1
|
Łopusińska A, Farhat M, Cieśla M. Functional suppression of a yeast maf1 deletion mutant by overdose of the N-terminal fragment of the largest RNA polymerase III subunit, C160. Gene 2024; 930:148839. [PMID: 39142551 DOI: 10.1016/j.gene.2024.148839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Maf1 is a general and global negative regulator of RNA polymerase III (Pol III) transcription. Under repressive conditions, Maf1 binds directly to the Pol III complex and sequesters Pol III elements that are involved in transcription initiation. To further understand Pol III regulation, we searched for genetic bypass suppressors of a maf1 deletion mutant (maf1Δ) of Saccharomyces cerevisiae. Strains that carried maf1Δ were temperature-sensitive on media that contained nonfermentable carbon sources and showed the antisuppressor phenotype. Suppressors allowed colonies to grow at the restrictive temperature on glycerol media and partially complemented the antisuppressor phenotype of maf1Δ. DNA plasmids that were identified as overdose suppressors encoded N-terminal fragments of the largest Pol III subunit, C160 of various lengths. The shortest fragment, 372 amino acids long, the overdose of which partially complemented the antisuppressor phenotype and temperature-sensitive respiratory growth of maf1Δ, was named C160-NTF. In this study, we showed that the expression of HA-tagged C160-NTF resulted in accumulation of approximately 40 kDa protein that was distributed throughout the yeast cell, in the cytoplasm and nucleus. The overdose of C160-NTF led to decrease of tRNA transcription in maf1Δ mutant cells, demonstrating functional suppression. Levels of newly synthesized individual tRNAs and Pol III occupancies on tRNA genes were decreased by C160-NTF in the maf1Δ mutant. Additionally, we analyzed the effect of C160-NTF overproduction and the presence of Maf1 on the associations among Pol III subunits. Previous structural analyzes of Pol III have indicated that the N-terminal region of C160 interacts with the C82-34-31 heterotrimeric Pol III subcomplex. We suggest that the negative effect of C160-NTF overdose on tRNA transcription is related to defective Pol III assembly, because overproduction of C160-NTF altered C160 interactions with C34 and C82 in the maf1Δ mutant.
Collapse
Affiliation(s)
- Aleksandra Łopusińska
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Malak Farhat
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Cieśla
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Tsang CK, Zheng XS. Role of RNA polymerase III transcription and regulation in ischaemic stroke. RNA Biol 2024; 21:1-10. [PMID: 39363536 PMCID: PMC11457610 DOI: 10.1080/15476286.2024.2409554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Ischaemic stroke is a leading cause of death and life-long disability due to neuronal cell death resulting from interruption of glucose and oxygen supplies. RNA polymerase III (Pol III)-dependent transcription plays a central role in protein synthesis that is necessary for normal cerebral neuronal functions, and the survival and recovery under pathological conditions. Notably, Pol III transcription is highly sensitive to ischaemic stress that is known to rapidly shut down Pol III transcriptional activity. However, its precise role in ischaemic stroke, especially during the acute and recovery phases, remains poorly understood. The microenvironment within the ischaemic brain undergoes dynamic changes in different phases after stroke. Emerging evidence highlights the distinct roles of Pol III transcription in neuroprotection during the acute phase and repair during the recovery phase of stroke. Additionally, investigations into the mTOR-MAF1 signalling pathway, a conserved regulator of Pol-III transcription, reveal its therapeutic potential in enhancing acute phase neuroprotection and recovery phase repair.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - X.F. Steven Zheng
- Rutgers Cancer Institute, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
3
|
van Breugel ME, van Kruijsbergen I, Mittal C, Lieftink C, Brouwer I, van den Brand T, Kluin RJC, Hoekman L, Menezes RX, van Welsem T, Del Cortona A, Malik M, Beijersbergen RL, Lenstra TL, Verstrepen KJ, Pugh BF, van Leeuwen F. Locus-specific proteome decoding reveals Fpt1 as a chromatin-associated negative regulator of RNA polymerase III assembly. Mol Cell 2023; 83:4205-4221.e9. [PMID: 37995691 PMCID: PMC11289708 DOI: 10.1016/j.molcel.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Transcription of tRNA genes by RNA polymerase III (RNAPIII) is tuned by signaling cascades. The emerging notion of differential tRNA gene regulation implies the existence of additional regulatory mechanisms. However, tRNA gene-specific regulators have not been described. Decoding the local chromatin proteome of a native tRNA gene in yeast revealed reprogramming of the RNAPIII transcription machinery upon nutrient perturbation. Among the dynamic proteins, we identified Fpt1, a protein of unknown function that uniquely occupied RNAPIII-regulated genes. Fpt1 binding at tRNA genes correlated with the efficiency of RNAPIII eviction upon nutrient perturbation and required the transcription factors TFIIIB and TFIIIC but not RNAPIII. In the absence of Fpt1, eviction of RNAPIII was reduced, and the shutdown of ribosome biogenesis genes was impaired upon nutrient perturbation. Our findings provide support for a chromatin-associated mechanism required for RNAPIII eviction from tRNA genes and tuning the physiological response to changing metabolic demands.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Chitvan Mittal
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ineke Brouwer
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066 CX, the Netherlands
| | - Teun van den Brand
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Renée X Menezes
- Biostatistics Centre and Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Andrea Del Cortona
- VIB-KU Leuven Center for Microbiology, KU Leuven, 3001 Heverlee-Leuven, Belgium
| | - Muddassir Malik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis and Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Genomics Core Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066 CX, the Netherlands
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, KU Leuven, 3001 Heverlee-Leuven, Belgium
| | - B Franklin Pugh
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
4
|
Porat J, Vakiloroayaei A, Remnant BM, Talebi M, Cargill T, Bayfield MA. Crosstalk between the tRNA methyltransferase Trm1 and RNA chaperone La influences eukaryotic tRNA maturation. J Biol Chem 2023; 299:105326. [PMID: 37805140 PMCID: PMC10652106 DOI: 10.1016/j.jbc.2023.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
tRNAs undergo an extensive maturation process involving posttranscriptional modifications often associated with tRNA structural stability and promoting the native fold. Impaired posttranscriptional modification has been linked to human disease, likely through defects in translation, mitochondrial function, and increased susceptibility to degradation by various tRNA decay pathways. More recently, evidence has emerged that bacterial tRNA modification enzymes can act as tRNA chaperones to guide tRNA folding in a manner independent from catalytic activity. Here, we provide evidence that the fission yeast tRNA methyltransferase Trm1, which dimethylates nuclear- and mitochondrial-encoded tRNAs at G26, can also promote tRNA functionality in the absence of catalysis. We show that WT and catalytic-dead Trm1 are active in an in vivo tRNA-mediated suppression assay and possess RNA strand annealing and dissociation activity in vitro, similar to previously characterized RNA chaperones. Trm1 and the RNA chaperone La have previously been proposed to function synergistically in promoting tRNA maturation, yet we surprisingly demonstrate that La binding to nascent pre-tRNAs decreases Trm1 tRNA dimethylation in vivo and in vitro. Collectively, these results support the hypothesis for tRNA modification enzymes that combine catalytic and noncatalytic activities to promote tRNA maturation, as well as expand our understanding of how La function can influence tRNA modification.
