1
|
Yi D, Wakeel MA, Agarwal V. Gatekeeping Activity of Collinear Ketosynthase Domains Limits Product Diversity for Engineered Type I Polyketide Synthases. Biochemistry 2024; 63:2240-2244. [PMID: 39186058 PMCID: PMC11411704 DOI: 10.1021/acs.biochem.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Engineered type I polyketide synthases (type I PKSs) can enable access to diverse polyketide pharmacophores and generate non-natural natural products. However, the promise of type I PKS engineering remains modestly realized at best. Here, we report that ketosynthase (KS) domains, the key carbon-carbon bond-forming catalysts, control which intermediates are allowed to progress along the PKS assembly lines and which intermediates are excluded. Using bimodular PKSs, we demonstrate that KSs can be exquisitely selective for the upstream polyketide substrate while retaining promiscuity for the extender unit that they incorporate. It is then the downstream KS that acts as a gatekeeper to ensure the fidelity of the extender unit incorporation by the upstream KS. We also demonstrate that these findings are not universally applicable; substrate-tolerant KSs do allow engineered polyketide intermediates to be extended. Our results demonstrate the utility for evaluating the KS-induced bottlenecks to gauge the feasibility of engineering PKS assembly lines.
Collapse
Affiliation(s)
- Dongqi Yi
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Mujeeb A. Wakeel
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Luo LM, Xu H, Zhang N, Ge H, Xiang Y, Yang H, He YX. Pyoluteorin regulates the biosynthesis of 2,4-DAPG through the TetR family transcription factor PhlH in Pseudomonas protegens Pf-5. Appl Environ Microbiol 2024; 90:e0174323. [PMID: 38470180 PMCID: PMC11022555 DOI: 10.1128/aem.01743-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Soil and rhizosphere bacteria act as a rich source of secondary metabolites, effectively fighting against a diverse array of pathogens. Certain Pseudomonas species harbor biosynthetic gene clusters for producing both pyoluteorin and 2,4-diacetylphloroglucinol (2,4-DAPG), which are polyketides that exhibit highly similar antimicrobial spectrum against bacteria and fungi or oomycete. A complex cross talk exists between pyoluteorin and 2,4-DAPG biosynthesis, and production of 2,4-DAPG was strongly repressed by pyoluteorin, yet the underlying mechanism is still elusive. In this study, we find that the TetR family transcription factor PhlH is involved in the cross talk between pyoluteorin and 2,4-DAPG biosynthesis. PhlH binds to a palindromic sequence within the promoter of phlG (PphlG), which encodes a C-C bond hydrolase responsible for degrading 2,4-DAPG. As a signaling molecule, pyoluteorin disrupts the PhlH-PphlG complex by binding to PhlH, leading to decreased levels of 2,4-DAPG. Proteomics data suggest that pyoluteorin regulates multiple physiological processes including fatty acid biosynthesis and transportation of taurine, siderophore, and amino acids. Our work not only reveals a novel mechanism of cross talk between pyoluteorin and 2,4-DAPG biosynthesis, but also highlights pyoluteorin's role as a messenger in the complex communication network of Pseudomonas.IMPORTANCEAntibiosis serves as a crucial defense mechanism for microbes against invasive bacteria and resource competition. These bacteria typically orchestrate the production of multiple antibiotics in a coordinated fashion, wherein the synthesis of one antibiotic inhibits the generation of another. This strategic coordination allows the bacterium to focus its resources on producing the most advantageous antibiotic under specific circumstances. However, the underlying mechanisms of distinct antibiotic production in bacterial cells remain largely elusive. In this study, we reveal that the TetR family transcription factor PhlH detects the secondary metabolite pyoluteorin and mediates the cross talk between pyoluteorin and 2,4-DAPG biosynthesis in the biocontrol strain Pseudomonas protegens Pf-5. These findings hold promise for future research, potentially informing the manipulation of these systems to enhance the effectiveness of biocontrol agents.
Collapse
Affiliation(s)
- Li-Ming Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hang Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- School of Veterinary Medicine and Biosecurity, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Gupta P, Dash PK, Sanjay TD, Pradhan SK, Sreevathsa R, Rai R. Cloning and Molecular Characterization of the phlD Gene Involved in the Biosynthesis of "Phloroglucinol", a Compound with Antibiotic Properties from Plant Growth Promoting Bacteria Pseudomonas spp. Antibiotics (Basel) 2023; 12:antibiotics12020260. [PMID: 36830171 PMCID: PMC9952525 DOI: 10.3390/antibiotics12020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023] Open
Abstract
phlD is a novel kind of polyketide synthase involved in the biosynthesis of non-volatile metabolite phloroglucinol by iteratively condensing and cyclizing three molecules of malonyl-CoA as substrate. Phloroglucinol or 2,4-diacetylphloroglucinol (DAPG) is an ecologically important rhizospheric antibiotic produced by pseudomonads; it exhibits broad spectrum anti-bacterial and anti-fungal properties, leading to disease suppression in the rhizosphere. Additionally, DAPG triggers systemic resistance in plants, stimulates root exudation, as well as induces phyto-enhancing activities in other rhizobacteria. Here, we report the cloning and analysis of the phlD gene from soil-borne gram-negative bacteria-Pseudomonas. The full-length phlD gene (from 1078 nucleotides) was successfully cloned and the structural details of the PHLD protein were analyzed in-depth via a three-dimensional topology and a refined three-dimensional model for the PHLD protein was predicted. Additionally, the stereochemical properties of the PHLD protein were analyzed by the Ramachandran plot, based on which, 94.3% of residues fell in the favored region and 5.7% in the allowed region. The generated model was validated by secondary structure prediction using PDBsum. The present study aimed to clone and characterize the DAPG-producing phlD gene to be deployed in the development of broad-spectrum biopesticides for the biocontrol of rhizospheric pathogens.
