1
|
Wang J, Liao S, Lin H, Wei H, Mao X, Wang Q, Chen H. Fem-1 Gene of Chinese White Pine Beetle ( Dendroctonus armandi): Function and Response to Environmental Treatments. Int J Mol Sci 2024; 25:10349. [PMID: 39408677 PMCID: PMC11477363 DOI: 10.3390/ijms251910349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Dendroctonus armandi (Tsai and Li) (Coleoptera: Curculionidae: Scolytinae) is regarded as the most destructive forest pest in the Qinling and Bashan Mountains of China. The sex determination of Dendroctonus armandi plays a significant role in the reproduction of its population. In recent years, the role of the fem-1 gene in sex determination in other insects has been reported. However, the function and expression of the fem-1 gene in Dendroctonus armandi remain uncertain. In this study, three fem-1 genes were cloned and characterized. These were named Dafem-1A, Dafem-1B, and Dafem-1C, respectively. The expression levels of these three Dafem-1 genes vary at different stages of development and between the sexes. In response to different environmental treatments, including temperature, nutrients, terpenoids, and feeding duration, significant differences were observed between the three Dafem-1 genes at different developmental stages and between males and females. Furthermore, injection of double-stranded RNA (dsRNA) targeting the expressions of the Dafem-1A, Dafem-1B, and Dafem-1C genes resulted in increased mortality, deformity, and decreased emergence rates, as well as an imbalance in the sex ratio. Following the interference with Dafem-1A and Dafem-1C, no notable difference was observed in the expression of the Dafem-1B gene. Similarly, after the interference with the Dafem-1B gene, no significant difference was evident in the expression levels of the Dafem-1A and Dafem-1C genes. However, the interference of either the Dafem-1A or Dafem-1C gene results in the downregulation of the other gene. The aforementioned results demonstrate that the Dafem-1A, Dafem-1B, and Dafem-1C genes play a pivotal role in the regulation of life development and sex determination. Furthermore, it can be concluded that external factors such as temperature, nutrition, terpenoids, and feeding have a significant impact on the expression levels of the Dafem-1A, Dafem-1B, and Dafem-1C genes. This provides a crucial theoretical foundation for further elucidating the sex determination mechanism of Dendroctonus armandi.
Collapse
Affiliation(s)
- Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Songkai Liao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Haoyu Lin
- Forest Protection Research Institute, Fujian Academy of Forestry, Fuzhou 350011, China;
| | - Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Qi Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| |
Collapse
|
2
|
Lin X, Zhang H, Boyce BF, Xing L. Ubiquitination of interleukin-1α is associated with increased pro-inflammatory polarization of murine macrophages deficient in the E3 ligase ITCH. J Biol Chem 2020; 295:11764-11775. [PMID: 32587089 DOI: 10.1074/jbc.ra120.014298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/21/2020] [Indexed: 01/02/2023] Open
Abstract
Macrophages play critical roles in homeostasis and inflammation. Macrophage polarization to either a pro-inflammatory or anti-inflammatory status is controlled by activating inflammatory signaling pathways. Ubiquitination is a posttranslational modification that regulates these inflammatory signaling pathways. However, the influence of protein ubiquitination on macrophage polarization has not been well studied. We hypothesized that the ubiquitination status of key proteins in inflammatory pathways contributes to macrophage polarization, which is regulated by itchy E3 ubiquitin ligase (ITCH), a negative regulator of inflammation. Using ubiquitin proteomics, we found that ubiquitination profiles are different among polarized murine macrophage subsets. Interestingly, interleukin-1α (IL-1α), an important pro-inflammatory mediator, was specifically ubiquitinated in lipopolysaccharide-induced pro-inflammatory macrophages, which was enhanced in ITCH-deficient macrophages. The ITCH-deficient macrophages had increased levels of the mature form of IL-1α and exhibited pro-inflammatory polarization, and reduced deubiquitination of IL-1α protein. Finally, IL-1α neutralization attenuated pro-inflammatory polarization of the ITCH-deficient macrophages. In conclusion, ubiquitination of IL-1α is associated with increased pro-inflammatory polarization of macrophages deficient in the E3 ligase ITCH.