Collapse
|
5
|
Szatkowska R, Furmanek E, Kierzek AM, Ludwig C, Adamczyk M. Mitochondrial Metabolism in the Spotlight: Maintaining Balanced RNAP III Activity Ensures Cellular Homeostasis. Int J Mol Sci 2023; 24:14763. [PMID: 37834211 PMCID: PMC10572830 DOI: 10.3390/ijms241914763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
RNA polymerase III (RNAP III) holoenzyme activity and the processing of its products have been linked to several metabolic dysfunctions in lower and higher eukaryotes. Alterations in the activity of RNAP III-driven synthesis of non-coding RNA cause extensive changes in glucose metabolism. Increased RNAP III activity in the S. cerevisiae maf1Δ strain is lethal when grown on a non-fermentable carbon source. This lethal phenotype is suppressed by reducing tRNA synthesis. Neither the cause of the lack of growth nor the underlying molecular mechanism have been deciphered, and this area has been awaiting scientific explanation for a decade. Our previous proteomics data suggested mitochondrial dysfunction in the strain. Using model mutant strains maf1Δ (with increased tRNA abundance) and rpc128-1007 (with reduced tRNA abundance), we collected data showing major changes in the TCA cycle metabolism of the mutants that explain the phenotypic observations. Based on 13C flux data and analysis of TCA enzyme activities, the present study identifies the flux constraints in the mitochondrial metabolic network. The lack of growth is associated with a decrease in TCA cycle activity and downregulation of the flux towards glutamate, aspartate and phosphoenolpyruvate (PEP), the metabolic intermediate feeding the gluconeogenic pathway. rpc128-1007, the strain that is unable to increase tRNA synthesis due to a mutation in the C128 subunit, has increased TCA cycle activity under non-fermentable conditions. To summarize, cells with non-optimal activity of RNAP III undergo substantial adaptation to a new metabolic state, which makes them vulnerable under specific growth conditions. Our results strongly suggest that balanced, non-coding RNA synthesis that is coupled to glucose signaling is a fundamental requirement to sustain a cell's intracellular homeostasis and flexibility under changing growth conditions. The presented results provide insight into the possible role of RNAP III in the mitochondrial metabolism of other cell types.
Collapse
Affiliation(s)
- Roza Szatkowska
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| | - Emil Furmanek
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| | - Andrzej M. Kierzek
- Certara UK Limited, Sheffield S1 2BJ, UK;
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| |
Collapse
|
6
|
Tsang CK, Mi Q, Su G, Hwa Lee G, Xie X, D'Arcangelo G, Huang L, Steven Zheng XF. Maf1 is an intrinsic suppressor against spontaneous neural repair and functional recovery after ischemic stroke. J Adv Res 2023; 51:73-90. [PMID: 36402285 PMCID: PMC10491990 DOI: 10.1016/j.jare.2022.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Spontaneous recovery after CNS injury is often very limited and incomplete, leaving most stroke patients with permanent disability. Maf1 is known as a key growth suppressor in proliferating cells. However, its role in neuronal cells after stroke remains unclear. OBJECTIVE We aimed to investigate the mechanistic role of Maf1 in spontaneous neural repair and evaluated the therapeutic effect of targeting Maf1 on stroke recovery. METHODS We used mouse primary neurons to determine the signaling mechanism of Maf1, and the cleavage-under-targets-and-tagmentation-sequencing to map the whole-genome promoter binding sites of Maf1 in isolated mature cortical neurons. Photothrombotic stroke model was used to determine the therapeutic effect on neural repair and functional recovery by AAV-mediated Maf1 knockdown. RESULTS We found that Maf1 mediates mTOR signaling to regulate RNA polymerase III (Pol III)-dependent rRNA and tRNA transcription in mouse cortical neurons. mTOR regulates neuronal Maf1 phosphorylation and subcellular localization. Maf1 knockdown significantly increases Pol III transcription, neurite outgrowth and dendritic spine formation in neurons. Conversely, Maf1 overexpression suppresses such activities. In response to photothrombotic stroke in mice, Maf1 expression is increased and accumulates in the nucleus of neurons in the peripheral region of infarcted cortex, which is the key region for neural remodeling and repair during spontaneous recovery. Intriguingly, Maf1 knockdown in the peri-infarct cortex significantly enhances neural plasticity and functional recovery. Mechanistically, Maf1 not only interacts with the promoters and represses Pol III-transcribed genes, but also those of CREB-associated genes that are critical for promoting plasticity during neurodevelopment and neural repair. CONCLUSION These findings indicate Maf1 as an intrinsic neural repair suppressor against regenerative capability of mature CNS neurons, and suggest that Maf1 is a potential therapeutic target for enhancing functional recovery after ischemic stroke and other CNS injuries.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Qiongjie Mi
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Guangpu Su
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Gum Hwa Lee
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xuemin Xie
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Li'an Huang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China; Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University Guangzhou, Guangdong, China.
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
7
|
Yague-Sanz C, Migeot V, Larochelle M, Bachand F, Wéry M, Morillon A, Hermand D. Chromatin remodeling by Pol II primes efficient Pol III transcription. Nat Commun 2023; 14:3587. [PMID: 37328480 PMCID: PMC10276017 DOI: 10.1038/s41467-023-39387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/09/2023] [Indexed: 06/18/2023] Open
Abstract
The packaging of the genetic material into chromatin imposes the remodeling of this barrier to allow efficient transcription. RNA polymerase II activity is coupled with several histone modification complexes that enforce remodeling. How RNA polymerase III (Pol III) counteracts the inhibitory effect of chromatin is unknown. We report here a mechanism where RNA Polymerase II (Pol II) transcription is required to prime and maintain nucleosome depletion at Pol III loci and contributes to efficient Pol III recruitment upon re-initiation of growth from stationary phase in Fission yeast. The Pcr1 transcription factor participates in the recruitment of Pol II, which affects local histone occupancy through the associated SAGA complex and a Pol II phospho-S2 CTD / Mst2 pathway. These data expand the central role of Pol II in gene expression beyond mRNA synthesis.
Collapse
Affiliation(s)
- Carlo Yague-Sanz
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur, 5000, Belgium
| | - Valérie Migeot
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur, 5000, Belgium
| | - Marc Larochelle
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Maxime Wéry
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL Research University, Université Pierre et Marie Curie, CNRS UMR 3244, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL Research University, Université Pierre et Marie Curie, CNRS UMR 3244, Paris, France
| | - Damien Hermand
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur, 5000, Belgium.
| |
Collapse
|
8
|
Jacobs RQ, Carter ZI, Lucius AL, Schneider DA. Uncovering the mechanisms of transcription elongation by eukaryotic RNA polymerases I, II, and III. iScience 2022; 25:105306. [PMID: 36304104 PMCID: PMC9593817 DOI: 10.1016/j.isci.2022.105306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/01/2022] Open
Abstract
Eukaryotes express three nuclear RNA polymerases (Pols I, II, and III) that are essential for cell survival. Despite extensive investigation of the three Pols, significant knowledge gaps regarding their biochemical properties remain because each Pol has been evaluated independently under disparate experimental conditions and methodologies. To advance our understanding of the Pols, we employed identical in vitro transcription assays for direct comparison of their elongation rates, elongation complex (EC) stabilities, and fidelities. Pol I is the fastest, most likely to misincorporate, forms the least stable EC, and is most sensitive to alterations in reaction buffers. Pol II is the slowest of the Pols, forms the most stable EC, and negligibly misincorporated an incorrect nucleotide. The enzymatic properties of Pol III were intermediate between Pols I and II in all assays examined. These results reveal unique enzymatic characteristics of the Pols that provide new insights into their evolutionary divergence.