Collapse
Affiliation(s)
- Payal Gupta
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Prasanta K. Dash
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- Correspondence: (P.K.D.); (R.R.); Tel.: +91-1125841787 (P.K.D.); Fax: +91-1125843984 (P.K.D.)
| | | | - Sharat Kumar Pradhan
- ICAR-National Rice Research Institute, Cuttack 753006, India
- Indian Council of Agriculture Research, Krishi Bhawan, New Delhi 110001, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rhitu Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- Correspondence: (P.K.D.); (R.R.); Tel.: +91-1125841787 (P.K.D.); Fax: +91-1125843984 (P.K.D.)
| |
Collapse
|
4
|
Yi D, Niroula D, Gutekunst WR, Loper JE, Yan Q, Agarwal V. A Nonfunctional Halogenase Masquerades as an Aromatizing Dehydratase in Biosynthesis of Pyrrolic Polyketides by Type I Polyketide Synthases. ACS Chem Biol 2022; 17:1351-1356. [PMID: 35675261 DOI: 10.1021/acschembio.2c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial modular type I polyketide synthases (PKSs) typically furnish nonaromatic lactone and lactam natural products. Here, by the complete in vitro enzymatic production of the polyketide antibiotic pyoluteorin, we describe the biosynthetic mechanism for the construction of an aromatic resorcylic ring by a type I PKS. We find that the pyoluteorin type I PKS does not produce an aromatic product, rather furnishing an alicyclic dihydrophloroglucinol that is later enzymatically dehydrated and aromatized. The aromatizing dehydratase is encoded in the pyoluteorin biosynthetic gene cluster (BGC), and its presence is conserved in other BGCs encoding production of pyrrolic polyketides. Sequence similarity and mutational analysis demonstrates that the overall structure and position of the active site for the aromatizing dehydratase is shared with flavin-dependent halogenases albeit with a loss in ability to perform redox catalysis. We demonstrate that the post-PKS dehydrative aromatization is critical for the antibiotic activity of pyoluteorin.
Collapse
Affiliation(s)
- Dongqi Yi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dhirendra Niroula
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Will R Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, United States.,USDA-Agricultural Research Service, Corvallis, Oregon 97330, United States
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717, United States.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Purdy TN, Kim MC, Cullum R, Fenical W, Moore BS. Discovery and Biosynthesis of Tetrachlorizine Reveals Enzymatic Benzylic Dehydrogenation via an ortho-Quinone Methide. J Am Chem Soc 2021; 143:3682-3686. [PMID: 33656337 DOI: 10.1021/jacs.0c12415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ortho-quinone methides (o-QMs) are reactive intermediates in biosynthesis that give rise to a variety of intra- and intermolecular cyclization/addition products in bacteria, fungi, and plants. Herein, we report a new metabolic deviation of an o-QM intermediate in a benzylic dehydrogenation reaction that links the newly described marine bacterial natural products dihydrotetrachlorizine and tetrachlorizine. We discovered these novel dichloropyrrole-containing compounds from actinomycete strain AJS-327 that unexpectedly harbors in its genome a biosynthetic gene cluster (BGC) of striking similarity to that of chlorizidine, another marine alkaloid bearing a different carbon skeleton. Heterologous expression of the homologous flavin-dependent oxidoreductase enzymes Tcz9 and Clz9 revealed their native functions in tetrachlorizine and chlorizidine biosynthesis, respectively, supporting divergent oxidative dehydrogenation and pyrrolizine-forming reactions. Swapping these berberine bridge enzyme-like oxidoreductases, we produced cyclized and dehydrogenated analogs of tetrachlorizine and chlorizidine, including a dearomatized chlorizidine analog that stabilizes an o-QM via conjugation with a 3H-pyrrolizine ring.