Collapse
Affiliation(s)
- Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA .,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Higuchi S, Fujikawa R, Nakatsuji M, Yasui M, Ikedo T, Nagata M, Mishima K, Irie K, Matsumoto M, Yokode M, Minami M. EP 4 receptor-associated protein regulates gluconeogenesis in the liver and is associated with hyperglycemia in diabetic mice. Am J Physiol Endocrinol Metab 2019; 316:E410-E417. [PMID: 30562059 DOI: 10.1152/ajpendo.00035.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandin E2 receptor 4-associated protein (EPRAP) is a key molecule in suppressing inflammatory responses in macrophages. EPRAP is expressed not only in macrophages but also in hepatocytes; however, the role of EPRAP in hepatocytes has not yet been defined. To examine the physiological role of hepatic EPRAP in mice, we performed the glucose tolerance test and the hyperinsulinemic-euglycemic clamp in high-fat sucrose diet (HFSD)-fed wild-type (WT) and Eprap null mice. We evaluated the contribution of EPRAP to gluconeogenesis by pyruvate tolerance test and primary hepatocyte experiments. Furthermore, lentivirus-expressing Eprap-specific small-hairpin RNA was injected in db/ db mice. HFSD-fed Eprap null mice had significantly lower blood glucose levels than HFSD-fed WT mice. Eprap null mice also had low glucose levels after fasting or pyruvic acid injection. Moreover, primary hepatocytes from Eprap-deficient mice showed decreased glucose production and lower expression of the Phosphoenol pyruvate carboxykinase and Glucose 6-phosphatase genes. Lentivirus-mediated hepatic Eprap suppression decreased glucose levels and the expression of gluconeogenic genes in db/ db mice. We conclude that EPRAP regulates gluconeogenesis in hepatocytes and is associated with hyperglycemia in diabetic mice. Our data suggest that suppression of EPRAP could be a novel strategy for the treatment of diabetes.
Collapse
Affiliation(s)
- Sei Higuchi
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Risako Fujikawa
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Masato Nakatsuji
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Mika Yasui
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Taichi Ikedo
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Manabu Nagata
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Kenji Mishima
- Faculty of Engineering, Department of Chemical Engineering, Fukuoka University , Fukuoka , Japan
| | - Keiichi Irie
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Fukuoka University , Fukuoka , Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine , Tokyo , Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
| |
Collapse
|
4
|
Wang Y, Wu C, Guo P, Wang G, Li J. Molecular characterization and expression of the feminization-1c ( fem-1c ) in the freshwater mussel ( Hyriopsis cumingii ). AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Higuchi S, Fujikawa R, Ikedo T, Hayashi K, Yasui M, Nagata M, Nakatsuji M, Yokode M, Minami M. EP4 Receptor-Associated Protein in Macrophages Protects against Bleomycin-Induced Pulmonary Inflammation in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:4436-4443. [PMID: 27799315 DOI: 10.4049/jimmunol.1502618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 09/30/2016] [Indexed: 11/19/2022]
Abstract
Excessive activation of inflammatory macrophages drives the pathogenesis of many chronic diseases. EP4 receptor-associated protein (EPRAP) has been identified as a novel, anti-inflammatory molecule in macrophages. In this study, we investigated the role of EPRAP using a murine model of bleomycin (BLM)-induced pulmonary inflammation. When compared with wild-type mice, EPRAP-deficient mice exhibited significantly higher mortality, and increased accumulation of macrophages and proinflammatory molecules in the lung 7 d post-BLM administration. Accordingly, the levels of phosphorylated p105, MEK1/2, and ERK1/2 were elevated in EPRAP-deficient alveolar macrophages following BLM administration. In contrast, macrophage-specific EPRAP overexpression decreased the production of proinflammatory cytokines and chemokines, suggesting that EPRAP in macrophages plays a key role in attenuating BLM-induced pulmonary inflammation. As EPRAP is phosphorylated after translation, we examined the role of posttranslational modifications in cellular inflammatory activation using mouse embryo fibroblasts (MEFs) expressing mutant EPRAP proteins. Expression of mutant EPRAP, in which serine-108 and serine-608 were replaced with alanine (EPRAP S108A/S608A), markedly suppressed TNF-α production in LPS-treated MEFs. Conversely, the serine phosphatase 2A (PP2A) inhibitor, cantharidic acid, increased LPS-induced TNF-α production in MEFs expressing wild-type EPRAP, but not in MEFs expressing EPRAP S108A/S608A. Immunoprecipitation analyses demonstrated that EPRAP associated with PP2A in both MEFs and alveolar macrophages from BLM-treated mice. Our data suggest that PP2A dephosphorylates EPRAP, which may be a crucial step in exertion of its anti-inflammatory properties. For these reasons, we believe the EPRAP-PP2A axis in macrophages holds the key to treating chronic inflammatory disorders.