Collapse
Affiliation(s)
- Ruth Q. Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zachariah I. Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Wang Q, Daiß JL, Xu Y, Engel C. Snapshots of RNA polymerase III in action - A mini review. Gene 2022; 821:146282. [PMID: 35149153 DOI: 10.1016/j.gene.2022.146282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
RNA polymerase (Pol) III is responsible for the transcription of tRNAs, 5S rRNA, U6 snRNA, and other non-coding RNAs. Transcription factors such as TFIIIA, -B, -C, SNAPc, and Maf1 are required for promoter recognition, promoter opening, and Pol III activity regulation. Recent developments in cryo-electron microscopy and advanced purification approaches for endogenous multi-subunit complexes accelerated structural studies resulting in detailed structural insights which allowed an in-depth understanding of the molecular mechanisms underlying Pol III transcription. Here, we summarize structural data on Pol III and its regulating factors providing a three-dimensional framework to guide further analysis of RNA polymerase III.
Collapse
Affiliation(s)
- Qianmin Wang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China; Present address: Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Youwei Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
10
|
Blayney J, Geary J, Chrisp R, Violet J, Barratt L, Tavukçu L, Paine K, Vaistij FE, Graham IA, Denby KJ, White RJ. Impact on Arabidopsis growth and stress resistance of depleting the Maf1 repressor of RNA polymerase III. Gene 2022; 815:146130. [PMID: 35017035 DOI: 10.1016/j.gene.2021.146130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Maf1 is a transcription factor that is conserved in sequence and structure between yeasts, animals and plants. Its principal molecular function is also well conserved, being to bind and repress RNA polymerase (pol) III, thereby inhibiting synthesis of tRNAs and other noncoding RNAs. Restrictions on tRNA production and hence protein synthesis can provide a mechanism to preserve resources under conditions that are suboptimal for growth. Accordingly, Maf1 is found in some organisms to influence growth and/or stress survival. Because of their sessile nature, plants are especially vulnerable to environmental changes and molecular adaptations that enhance growth under benign circumstances can increase sensitivity to external challenges. We tested if Maf1 depletion in the model plant Arabidopsis affects growth, pathogen resistance and tolerance of drought or soil salinity, a common physiological challenge that imposes both osmotic and ionic stress. We find that disruption of the Maf1 gene or RNAi-mediated depletion of its transcript is well-tolerated and confers a modest growth advantage without compromising resistance to common biotic and abiotic challenges.
Collapse
Affiliation(s)
- Joseph Blayney
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - James Geary
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ruby Chrisp
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Joseph Violet
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Liam Barratt
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Laçin Tavukçu
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katherine Paine
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ian A Graham
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katherine J Denby
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
11
|
Hammerquist AM, Escorcia W, Curran SP. Maf1 regulates intracellular lipid homeostasis in response to DNA damage response activation. Mol Biol Cell 2021; 32:1086-1093. [PMID: 33788576 PMCID: PMC8351542 DOI: 10.1091/mbc.e20-06-0378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Surveillance of DNA damage and maintenance of lipid metabolism are critical factors for general cellular homeostasis. We discovered that in response to DNA damage–inducing UV light exposure, intact Caenorhabditis elegans accumulate intracellular lipids in a dose-dependent manner. The increase in intracellular lipids in response to exposure to UV light utilizes mafr-1, a negative regulator of RNA polymerase III and the apical kinases atm-1 and atl-1 of the DNA damage response (DDR) pathway. In the absence of exposure to UV light, the genetic ablation of mafr-1 results in the activation of the DDR, including increased intracellular lipid accumulation, phosphorylation of ATM/ATR target proteins, and expression of the Bcl-2 homology region genes, egl-1 and ced-13. Taken together, our results reveal mafr-1 as a component the DDR pathway response to regulating lipid homeostasis following exposure to UV genotoxic stress.
Collapse
Affiliation(s)
- Amy M Hammerquist
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089
| | - Wilber Escorcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.,Department of Biology, Xavier University, Cincinnati, OH 45207
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
12
|
Roles for the RNA polymerase III regulator MAFR-1 in regulating sperm quality in Caenorhabditis elegans. Sci Rep 2020; 10:19367. [PMID: 33168938 PMCID: PMC7652826 DOI: 10.1038/s41598-020-76423-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
The negative regulator of RNA polymerase (pol) III mafr-1 has been shown to affect RNA pol III transcript abundance, lipid biosynthesis and storage, progeny output, and lifespan. We deleted mafr-1 from the Caenorhabditis elegans genome and found that animals lacking mafr-1 replicated many phenotypes from previous RNAi-based studies and discovered a new sperm-specific role. Utilizing a yeast two-hybrid assay, we discovered several novel interactors of MAFR-1 that are expressed in a sperm- and germline-enriched manner. In support of a role for MAFR-1 in the male germline, we found mafr-1 null males have smaller spermatids that are less capable in competition for fertilization; a phenotype that was dependent on RNA pol III activity. Restoration of MAFR-1 expression specifically in the germline rescued the spermatid-related phenotypes, suggesting a cell autonomous role for MAFR-1 in nematode male fertility. Based on the high degree of conservation of Maf1 activity across species, our study may inform similar roles for Maf1 and RNA pol III in mammalian male fertility.
Collapse
|
13
|
Wang X, Rusin A, Walkey CJ, Lin JJ, Johnson DL. The RNA polymerase III repressor MAF1 is regulated by ubiquitin-dependent proteasome degradation and modulates cancer drug resistance and apoptosis. J Biol Chem 2019; 294:19255-19268. [PMID: 31645432 DOI: 10.1074/jbc.ra119.008849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
MAF1 homolog, negative regulator of RNA polymerase III (MAF1) is a key repressor of RNA polymerase (pol) III-dependent transcription and functions as a tumor suppressor. Its expression is frequently down-regulated in primary human hepatocellular carcinomas (HCCs). However, this reduction in MAF1 protein levels does not correlate with its transcript levels, indicating that MAF1 is regulated post-transcriptionally. Here, we demonstrate that MAF1 is a labile protein whose levels are regulated through the ubiquitin-dependent proteasome pathway. We found that MAF1 ubiquitination is enhanced upon mTOR complex 1 (TORC1)-mediated phosphorylation at Ser-75. Moreover, we observed that the E3 ubiquitin ligase cullin 2 (CUL2) critically regulates MAF1 ubiquitination and controls its stability and subsequent RNA pol III-dependent transcription. Analysis of the phenotypic consequences of modulating either CUL2 or MAF1 protein expression revealed changes in actin cytoskeleton reorganization and altered sensitivity to doxorubicin-induced apoptosis. Repression of RNA pol III-dependent transcription by chemical inhibition or knockdown of BRF1 RNA pol III transcription initiation factor subunit (BRF1) enhanced HCC cell sensitivity to doxorubicin, suggesting that MAF1 regulates doxorubicin resistance in HCC by controlling RNA pol III-dependent transcription. Together, our results identify the ubiquitin proteasome pathway and CUL2 as important regulators of MAF1 levels. They suggest that decreases in MAF1 protein underlie chemoresistance in HCC and perhaps other cancers and point to an important role for MAF1 and RNA pol III-mediated transcription in chemosensitivity and apoptosis.
