RPS19 promoter. The Akt inhibitor LY294002, mTOR inhibitor rapamycin and c-Myc inhibitor 10058-F4 significantly suppressed RPS19 expression and transactivation activities. Overexpression and knockdown of c-Myc in cancer cells show RPS19 expression was regulated by c-Myc. Furthermore, Knockdown and overexpression of RPS19 was used to analyze of the function of RPS19 in cancer cells. The epithelial-mesenchymal transition (EMT) markers and metastasis abilities of cancer cells were also regulated by RPS19. These data suggest that luteolin and quercetin might inhibit metastasis of cancer cells by blocking Akt/mTOR/c-Myc signaling pathway to suppress RPS19-activated EMT signaling.
Collapse
|
13
|
Tang W, Xiao Y, Li G, Zheng X, Yin Y, Wang L, Zhu Y. Analysis of digital gene expression profiling in the gonad of male silkworms (Bombyx mori) under fluoride stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:127-134. [PMID: 29425843 DOI: 10.1016/j.ecoenv.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Fluorine is an essential element, but excessive fluoride can cause serious effects on the respiratory, digestive, and reproductive systems. Fluorine has been suggested to cause reproductive toxicity in vertebrates, but its potential to reproductively affect invertebrates remains unknown. In the present study, the lepidopteran model insect Bombyx mori was used to assess the reproductive toxicity of NaF. The underlying molecular mechanisms were explored by RNA sequencing, and we investigated the testes transcriptomic profile of B. mori treated with NaF via a digital gene expression (DGE) analysis. Among 520 candidate genes, 297 and 223 were identified as significantly upregulated or downregulated, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out on all genes to determine their biological functions and associated processes. The results indicated that numerous differentially expressed genes are involved in the stress response, detoxification, antibacterial, transport, oxidative phosphorylation, and ribosome. The reliability of the data was confirmed by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The changed Glutathione S-transferase (GST) activity and glutathione (GSH) content in the NaF-treated groups were increased and reduced respectively. This study reveals that using RNA-sequencing for the transcriptome profiling of B. mori testes can lead to better comprehension of the male reproductive toxicity effects of NaF. Furthermore, we expect that these results will aid future molecular studies on the reproductive toxicity of NaF in other species.
Collapse
Affiliation(s)
- Wenchao Tang
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yuanyuan Xiao
- School of Life Sciences, Southwest University, Chongqing 400716, China
| | - Guannan Li
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xi Zheng
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yaru Yin
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Lingyan Wang
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yong Zhu
- School of Biotechnology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
14
|
Atak A, Khurana S, Gollapalli K, Reddy PJ, Levy R, Ben-Salmon S, Hollander D, Donyo M, Heit A, Hotz-Wagenblatt A, Biran H, Sharan R, Rane S, Shelar A, Ast G, Srivastava S. Quantitative mass spectrometry analysis reveals a panel of nine proteins as diagnostic markers for colon adenocarcinomas. Oncotarget 2018; 9:13530-13544. [PMID: 29568375 PMCID: PMC5862596 DOI: 10.18632/oncotarget.24418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/30/2018] [Indexed: 01/21/2023] Open
Abstract
Adenocarcinomas are cancers originating from the gland forming cells of the colon and rectal lining, and are known to be the most common type of colorectal cancers. The current diagnosis strategies for colorectal cancers include biopsy, laboratory tests, and colonoscopy which are time consuming. Identification of protein biomarkers could aid in the detection of colon adenocarcinomas (CACs). In this study, tissue proteome of colon adenocarcinomas (n = 11) was compared with the matched control specimens (n = 11) using isobaric tags for relative and absolute quantitation (iTRAQ) based liquid chromatography-mass spectrometry (LC-MS/MS) approach. A list of 285 significantly altered proteins was identified in colon adenocarcinomas as compared to its matched controls, which are associated with growth and malignancy of the tumors. Protein interaction analysis revealed the association of altered proteins in colon adenocarcinomas with various transcription factors and their targets. A panel of nine proteins was validated using multiple reaction monitoring (MRM). Additionally, S100A9 was also validated using immunoblotting. The identified panel of proteins may serve as potential biomarkers and thereby aid in the detection of colon adenocarcinomas.
Collapse
Affiliation(s)
- Apurva Atak
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Samiksha Khurana
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kishore Gollapalli
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Panga Jaipal Reddy
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Roei Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Ben-Salmon
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maya Donyo
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anke Heit
- Bioinformatics Group, Genomics and Proteomics Core Facility (GPCF), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Genomics and Proteomics Core Facility (GPCF), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Hadas Biran
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shailendra Rane
- Shimadzu Analytical (India) Pvt. Ltd, 1A/B, Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai 400059, India
| | - Ashutosh Shelar
- Shimadzu Analytical (India) Pvt. Ltd, 1A/B, Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai 400059, India
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sanjeeva Srivastava
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Vlachos A. Acquired ribosomopathies in leukemia and solid tumors. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:716-719. [PMID: 29222326 PMCID: PMC6142526 DOI: 10.1182/asheducation-2017.1.716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A mutation in the gene encoding the small subunit-associated ribosomal protein RPS19, leading to RPS19 haploinsufficiency, is one of the ribosomal protein gene defects responsible for the rare inherited bone marrow failure syndrome Diamond Blackfan anemia (DBA). Additional inherited and acquired defects in ribosomal proteins (RPs) continue to be identified and are the basis for a new class of diseases called the ribosomopathies. Acquired RPS14 haploinsufficiency has been found to be causative of the bone marrow failure found in 5q- myelodysplastic syndromes. Both under- and overexpression of RPs have also been implicated in several malignancies. This review will describe the somatic ribosomopathies that have been found to be associated with a variety of solid tumors as well as leukemia and will review cancers in which over- or underexpression of these proteins seem to be associated with outcome.