Collapse
Affiliation(s)
- Sei Higuchi
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Risako Fujikawa
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Taichi Ikedo
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; and
| | - Kosuke Hayashi
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; and
| | - Mika Yasui
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Manabu Nagata
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; and
| | - Masato Nakatsuji
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan;
| |
Collapse
|
6
|
Cai W, Yang H. The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions. Cell Div 2016; 11:7. [PMID: 27222660 PMCID: PMC4878042 DOI: 10.1186/s13008-016-0020-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Cullin-RING E3 ubiquitin ligase complexes play a central role in targeting cellular proteins for ubiquitination-dependent protein turnover through 26S proteasome. Cullin-2 is a member of the Cullin family, and it serves as a scaffold protein for Elongin B and C, Rbx1 and various substrate recognition receptors to form E3 ubiquitin ligases. Main body of the abstract First, the composition, structure and the regulation of Cullin-2 based E3 ubiquitin ligases were introduced. Then the targets, the biological functions of complexes that use VHL, Lrr-1, Fem1b, Prame, Zyg-11, BAF250, Rack1 as substrate targeting subunits were described, and their involvement in diseases was discussed. A small molecule inhibitor of Cullins as a potential anti-cancer drug was introduced. Furthermore, proteins with VHL box that might bind to Cullin-2 were described. Finally, how different viral proteins form E3 ubiquitin ligase complexes with Cullin-2 to counter host viral defense were explained. Conclusions Cullin-2 based E3 ubiquitin ligases, using many different substrate recognition receptors, recognize a number of substrates and regulate their protein stability. These complexes play critical roles in biological processes and diseases such as cancer, germline differentiation and viral defense. Through the better understanding of their biology, we can devise and develop new therapeutic strategies to treat cancers, inherited diseases and viral infections.
Collapse
Affiliation(s)
- Weijia Cai
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Haifeng Yang
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
7
|
Nakatsuji M, Minami M, Seno H, Yasui M, Komekado H, Higuchi S, Fujikawa R, Nakanishi Y, Fukuda A, Kawada K, Sakai Y, Kita T, Libby P, Ikeuchi H, Yokode M, Chiba T. EP4 Receptor-Associated Protein in Macrophages Ameliorates Colitis and Colitis-Associated Tumorigenesis. PLoS Genet 2015; 11:e1005542. [PMID: 26439841 PMCID: PMC4595503 DOI: 10.1371/journal.pgen.1005542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 08/28/2015] [Indexed: 01/08/2023] Open
Abstract
Prostaglandin E2 plays important roles in the maintenance of colonic homeostasis. The recently identified prostaglandin E receptor (EP) 4–associated protein (EPRAP) is essential for an anti-inflammatory function of EP4 signaling in macrophages in vitro. To investigate the in vivo roles of EPRAP, we examined the effects of EPRAP on colitis and colitis-associated tumorigenesis. In mice, EPRAP deficiency exacerbated colitis induced by dextran sodium sulfate (DSS) treatment. Wild-type (WT) or EPRAP-deficient recipients transplanted with EPRAP-deficient bone marrow developed more severe DSS-induced colitis than WT or EPRAP-deficient recipients of WT bone marrow. In the context of colitis-associated tumorigenesis, both systemic EPRAP null mutation and EPRAP-deficiency in the bone marrow enhanced intestinal polyp formation induced by azoxymethane (AOM)/DSS treatment. Administration of an EP4-selective agonist, ONO-AE1-329, ameliorated DSS-induced colitis in WT, but not in EPRAP-deficient mice. EPRAP deficiency increased the levels of the phosphorylated forms of p105, MEK, and ERK, resulting in activation of stromal macrophages in DSS-induced colitis. Macrophages of DSS-treated EPRAP-deficient mice exhibited a marked increase in the expression of pro-inflammatory genes, relative to WT mice. By contrast, forced expression of EPRAP in macrophages ameliorated DSS-induced colitis and AOM/DSS-induced intestinal polyp formation. These data suggest that EPRAP in macrophages functions crucially in suppressing colonic inflammation. Consistently, EPRAP-positive macrophages were also accumulated in the colonic stroma of ulcerative colitis patients. Thus, EPRAP may be a potential therapeutic target for inflammatory bowel disease and associated intestinal tumorigenesis. Inflammatory bowel disease (IBD) is one of the most prevalent and serious gastrointestinal diseases in Western countries and associates with cancer development. EP4 receptor signaling can suppress intestinal inflammation and shows promise as a target for the development of novel therapies for IBD. To date, however, the lack of detailed molecular targets has hampered the development of effective drugs. This study focused on EPRAP, a novel EP4 receptor–associated protein, implicated in its signaling pathway. The generation of EPRAP-gene mutated mice permitted exploration of EPRAP functions in vivo. In addition, EPRAP was localized in stromal macrophages of ulcerative colitis patients. This study revealed that EPRAP in macrophage participates critically in EP4 receptor signaling-mediated inhibition of intestinal inflammation. The macrophage EP4–EPRAP axis thus comprises a novel therapeutic target for IBD.