Collapse
Affiliation(s)
- Xianlong Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandra Rusin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Christopher J Walkey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | - Deborah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
14
|
Szatkowska R, Garcia-Albornoz M, Roszkowska K, Holman SW, Furmanek E, Hubbard SJ, Beynon RJ, Adamczyk M. Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1. Biochem J 2019; 476:1053-1082. [PMID: 30885983 PMCID: PMC6448137 DOI: 10.1042/bcj20180701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux.
Collapse
Affiliation(s)
- Roza Szatkowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Manuel Garcia-Albornoz
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
| | - Katarzyna Roszkowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Stephen W Holman
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Emil Furmanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Simon J Hubbard
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Malgorzata Adamczyk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
15
|
Ahn CS, Lee DH, Pai HS. Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway. PLANTA 2019; 249:527-542. [PMID: 30293201 DOI: 10.1007/s00425-018-3024-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Maf1 repressor activity is critical for plant survival during environmental stresses, and is regulated by its phosphorylation/dephosphorylation through the activity of TOR and PP4/PP2A phosphatases. Maf1 is a global repressor of RNA polymerase III (Pol III), and is conserved in eukaryotes. Pol III synthesizes small RNAs, 5S rRNA, and tRNAs that are essential for protein translation and cell growth. Maf1 is a phosphoprotein and dephosphorylation of Maf1 promotes its repressor activity in yeast and mammals. Plant Maf1 was identified in citrus plants as a canker elicitor-binding protein, and citrus Maf1 represses cell growth associated with canker development. However, functions of plant Maf1 under diverse stress conditions and its regulation by the target of rapamycin (TOR) signaling components are poorly understood. In this study, the Arabidopsis maf1 mutants were more susceptible to diverse stresses and treatment with the TOR inhibitor Torin-1 than wild-type plants. The maf1 mutants expressed higher levels of Maf1 target RNAs, including 5S rRNA and pre-tRNAs in leaf cells, supporting Pol III repressor activity of Arabidopsis Maf1. Cellular stresses and Torin-1 treatment induced dephosphorylation of Maf1, suggesting Maf1 activation under diverse stress conditions. TOR silencing also stimulated Maf1 dephosphorylation, while silencing of catalytic subunit genes of PP4 and PP2A repressed it. Thus, TOR kinase and PP4/PP2A phosphatases appeared to oppositely modulate the Maf1 phosphorylation status. TOR silencing decreased the abundance of the target RNAs, while silencing of the PP4 and PP2A subunit genes increased it, supporting the positive correlation between Maf1 dephosphorylation and its repressor activity. Taken together, these results suggest that repressor activity of Maf1, regulated by the TOR signaling pathway, is critical for plant cell survival during environmental stresses.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- Future Technology Research Center, Corporate R&D, LG Chem/LG Science Park, Seoul, 07796, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
16
|
7-Methylguanosine Modifications in Transfer RNA (tRNA). Int J Mol Sci 2018; 19:ijms19124080. [PMID: 30562954 PMCID: PMC6320965 DOI: 10.3390/ijms19124080] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023] Open
Abstract
More than 90 different modified nucleosides have been identified in tRNA. Among the tRNA modifications, the 7-methylguanosine (m7G) modification is found widely in eubacteria, eukaryotes, and a few archaea. In most cases, the m7G modification occurs at position 46 in the variable region and is a product of tRNA (m7G46) methyltransferase. The m7G46 modification forms a tertiary base pair with C13-G22, and stabilizes the tRNA structure. A reaction mechanism for eubacterial tRNA m7G methyltransferase has been proposed based on the results of biochemical, bioinformatic, and structural studies. However, an experimentally determined mechanism of methyl-transfer remains to be ascertained. The physiological functions of m7G46 in tRNA have started to be determined over the past decade. For example, tRNA m7G46 or tRNA (m7G46) methyltransferase controls the amount of other tRNA modifications in thermophilic bacteria, contributes to the pathogenic infectivity, and is also associated with several diseases. In this review, information of tRNA m7G modifications and tRNA m7G methyltransferases is summarized and the differences in reaction mechanism between tRNA m7G methyltransferase and rRNA or mRNA m7G methylation enzyme are discussed.
Collapse
|
17
|
Chen CY, Lanz RB, Walkey CJ, Chang WH, Lu W, Johnson DL. Maf1 and Repression of RNA Polymerase III-Mediated Transcription Drive Adipocyte Differentiation. Cell Rep 2018; 24:1852-1864. [PMID: 30110641 PMCID: PMC6138453 DOI: 10.1016/j.celrep.2018.07.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/05/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
RNA polymerase (pol) III transcribes a variety of small untranslated RNAs involved in transcription, RNA processing, and translation. RNA pol III and its components are altered in various human developmental disorders, yet their roles in cell fate determination and development are poorly understood. Here we demonstrate that Maf1, a transcriptional repressor, promotes induction of mouse embryonic stem cells (mESCs) into mesoderm. Reduced Maf1 expression in mESCs and preadipocytes impairs adipogenesis, while ectopic Maf1 expression in Maf1-deficient cells enhances differentiation. RNA pol III repression by chemical inhibition or knockdown of Brf1 promotes adipogenesis. Altered RNA pol III-dependent transcription produces select changes in mRNAs with a significant enrichment of adipogenic gene signatures. Furthermore, RNA pol III-mediated transcription positively regulates long non-coding RNA H19 and Wnt6 expression, established adipogenesis inhibitors. Together, these studies reveal an important and unexpected function for RNA pol III-mediated transcription and Maf1 in mesoderm induction and adipocyte differentiation.
Collapse
Affiliation(s)
- Chun-Yuan Chen
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA; Department of Molecular and Cellular Biology and the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology and the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher J Walkey
- Department of Molecular and Cellular Biology and the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wen-Hsuan Chang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Wange Lu
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Deborah L Johnson
- Department of Molecular and Cellular Biology and the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Graczyk D, Cieśla M, Boguta M. Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:320-329. [DOI: 10.1016/j.bbagrm.2018.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 01/03/2023]
|
19
|
Arimbasseri GA. Interactions between RNAP III transcription machinery and tRNA processing factors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:354-360. [PMID: 29428193 DOI: 10.1016/j.bbagrm.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
Eukaryotes have at least three nuclear RNA polymerases to carry out transcription. While RNA polymerases I and II are responsible for ribosomal RNA transcription and messenger RNA transcription, respectively, RNA Polymerase III transcribes approximately up to 300 nt long noncoding RNAs, including tRNA. For all three RNAPs, the nascent transcripts generated undergo extensive post-transcriptional processing. Transcription of mRNAs by RNAP II and their processing are coupled with the aid of the C-terminal domain of the RNAP II. RNAP I transcription and the processing of its transcripts are co-localized to the nucleolus and to some extent, rRNA processing occurs co-transcriptionally. Here, I review the current evidence for the interaction between tRNA processing factors and RNA polymerase III. These interactions include the moonlighting functions of tRNA processing factors in RNAP III transcription and the indirect effect of tRNA transcription levels on tRNA modification machinery.
Collapse
Affiliation(s)
- G Aneeshkumar Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
20
|
Leśniewska E, Boguta M. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes. Open Biol 2017; 7:rsob.170001. [PMID: 28228471 PMCID: PMC5356446 DOI: 10.1098/rsob.170001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.