Collapse
Affiliation(s)
- Adrianna Vlachos
- Feinstein Institute for Medical Research, Cohen Children's Medical Center, Division of Hematology/Oncology and Stem Cell Transplantation, Zucker School of Medicine, Hofstra/Northwell, Manhasset, NY
| |
Collapse
|
16
|
Arthurs C, Murtaza BN, Thomson C, Dickens K, Henrique R, Patel HRH, Beltran M, Millar M, Thrasivoulou C, Ahmed A. Expression of ribosomal proteins in normal and cancerous human prostate tissue. PLoS One 2017; 12:e0186047. [PMID: 29016636 PMCID: PMC5634644 DOI: 10.1371/journal.pone.0186047] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 09/25/2017] [Indexed: 02/06/2023] Open
Abstract
Few quantifiable tissue biomarkers for the diagnosis and prognosis of prostate cancer exist. Using an unbiased, quantitative approach, this study evaluates the potential of three proteins of the 40S ribosomal protein complex as putative biomarkers of malignancy in prostate cancer. Prostate tissue arrays, constructed from 82 patient samples (245 tissue cores, stage pT3a or pT3b), were stained for antibodies against three ribosomal proteins, RPS19, RPS21 and RPS24. Semi-automated Ox-DAB signal quantification using ImageJ software revealed a significant change in expression of RPS19, RPS21 and RPS24 in malignant vs non-malignant tissue (p<0.0001). Receiver operating characteristics curves were calculated to evaluate the potential of each protein as a biomarker of malignancy in prostate cancer. Positive likelihood ratios for RPS19, RPS21 and RPS24 were calculated as 2.99, 4.21, and 2.56 respectively, indicating that the overexpression of the protein is correlated with the presence of disease. Triple-labelled, quantitative, immunofluorescence (with RPS19, RPS21 and RPS24) showed significant changes (p<0.01) in the global intersection coefficient, a measure of how often two fluorophore signals intersect, for RPS19 and RPS24 only. No change was observed in the co-localization of any other permutations of the three proteins. Our results show that RPS19, RPS21 or RPS24 are upregulated in malignant tissue and may serve as putative biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Callum Arthurs
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Bibi Nazia Murtaza
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
- Division of Surgery, University College London, London, United Kingdom
| | - Calum Thomson
- Dundee Imaging Facility, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kerry Dickens
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute, Porto, Portugal
- Department of Pathology and Molecular Immunology, Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Hitendra R. H. Patel
- Division of Surgery, Oncology, Urology and Women's Health, University Hospital of Northern Norway, Tromso, Norway
- Department of Urology, Princess Alexandra Hospital NHS Trust, Harlow, Essex, United Kingdom
| | | | - Michael Millar
- Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Thrasivoulou
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, Rockefeller Building, University College London, London, United Kingdom
| | - Aamir Ahmed
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
- Division of Surgery, University College London, London, United Kingdom
| |
Collapse
|
17
|
Bi B, Li F, Guo J, Li C, Jing R, Lv X, Chen X, Wang F, Azadzoi KM, Wang L, Liu Y, Yang JH. Label-free quantitative proteomics unravels the importance of RNA processing in glioma malignancy. Neuroscience 2017; 351:84-95. [PMID: 28341197 DOI: 10.1016/j.neuroscience.2017.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 11/30/2022]
Abstract
Glioma, one of the most common cancers in human, is classified to different grades according to the degrees of malignancy. Glioblastoma (GBM) is known to be the most malignant (Grade IV) whereas low-grade astrocytoma (LGA, Grade II) is relatively benign. The mechanism underlying the pathogenesis and progression of glioma malignancy remains unclear. Here we report a quantitative proteomic study to elucidate the differences between GBM and LGA using liquid chromatography and tandem mass spectrometry followed by label-free quantification. A total of 136 proteins were differentially expressed in GBM for at least five folds in comparison with LGA. Ontological analysis revealed a close correlation between GBM-associated proteins and RNA processing. Interaction network analysis indicated that the GBM-associated proteins in the RNA processing were linked to crucial signaling transduction modulators including epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 1 (STAT1), and mitogen-activated protein kinase 1 (MAPK1), which were further connected to the proteins important for neuronal structural integrity, development and functions. Upregulation of 40S ribosomal protein S5 (RPS5), Ferritin Heavy chain (FTH1) and STAT1, and downregulation of tenascin R (TNR) were validated as representatives by immune assays. In summary, we revealed a panel of GBM-associated proteins and the important modulators centered at the RNA-processing network in glioma malignancy that may become novel biomarkers and help elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Baibin Bi
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China; Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China; Brain Science Research Institute of Shandong University, Jinan 250012, China.
| | - Feng Li
- Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China; Brain Science Research Institute of Shandong University, Jinan 250012, China.
| | - Jisheng Guo
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Cuiling Li
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Ruirui Jing
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Xin Lv
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Xinjun Chen
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Fengqin Wang
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China.
| | - Kazem M Azadzoi
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130, USA.
| | - Lin Wang
- Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Yuguang Liu
- Departments of Neurosurgery and Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China; Brain Science Research Institute of Shandong University, Jinan 250012, China.
| | - Jing-Hua Yang
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China; Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130, USA.
| |
Collapse
|
18
|
Deisenroth C, Franklin DA, Zhang Y. The Evolution of the Ribosomal Protein-MDM2-p53 Pathway. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026138. [PMID: 27908926 DOI: 10.1101/cshperspect.a026138] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The progression of our understanding of ribosomal proteins as static building blocks of the ribosome to highly integrated sensors of p53 surveillance and function has achieved a tremendous rate of growth over the past several decades. As the workhorse of the cell, ribosomes are responsible for translating the genetic code into the functional units that drive cell growth and proliferation. The seminal identification of ribosomal protein binding to MDM2, the negative regulator of p53, has evolved into a paradigm for ribosomal protein-MDM2-p53 signaling that extends into processes as diverse as energy metabolism to proliferation. The central core of signaling occurs when perturbations to rRNA synthesis, processing, and assembly modulate the rate of ribosome biogenesis, signaling a nucleolar stress response to p53. This has led to identification of a number of disease pathologies related to ribosomal protein dysfunction that are manifested as developmental disorders or cancer. Advancing research into the basic mechanics of ribosomal protein-MDM2-p53 signaling is paving the way for novel translational research into biomarker identification and therapeutic strategies for ribosome-related diseases.
Collapse
Affiliation(s)
- Chad Deisenroth
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709
| | - Derek A Franklin
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
19
|
Yan TT, Fu XL, Li J, Bian YN, Liu DJ, Hua R, Ren LL, Li CT, Sun YW, Chen HY, Fang JY, Hong J. Downregulation of RPL15 may predict poor survival and associate with tumor progression in pancreatic ductal adenocarcinoma. Oncotarget 2016; 6:37028-42. [PMID: 26498693 PMCID: PMC4741913 DOI: 10.18632/oncotarget.5939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/17/2015] [Indexed: 12/29/2022] Open
Abstract
Early diagnosis and treatment in pancreatic ductal adenocarcinoma (PDAC) is still a challenge worldwide. The poor survival of PDAC patients mainly due to early metastasis when first diagnosed and lack of prognostic biomarker. Ribosomal protein L15 (RPL15), an RNA-binding protein, is a component of ribosomal 60S subunit. It was reported that RPL15 is dysregulated in various type of cancers. However, little is known about the role of RPL15 in PDAC carcinogenesis and progression. Herein, we clarified RPL15 expression status may serve as an independent prognostic biomarker in three independent PDAC patient cohorts. We found that RPL15 was dramatically decreased in PDAC tissues and cell lines. The high expression of RPL15 was inversely correlated with TNM stage, histological differentiation, T classification and vascular invasion. Low expression of RPL15 was significantly associated with poor overall survival of PDAC patients. Furthermore, we demonstrated that the reduction of RPL15 may promote invasion ability of pancreatic cell by inducing EMT process. In conclusion, decreased RPL15 expression is associated with invasiveness of PDAC cells, and RPL15 expression status may serve as a reliable prognostic biomarker in PDAC patients.