Collapse
Affiliation(s)
- Masato Nakatsuji
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (MM); (HS)
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (MM); (HS)
| | - Mika Yasui
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Komekado
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sei Higuchi
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Risako Fujikawa
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kawada
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kita
- Kobe City Municipal Center General Hospital, Kobe, Japan
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hiroki Ikeuchi
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Ma KY, Liu ZQ, Lin JY, Li JL, Qiu GF. Molecular characterization of a novel ovary-specific gene fem-1 homolog from the oriental river prawn, Macrobrachium nipponense. Gene 2015; 575:244-52. [PMID: 26367327 DOI: 10.1016/j.gene.2015.08.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/16/2015] [Accepted: 08/31/2015] [Indexed: 01/23/2023]
Abstract
The feminization-1 (fem-1) gene is characterized by one of the most common protein-protein interaction motifs, ankyrin repeat motifs, displays many expression patterns in vertebrates and invertebrates, and plays an essential role in the sex-determination/differentiation pathway in Caenorhabditis elegans. In this study, a fem-1 homolog, designated as Mnfem-1, was first cloned from the oriental river prawn Macrobrachium nipponense. The prawn Mnfem-1 gene consists of six exons and five introns. The full-length cDNA (2603bp) of Mnfem-1 contains an open reading frame (ORF) encoding a protein of 622 amino acids. The Mnfem-1 RNA and protein are exclusively expressed in the ovary in adult prawns as revealed by RT-PCR and immunofluorescence analysis, respectively. In situ hybridization results showed that strong positive signals were concentrated at the edge of the previtellogenic and vitellogenic oocyte. During embryogenesis, Mnfem-1 is highly expressed in both unfertilized eggs and embryos at cleavage stage and thereafter dropped to a low level from blastula to zoea, indicating that the Mnfem-1 in early embryos is maternal. After hatching, the Mnfem-1 expression significantly increased in the larvae at length of 2cm, an important stage of sex differentiation. Yeast two hybridization results showed that the Mnfem-1 protein can be potentially interactive with cathepsin L and proteins containing the domains of insulinase, ankyrin or ubiquitin. Our results suggested that Mnfem-1 could have roles in prawn ovarian development and sex determination/differentiation.
Collapse
Affiliation(s)
- Ke-Yi Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhi-Qiang Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jing-Yun Lin
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jia-Le Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China; E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Gao-Feng Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China; E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
9
|
Molecular characterization and expression profile of three Fem-1 genes in Eriocheir sinensis provide a new insight into crab sex-determining mechanism. Comp Biochem Physiol B Biochem Mol Biol 2015; 189:6-14. [PMID: 26188322 DOI: 10.1016/j.cbpb.2015.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/25/2015] [Accepted: 07/07/2015] [Indexed: 02/02/2023]
Abstract
The FEM-1 protein of Caenorhabditis elegans plays a crucial role in the nematode sex-determination pathway. Here, we reported the characterization of three members of Fem-1 gene family in Eriocheir sinensis (designated EsFem-1a, EsFem-1b, and EsFem-1c), which were homologs of the nematode FEM-1 protein. The amino acid sequences of EsFem-1a, EsFem-1b, and EsFem-1c contained eight, nine, and eight ankyrin repeats, respectively. None of the ankyrin repeats had its own specific signature, and the evolution of ankyrin repeat was not completely independent. The predicted three-dimensional structure of EsFem-1 proteins exhibited highly similar superhelical conformation, especially the N-terminal six contiguous ankyrin repeats, which provided a binding surface for the protein-protein interaction. Phylogenetic tree based on the amino acid sequences revealed that EsFem-1a, EsFem-1b, and EsFem-1c were divided into three obvious separated clades. EsFem-1 genes were highly expressed in fertilized egg, 2-4 cell and blastula stage comparing with larval stage (P<0.01), which suggested they might be maternal genes. They also showed a certain degree of sexually dimorphic expression in some tissues. Notably, the highest expression of EsFem-1a was in the hepatopancreas, with EsFem-1b in testes and EsFem-1c in muscle (P<0.05), which indicated their potential role in a broad array of tissues. In addition, the genes initially involved in sex differentiation were not limited to those specifically expressed in the developing gonad. Taken together, these results suggested that EsFem-1 might function in crab early sex determination and late gonad development. The identification of Fem-1 gene family in E. sinensis provides a new insight into crab sex-determination mechanism.