Collapse
Affiliation(s)
- Ewa Leśniewska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
21
|
Cai Y, Wei YH. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion. Oncotarget 2017; 7:10812-26. [PMID: 26934328 PMCID: PMC4905441 DOI: 10.18632/oncotarget.7769] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/18/2016] [Indexed: 01/09/2023] Open
Abstract
Maf1 is a conserved effector of the mechanistic target of rapamycin (mTOR), an aging promoting kinase. However, whether Maf1 is required for lifespan extension caused by mTOR inhibition, such as dietary restriction (DR) or calorie restriction (CR) remains elusive. Here we show that deletion of maf1 in the budding yeast S. cerevisiae but not mafr-1 in C. elegans prevents DR or CR to extend lifespan. Interestingly, mafr-1 deletion increases stress tolerance and extends lifespan. MAFR-1 is phosphorylated in a mTOR-dependent manner and mafr-1 deletion alleviates the inhibition of tRNA synthesis caused by reduced mTOR activity. We find that the opposite effect of mafr-1 deletion on lifespan is due to an enhancement of stress response, including oxidative stress response, mitochondrial unfolded protein response (UPRmt) and autophagy. mafr-1 deletion also attenuates the paralysis of a C. elegans model of Alzheimer's disease. Our study reveals distinct mechanisms of lifespan regulation by Maf1 and MAFR-1.
Collapse
Affiliation(s)
- Ying Cai
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yue-Hua Wei
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Windram OPF, Rodrigues RTL, Lee S, Haines M, Bayer TS. Engineering microbial phenotypes through rewiring of genetic networks. Nucleic Acids Res 2017; 45:4984-4993. [PMID: 28369627 PMCID: PMC5416768 DOI: 10.1093/nar/gkx197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/13/2017] [Indexed: 11/12/2022] Open
Abstract
The ability to program cellular behaviour is a major goal of synthetic biology, with applications in health, agriculture and chemicals production. Despite efforts to build 'orthogonal' systems, interactions between engineered genetic circuits and the endogenous regulatory network of a host cell can have a significant impact on desired functionality. We have developed a strategy to rewire the endogenous cellular regulatory network of yeast to enhance compatibility with synthetic protein and metabolite production. We found that introducing novel connections in the cellular regulatory network enabled us to increase the production of heterologous proteins and metabolites. This strategy is demonstrated in yeast strains that show significantly enhanced heterologous protein expression and higher titers of terpenoid production. Specifically, we found that the addition of transcriptional regulation between free radical induced signalling and nitrogen regulation provided robust improvement of protein production. Assessment of rewired networks revealed the importance of key topological features such as high betweenness centrality. The generation of rewired transcriptional networks, selection for specific phenotypes, and analysis of resulting library members is a powerful tool for engineering cellular behavior and may enable improved integration of heterologous protein and metabolite pathways.
Collapse
Affiliation(s)
- Oliver P F Windram
- Centre for Synthetic Biology and Innovation and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Rui T L Rodrigues
- Centre for Synthetic Biology and Innovation and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sangjin Lee
- Centre for Synthetic Biology and Innovation and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Matthew Haines
- Centre for Synthetic Biology and Innovation and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Travis S Bayer
- Centre for Synthetic Biology and Innovation and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
23
|
Soprano AS, Giuseppe POD, Shimo HM, Lima TB, Batista FAH, Righetto GL, Pereira JGDC, Granato DC, Nascimento AFZ, Gozzo FC, de Oliveira PSL, Figueira ACM, Smetana JHC, Paes Leme AF, Murakami MT, Benedetti CE. Crystal Structure and Regulation of the Citrus Pol III Repressor MAF1 by Auxin and Phosphorylation. Structure 2017; 25:1360-1370.e4. [PMID: 28781084 DOI: 10.1016/j.str.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/16/2017] [Accepted: 07/06/2017] [Indexed: 10/25/2022]
Abstract
MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure. CsMAF1 accumulated in the nucleolus upon leaf excision, and this translocation was inhibited by auxin and by mutation of the PKA phosphorylation site, S45, to aspartate. Additionally, mTOR phosphorylated recombinant CsMAF1 and the mTOR inhibitor AZD8055 blocked canker formation in normal but not CsMAF1-silenced plants. These results indicate that the role of TOR on cell growth induced by Xanthomonas citri depends on CsMAF1 and that auxin controls CsMAF1 interaction with Pol III in citrus.
Collapse
Affiliation(s)
- Adriana Santos Soprano
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Hugo Massayoshi Shimo
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Tatiani Brenelli Lima
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil; Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Fernanda Aparecida Heleno Batista
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Germanna Lima Righetto
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - José Geraldo de Carvalho Pereira
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Daniela Campos Granato
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Andrey Fabricio Ziem Nascimento
- XALOC Beamline, Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain; Structural Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Carrer Baldiri Reixac 15, 3 A17, 08028 Barcelona, Spain
| | - Fabio Cesar Gozzo
- Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Paulo Sérgio Lopes de Oliveira
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Mario Tyago Murakami
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, São Paulo, Brazil.
| |
Collapse
|
24
|
Li Y, Tsang CK, Wang S, Li X, Yang Y, Fu L, Huang W, Li M, Wang H, Zheng XS. MAF1 suppresses AKT-mTOR signaling and liver cancer through activation of PTEN transcription. Hepatology 2016; 63:1928-42. [PMID: 26910647 PMCID: PMC5021206 DOI: 10.1002/hep.28507] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED The phosphatidylinositol 3-kinase/phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase/protein kinase B/mammalian target of rapamycin (PI3K-PTEN-AKT-mTOR) pathway is a central controller of cell growth and a key driver for human cancer. MAF1 is an mTOR downstream effector and transcriptional repressor of ribosomal and transfer RNA genes. MAF1 expression is markedly reduced in hepatocellular carcinomas, which is correlated with disease progression and poor prognosis. Consistently, MAF1 displays tumor-suppressor activity toward in vitro and in vivo cancer models. Surprisingly, blocking the synthesis of ribosomal and transfer RNAs is insufficient to account for MAF1's tumor-suppressor function. Instead, MAF1 down-regulation paradoxically leads to activation of AKT-mTOR signaling, which is mediated by decreased PTEN expression. MAF1 binds to the PTEN promoter, enhancing PTEN promoter acetylation and activity. CONCLUSION In contrast to its canonical function as a transcriptional repressor, MAF1 can also act as a transcriptional activator for PTEN, which is important for MAF1's tumor-suppressor function. These results have implications in disease staging, prognostic prediction, and AKT-mTOR-targeted therapy in liver cancer. (Hepatology 2016;63:1928-1942).
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chi Kwan Tsang
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgersthe State University of New JerseyNew BrunswickNJ
| | - Suihai Wang
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Xiao‐Xing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ming Li
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Hui‐Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina,Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgersthe State University of New JerseyNew BrunswickNJ
| | - X.F. Steven Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina,Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgersthe State University of New JerseyNew BrunswickNJ
| |
Collapse
|
25
|
RNA Polymerase III Advances: Structural and tRNA Functional Views. Trends Biochem Sci 2016; 41:546-559. [PMID: 27068803 DOI: 10.1016/j.tibs.2016.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
RNA synthesis in eukaryotes is divided among three RNA polymerases (RNAPs). RNAP III transcribes hundreds of tRNA genes and fewer additional short RNA genes. We survey recent work on transcription by RNAP III including an atomic structure, mechanisms of action, interactions with chromatin and retroposons, and a conserved link between its activity and a tRNA modification that enhances mRNA decoding. Other new work suggests important mechanistic connections to oxidative stress, autoimmunity and cancer, embryonic stem cell pluripotency, and tissue-specific developmental effects. We consider that, for some of its complex functions, variation in RNAP III activity levels lead to nonuniform changes in tRNAs that can shift the translation profiles of key codon-biased mRNAs with resultant phenotypes or disease states.