Collapse
Affiliation(s)
- Ting-Ting Yan
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xue-Liang Fu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jiao Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ying-Nan Bian
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - D Jun Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lin-Lin Ren
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Cheng-Tao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/29/2023]
|
21
|
Liu Q, Wang X, Liu Y, Wei M, Chen L. A combinative analysis of gene expression profiles and microRNA expression profiles identifies critical genes and microRNAs in oral lichen planus. Arch Oral Biol 2016; 68:61-5. [PMID: 27100321 DOI: 10.1016/j.archoralbio.2016.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/01/2016] [Accepted: 03/29/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Oral lichen planus (OLP) is a chronic inflammatory disease but aetiology and pathogenesis has not fully elucidated. To gain insight into the mechanism of OLP, bioinformatic analysis was performed in this study. DESIGN GSE38616 and GSE38615 were downloaded from GEO, including 7 cases of OLP and 7 healthy controls. Differentially expressed genes (DEGs) and miRNAs (DEMs) between OLP and control were screened with package Limma of R. Potential regulatory miRNAs were screened via gene set enrichment analysis. A protein-protein interaction network was constructed for the DEGs. KEGG pathways for DEGs were revealed using Gene Set Analysis Toolkit V2. RESULTS After DEGs and DEMs were obtained, potential regulatory miRNAs of the DEGs were revealed and only miR-362 was differentially expressed in OLP compared with DEMs. Four targets of miR-362 were SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2), vesicle-associated membrane protein 4 (VAMP4), leucine rich repeat transmembrane neuronal 4 (LRRTM4) and lysine (K)-specific demethylase5C (KDM5C). Identified DEGs were significantly enriched in olfactory transduction and ribosome pathways. CONCLUSION miR-362, targeting SRGAP2 and VAMP4, may be a potential risk miRNA to regulate OLP. The findings may provide potential biomarkers for diagnosis or treatment of the disease.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, Fourth Military Medical University, No. 145, Changle West Road, Xi'an, Shaanxi 710032, PR China.
| | - Xinwen Wang
- State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, Fourth Military Medical University, No. 145, Changle West Road, Xi'an, Shaanxi 710032, PR China
| | - Yuan Liu
- State Key Laboratory of Military Stomatology, Department of Oral Pathology, School of Stomatology, Fourth Military Medical University, No. 145, Changle West Road, Xi'an, Shaanxi 710032, PR China
| | - Minghui Wei
- State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, Fourth Military Medical University, No. 145, Changle West Road, Xi'an, Shaanxi 710032, PR China
| | - Lihua Chen
- State Key Laboratory of Military Stomatology, Department of Immunology, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
22
|
Over-expressed RPL34 promotes malignant proliferation of non-small cell lung cancer cells. Gene 2016; 576:421-8. [DOI: 10.1016/j.gene.2015.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 01/18/2023]
|
23
|
RPS12 increases the invasiveness in cervical cancer activated by c-Myc and inhibited by the dietary flavonoids luteolin and quercetin. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
24
|
Takada H, Kurisaki A. Emerging roles of nucleolar and ribosomal proteins in cancer, development, and aging. Cell Mol Life Sci 2015; 72:4015-25. [PMID: 26206377 PMCID: PMC11113460 DOI: 10.1007/s00018-015-1984-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/17/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
Abstract
Changes in nucleolar morphology and function are tightly associated with cellular activity, such as growth, proliferation, and cell cycle progression. Historically, these relationships have been extensively examined in cancer cells, which frequently exhibit large nucleoli and increased ribosome biogenesis. Recent findings indicate that alteration of nucleolar activity is a key regulator of development and aging. In this review, we have provided evidences that the nucleolus is not just a housekeeping factor but is actively involved in the regulation of cell proliferation, differentiation, and senescence both in vitro and in vivo. In addition, we have discussed how alteration of nucleolar function and nucleolar proteins induces specific physiological effects rather than widespread effects.
Collapse
Affiliation(s)
- Hitomi Takada
- Stem Cell Engineering Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8562, Japan
| | - Akira Kurisaki
- Stem Cell Engineering Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8562, Japan.
| |
Collapse
|
25
|
Yong WH, Shabihkhani M, Telesca D, Yang S, Tso JL, Menjivar JC, Wei B, Lucey GM, Mareninov S, Chen Z, Liau LM, Lai A, Nelson SF, Cloughesy TF, Tso CL. Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients. PLoS One 2015; 10:e0141334. [PMID: 26506620 PMCID: PMC4624638 DOI: 10.1371/journal.pone.0141334] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma stem cells (GSC) co-exhibiting a tumor-initiating capacity and a radio-chemoresistant phenotype, are a compelling cell model for explaining tumor recurrence. We have previously characterized patient-derived, treatment-resistant GSC clones (TRGC) that survived radiochemotherapy. Compared to glucose-dependent, treatment-sensitive GSC clones (TSGC), TRGC exhibited reduced glucose dependence that favor the fatty acid oxidation pathway as their energy source. Using comparative genome-wide transcriptome analysis, a series of defense signatures associated with TRGC survival were identified and verified by siRNA-based gene knockdown experiments that led to loss of cell integrity. In this study, we investigate the prognostic value of defense signatures in glioblastoma (GBM) patients using gene expression analysis with Probeset Analyzer (131 GBM) and The Cancer Genome Atlas (TCGA) data, and protein expression with a tissue microarray (50 GBM), yielding the first TRGC-derived prognostic biomarkers for GBM patients. Ribosomal protein S11 (RPS11), RPS20, individually and together, consistently predicted poor survival of newly diagnosed primary GBM tumors when overexpressed at the RNA or protein level [RPS11: Hazard Ratio (HR) = 11.5, p<0.001; RPS20: HR = 4.5, p = 0.03; RPS11+RPS20: HR = 17.99, p = 0.001]. The prognostic significance of RPS11 and RPS20 was further supported by whole tissue section RPS11 immunostaining (27 GBM; HR = 4.05, p = 0.01) and TCGA gene expression data (578 primary GBM; RPS11: HR = 1.19, p = 0.06; RPS20: HR = 1.25, p = 0.02; RPS11+RPS20: HR = 1.43, p = 0.01). Moreover, tumors that exhibited unmethylated O-6-methylguanine-DNA methyltransferase (MGMT) or wild-type isocitrate dehydrogenase 1 (IDH1) were associated with higher RPS11 expression levels [corr (IDH1, RPS11) = 0.64, p = 0.03); [corr (MGMT, RPS11) = 0.52, p = 0.04]. These data indicate that increased expression of RPS11 and RPS20 predicts shorter patient survival. The study also suggests that TRGC are clinically relevant cells that represent resistant tumorigenic clones from patient tumors and that their properties, at least in part, are reflected in poor-prognosis GBM. The screening of TRGC signatures may represent a novel alternative strategy for identifying new prognostic biomarkers.