Collapse
|
10
|
Sequencing and De Novo Assembly of the Gonadal Transcriptome of the Endangered Chinese Sturgeon (Acipenser sinensis). PLoS One 2015; 10:e0127332. [PMID: 26030930 PMCID: PMC4452307 DOI: 10.1371/journal.pone.0127332] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/14/2015] [Indexed: 11/22/2022] Open
Abstract
Background The Chinese sturgeon (Acipenser sinensis) is endangered through anthropogenic activities including over-fishing, damming, shipping, and pollution. Controlled reproduction has been adopted and successfully conducted for conservation. However, little information is available on the reproductive regulation of the species. In this study, we conducted de novo transcriptome assembly of the gonad tissue to create a comprehensive dataset for A. sinensis. Results The Illumina sequencing platform was adopted to obtain 47,333,701 and 47,229,705 high quality reads from testis and ovary cDNA libraries generated from three-year-old A. sinensis. We identified 86,027 unigenes of which 30,268 were annotated in the NCBI non-redundant protein database and 28,281 were annotated in the Swiss-prot database. Among the annotated unigenes, 26,152 and 7,734 unigenes, respectively, were assigned to gene ontology categories and clusters of orthologous groups. In addition, 12,557 unigenes were mapped to 231 pathways in the Kyoto Encyclopedia of Genes and Genomes Pathway database. A total of 1,896 unigenes, potentially differentially expressed between the two gonad types, were found, with 1,894 predicted to be up-regulated in ovary and only two in testis. Fifty-five potential gametogenesis-related genes were screened in the transcriptome and 34 genes with significant matches were found. Besides, more paralogs of 11 genes in three gene families (sox, apolipoprotein and cyclin) were found in A. sinensis compared to their orthologs in the diploid Danio rerio. In addition, 12,151 putative simple sequence repeats (SSRs) were detected. Conclusions This study provides the first de novo transcriptome analysis currently available for A. sinensis. The transcriptomic data represents the fundamental resource for future research on the mechanism of early gametogenesis in sturgeons. The SSRs identified in this work will be valuable for assessment of genetic diversity of wild fish and genealogy management of cultured fish.
Collapse
|
11
|
Teaniniuraitemoana V, Huvet A, Levy P, Klopp C, Lhuillier E, Gaertner-Mazouni N, Gueguen Y, Le Moullac G. Gonad transcriptome analysis of pearl oyster Pinctada margaritifera: identification of potential sex differentiation and sex determining genes. BMC Genomics 2014; 15:491. [PMID: 24942841 PMCID: PMC4082630 DOI: 10.1186/1471-2164-15-491] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Black pearl farming is based on culture of the blacklip pearl oyster Pinctada margaritifera (Mollusca, lophotrochozoa), a protandrous hermaphrodite species. At first maturation, all individuals are males. The female sex appears progressively from two years old, which represents a limitation for broodstock conditioning for aquaculture production. In marine mollusks displaying hermaphroditic features, data on sexual determinism and differentiation, including the molecular sex determining cascade, are scarce. To increase genomic resources and identify the molecular mechanisms whereby gene expression may act in the sexual dimorphism of P. margaritifera, we performed gonad transcriptome analysis. RESULTS The gonad transcriptome of P. margaritifera was sequenced from several gonadic samples of males and females at different development stages, using a Next-Generation-Sequencing method and RNAseq technology. After Illumina sequencing, assembly and annotation, we obtained 70,147 contigs of which 62.2% shared homologies with existing protein sequences, and 9% showed functional annotation with Gene Ontology terms. Differential expression analysis identified 1,993 differentially expressed contigs between the different categories of gonads. Clustering methods of samples revealed that the sex explained most of the variation in gonad gene expression. K-means clustering of differentially expressed contigs showed 815 and 574 contigs were more expressed in male and female gonads, respectively. The analysis of these contigs revealed the presence of known specific genes coding for proteins involved in sex determinism and/or differentiation, such as dmrt and fem-1 like for males, or foxl2 and vitellogenin for females. The specific gene expression profiles of pmarg-fem1-like, pmarg-dmrt and pmarg-foxl2 in different reproductive stages (undetermined, sexual inversion and regression) suggest that these three genes are potentially involved in the sperm-oocyte switch in P. margaritifera. CONCLUSIONS The study provides a new transcriptomic tool to study reproduction in hermaphroditic marine mollusks. It identifies sex differentiation and potential sex determining genes in P. margaritifera, a protandrous hermaphrodite species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gilles Le Moullac
- Ifremer, UMR 241 EIO, Labex CORAIL, BP 7004, 98719 Taravao, Tahiti, Polynésie Française.