Collapse
|
26
|
RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification. PLoS Genet 2015; 11:e1005671. [PMID: 26720005 PMCID: PMC4697793 DOI: 10.1371/journal.pgen.1005671] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022] Open
Abstract
Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP) III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR) that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m(2)2G26) modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m(2)2G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m(2)2G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m(2)2G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m(2)2G26 modification and that this response is conserved among highly divergent yeasts and human cells.
Collapse
|
27
|
Boguta M. Why Are tRNAs Overproduced in the Absence of Maf1, a Negative Regulator of RNAP III, Not Fully Functional? PLoS Genet 2015; 11:e1005743. [PMID: 26720418 PMCID: PMC4699899 DOI: 10.1371/journal.pgen.1005743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Warsaw, Poland
- * E-mail:
| |
Collapse
|
28
|
Mierzejewska J, Chreptowicz K. Lack of Maf1 enhances pyruvate kinase activity and fermentative metabolism while influencing lipid homeostasis in Saccharomyces cerevisiae. FEBS Lett 2015; 590:93-100. [PMID: 26787463 DOI: 10.1002/1873-3468.12033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
The Maf1 protein is a general negative repressor of RNA polymerase III, which is conserved in eukaryotes from yeast to humans. Herein, we show the yeast maf1Δ mutant increases pyruvate kinase activity, the key enzyme in glycolysis and an important player in switching between fermentative and oxidative metabolism. We observed enhanced ethanol production and elevated lipid content in the maf1Δ strain grown on glucose. However, after shifting to a non-fermentable carbon source, the opposite effect was observed, and the mutant cells accumulated smaller lipid droplets. Thus, it has been concluded that the Maf1 protein is essential for regulation of glucose metabolism and lipid homeostasis.
Collapse
Affiliation(s)
- Jolanta Mierzejewska
- Department of Drug Technology and Biotechnology, Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Karolina Chreptowicz
- Department of Drug Technology and Biotechnology, Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
29
|
Cai Y, Wei YH. Distinct regulation of Maf1 for lifespan extension by Protein kinase A and Sch9. Aging (Albany NY) 2015; 7:133-43. [PMID: 25720796 PMCID: PMC4359695 DOI: 10.18632/aging.100727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Protein kinase A (PKA) and Sch9 regulates cell growth as well as lifespan in Saccharomyces cerevisiae. Maf1 is a RNA polymerase III (PolIII) inhibitor that tailors 5S rRNA and tRNA production in response to various environmental cues. Both PKA and Sch9 have been shown to phosphorylate Maf1 in vitro at similar amino acids, suggesting a redundancy in Maf1 regulation. However, here we find that activating PKA by bcy1 deletion cannot replace Sch9 for Maf1 phosphorylation and cytoplasmic retention; instead, such modulation lowers Maf1 protein levels. Consistently, loss of MAF1 or constitutive PKA activity reverses the stress resistance and the extended lifespan of sch9Δ cells. Overexpression of MAF1 partially rescues the extended lifespan of sch9Δ in bcy1Δsch9Δ mutant, suggesting that PKA suppresses sch9Δ longevity at least partly through Maf1 abundance. Constitutive PKA activity also reverses the reduced tRNA synthesis and slow growth of sch9Δ, which, however, is not attributed to Maf1 protein abundance. Therefore, regulation of lifespan and growth can be decoupled. Together, we reveal that lifespan regulation by PKA and Sch9 are mediated by Maf1 through distinct mechanisms.
Collapse
Affiliation(s)
- Ying Cai
- No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 201900, China
| | - Yue-Hua Wei
- No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 201900, China
| |
Collapse
|
30
|
Rijal K, Maraia RJ, Arimbasseri AG. A methods review on use of nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 2014; 556:35-50. [PMID: 25447915 DOI: 10.1016/j.gene.2014.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Aneeshkumar G Arimbasseri
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing. Proc Natl Acad Sci U S A 2013; 110:E3081-9. [PMID: 23898186 DOI: 10.1073/pnas.1219946110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification.
Collapse
|
32
|
Morawiec E, Wichtowska D, Graczyk D, Conesa C, Lefebvre O, Boguta M. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae. Gene 2013; 526:16-22. [PMID: 23657116 DOI: 10.1016/j.gene.2013.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Maf1 is a negative regulator of RNA polymerase III (Pol III) in yeast. Maf1-depleted cells manifest elevated tRNA transcription and inability to grow on non-fermentable carbon source, such as glycerol. Using genomic microarray approach, we examined the effect of Maf1 deletion on expression of Pol II-transcribed genes in yeast grown in medium containing glycerol. We found that transcription of FBP1 and PCK1, two major genes controlling gluconeogenesis, was decreased in maf1Δ cells. FBP1 is located on chromosome XII in close proximity to a tRNA-Lys gene. Accordingly we hypothesized that decreased FBP1 mRNA level could be due to the effect of Maf1 on tgm silencing (tRNA gene mediated silencing). Two approaches were used to verify this hypothesis. First, we inactivated tRNA-Lys gene on chromosome XII by inserting a deletion cassette in a control wild type strain and in maf1Δ mutant. Second, we introduced a point mutation in the promoter of the tRNA-Lys gene cloned with the adjacent FBP1 in a plasmid and expressed in fbp1Δ or fbp1Δ maf1Δ cells. The levels of FBP1 mRNA were determined by RT-qPCR in each strain. Although the inactivation of the chromosomal tRNA-Lys gene increased expression of the neighboring FBP1, the mutation preventing transcription of the plasmid-born tRNA-Lys gene had no significant effect on FBP1 transcription. Taken together, those results do not support the concept of tgm silencing of FBP1. Other possible mechanisms are discussed.
Collapse
Affiliation(s)
- Ewa Morawiec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
33
|
Partow S, Siewers V, Daviet L, Schalk M, Nielsen J. Reconstruction and evaluation of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae. PLoS One 2012; 7:e52498. [PMID: 23285068 PMCID: PMC3532213 DOI: 10.1371/journal.pone.0052498] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 11/19/2012] [Indexed: 12/03/2022] Open
Abstract
Isoprenoids, which are a large group of natural and chemical compounds with a variety of applications as e.g. fragrances, pharmaceuticals and potential biofuels, are produced via two different metabolic pathways, the mevalonate (MVA) pathway and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we attempted to replace the endogenous MVA pathway in Saccharomyces cerevisiae by a synthetic bacterial MEP pathway integrated into the genome to benefit from its superior properties in terms of energy consumption and productivity at defined growth conditions. It was shown that the growth of a MVA pathway deficient S. cerevisiae strain could not be restored by the heterologous MEP pathway even when accompanied by the co-expression of genes erpA, hISCA1 and CpIscA involved in the Fe-S trafficking routes leading to maturation of IspG and IspH and E. coli genes fldA and fpr encoding flavodoxin and flavodoxin reductase believed to be responsible for electron transfer to IspG and IspH.