Collapse
|
6
|
Gu Y, Ma Y, Wang J, Xia Z, Wei H. Genomic insights into a plant growth-promoting Pseudomonas koreensis strain with cyclic lipopeptide-mediated antifungal activity. Microbiologyopen 2020; 9:e1092. [PMID: 32537904 PMCID: PMC7520995 DOI: 10.1002/mbo3.1092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
Strain S150 was isolated from the tobacco rhizosphere as a plant growth-promoting rhizobacterium. It increased plant fresh weight significantly and lateral root development, and it antagonized plant pathogenic fungi but not phytobacteria. Further tests showed that strain S150 solubilized organic phosphate and produced ammonia, siderophore, protease, amylase, and cellulase, but it did not produce indole-3-acetic acid. Using morphology, physiological characteristics, and multi-locus sequence analysis, strain S150 was identified as Pseudomonas koreensis. The complete genome of strain S150 was sequenced, and it showed a single circular chromosome of 6,304,843 bp with a 61.09% G + C content. The bacterial genome contained 5,454 predicted genes that occupied 87.7% of the genome. Venn diagrams of the identified orthologous clusters of P. koreensis S150 with the other three sequenced P. koreensis strains revealed up to 4,167 homologous gene clusters that were shared among them, and 21 orthologous clusters were only present in the genome of strain S150. Genome mining of the bacterium P. koreensis S150 showed that the strain possessed 10 biosynthetic gene clusters for secondary metabolites, which included four clusters of non-ribosomal peptide synthetases (NRPSs) involved in the biosynthesis of cyclic lipopeptides (CLPs). One of the NRPSs possibly encoded lokisin, a cyclic lipopeptide produced by fluorescent Pseudomonas. Genomic mutation of the lokA gene, which is one of the three structural NRPS genes for lokisin in strain S150, led to a deficiency in fungal antagonism that could be restored fully by gene complementation. The results suggested that P. koreensis S150 is a novel plant growth-promoting agent with specific cyclic lipopeptides and contains a lokisin-encoding gene cluster that is dominant against plant fungal pathogens.
Collapse
Affiliation(s)
- Yilin Gu
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Yi‐Nan Ma
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Jing Wang
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Zhenyuan Xia
- Yunnan Academy of Tobacco Agricultural ScienceKunmingChina
| | - Hai‐Lei Wei
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| |
Collapse
|
7
|
Gu Y, Wang J, Xia Z, Wei HL. Characterization of a Versatile Plant Growth-Promoting Rhizobacterium Pseudomonas mediterranea Strain S58. Microorganisms 2020; 8:E334. [PMID: 32120878 PMCID: PMC7143339 DOI: 10.3390/microorganisms8030334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 01/30/2023] Open
Abstract
Plant growth-promoting rhizobacterial strain S58 was isolated from the tobacco rhizosphere. It showed strong antagonism against a battery of plant pathogenic fungi and bacteria, and controlled wheat sharp eyespot and tobacco wildfire diseases efficiently. Further tests showed that strain S58 solubilized organic phosphate and produced siderophore, protease, ammonia, and indole-3-acetic acid. In Arabidopsis thaliana, it promoted plant growth and changed root system architecture by restricting the growth of primary roots and increasing lateral root numbers. We relied on morphological, biochemical, physiological characteristics, and molecular phylogenic analysis to identify strain S58 as Pseudomonas mediterranea. The complete genome of strain S58 has a single circular chromosome of 6,150,838 bp with a 61.06% G+C content. The bacterial genome contained 5,312 predicted genes with an average length of 992.90 bp. A genome analysis suggested that P. mediterranea S58 was a rich cyclic lipopeptide (CLP)-producing strain that possessed seven non-ribosomal peptide gene clusters for CLP synthesis. Leaf inoculation of the bacterial culture and supernatants triggered cell death-like immunity in tobacco. Quantitative real-time PCR assays showed that the strain S58 induced the expression of pattern-triggered immunity and cell death marker genes, but not jasmonic acid marker genes. The results suggested that P. mediterranea S58 is a novel, versatile plant growth-promoting agent with multiple beneficial traits for plants.
Collapse
Affiliation(s)
- Yilin Gu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.G.); (J.W.)
| | - Jing Wang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.G.); (J.W.)
| | - Zhenyuan Xia
- Yunnan Academy of Tobacco Agricultural Science, Kunming 650021, China;
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.G.); (J.W.)