| |
Collapse
|
12
|
Sun TP, Shieh SY. Human FEM1B is required for Rad9 recruitment and CHK1 activation in response to replication stress. Oncogene 2009; 28:1971-81. [DOI: 10.1038/onc.2009.58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Goodarzi MO, Maher JF, Cui J, Guo X, Taylor KD, Azziz R. FEM1A and FEM1B: novel candidate genes for polycystic ovary syndrome. Hum Reprod 2008; 23:2842-9. [PMID: 18757445 DOI: 10.1093/humrep/den324] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human homologs (FEM1A, FEM1B, FEM1C) of nematode sex determination genes are candidate genes for polycystic ovary syndrome (PCOS). We previously identified a FEM1A mutation (H500Y) in a woman with PCOS; FEM1B has been implicated in insulin secretion. METHODS Women with and without PCOS (287 cases, 187 controls) were genotyped for H500Y and six FEM1A single nucleotide polymorphisms (SNPs), five FEM1B SNPs and five FEM1C SNPs. SNPs and haplotypes were determined and tested for association with PCOS and component phenotypes. RESULTS No subject carried the FEM1A H500Y mutation. FEM1A SNPs rs8111933 (P = 0.001) and rs12460989 (P = 0.046) were associated with an increased likelihood of PCOS whereas FEM1A SNP rs1044386 was associated with a reduced probability of PCOS (P = 0.013). FEM1B SNP rs10152450 and a linked SNP were associated with a reduced likelihood of PCOS (P = 0.005), and lower homeostasis model assessment (HOMA) for beta-cell function (HOMA-%B, P = 0.011) and lower HOMA for insulin resistance (HOMA-IR, P = 0.018). FEM1B SNP rs12909277 was associated with lower HOMA-%B (P = 0.008) and lower HOMA-IR (P = 0.037). Haplotype associations were consistent with SNP results, and also revealed association of FEM1B haplotype TGAGG with increased HOMA-%B (P = 0.007) and HOMA-IR (P = 0.024). FEM1C variants were not associated with PCOS. CONCLUSIONS This study presents evidence suggesting a role for FEM1A and FEM1B in the pathogenesis of PCOS. Only FEM1B variants were associated with insulin-related traits in PCOS women, consistent with prior evidence linking this gene to insulin secretion. Replication of these associations and mechanistic studies will be necessary to establish the role of these genes in PCOS.
Collapse
Affiliation(s)
- M O Goodarzi
- Department of Medicine, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lu D, Ventura-Holman T, Li J, McMurray RW, Subauste JS, Maher JF. Abnormal glucose homeostasis and pancreatic islet function in mice with inactivation of the Fem1b gene. Mol Cell Biol 2005; 25:6570-7. [PMID: 16024793 PMCID: PMC1190348 DOI: 10.1128/mcb.25.15.6570-6577.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus is a disorder of glucose homeostasis involving complex gene and environmental interactions that are incompletely understood. Mammalian homologs of nematode sex determination genes have recently been implicated in glucose homeostasis and type 2 diabetes mellitus. These are the Hedgehog receptor Patched and Calpain-10, which have homology to the nematode tra-2 and tra-3 sex determination genes, respectively. Here, we have developed Fem1b knockout (Fem1b-KO) mice, with targeted inactivation of Fem1b, a homolog of the nematode fem-1 sex determination gene. We show that the Fem1b-KO mice display abnormal glucose tolerance and that this is due predominantly to defective glucose-stimulated insulin secretion. Arginine-stimulated insulin secretion is also affected. The Fem1b gene is expressed in pancreatic islets, within both beta cells and non-beta cells, and is highly expressed in INS-1E cells, a pancreatic beta-cell line. In conclusion, these data implicate Fem1b in pancreatic islet function and insulin secretion, strengthening evidence that a genetic pathway homologous to nematode sex determination may be involved in glucose homeostasis and suggesting novel genes and processes as potential candidates in the pathogenesis of diabetes mellitus.