Collapse
Affiliation(s)
- Siavash Partow
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Laurent Daviet
- Firmenich SA, Corporate R&D Division, Geneva, Switzerland
| | - Michel Schalk
- Firmenich SA, Corporate R&D Division, Geneva, Switzerland
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
34
|
Maf1, a general negative regulator of RNA polymerase III in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23201230 DOI: 10.1016/j.bbagrm.2012.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
tRNA synthesis by yeast RNA polymerase III (Pol III) is down-regulated under growth-limiting conditions. This control is mediated by Maf1, a global negative regulator of Pol III transcription. Conserved from yeast to man, Maf1 was originally discovered in Saccharomyces cerevisiae by a genetic approach. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from the recently reported structural and biochemical data on Pol III and Maf1. The phosphorylation status of Maf1 determines its nuclear localization and interaction with the Pol III complex and several Maf1 kinases have been identified to be involved in Pol III control. Moreover, Maf1 indirectly affects tRNA maturation and decay. Here I discuss the current understanding of the mechanisms that oversee the Maf1-mediated regulation of Pol III activity and the role of Maf1 in the control of tRNA biosynthesis in yeast. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
35
|
Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:361-75. [PMID: 23165150 DOI: 10.1016/j.bbagrm.2012.11.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 12/29/2022]
Abstract
Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
36
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
37
|
Turowski TW, Karkusiewicz I, Kowal J, Boguta M. Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway. RNA (NEW YORK, N.Y.) 2012; 18:1823-32. [PMID: 22919049 PMCID: PMC3446706 DOI: 10.1261/rna.033597.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
tRNA precursors, which are transcribed by RNA polymerase III, undergo end-maturation, splicing, and base modifications. Hypomodified tRNAs, such as tRNA(Val(AAC)), lacking 7-methylguanosine and 5-methylcytidine modifications, are subject to degradation by a rapid tRNA decay pathway. Here we searched for genes which, when overexpressed, restored stability of tRNA(Val(AAC)) molecules in a modification-deficient trm4Δtrm8Δ mutant. We identified TEF1 and VAS1, encoding elongation factor eEF1A and valyl-tRNA synthetase respectively, which likely protect hypomodified tRNA(Val(AAC)) by direct interactions. We also identified MAF1 whose product is a general negative regulator of RNA polymerase III. Expression of a Maf1-7A mutant that constitutively repressed RNA polymerase III transcription resulted in increased stability of hypomodified tRNA(Val(AAC)). Strikingly, inhibition of tRNA transcription in a Maf1-independent manner, either by point mutation in RNA polymerase III subunit Rpc128 or decreased expression of Rpc17 subunit, also suppressed the turnover of the hypomodified tRNA(Val(AAC)). These results support a model where inhibition of tRNA transcription leads to stabilization of hypomodified tRNA(Val(AAC)) due to more efficient protection by tRNA-interacting proteins.
Collapse
Affiliation(s)
- Tomasz W. Turowski
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Iwona Karkusiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Justyna Kowal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Corresponding authorE-mail
| |
Collapse
|
38
|
Vannini A. A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:258-64. [PMID: 23031840 DOI: 10.1016/j.bbagrm.2012.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
RNA polymerase I and III are responsible for the bulk of nuclear transcription in actively growing cells and their activity impacts the cellular biosynthetic capacity. As a consequence, RNA polymerase I and III deregulation has been directly linked to cancer development. The complexity of RNA polymerase I and III transcription apparatuses has hampered their structural characterization. However, in the last decade tremendous progresses have been made, providing insights into the molecular and functional architecture of these multi-subunit transcriptional machineries. Here we summarize the available structural data on RNA polymerase I and III, including specific transcription factors and global regulators. Despite the overall scarcity of detailed structural data, the recent advances in the structural biology of RNA polymerase I and III represent the first step towards a comprehensive understanding of the molecular mechanism underlying RNA polymerase I and III transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alessandro Vannini
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
39
|
Oler AJ, Cairns BR. PP4 dephosphorylates Maf1 to couple multiple stress conditions to RNA polymerase III repression. EMBO J 2012; 31:1440-52. [PMID: 22333918 PMCID: PMC3321174 DOI: 10.1038/emboj.2011.501] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/16/2011] [Indexed: 12/22/2022] Open
Abstract
Maf1 is the 'master' repressor of RNA polymerase III (Pol III) transcription in yeast, and is conserved in eukaryotes. Maf1 is a phospho-integrator, with unfavourable growth conditions leading to rapid Maf1 dephosphorylation, nuclear accumulation, binding to RNA Pol III at Pol III genes and transcriptional repression. Here, we establish the protein phosphatase 4 (PP4) complex as the main Maf1 phosphatase, and define the involved catalytic (Pph3), scaffold (Psy2) and regulatory subunits (Rrd1, Tip41), as well as uninvolved subunits (Psy4, Rrd2). Multiple approaches support a central role for PP4 in Maf1 dephosphorylation, Maf1 nuclear localization and the rapid repression of Pol III in the nucleus. PP4 action is likely direct, as a portion of PP4 co-precipitates with Maf1, and purified PP4 dephosphorylates Maf1 in vitro. Furthermore, Pph3 mediates (either largely or fully) rapid Maf1 dephosphorylation in response to diverse stresses, suggesting PP4 plays a key role in the integration of cell nutrition and stress conditions by Maf1 to enable Pol III regulation.
Collapse
Affiliation(s)
- Andrew J Oler
- HHMI, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
40
|
Karkusiewicz I, Turowski TW, Graczyk D, Towpik J, Dhungel N, Hopper AK, Boguta M. Maf1 protein, repressor of RNA polymerase III, indirectly affects tRNA processing. J Biol Chem 2011; 286:39478-88. [PMID: 21940626 DOI: 10.1074/jbc.m111.253310] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner.
Collapse
Affiliation(s)
- Iwona Karkusiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02 106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
41
|
RNA polymerase III under control: repression and de-repression. Trends Biochem Sci 2011; 36:451-6. [PMID: 21816617 DOI: 10.1016/j.tibs.2011.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/17/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
The synthesis of tRNA by yeast RNA polymerase III (Pol III) is regulated in response to changing environmental conditions. This control is mediated by Maf1, the global negative regulator of Pol III transcription conserved from yeast to humans. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from recently reported structural and biochemical data on Pol III and Maf1. Efficient Pol III transcription, following the shift of cells from a non-fermentable carbon source to glucose, requires phosphorylation of Maf1. One of the newly identified Maf1 kinases is the chromatin-bound casein kinase II (CK2). Current studies have allowed us to propose an innovative mechanism of Pol III regulation. We suggest that CK2-mediated phosphorylation of Maf1, occurring directly on tDNA chromatin, controls Pol III recycling.
Collapse
|
42
|
Vannini A, Ringel R, Kusser AG, Berninghausen O, Kassavetis GA, Cramer P. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell 2010; 143:59-70. [PMID: 20887893 DOI: 10.1016/j.cell.2010.09.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/06/2010] [Accepted: 08/11/2010] [Indexed: 11/19/2022]
Abstract
RNA polymerase III (Pol III) transcribes short RNAs required for cell growth. Under stress conditions, the conserved protein Maf1 rapidly represses Pol III transcription. We report the crystal structure of Maf1 and cryo-electron microscopic structures of Pol III, an active Pol III-DNA-RNA complex, and a repressive Pol III-Maf1 complex. Binding of DNA and RNA causes ordering of the Pol III-specific subcomplex C82/34/31 that is required for transcription initiation. Maf1 binds the Pol III clamp and rearranges C82/34/31 at the rim of the active center cleft. This impairs recruitment of Pol III to a complex of promoter DNA with the initiation factors Brf1 and TBP and thus prevents closed complex formation. Maf1 does however not impair binding of a DNA-RNA scaffold and RNA synthesis. These results explain how Maf1 specifically represses transcription initiation from Pol III promoters and indicate that Maf1 also prevents reinitiation by binding Pol III during transcription elongation.