Collapse
Affiliation(s)
- William H. Yong
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Maryam Shabihkhani
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donatello Telesca
- Department of Biostatistics, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Shuai Yang
- Department of Neurosurgery, General Hospital of Guangzhou Military Command, Guangzhou, China
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jonathan L. Tso
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jimmy C. Menjivar
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bowen Wei
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Gregory M. Lucey
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sergey Mareninov
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zugen Chen
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Linda M. Liau
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert Lai
- Department of Neurology/Neuro-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Stanley F. Nelson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Timothy F. Cloughesy
- Department of Neurology/Neuro-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Cho-Lea Tso
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Ferreira AM, Tuominen I, van Dijk-Bos K, Sanjabi B, van der Sluis T, van der Zee AG, Hollema H, Zazula M, Sijmons RH, Aaltonen LA, Westers H, Hofstra RMW. High frequency of RPL22 mutations in microsatellite-unstable colorectal and endometrial tumors. Hum Mutat 2015; 35:1442-5. [PMID: 25196364 DOI: 10.1002/humu.22686] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/27/2014] [Indexed: 12/15/2022]
Abstract
Ribosomal Protein L22 (RPL22) encodes a protein that is a component of the 60S subunit of the ribosome. Variants in this gene have recently been linked to cancer development. Mutations in an A8 repeat in exon 2 were found in a recent study in 52% of microsatellite-unstable endometrial tumors. These tumors are particularly prone to mutations in repeats due to mismatch repair deficiency. We screened this coding repeat in our collection of microsatellite-unstable endometrial tumors (EC) and colorectal tumors (CRC). We found 50% mutation frequency for EC and 77% mutation frequency for CRC. These results confirm the previous study on the involvement of RPL22 in EC and, more importantly, reports for the first time such high mutation frequency in this gene in colorectal cancer. Furthermore, considering the high mutation frequency found, our data point toward an important role for RPL22 in microsatellite instability carcinogenesis.
Collapse
Affiliation(s)
- Ana M Ferreira
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, 9700, RB, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
28
|
Yang M, Sun H, He J, Wang H, Yu X, Ma L, Zhu C. Interaction of ribosomal protein L22 with casein kinase 2α: a novel mechanism for understanding the biology of non-small cell lung cancer. Oncol Rep 2014; 32:139-44. [PMID: 24840952 DOI: 10.3892/or.2014.3187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/15/2014] [Indexed: 11/06/2022] Open
Abstract
Dysfunction of ribosomal proteins (RPs) may play an important role in molecular tumorigenesis, such as lung cancer, acting in extraribosomal functions. Many protein-protein interaction studies and genetic screens have confirmed the extraribosomal capacity of RPs. As reported, ribosomal protein L22 (RPL22) dysfunction could increase cancer risk. In the present study, we examined RPL22-protein complexes in lung cancer cells. Tandem affinity purification (TAP) was used to screen the RPL22-protein complexes, and GST pull-down experiments and confocal microscopy were used to assess the protein-protein interaction. The experiment of kinase assay was used to study the function of the RPL22-protein complexes. The results showed that several differentially expressed proteins were isolated and identified by LC-MS/MS, which revealed that one of the protein complexes included casein kinase 2α (CK2α). RPL22 and CK2α interact in vitro. RPL22 also inhibited CK2α substrate phosphorylation in vitro. This is the first report of the RPL22-CK2α relationship in lung cancer. Dysregulated CK2 may impact cell proliferation and apoptosis, key features of cancer cell biology. Our results indicate that RPL22 may be a candidate anticancer agent due to its CK2α-binding and -inhibitory functions in human lung cancer.
Collapse
Affiliation(s)
- Mingxia Yang
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Haibo Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ji He
- State Key Laboratory of Monitoring and Detection for Medical Vectors, Xiamen Entry-Exit Inspection and Quarantine Bureau, Xiamen, Fujian 361012, P.R. China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaowei Yu
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
29
|
Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett 2014; 588:2571-9. [PMID: 24747423 DOI: 10.1016/j.febslet.2014.04.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022]
Abstract
Cell proliferation and cell growth are two tightly linked processes, as the proliferation program cannot be executed without proper accumulation of cell mass, otherwise endangering the fate of the two daughter cells. It is therefore not surprising that ribosome biogenesis, a key element in cell growth, is regulated by many cell cycle regulators. This regulation is exerted transcriptionally and post-transcriptionally, in conjunction with numerous intrinsic and extrinsic signals. Those signals eventually converge at the nucleolus, the cellular compartment that is not only responsible for executing the ribosome biogenesis program, but also serves as a regulatory hub, responsible for integrating and transmitting multiple stress signals to the omnipotent cell fate gatekeeper, p53. In this review we discuss when, how and why p53 is activated upon ribosomal biogenesis stress, and how perturbation of this critical regulatory interplay may impact human disease.