Collapse
Affiliation(s)
- Deyin Lu
- Veterans Affairs Medical Center-Research Svc. (151), 1500 E. Woodrow Wilson Blvd., Jackson, MS 39216, USA
| | | | | | | | | | | |
Collapse
|
15
|
Oyhenart J, Benichou S, Raich N. Putative Homeodomain Transcription Factor 1 Interacts with the Feminization Factor Homolog Fem1b in Male Germ Cells1. Biol Reprod 2005; 72:780-7. [PMID: 15601915 DOI: 10.1095/biolreprod.104.035964] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The Phtf1 gene encodes a membrane protein abundantly expressed in male germinal cells. Using a two-hybrid screening procedure we have identified FEM1B, an ortholog of the C. elegans feminization factor 1 (FEM-1), as a binding partner for PHTF1. We studied FEM1B expression in the rodent testis and found that Fem1b mRNA is present at high levels during meiosis and after, during spermiogenesis, in a similar manner to Phtf1 mRNA. Accordingly, Western blot and immunofluorescence revealed the presence of PHTF1 and FEM1B in the same cell types, and by coimmunoprecipitation we demonstrated the association between these proteins. We characterized some aspects of this interaction and showed that the ANK domain of FEM1B is necessary for the interaction with the amino extremity of PHTF1. Next, we found that FEM1B can bind several intracellular organelles and demonstrated that PHTF1 would recruit FEM1B to the endoplasmic reticulum membrane. Previous in vitro experiments had suggested that the human FEM1B was involved in apoptosis. After comparing expression profiles of FEM1B and PHTF1 with apoptotic events occurring in the normal seminiferous tubules, we suggest that neither FEM1B nor PHTF1 are directly implicated in apoptosis in this tissue.
Collapse
Affiliation(s)
- J Oyhenart
- INSERM U.567 CNRS-UMR 8104, Département d'Hématologie, Maternité de Port-Royal
| | | | | |
Collapse
|
16
|
Kajiwara H, Ito Y, Imamaki A, Nakamura M, Mita K, Ishizaka M. Protein profile of silkworm midgut of fifth-instar day-3 larvae. ACTA ACUST UNITED AC 2005. [DOI: 10.2198/jelectroph.49.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Hardy MP, McGGettrick AF, O'Neill LAJ. Transcriptional regulation of the human TRIF (TIR domain-containing adaptor protein inducing interferon beta) gene. Biochem J 2004; 380:83-93. [PMID: 14960149 PMCID: PMC1224148 DOI: 10.1042/bj20040030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/06/2004] [Accepted: 02/09/2004] [Indexed: 01/24/2023]
Abstract
TRIF [TIR (Toll/interleukin-1 receptor) domain-containing adaptor protein inducing interferon beta; also known as TICAM-1 (TIR-containing adaptor molecule-1)] is a key adaptor for TLR3 (Toll-like receptor 3)- and TLR4-mediated signalling. We have performed a detailed annotation of the human TRIF gene and fine analysis of the basal and inducible promoter elements lying 5' to the site of initiation of transcription. Human TRIF maps to chromosome 19p13.3 and is flanked upstream by TIP47, which encodes the mannose 6-phosphate receptor binding protein, and downstream by a gene encoding FEM1a, a human homologue of the Caenorhabditis elegans Feminisation-1 gene. Using promoter-reporter deletion constructs, we identified a distal region with the ability to negatively regulate basal transcription and a proximal region containing an Sp1 (stimulating protein 1) site that confers approx. 75% of basal transcriptional activity. TRIF expression can be induced by multiple stimuli, such as the ligands for TLR2, TLR3 and TLR4, and by the pro-inflammatory cytokines tumour necrosis factor alpha and interleukin-1alpha. All of these stimuli act via an NF-kappaB (nuclear factor-kappaB) motif at position -127. In spite of the presence of a STAT1 (signal transduction and activators of transcription 1) motif at position -330, the addition of type I or type II interferon had no effect on TRIF activity. The human TRIF gene would therefore appear to be regulated primarily by NF-kappaB.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/biosynthesis
- Adaptor Proteins, Vesicular Transport/genetics
- Animals
- Base Sequence
- Binding Sites
- Cells, Cultured
- Chromosome Mapping
- Chromosomes, Human, Pair 19/genetics
- Gene Expression Regulation
- Humans
- Interleukin-1/physiology
- Luciferases/genetics
- Membrane Glycoproteins/physiology
- Mice
- Molecular Sequence Data
- NF-kappa B/physiology
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- Receptors, Cell Surface/physiology
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Sp1 Transcription Factor/physiology
- Toll-Like Receptor 2
- Toll-Like Receptor 3
- Toll-Like Receptor 4
- Toll-Like Receptors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Matthew P Hardy
- Department of Biochemistry and Biotechnology Institute, Trinity College, University of Dublin, College Green, Dublin 2, Ireland.