Collapse
Affiliation(s)
- Alessandro Vannini
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Gajda A, Towpik J, Steuerwald U, Müller CW, Lefebvre O, Boguta M. Full repression of RNA polymerase III transcription requires interaction between two domains of its negative regulator Maf1. J Biol Chem 2010; 285:35719-27. [PMID: 20817737 DOI: 10.1074/jbc.m110.125286] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Maf1, first identified in yeast Saccharomyces cerevisiae, is a general negative regulator of RNA polymerase III (Pol III). Transcription regulation by Maf1 is important under stress conditions and during the switch between fermentation and respiration. Maf1 is composed of two domains conserved during evolution. We report here that these two domains of human Maf1 are resistant to mild proteolysis and interact together as shown by pull-down and size-exclusion chromatography and that the comparable domains of yeast Maf1 interact in a two-hybrid assay. Additionally, in yeast, a mutation in the N-terminal domain is compensated by mutations in the C-terminal domain. Integrity of both domains and their direct interaction are necessary for Maf1 dephosphorylation and subsequent inhibition of Pol III transcription on a nonfermentable carbon source. These data relate Pol III transcription inhibition to Maf1 structural changes.
Collapse
Affiliation(s)
- Anna Gajda
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
44
|
Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 2010; 9:3687-99. [PMID: 20890107 DOI: 10.4161/cc.9.18.13203] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, Pessac, France
| | | | | | | | | |
Collapse
|
45
|
Tsang CK, Liu H, Zheng XFS. mTOR binds to the promoters of RNA polymerase I- and III-transcribed genes. Cell Cycle 2010; 9:953-7. [PMID: 20038818 DOI: 10.4161/cc.9.5.10876] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Target of rapamycin (TOR) is a conserved regulator of gene expression from yeast to humans. In budding yeast, TOR is associated with ribosomal DNA (rDNA) promoter, which is critical for ribosome biogenesis and transfer RNA (tRNA) synthesis. Whether mTOR behaves similarly in mammalian cells is unknown. Here, we report that mTOR is detected at several different promoters in human and murine cells, including that of rDNA and tRNA genes. The association of mTOR with these promoters is regulated by growth signals and sensitive to rapamycin. Together, our observations suggest that mTOR is closely involved in gene regulation at the promoters, which is a conserved mechanism to control RNA polymerase I- and III-dependent genes that are critical for protein synthesis and cell growth.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Department of Pharmacology and Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | |
Collapse
|
46
|
Kuranda K, François J, Palamarczyk G. The isoprenoid pathway and transcriptional response to its inhibitors in the yeastSaccharomyces cerevisiae. FEMS Yeast Res 2010; 10:14-27. [DOI: 10.1111/j.1567-1364.2009.00560.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
47
|
Dempsey JM, Mahoney SJ, Blenis J. mTORC1-Mediated Control of Protein Translation. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1874-6047(10)28001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
48
|
Mahoney SJ, Dempsey JM, Blenis J. Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:53-107. [PMID: 20374739 DOI: 10.1016/s1877-1173(09)90002-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein synthesis is a highly energy-consuming process that must be tightly regulated. Signal transduction cascades respond to extracellular and intracellular cues to phosphorylate proteins involved in ribosomal biogenesis and translation initiation and elongation. These phosphorylation events regulate the timing and rate of translation of both specific and total mRNAs. Alterations in this regulation can result in dysfunction and disease. While many signaling pathways intersect to control protein synthesis, the mTOR and MAPK pathways appear to be key players. This chapter briefly reviews the mTOR and MAPK pathways and then focuses on individual phosphorylation events that directly control ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Sarah J Mahoney
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
49
|
Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, Aebersold R, Loewith R. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev 2009; 23:1929-43. [PMID: 19684113 PMCID: PMC2725941 DOI: 10.1101/gad.532109] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/19/2009] [Indexed: 12/12/2022]
Abstract
The target of rapamycin complex 1 (TORC1) is an essential multiprotein complex conserved from yeast to humans. Under favorable growth conditions, and in the absence of the macrolide rapamycin, TORC1 is active, and influences virtually all aspects of cell growth. Although two direct effectors of yeast TORC1 have been reported (Tap42, a regulator of PP2A phosphatases and Sch9, an AGC family kinase), the signaling pathways that couple TORC1 to its distal effectors were not well understood. To elucidate these pathways we developed and employed a quantitative, label-free mass spectrometry approach. Analyses of the rapamycin-sensitive phosphoproteomes in various genetic backgrounds revealed both documented and novel TORC1 effectors and allowed us to partition phosphorylation events between Tap42 and Sch9. Follow-up detailed characterization shows that Sch9 regulates RNA polymerases I and III, the latter via Maf1, in addition to translation initiation and the expression of ribosomal protein and ribosome biogenesis genes. This demonstrates that Sch9 is a master regulator of protein synthesis.
Collapse
Affiliation(s)
- Alexandre Huber
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Systems Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Aino Uotila
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Michael Stahl
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Stefanie Wanka
- Institute of Molecular Biology, University of Zurich, Zürich 8057, Switzerland
| | - Bertran Gerrits
- Functional Genomics Center Zurich, University of Zürich, Zürich 8057, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zürich, Zürich 8093, Switzerland
- Institute for Systems Biology, Seattle, Washington 98103, USA
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zürich, Zürich 8093, Switzerland
- Faculty of Science, University of Zürich, Zürich 8057, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
50
|
Wei Y, Tsang CK, Zheng XFS. Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1. EMBO J 2009; 28:2220-30. [PMID: 19574957 DOI: 10.1038/emboj.2009.179] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/29/2009] [Indexed: 12/27/2022] Open
Abstract
We have found earlier that Tor1 binds to 5S rDNA chromatin but the functional significance has not been established. Here, we show that association with 5S rDNA chromatin is necessary for TOR complex 1 (TORC1) to regulate the synthesis of 5S ribosomal RNA and transfer RNAs (tRNAs) by RNA polymerase (Pol) III, as well as the phosphorylation and binding to Pol III-transcribed genes of the Pol III repressor Maf1. Interestingly, TORC1 does not bind to tRNA genes, suggesting that TORC1 modulates tRNA synthesis indirectly through Maf1 phosphorylation at the rDNA loci. We also find that Maf1 cytoplasmic localization is dependent on the SSD1-v allele. In W303 cells that carry the SSD1-d allele, Maf1 is constitutively nuclear but its nucleolar localization is inhibited by TORC1, indicating that TORC1 regulates nucleoplasm-to-nucleolus transport of Maf1. Finally, we show that TORC1 interacts with Maf1 in vivo and phosphorylates Maf1 in vitro, and regulates Maf1 nucleoplasm-to-nucleolus translocation. Together, these observations provide new insights into the chromatin-dependent mechanism by which TORC1 controls transcription by Pol III.
Collapse
Affiliation(s)
- Yuehua Wei
- Graduate Program in Cellular and Molecular Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | |
Collapse
|