| |
Collapse
|
8
|
Miyanaga A, Kudo F, Eguchi T. Protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrid assembly lines. Nat Prod Rep 2018; 35:1185-1209. [DOI: 10.1039/c8np00022k] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrids are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Tadashi Eguchi
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
9
|
Yan Q, Philmus B, Chang JH, Loper JE. Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens. eLife 2017; 6. [PMID: 28262092 PMCID: PMC5395296 DOI: 10.7554/elife.22835] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/16/2017] [Indexed: 12/02/2022] Open
Abstract
Metabolic co-regulation between biosynthetic pathways for secondary metabolites is common in microbes and can play an important role in microbial interactions. Here, we describe a novel mechanism of metabolic co-regulation in which an intermediate in one pathway is converted into signals that activate a second pathway. Our study focused on the co-regulation of 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin, two antimicrobial metabolites produced by the soil bacterium Pseudomonas protegens. We show that an intermediate in DAPG biosynthesis, phloroglucinol, is transformed by a halogenase encoded in the pyoluteorin gene cluster into mono- and di-chlorinated phloroglucinols. The chlorinated phloroglucinols function as intra- and inter-cellular signals that induce the expression of pyoluteorin biosynthetic genes, pyoluteorin production, and pyoluteorin-mediated inhibition of the plant-pathogenic bacterium Erwinia amylovora. This metabolic co-regulation provides a strategy for P. protegens to optimize the deployment of secondary metabolites with distinct roles in cooperative and competitive microbial interactions. DOI:http://dx.doi.org/10.7554/eLife.22835.001 Bacteria live almost everywhere on Earth and often compete with one another for limited resources, like space or nutrients. Certain bacteria produce molecules that are toxic to other microorganisms to give themselves a competitive advantage. These toxic molecules are more commonly referred as antibiotics, and are perhaps best known for their importance in medicine. Yet, antibiotics benefit the bacteria that produce them in other ways too. Some bacteria, for example, use antibiotics as chemical signals to communicate with one another and coordinate their activities. Some bacteria produce many antibiotics with different toxic and signaling activities. These bacteria often coordinate the production of different antibiotics such that the production of one antibiotic shuts down the production of another. This kind of coordination would allow the bacterium to focus its energy on producing only the antibiotic that gives it a competitive advantage at that time. Yet, in most cases, it was not known how the bacterial cell coordinates the production of two different antibiotics. Pseudomonas protegens is a species of bacteria that lives in soil, and produces many antibiotics that are toxic to other bacteria or fungi. The antibiotics are made via distinct pathways of chemical reactions that are catalyzed by different enzymes. However, the production of two antibiotics, called 2,4-diacetylphloroglucinol and pyoluteorin, is tightly coordinated in some strains of P. protegens. Now, Yan et al. have discovered how P. protegens coordinates the production of these two antibiotics. It turns out that the bacterium produces an enzyme that adds chlorine atoms onto one of the intermediate building blocks used to make 2,4-diacetylphloroglucinol. These “chlorinated derivatives” then activate the genes required to make the second antibiotic, pyoluteorin. The derivatives also signal to other P. protegens cells and trigger them to produce pyoluteorin too. Lastly, Yan et al. confirmed that pyoluteorin could inhibit the growth of another species of bacteria called Erwinia amylovora. These new findings highlight an important role played by chemicals that might have previously been considered as merely stepping stones in other biochemical reactions. An important challenge for the future will be to evaluate if other microbes use chemical intermediates in similar ways. Understanding the natural role of more antibiotics and their intermediates should help us to more wisely use existing antibiotics, and might eventually lead to new treatments for infections in humans and other animals. DOI:http://dx.doi.org/10.7554/eLife.22835.002
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, United States
| |
Collapse
|
10
|
Detection of antimicrobial traits in fluorescent pseudomonads and molecular characterization of an antibiotic pyoluteorin. 3 Biotech 2016; 6:227. [PMID: 28330299 PMCID: PMC5073079 DOI: 10.1007/s13205-016-0538-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/03/2016] [Indexed: 11/16/2022] Open
Abstract
Thirty isolates of fluorescent pseudomonads were obtained from rhizosphere of different crops in Raichur, India. The fluorescent pseudomonad strains were characterized in vitro for biochemical traits, antimicrobial traits, and pyoluteorin antibiotic production. All the isolates that showed fluorescent pigment production under UV light were rod shaped, Gram negative, positive for oxidase, catalase and citrate utilization tests, and negative for indole test. Out of 30 isolates, 07 isolates were positive for HCN production, 15 isolates were positive for H2S production, and all the isolates were positive for siderophore production. Among all the isolates, RFP-22 showed the maximum percent inhibition of mycelium (46.66 %) of Rhizoctonia solani, the pathogen, and the remaining isolates showed the moderate to least inhibition of mycelium growth of R. solani. The 16S rRNA analysis confirmed that the antibiotic positive isolates belonged to genus Pseudomonas. The amplification of 779 bp region in isolates RFP- 4 and RFP-19 corresponded to pyoluteorin antibiotic-coding pltB gene. Further characterization of pyoluteorin antibiotic through TLC and TOF–MS analysis confirmed the presence of pyoluteorin at 274.26 (g/mol) peak and 2.10 min retention time. Biochemical and molecular analyses confirmed the antagonism of Pseudomonas and isolate through pyoluteorin production.
Collapse
|
11
|
Draft Genome Sequences of Pseudomonas fluorescens Strains SF39a and SF4c, Potential Plant Growth Promotion and Biocontrol Agents. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00219-15. [PMID: 25814613 PMCID: PMC4384153 DOI: 10.1128/genomea.00219-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas fluorescens SF4c and SF39a, strains isolated from wheat rhizosphere, have potential applications in plant growth promotion and biocontrol of fungal diseases of crop plants. We report the draft genome sequences of SF4c and SF39a with estimated sizes of 6.5 Mb and 5.9 Mb, respectively.
Collapse
|
12
|
Draft Genome Sequence of Rice Isolate Pseudomonas chlororaphis EA105. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01342-14. [PMID: 25540352 PMCID: PMC4276830 DOI: 10.1128/genomea.01342-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas chlororaphis EA105, a strain isolated from rice rhizosphere, has shown antagonistic activities against a rice fungal pathogen, and could be important in defense against rice blast. We report the draft genome sequence of EA105, which is an estimated size of 6.6 Mb.