Collapse
Affiliation(s)
- Lior Golomb
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sinisa Volarevic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Croatia
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Li J, Hou Y, Ding X, Hou W, Song B, Zeng Y. Overexpression, purification, molecular characterization and the effect on tumor growth of ribosomal protein L22 from the Giant Panda (Ailuropoda melanoleuca). Mol Biol Rep 2014; 41:3529-39. [PMID: 24504451 DOI: 10.1007/s11033-014-3217-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
The ribosomal protein L22 (RPL22) protein belongs to the L22E family of ribosomal proteins. It is located in the cytoplasm. The purpose of this paper was to explore the structure and anti-cancer function of RPL22 of the Giant Panda (Ailuropoda melanoleuca). The cDNA of RPL22 was cloned successfully from the Giant Panda using RT-PCR technology. We constructed a recombinant expression vector containing RPL22 cDNA and over-expressed it in Escherichia coli using pET28a plasmids. The expression product obtained was purified by using Ni chelating affinity chromatography. The result indicated that the length of the fragment cloned is 414 bp, and it contains an open-reading frame of 387 bp encoding 128 amino acids. Primary structure analysis revealed that the molecular weight of the putative RPL22 protein is 14.74 kDa with a theoretical pI 9.21. The RPL22 gene can be really expressed in E. coli and the RPL22 protein, fusioned with the N-terminally His-tagged protein, gave rise to the accumulation of an expected 20.1 kDa polypeptide. The data showed that the recombinant protein RPL22 had a time- and dose-dependency on the cell growth inhibition rate. The human laryngeal carcinoma Hep-2 cells treated with 0.05-6 μg/ml of RPL22 for 24 h displayed significant cell growth inhibition (p<0.05, n=8) in assayed using MTT compared to the control (untreated) cells. The data indicate that the effect at low concentrations is better than high concentrations, and the concentration of 1.5 μg/ml has the best rate of growth inhibition of 47.70%. The inhibitory rate in mice treated with 1.5 μg/ml RPL22 protein can reach 43.75%. Histology of tumor organs shows that the tissues arranged looser in RPL22 group than those in control group. Meanwhile, there is no obvious damage to other organs, such as heart, lung and kidney. Further research is on going to determine the bioactive principle(s) of recombinant protein RPL22 responsible for its anticancer activity.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009, Sichuan, China
| | | | | | | | | | | |
Collapse
|
31
|
Wang Z, Hou J, Lu L, Qi Z, Sun J, Gao W, Meng J, Wang Y, Sun H, Gu H, Xin Y, Guo X, Yang G. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS One 2013; 8:e79117. [PMID: 24244431 PMCID: PMC3823983 DOI: 10.1371/journal.pone.0079117] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
Small ribosomal protein subunit S7 (RPS7) has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), JNK1/2 (Thr183/Tyr185), and P38 (Thr180/Tyr182) were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ziliang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Hou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lili Lu
- Life and Environment Science College, Shanghai Normal University, Shanghai, China
| | - Zihao Qi
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianmin Sun
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Gao
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huizhen Sun
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Gu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuhu Xin
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * (XMG); (GY)
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * (XMG); (GY)
| |
Collapse
|
32
|
Yang M, Sun H, Wang H, Zhang S, Yu X, Zhang L. Down-regulation of ribosomal protein L22 in non-small cell lung cancer. Med Oncol 2013; 30:646. [DOI: 10.1007/s12032-013-0646-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
|
33
|
Expression, purification, and evaluation for anticancer activity of ribosomal protein L31 gene (RPL31) from the giant panda (Ailuropoda melanoleuca). Mol Biol Rep 2012; 39:8945-54. [DOI: 10.1007/s11033-012-1763-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
34
|
Xia Y, Tang L, Yao L, Wan B, Yang X, Yu L. Literature and patent analysis of the cloning and identification of human functional genes in China. SCIENCE CHINA. LIFE SCIENCES 2012; 55:268-282. [PMID: 22527523 DOI: 10.1007/s11427-012-4299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/13/2011] [Indexed: 05/31/2023]
Abstract
The Human Genome Project was launched at the end of the 1980s. Since then, the cloning and identification of functional genes has been a major focus of research across the world. In China too, the potentially profound impact of such studies on the life sciences and on human health was realized, and relevant studies were initiated in the 1990s. To advance China's involvement in the Human Genome Project, in the mid-1990s, Committee of Experts in Biology from National High Technology Research and Development Program of China (863 Program) proposed the "two 1%" goal. This goal envisaged China contributing 1% of the total sequencing work, and cloning and identifying 1% of the total human functional genes. Over the past 20 years, tremendous achievement has been accomplished by Chinese scientists. It is well known that scientists in China finished the 1% of sequencing work of the Human Genome Project, whereas, there is no comprehensive report about "whether China had finished cloning and identifying 1% of human functional genes". In the present study, the GenBank database at the National Center of Biotechnology Information, the PubMed search tool, and the patent database of the State Intellectual Property Office, China, were used to retrieve entries based on two screening standards: (i) Were the newly cloned and identified genes first reported by Chinese scientists? (ii) Were the Chinese scientists awarded the gene sequence patent? Entries were retrieved from the databases up to the cut-off date of 30 June 2011 and the obtained data were analyzed further. The results showed that 589 new human functional genes were first reported by Chinese scientists and 159 gene sequences were patented (http://gene.fudan.sh.cn/introduction/database/chinagene/chinagene.html). This study systematically summarizes China's contributions to human functional genomics research and answers the question "has China finished cloning and identifying 1% of human functional genes?" in the affirmative.
Collapse
Affiliation(s)
- Yan Xia
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
35
|
Downregulation of RPL6 by siRNA inhibits proliferation and cell cycle progression of human gastric cancer cell lines. PLoS One 2011; 6:e26401. [PMID: 22043320 PMCID: PMC3197136 DOI: 10.1371/journal.pone.0026401] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 09/26/2011] [Indexed: 12/16/2022] Open
Abstract
Our previous study revealed that human ribosomal protein L6 (RPL6) was up-regulated in multidrug-resistant gastric cancer cells and over-expression of RPL6 could protect gastric cancer from drug-induced apoptosis. It was further demonstrated that up-regulation of RPL6 accelerated growth and enhanced in vitro colony forming ability of GES cells while down-regulation of RPL6 exhibited the opposite results. The present study was designed to investigate the potential role of RPL6 in therapy of gastric cancer for clinic. The expression of RPL6 and cyclin E in gastric cancer tissues and normal gastric mucosa was evaluated by immunohistochemisty. It was found that RPL6 and cyclin E were expressed at a higher level in gastric cancer tissues than that in normal gastric mucosa and the two were correlative in gastric cancer. Survival time of postoperative patients was analyzed by Kaplan- Meier analysis and it was found that patients with RPL6 positive expression showed shorter survival time than patients that with RPL6 negative expression. RPL6 was then genetically down-regulated in gastric cancer SGC7901 and AGS cell lines by siRNA. It was demonstrated that down-regulation of RPL6 reduced colony forming ability of gastric cancer cells in vitro and reduced cell growth in vivo. Moreover, down-regulation of RPL6 could suppress G1 to S phase transition in these cells. Further, we evidenced that RPL6 siRNA down-regulated cyclin E expression in SGC7901 and AGS cells. Taken together, these data suggested that RPL6 was over-expressed in human gastric tissues and caused poor prognosis. Down-regulation of RPL6 could suppress cell growth and cell cycle progression at least through down-regulating cyclin E and which might be used as a novel approach to gastric cancer therapy.
Collapse
|
36
|
Cloning, Escherichia coli expression, purification, characterization, and enzyme assay of the ribosomal protein S4 from wheat seedlings (Triticum vulgare). Protein Expr Purif 2011; 81:55-62. [PMID: 21945701 DOI: 10.1016/j.pep.2011.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 12/19/2022]
Abstract
S4 is a paradigm of ribosomal proteins involved in multifarious activities both within and outside the ribosome. For a detailed biochemical and structural investigations of eukaryotic S4, the wheat S4 gene has been cloned and expressed in Escherichia coli, and the protein purified to a high degree of homogeneity. The 285-residue recombinant protein containing an N-terminal His(6) tag along with fourteen additional residues derived from the cloning vector is characterized by a molecular mass of 31981.24 Da. The actual sequence of 265 amino acids having a molecular mass of 29931 Da completely defines the primary structure of wheat S4. Homology modeling shows a bi-lobed protein topology arising from folding of the polypeptide into two domains, consistent with the fold topology of prokaryotic S4. The purified protein is stable and folded since it can be reversibly unfolded in guanidinium hydrochloride, and is capable of hydrolyzing cysteine protease-specific peptide-based fluorescence substrates, including Ac-DEVD-AFC (N-acetyl-Asp-Glu-Val-Asp-7-amino-4-trifluoromethylcoumarin) and Z-FR-AMC (N-CBZ-Phe-Arg-aminomethylcoumarin).