| | | | | |
Collapse
|
18
|
Schlamp CL, Thliveris AT, Li Y, Kohl LP, Knop C, Dietz JA, Larsen IV, Imesch P, Pinto LH, Nickells RW. Insertion of the beta Geo promoter trap into the Fem1c gene of ROSA3 mice. Mol Cell Biol 2004; 24:3794-803. [PMID: 15082774 PMCID: PMC387761 DOI: 10.1128/mcb.24.9.3794-3803.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ROSA3 mice were developed by retroviral insertion of the beta Geo gene trap vector. Adult ROSA3 mice exhibit widespread expression of the trap gene in epithelial cells found in most organs. In the central nervous system the highest expression of beta Geo is found in CA1 pyramidal cells of the hippocampus, Purkinje cells of the cerebellum, and ganglion cells of the retina. Characterization of the genomic insertion site for beta Geo in ROSA3 mice shows that the trap vector is located in the first intron of Fem1c, a gene homologous to the sex-determining gene fem-1 of Caenorhabditis elegans. Transcription of the Rosa3 allele (R3) yields a spliced message that includes the first exon of Fem1c and the beta Geo coding region. Although normal processing of the Fem1c transcript is disrupted in homozygous Rosa3 (Fem1c(R3/R3)) mice, some tissues show low levels of a partially processed transcript containing exons 2 and 3. Since the entire coding region of Fem1c is located in these two exons, Fem1c(R3/R3) mice may still be able to express a putative FEM1C protein. To this extent, Fem1c(R3/R3) mice show no adverse effects in their sexual development or fertility or in the attenuation of neuronal cell death, another function that has been attributed to both fem-1 and a second mouse homolog, Fem1b. Examination of beta Geo expression in ganglion cells after exposure to damaging stimuli indicates that protein levels are rapidly depleted prior to cell death, making the beta Geo reporter gene a potentially useful marker to study early molecular events in damaged neurons.
Collapse
Affiliation(s)
- Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin 53704, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ventura-Holman T, Lu D, Si X, Izevbigie EB, Maher JF. The Fem1c genes: conserved members of the Fem1 gene family in vertebrates. Gene 2003; 314:133-9. [PMID: 14527725 DOI: 10.1016/s0378-1119(03)00712-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fem-1 gene of Caenorhabditis elegans functions in a signaling pathway that controls sex determination. Homologs of fem-1 in mammals have been characterized, consisting of two family members, Fem1a and Fem1b. We report here on Fem1c, a third member of the Fem1 gene family, in three vertebrate species: human, mouse, and zebrafish. The proteins encoded by these Fem1c genes share >99% amino acid identity between human and mouse, 79% amino acid identity between mouse and zebrafish, and end with a C-terminal Arginine residue, which distinguishes them from other FEM-1 proteins reported thus far. The human and mouse Fem1c coding regions show conservation of intron-exon structure and expression pattern in adult tissues. Human FEM1C maps to 5q22, mouse Fem1c maps to chromosome 18, and zebrafish fem1c maps to Linkage Group 8. The Fem1c genes in vertebrates may play a conserved role in the development and/or physiologic function of these organisms.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Human, Pair 5/genetics
- Cloning, Molecular
- Conserved Sequence/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Female
- Gene Expression
- Genes/genetics
- Humans
- Introns
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Ubiquitin-Protein Ligase Complexes
- Vertebrates/genetics
- Zebrafish/genetics
Collapse
Affiliation(s)
- Tereza Ventura-Holman
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | |
Collapse
|