Collapse
|
13
|
Souza JT, Raaijmakers JM. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 2012; 43:21-34. [PMID: 19719693 DOI: 10.1111/j.1574-6941.2003.tb01042.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract Pyrrolnitrin (PRN) and pyoluteorin (PLT) are broad-spectrum antibiotics produced by several strains of Pseudomonas and Burkholderia species. Both antibiotics play an important role in the suppression of multiple plant pathogenic fungi. Primers were developed from conserved sequences and amplified prnD and pltC fragments from 18 Pseudomonas and four Burkholderia spp. of worldwide origin that produce either PRN or PLT or both. Subsequent RFLP (restriction fragment length polymorphisms) analysis of the 438-bp pltC fragment showed no polymorphisms among PLT-producing Pseudomonas strains. Polymorphisms within the 786-bp prnD fragment, however, allowed the assessment of the diversity among PRN-producing Pseudomonas and Burkholderia spp. to a level similar to that obtained by three 10-mer primers in random amplified polymorphic DNA analysis. Phylogenetic analysis of 16S rDNA sequences of strains representative of PRN-producing Pseudomonas and Burkholderia species correlated well with their taxonomic status. Phylogenetic relationships inferred from each of the four prn genes and from the complete sequence of the prn biosynthetic locus were similar to 16S rDNA-based phylogeny for most strains, except for Burkholderia pyrrocinia DSM 10685. Both RFLP analysis and comparison of the prn gene sequences showed that B. pyrrocinia DSM 10685 was more closely related to PRN-producing Pseudomonas strains, suggesting that lateral gene transfer may have occurred. Colony hybridization and PCR with PRN- and PLT-specific probes and primers showed that Pseudomonas and Burkholderia spp. harboring the prnD and pltC gene were not present at detectable levels on roots of wheat grown in five agricultural soils collected in The Netherlands, two of them being naturally suppressive to Gaeumannomyces graminis var. tritici. These results suggest that PRN- and PLT-producing Pseudomonas and Burkholderia sp. do not contribute to the natural suppressiveness found in these Dutch take-all decline soils.
Collapse
Affiliation(s)
- Jorge T Souza
- Wageningen University, Department of Plant Sciences, Laboratory of Phytopathology, Binnenhaven 5, P.O. Box 8025, 6709 PD Wageningen, The Netherlands
| | | |
Collapse
|
14
|
Cho H, Kang H. The PseEF efflux system is a virulence factor of Pseudomonas syringae pv. syringae. J Microbiol 2012; 50:79-90. [DOI: 10.1007/s12275-012-1353-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/09/2011] [Indexed: 11/30/2022]
|
15
|
Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE. Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 2011; 81:395-414. [PMID: 21564338 DOI: 10.1111/j.1365-2958.2011.07697.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The antibiotics pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) contribute to the biological control of soilborne plant diseases by some strains of Pseudomonas fluorescens, including Pf-5. These secondary metabolites also have signalling functions with each compound reported to induce its own production and repress the other's production. The first step in DAPG biosynthesis is production of phloroglucinol (PG) by PhlD. In this study, we show that PG is required at nanomolar concentrations for pyoluteorin production in Pf-5. At higher concentrations, PG is responsible for the inhibition of pyoluteorin production previously attributed to DAPG. DAPG had no effect on pyoluteorin production, and monoacetylphloroglucinol showed both stimulatory and inhibitory activities but at concentrations 100-fold greater than the levels of PG required for similar effects. We also demonstrate that PG regulates pyoluteorin production in P. aeruginosa and that a phlD gene adjacent to the pyoluteorin biosynthetic gene cluster in P. aeruginosa strain LESB58 can restore pyoluteorin biosynthesis to a ΔphlD mutant of Pf-5. Bioinformatic analyses show that the dual role of PhlD in the biosynthesis of DAPG and the regulation of pyoluteorin production could have arisen within the pseudomonads during the assembly of these biosynthetic gene clusters from genes and gene subclusters of diverse origins.
Collapse
Affiliation(s)
- Teresa A Kidarsa
- USDA-ARS-Horticultural Crops Research Laboratory, Corvallis, OR 97330, USA
| | | | | | | |
Collapse
|
16
|
Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009; 26:1408-46. [PMID: 19844639 DOI: 10.1039/b817075b] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Harald Gross
- Institute for Pharmaceutical Biology, Nussallee 6, 53115, Bonn, Germany.