Collapse
|
37
|
Lai MD, Xu J. Ribosomal proteins and colorectal cancer. Curr Genomics 2011; 8:43-9. [PMID: 18645623 DOI: 10.2174/138920207780076938] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 08/12/2006] [Accepted: 08/20/2006] [Indexed: 12/26/2022] Open
Abstract
The ribosome is essential for protein synthesis. The composition and structure of ribosomes from several organisms have been determined, and it is well documented that ribosomal RNAs (rRNAs) and ribosomal proteins (RPs) constitute this important organelle. Many RPs also fill various roles that are independent of protein biosynthesis, called extraribosomal functions. These functions include DNA replication, transcription and repair, RNA splicing and modification, cell growth and proliferation, regulation of apoptosis and development, and cellular transformation. Previous investigations have revealed that RP regulation in colorectal carcinomas (CRC) differs from that found in colorectal adenoma or normal mucosa, with some RPs being up-regulated while others are down-regulated. The expression patterns of RPs are associated with the differentiation, progression or metastasis of CRC. Additionally, the recent literature has shown that the perturbation of specific RPs may promote certain genetic diseases and tumorigenesis. Because of the implications of RPs in disease, especially malignancy, our review sought to address several questions. Why do expression levels or categories of RPs differ in different diseases, most notably in CRC? Is this a cause or consequence of the diseases? What are their possible roles in the diseases? We review the known extraribosomal functions of RPs and associated changes in colorectal cancer and attempt to clarify the possible roles of RPs in colonic malignancy.
Collapse
Affiliation(s)
- Mao-De Lai
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | | |
Collapse
|
38
|
Abstract
Despite the fact that ribosomal proteins are the constituents of an organelle that is present in every cell, they show a surprising level of regulation, and several of them have also been shown to have other extra-ribosomal functions, such in replication, transcription, splicing or even ageing. This review provides a comprehensive summary of these important aspects.
Collapse
Affiliation(s)
- Rital B Bhavsar
- Department of Biology, University of Dayton, OH 45469-2320, USA
| | | | | |
Collapse
|
39
|
Choe C, Cho YW, Kim CW, Son DS, Han J, Kang D. Identification of differentially expressed genes in bovine follicular cystic ovaries. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:265-72. [PMID: 21165323 DOI: 10.4196/kjpp.2010.14.5.265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/16/2010] [Accepted: 08/25/2010] [Indexed: 01/31/2023]
Abstract
Follicular cystic ovary (FCO) is one of the most frequently diagnosed ovarian diseases and is a major cause of reproductive failure in mammalian species. However, the mechanism by which FCO is induced remains unclear. Genetic alterations which affect the functioning of many kinds of cells and/or tissues could be present in cystic ovaries. In this study, we performed a comparison analysis of gene expression in order to identify new molecules useful in discrimination of bovine FCO with follicular cystic follicles (FCFs). Normal follicles and FCFs were classified based on their sizes (5 to 10 mm and ≥25 mm). These follicles had granulosa cell layer and theca interna and the hormone 17β-estradiol (E(2))/ progesterone (P(4)) ratio in follicles was greater than one. Perifollicular regions including follicles were used for the preparation of RNA or protein. Differentially expressed genes (DEG) that showed greater than a 2-fold change in expression were screened by the annealing control primer (ACP)-based PCR method using GeneFishing™ DEG kits in bovine normal follicles and FCFs. We identified two DEGs in the FCFs: ribosomal protein L15 (RPL15) and microtubule-associated protein 1B (MAP1B) based on BLAST searches of the NCBI GenBank. Consistent with the ACP analysis, semi-quantitative PCR data and Western blot analyses revealed an up-regulation of RPL15 and a down-regulation of MAP1B in FCFs. These results suggest that RPL15 and MAP1B may be involved in the regulation of pathological processes in bovine FCOs and may help to establish a bovine gene data-base for the discrimination of FCOs from normal ovaries.
Collapse
Affiliation(s)
- Changyong Choe
- Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon 590-832, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
MYC regulates the transcription of thousands of genes required to coordinate a range of cellular processes, including those essential for proliferation, growth, differentiation, apoptosis and self-renewal. Recently, MYC has also been shown to serve as a direct regulator of ribosome biogenesis. MYC coordinates protein synthesis through the transcriptional control of RNA and protein components of ribosomes, and of gene products required for the processing of ribosomal RNA, the nuclear export of ribosomal subunits and the initiation of mRNA translation. We discuss how the modulation of ribosome biogenesis by MYC may be essential to its physiological functions as well as its pathological role in tumorigenesis.
Collapse
Affiliation(s)
- Jan van Riggelen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
41
|
Gou Y, Shi Y, Zhang Y, Nie Y, Wang J, Song J, Jin H, He L, Gao L, Qiao L, Wu K, Fan D. Ribosomal protein L6 promotes growth and cell cycle progression through upregulating cyclin E in gastric cancer cells. Biochem Biophys Res Commun 2010; 393:788-93. [PMID: 20171175 DOI: 10.1016/j.bbrc.2010.02.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
Our previous study revealed that human ribosomal protein L6 (RPL6) was upregulated in multidrug-resistant gastric cancer cells and over-expression of RPL6 could protect gastric cancer cells from drug-induced apoptosis. The present study was designed to explore the role of RPL6 in tumorigenesis and development of gastric cancer. The expression of RPL6 in gastric cancer tissues and normal gastric mucosa was evaluated by immunohistochemical staining. It was found RPL6 was expressed at a higher level in gastric cancer tissues than that in normal gastric mucosa. RPL6 was then genetically overexpressed or knocked down in human immortalized gastric mucosa epithelial GES cells. It was demonstrated that upregulation of RPL6 accelerated the growth and enhanced in vitro colony forming ability of GES cells whereas downregulation of RPL6 showed adverse effects. Moreover, over-expression of RPL6 could promote G1 to S phase transition of GES cells. It was further evidenced that upregulation of RPL6 resulted in elevated cyclin E expression while downregulation of RPL6 caused decreased cyclin E expression in GES cells. Taken together, these data indicated that RPL6 was overexpressed in human gastric cancer and its over-expression could promote cell growth and cell cycle progression at least through upregulating cyclin E expression.