| | | |
Collapse
|
17
|
Mavrodi DV, Loper JE, Paulsen IT, Thomashow LS. Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol 2009; 9:8. [PMID: 19144133 PMCID: PMC2647930 DOI: 10.1186/1471-2180-9-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 01/13/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pseudomonas fluorescens Pf-5 is a plant-associated bacterium that inhabits the rhizosphere of a wide variety of plant species and and produces secondary metabolites suppressive of fungal and oomycete plant pathogens. The Pf-5 genome is rich in features consistent with its commensal lifestyle, and its sequence has revealed attributes associated with the strain's ability to compete and survive in the dynamic and microbiologically complex rhizosphere habitat. In this study, we analyzed mobile genetic elements of the Pf-5 genome in an effort to identify determinants that might contribute to Pf-5's ability to adapt to changing environmental conditions and/or colonize new ecological niches. RESULTS Sequence analyses revealed that the genome of Pf-5 is devoid of transposons and IS elements and that mobile genetic elements (MGEs) are represented by prophages and genomic islands that collectively span over 260 kb. The prophages include an F-pyocin-like prophage 01, a chimeric prophage 03, a lambdoid prophage 06, and decaying prophages 02, 04 and 05 with reduced size and/or complexity. The genomic islands are represented by a 115-kb integrative conjugative element (ICE) PFGI-1, which shares plasmid replication, recombination, and conjugative transfer genes with those from ICEs found in other Pseudomonas spp., and PFGI-2, which resembles a portion of pathogenicity islands in the genomes of the plant pathogens Pseudomonas syringae and P. viridiflava. Almost all of the MGEs in the Pf-5 genome are associated with phage-like integrase genes and are integrated into tRNA genes. CONCLUSION Comparative analyses reveal that MGEs found in Pf-5 are subject to extensive recombination and have evolved in part via exchange of genetic material with other Pseudomonas spp. having commensal or pathogenic relationships with plants and animals. Although prophages and genomic islands from Pf-5 exhibit similarity to MGEs found in other Pseudomonas spp., they also carry a number of putative niche-specific genes that could affect the survival of P. fluorescens Pf-5 in natural habitats. Most notable are an approximately 35-kb segment of "cargo" genes in genomic island PFGI-1 and bacteriocin genes associated with prophages 1 and 4.
Collapse
Affiliation(s)
- Dmitri V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Joyce E Loper
- USDA-ARS Horticultural Crops Research Laboratory, 3420 N. W. Orchard Ave, Corvallis, OR 97330, USA
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Linda S Thomashow
- USDA-ARS Root Disease and Biocontrol Research Unit, Washington State University, Pullman, WA 99164-6430, USA
| |
Collapse
|
18
|
DKxanthene Biosynthesis—Understanding the Basis for Diversity-Oriented Synthesis in Myxobacterial Secondary Metabolism. ACTA ACUST UNITED AC 2008; 15:771-81. [DOI: 10.1016/j.chembiol.2008.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/04/2008] [Accepted: 06/09/2008] [Indexed: 11/23/2022]
|
19
|
Weller DM. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. PHYTOPATHOLOGY 2007; 97:250-6. [PMID: 18944383 DOI: 10.1094/phyto-97-2-0250] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT Pseudomonas spp. are ubiquitous bacteria in agricultural soils and have many traits that make them well suited as biocontrol agents of soilborne pathogens. Tremendous progress has been made in characterizing the process of root colonization by pseudomonads, the biotic and abiotic factors affecting colonization, bacterial traits and genes contributing to rhizosphere competence, and the mechanisms of pathogen suppression. This review looks back over the last 30 years of Pseudomonas biocontrol research and highlights key studies, strains, and findings that have had significant impact on shaping our current understanding of biological control by bacteria and the direction of future research.
Collapse
|
20
|
Zhang X, Parry RJ. Cloning and characterization of the pyrrolomycin biosynthetic gene clusters from Actinosporangium vitaminophilum ATCC 31673 and Streptomyces sp. strain UC 11065. Antimicrob Agents Chemother 2006; 51:946-57. [PMID: 17158935 PMCID: PMC1803119 DOI: 10.1128/aac.01214-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pyrrolomycins are a family of polyketide antibiotics, some of which contain a nitro group. To gain insight into the nitration mechanism associated with the formation of these antibiotics, the pyrrolomycin biosynthetic gene cluster from Actinosporangium vitaminophilum was cloned. Sequencing of ca. 56 kb of A. vitaminophilum DNA revealed 35 open reading frames (ORFs). Sequence analysis revealed a clear relationship between some of these ORFs and the biosynthetic gene cluster for pyoluteorin, a structurally related antibiotic. Since a gene transfer system could not be devised for A. vitaminophilum, additional proof for the identity of the cloned gene cluster was sought by cloning the pyrrolomycin gene cluster from Streptomyces sp. strain UC 11065, a transformable pyrrolomycin producer. Sequencing of ca. 26 kb of UC 11065 DNA revealed the presence of 17 ORFs, 15 of which exhibit strong similarity to ORFs in the A. vitaminophilum cluster as well as a nearly identical organization. Single-crossover disruption of two genes in the UC 11065 cluster abolished pyrrolomycin production in both cases. These results confirm that the genetic locus cloned from UC 11065 is essential for pyrrolomycin production, and they also confirm that the highly similar locus in A. vitaminophilum encodes pyrrolomycin biosynthetic genes. Sequence analysis revealed that both clusters contain genes encoding the two components of an assimilatory nitrate reductase. This finding suggests that nitrite is required for the formation of the nitrated pyrrolomycins. However, sequence analysis did not provide additional insights into the nitration process, suggesting the operation of a novel nitration mechanism.