Collapse
Affiliation(s)
- Yawen Gou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pavlova TV, Kashuba VI, Muravenko OV, Yenamandra SP, Ivanova TA, Zabarovska VI, Rakhmanaliev ER, Petrenko LA, Pronina IV, Loginov VI, Yurkevich OY, Kisselev LL, Zelenin AV, Zabarovsky ER. Use of NotI microarrays in analysis of epigenetic and structural changes in epithelial tumor genomes by the example of human chromosome 3. Mol Biol 2009. [DOI: 10.1134/s0026893309020137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Simoff I, Moradi H, Nygård O. Functional characterization of ribosomal protein L15 from Saccharomyces cerevisiae. Curr Genet 2009; 55:111-25. [PMID: 19184027 DOI: 10.1007/s00294-009-0228-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 12/20/2022]
Abstract
In this study we provide general information on the little studied eukaryotic ribosomal protein rpL15. Saccharomyces cerevisiae has two genes, YRPL15A and YRPL15B that could potentially code for yeast rpL15 (YrpL15). YRPL15A is essential while YRPL15B is dispensable. However, a plasmid-borne copy of the YRPL15B gene, controlled by the GAL1 promoter or by the promoter controlling expression of the YRPL15A gene, can functionally complement YrpL15A in yeast cells, while the same gene controlled by the authentic promoter is inactive. Analysis of the levels of YrpL15B-mRNA in yeast cells shows that the YRPL15B gene is inactive in transcription. The function of YrpL15A is highly resilient to single and multiple amino acid substitutions. In addition, minor deletions from both the N- and C-terminal ends of YrpL15A has no effect on protein function, while addition of a C-terminal tag that could be used for detection of plasmid-encoded YrpL15A is detrimental to protein function. YrpL15A could also be replaced by the homologous protein from Arabidopsis thaliana despite almost 30% differences in the amino acid sequence, while the more closely related protein from Schizosaccharomyces pombe was inactive. The lack of function was not caused by a failure of the protein to enter the yeast nucleus.
Collapse
|
44
|
Wang H, Zhao LN, Li KZ, Ling R, Li XJ, Wang L. Overexpression of ribosomal protein L15 is associated with cell proliferation in gastric cancer. BMC Cancer 2006; 6:91. [PMID: 16608517 PMCID: PMC1459873 DOI: 10.1186/1471-2407-6-91] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 04/11/2006] [Indexed: 01/28/2023] Open
Abstract
Background Ribosomal proteins are the components of ribosome, which also exhibit various secondary functions in DNA repair, apoptosis, drug resistance and proliferation. In our previous study of microarray, ribosomal protein L15 (RPL15) was identified as an upregulated gene in gastric cancer. Methods We investigated the expression of ribosomal protein L15 in gastric cancer and the effect of RPL15 on proliferation of gastric cancer. Results It was found that the expression of RPL15 was markedly up-regulated in gastric cancer tissues. RPL15 was also highly expressed in gastric cancer cell lines AGS, MKN45, MKN28, SGC7901 and KATOIII. Inhibition of RPL15 expression by siRNA vector transfection suppressed the growth of SGC7901 cells significantly, which was independent of the expression of Cyclin D1 and B1. Down-regulation of RPL15 expression inhibited SGC7901 cell growth in soft agar and its tumorigenicity in nude mice. Conclusion RPL15 promotes cell proliferation and may be a potential target for anticancer therapy of gastric cancer.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Li-Na Zhao
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Kai-Zong Li
- Department of Hepatobiliary Surgery, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Rui Ling
- Department of Vascular and Endocrine Surgery, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Xiao-Jun Li
- Department of Vascular and Endocrine Surgery, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Ling Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, the Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| |
Collapse
|
45
|
Liu J, Li JP, Chen DL, Zhang HW, Wang WZ. Expression and functional study of ribosomal protein L5 in gastric cancer. Shijie Huaren Xiaohua Zazhi 2005; 13:2731-2735. [DOI: 10.11569/wcjd.v13.i23.2731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of ribosomal protein L15 (RPL5) in gastric cancer as well as its effect on the proliferation of gastric cancer cells.
METHODS: The expression of RPL5 was detected in gastric cancer cell lines AGS, MKN45, SGC7901 and MGC803 by Western blot. The specific siRNA vector of RPL5 was constructed and then transfected into AGS cells. The expression of RPL5 in the transfectants was examined by Western blot. The growth of transfected cells was evaluated by MTT assay and flow cytometry.
RESULTS: The expression of RPL5 in gastric cancer cell lines AGS, MKN45, SGC7901 and MGC803 were all significantly higher than that in GES-1 and normal epithelial cells of gastric mucosa. The specific siRNA vectors of RPL5, named U6-RPL5A and U6-RPL5B, were successfully constructed and transfected into AGS cells. U6-RPL5A could inhibit the expression of RPL5 significantly. The growth rate of U6-RPL5A transfected cells, named AGS-U6-RPL5A, was lower than the control cells, and the percentage of the cells that was in proliferation phase was decreased by about 5%.
CONCLUSION: RPL5 can inhibit the proliferation of gastric cancer cells, and further investigation of RPL5 function will be helpful in the diagnosis and treatment of gastric cancer.
Collapse
|
46
|
Bortoluzzi S, Bisognin A, Romualdi C, Danieli GA. Novel genes, possibly relevant for molecular diagnosis or therapy of human rhabdomyosarcoma, detected by genomic expression profiling. Gene 2005; 348:65-71. [PMID: 15777710 DOI: 10.1016/j.gene.2004.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 09/15/2004] [Accepted: 12/15/2004] [Indexed: 10/25/2022]
Abstract
Transcriptional profiles of an alveolar rhabdomyosarcoma (RMS) and of a RMS cell line were reconstructed by a computational and statistical approach. Expression data of 29,963 genes in 11 adult human healthy tissues and in 37 tumour tissues were analysed for comparison. We identified 202 genes differentially expressed in at least one RMS sample, as compared with normal skeletal muscle. Among them, 107 resulted specifically overexpressed in RMS, but in no tumour affecting other tissues. Cluster analysis applied to expression data detected a series of genes presumably co-expressed with genes encoding known tumour markers and/or reportedly involved in genesis or development of rhabdomyosarcoma. This study succeeded in identifying a number of genes, which become candidates for in vitro study, thus facilitating discovery of novel tumour markers or targets for drug therapy.