Collapse
Affiliation(s)
- Xiujun Zhang
- Rice University, Department of Chemistry MS60, 6100 Main Street, Houston, TX 77005, USA
| | | |
Collapse
|
21
|
Huang X, Yan A, Zhang X, Xu Y. Identification and characterization of a putative ABC transporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene 2006; 376:68-78. [PMID: 16581203 DOI: 10.1016/j.gene.2006.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 09/30/2005] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
A putative ABC (ATP-binding cassette) transport gene cluster pltHIJKN was identified and characterized within a 7.5-kb genome region downstream of the antibiotic pyoluteorin (Plt) biosynthetic gene cluster in Pseudomonas sp. M18, a rhizosphere bacterium which is of ecological importance for controlling plant diseases caused by soil-borne fungal pathogens. The sequence similarity, conserved domains and hydrophobicity profiles strongly suggest that the pltHIJKN gene products are integrated into a typical three-component ABC export system, which consists of the inner membrane ABC transporter PltIJK, the membrane fusion protein PltH and the outer membrane efflux protein PltN. Mutant strains of M18 defective in pltH or pltI did not produce detectable levels of Plt. Overexpression of the entire pltHIJKN gene cluster resulted in a significant increase of Plt production. Heterogenous expression of the pltHIJKN gene cluster gave rise to a significant enhancement of resistance of E. coli DH5alpha to exogenous Plt. These results indicate that PltHIJKN is required for Plt biosynthesis and resistance, which is likely to be mediated by Plt export using the PltHIJKN transport system. Exogenous Plt induced the expression of both the Plt biosynthetic gene cluster and the ABC transport gene cluster pltHIJKN at the transcriptional level, suggesting that Plt biosynthesis and expression of pltHIJKN are coordinately and similarly regulated in Pseudomonas sp. M18.
Collapse
Affiliation(s)
- Xianqing Huang
- College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, PR China.
| | | | | | | |
Collapse
|
22
|
Brodhagen M, Paulsen I, Loper JE. Reciprocal regulation of pyoluteorin production with membrane transporter gene expression in Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 2005; 71:6900-9. [PMID: 16269724 PMCID: PMC1287665 DOI: 10.1128/aem.71.11.6900-6909.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyoluteorin is a chlorinated polyketide antibiotic secreted by the rhizosphere bacterium Pseudomonas fluorescens Pf-5. Genes encoding enzymes and transcriptional regulators involved in pyoluteorin production are clustered in the genome of Pf-5. Sequence analysis of genes adjacent to the known pyoluteorin biosynthetic gene cluster revealed the presence of an ABC transporter system. We disrupted two putative ABC transporter genes by inserting transcriptional fusions to an ice nucleation reporter gene. Mutations in pltI and pltJ, which are predicted to encode a membrane fusion protein and an ATP-binding cassette of the ABC transporter, respectively, greatly reduced pyoluteorin production by Pf-5. During the transition from exponential growth to stationary phase, populations of a pltI mutant were lower than those of a pltI+ strain in a culture medium containing pyoluteorin, suggesting a role for the transport system in efflux and the resistance of Pf-5 to the antibiotic. Although pltI or pltJ mutant strains displayed low pyoluteorin production, they did not accumulate proportionately more of the antibiotic intracellularly, indicating that pltI and pltJ do not encode an exclusive exporter for pyoluteorin. Transcription of the putative pyoluteorin efflux genes pltI and pltJ was enhanced by exogenous pyoluteorin. These new observations parallel an earlier finding that pyoluteorin enhances the transcription of pyoluteorin biosynthesis genes and pyoluteorin production in Pf-5. This report provides evidence of a coordination of pyoluteorin production and the transcription of genes encoding a linked transport apparatus, wherein each requires the other for optimal expression.
Collapse
Affiliation(s)
- Marion Brodhagen
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
23
|
Ginolhac A, Jarrin C, Robe P, Perrière G, Vogel TM, Simonet P, Nalin R. Type I polyketide synthases may have evolved through horizontal gene transfer. J Mol Evol 2005; 60:716-25. [PMID: 15909225 DOI: 10.1007/s00239-004-0161-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 02/02/2005] [Indexed: 11/30/2022]
Abstract
Type I polyketide synthases (PKSI) are modular multidomain enzymes involved in the biosynthesis of many natural products of industrial interest. PKSI modules are minimally organized in three domains: ketosynthase (KS), acyltransferase (AT), and acyl carrier protein. The KS domain phylogeny of 23 PKSI clusters was determined. The results obtained suggest that many horizontal transfers of PKSI genes have occurred between actinomycetales species. Such gene transfers may explain the homogeneity and the robustness of the actinomycetales group since gene transfers between closely related species could mimic patterns generated by vertical inheritance. We suggest that the linearity and instability of actinomycetales chromosomes associated with their large quantity of genetic mobile elements have favored such horizontal gene transfers.
Collapse
Affiliation(s)
- Aurélien Ginolhac
- LibraGen S.A., Bâtiment Canal Biotech 1, 3 rue des Satellites, 31400, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The modular-type polyketide synthase (PKS) that is involved in aureothin (aur) biosynthesis represents one of the first examples in which a single PKS module (AurA) is used in an iterative fashion. Here we report on the heterologous expression of an engineered AurAB fusion protein that unequivocally proves the iterative nature of AurA. In addition, point mutations reveal that aur PKS module 4 participates in polyketide biosynthesis despite its aberrant acyltransferase domain.