Collapse
Affiliation(s)
- Stefania Bortoluzzi
- Department of Biology, University of Padua, via Ugo Bassi 58B, 35131, Padova, Italy.
| | | | | | | |
Collapse
|
47
|
Tamoto E, Tada M, Murakawa K, Takada M, Shindo G, Teramoto KI, Matsunaga A, Komuro K, Kanai M, Kawakami A, Fujiwara Y, Kobayashi N, Shirata K, Nishimura N, Okushiba SI, Kondo S, Hamada JI, Yoshiki T, Moriuchi T, Katoh H. Gene-expression profile changes correlated with tumor progression and lymph node metastasis in esophageal cancer. Clin Cancer Res 2004; 10:3629-38. [PMID: 15173069 DOI: 10.1158/1078-0432.ccr-04-0048] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE The purpose of this research was to identify molecular clues to tumor progression and lymph node metastasis in esophageal cancer and to test their value as predictive markers. EXPERIMENTAL DESIGN We explored the gene expression profiles in cDNA array data of a 36-tissue training set of esophageal squamous cell carcinoma (ESCC) by using generalized linear model-based regression analysis and a feature subset selection algorithm. By applying the identified optimal feature sets (predictive gene sets), we trained and developed ensemble classifiers consisting of multiple probabilistic neural networks combined with AdaBoosting to predict tumor stages and lymph node metastasis. We validated the classifier abilities with 18 independent cases of ESCC. RESULTS We identified 71 genes of 1289 cancer-related genes of which the expression correlated with tumor stages. Of the 71 genes, 47 significantly differed between the Tumor-Node-Metastasis pT1/2 and pT3/4 stages. Cell cycle regulators and transcriptional factors possibly promoting the growth of tumor cells were highly expressed in the early stages of ESCC, whereas adhesion molecules and extracellular matrix-related molecules possibly promoting invasiveness increased in the later stages. For lymph node metastasis, we identified 44 genes with predictive values, which included cell adhesion molecules and cell membrane receptors showing higher expression in node-positive cases and cell cycle regulators and intracellular signaling molecules showing higher expression in node-negative cases. The ensemble classifiers trained with the selected features predicted tumor stage and lymph node metastasis in the 18 validation cases with respective accuracies of 94.4% and 88.9%. This demonstrated the reproducibility and predictive value of the identified features. CONCLUSION We suggest that these characteristic genes will provide useful information for understanding the malignant nature of ESCC as well as information useful for personalizing the treatments.
Collapse
Affiliation(s)
- Eiji Tamoto
- Department of Surgical Oncology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rosenwald IB. The role of translation in neoplastic transformation from a pathologist's point of view. Oncogene 2004; 23:3230-47. [PMID: 15094773 DOI: 10.1038/sj.onc.1207552] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Increased cell proliferation, which is a hallmark of aggressive malignant neoplasms, requires a general increase in protein synthesis and a specific increase in the synthesis of replication-promoting proteins. Transient increase in the general protein synthesis rate, as well as preferential translation of specific mRNAs coding for growth promoting proteins (e.g. cyclin D1), takes place during normal mitogenic response. A number of extensively studied growth signal transduction pathways (Ras, PI3K, MAPK, mTOR-dependent pathways) activate the function and expression of various components of the translational machinery. In abnormal situations, constitutive activation of signal transduction pathways (e.g. oncogenic activation of Ras or Myc) leads to continuous upregulation of key elements of translational machinery. On the other hand, tumor suppressor genes (p53, pRb) downregulate ribosomal and tRNA synthesis, and their inactivation results in uncontrolled production of these translational components. During recent years, a significant effort has been dedicated to determining whether expression of translation factors is increased in human tumors using clinical biopsy specimens. The results of these studies indicate that expression of particular translation initiation factors is not always increased in human neoplasms. The pattern of expression is characteristic for a particular tumor type. For example, eIF-4E is usually increased in bronchioloalveolar carcinomas but not in squamous cell carcinomas of the lung. Interestingly, in certain highly proliferative and aggressive neoplasms (e.g. squamous cell carcinoma of the lung, melanoma), the expression of eIF-4E is barely detectable. These findings suggest that mechanisms for increasing general protein synthesis in various neoplasms differ significantly. Finally, the possibility of qualitative alterations in the translational machinery, rather than a simple increase in the activity of its components, is discussed along with the possibility of targeting those qualitative differences for tumor therapy.
Collapse
Affiliation(s)
- Igor B Rosenwald
- Department of Pathology, Division of Hematopathology, University of New Mexico, BRF Building, Room 323 B, MSC08 4640, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
49
|
Zhang J, Gao FL, Zhi HY, Luo AP, Ding F, Wu M, Liu ZH. Expression patterns of esophageal cancer deregulated genes in C57BL/6J mouse embryogenesis. World J Gastroenterol 2004; 10:1088-92. [PMID: 15069704 PMCID: PMC4656339 DOI: 10.3748/wjg.v10.i8.1088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the expression patterns of esophageal squamous cell cancer deregulated genes in mid to late stages of C57BL/6J mouse embryogenesis, and the correlation between these genes in embryonic development and tumorigenesis of esophageal squamous cell cancer.
METHODS: Reverse northern screening was performed to examine the expression patterns of esophageal cancer deregulated genes in C57BL/6J mouse embryogenesis. To confirm the gene expression patterns, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out for 3 of the randomly picked differentially expressed genes.
RESULTS: Within these esophageal cancer deregulated genes, 4 patterns of expression were observed at 3 stages embryonic d 11.5 (E11.5), embryonic d 13.5 (E13.5) and postnatal d1 (P1). (1) Up-regulation during the E11.5 period, down- regulation during the E13.5 and P1 period (up-down-down), the 10 up-regulated genes during the E11.5 period could be classified into 6 known genes and 4 unknown genes. The known genes included differentiation related genes (S100A8), immunity related gene (IGL), translation and transcription regulation genes (RPL15, EEF1A1), cytoskeletal protein (TUBA1), cysteine protease inhibitor (cystatin B). (2) Up-regulation during the E13.5 and P1 period (down-up-up), such as the SPRR2A which was down-regulated at E11.5. (3) Down-regulation during the E11.5 and E13.5 period (down-down-up), such as RHCG and keratin 4. (4) Fluctuating expression, down initially, up at E13.5, and then down again (down-up-down). EMP1 belonged to such a gene, which was highly expressed at E13.5.
CONCLUSION: The results will be helpful for understanding the function of esophageal squamous cell carcinoma (ESCC) deregulated genes in embryonic development and tumorigenesis. S100A8 and S100A9 may play different roles in early embryonic development. IGL may be an oncofetal protein, and EMP1 relates with neurogenesis at E13.5. The genes identified pertinent to embryonic development may serve as candidate susceptibility genes for inherited esophageal cancer disorders as well as for various heritable disorders of embryonic development.
Collapse
Affiliation(s)
- Jian Zhang
- National Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Significant progress in human genome research has been made in China since 1994. This review aims to give a brief and incomplete introduction to the major research institutions and their achievements in human genome sequencing and functional genomics in medicine, with emphasis on the "1% Sequencing Project", the generation of single nucleotide polymorphism and haplotype maps of the human genome, disease gene identification, and the molecular characterization of leukemia and other diseases. Chinese efforts towards the sequencing of pathogenic microbial genomes and of the rice (Oryza sativa ssp. Indica) genome are also described.
Collapse
Affiliation(s)
- Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|