Collapse
Affiliation(s)
- Jing He
- Hans-Knöll-Institute for Natural Products Research, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | |
Collapse
|
25
|
Witkowski A, Joshi AK, Smith S. Characterization of the beta-carbon processing reactions of the mammalian cytosolic fatty acid synthase: role of the central core. Biochemistry 2004; 43:10458-66. [PMID: 15301544 DOI: 10.1021/bi048988n] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The properties of the beta-ketoacyl reductase, dehydrase, and enoyl reductase components of the animal fatty acid synthase responsible for the reduction of the beta-ketoacyl moiety formed at each round of chain elongation have been studied by engineering and characterizing mutants defective in each of these three catalytic domains. These "beta-carbon processing" mutants leak the stalled four-carbon intermediates by direct transfer to CoA. However, enoyl reductase mutants leak beta-ketobutyryl, beta-hydroxybutyryl, and crotonyl moieties, a finding explained, at least in part, by the observation that the equilibrium and rate constant for the dehydrase reaction favor the formation of beta-hydroxy rather than enoyl moieties. In this regard, the type I animal fatty acid synthase resembles its type II counterpart in Escherichia coli in that both systems rely on the enoyl reductase to pull the beta-carbon processing reactions to completion. Kinetic and nucleotide binding measurements on fatty acid synthases mutated in either of the two nucleotide binding domains revealed that the NADPH binding sites are nonidentical, the enoyl reductase exhibiting higher affinity. Surprisingly, NADPH binding is also completely compromised by certain deletions and mutations in the central core region distant from the nucleotide binding sites. Comparable central core sequences are present in the structurally related modular polyketide synthases, except in those modules that lack all three beta-carbon processing enzymes. These findings suggest that the central core region of fatty acid and polyketide synthases plays an important role in facilitating the beta-carbon processing reactions.
Collapse
Affiliation(s)
- Andrzej Witkowski
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr., Way, Oakland, California 94609, USA
| | | | | |
Collapse
|
26
|
Brodhagen M, Henkels MD, Loper JE. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 2004; 70:1758-66. [PMID: 15006802 PMCID: PMC368289 DOI: 10.1128/aem.70.3.1758-1766.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens Pf-5, a rhizosphere bacterium, produces a suite of secondary metabolites that are toxic to seed- and root-rotting plant pathogens. Among these are the polyketide compounds pyoluteorin and 2,4-diacetylphloroglucinol. We provide evidence that pyoluteorin production is influenced by positive autoregulation. Addition of pyoluteorin to liquid cultures of Pf-5 enhanced pyoluteorin production. In addition, pyoluteorin and 2,4-diacetylphloroglucinol mutually inhibit one another's production in Pf-5. For pyoluteorin, both positive autoregulation and negative influences on production by 2,4-diacetylphloroglucinol were demonstrated at the transcriptional level by measuring activity from transcriptional fusions of an ice nucleation reporter gene (inaZ) to three separate pyoluteorin biosynthetic genes. The occurrence of pyoluteorin autoregulation in the rhizosphere was assessed on cucumber seedlings in pasteurized soil with cross-feeding experiments. In the rhizosphere, expression of a pyoluteorin biosynthesis gene by a pyoluteorin-deficient mutant of Pf-5 was enhanced by pyoluteorin produced by coinoculated cells of Pf-5. These data establish that the polyketide pyoluteorin is an autoregulatory compound and functions as a signal molecule influencing the spectrum of secondary metabolites produced by the bacterial cell.
Collapse
Affiliation(s)
- Marion Brodhagen
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
27
|
He J, Hertweck C. Iteration as Programmed Event during Polyketide Assembly; Molecular Analysis of the Aureothin Biosynthesis Gene Cluster. ACTA ACUST UNITED AC 2003; 10:1225-32. [PMID: 14700630 DOI: 10.1016/j.chembiol.2003.11.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Analysis of the type I modular polyketide synthase (PKS) involved in the biosynthesis of the rare nitroaryl polyketide metabolite aureothin (aur) from Streptomyces thioluteus HKI-227 has revealed only four modules to catalyze the five polyketide chain extensions required. By heterologous expression of the aur PKS cluster, direct evidence was obtained that these modules were sufficient to support aureothin biosynthesis. It appears that one module catalyzes two successive cycles of chain extension, one of the first examples of a PKS in which such iteration or "stuttering" is required to produce the normal polyketide product. In addition, lack of a specified loading domain implicates a novel PKS priming mechanism involving the unique p-nitrobenzoate starter unit. The 27 kb aur gene cluster also encodes a novel N-oxidase, which may represent the first member of a new family of such enzymes.
Collapse
Affiliation(s)
- Jing He
- Hans-Knoell-Institute for Natural Products Research, Department of Bioorganic Synthesis, Beutenbergstr 11a, D-07745 Jena, Germany
| | | |
Collapse
|
28
|
Roberts DP, Lohrke SM. United States Department of Agriculture-Agricultural Research Service research programs in biological control of plant diseases. PEST MANAGEMENT SCIENCE 2003; 59:654-664. [PMID: 12846315 DOI: 10.1002/ps.613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A number of USDA-ARS programs directed at overcoming impediments to the use of biocontrol agents on a commercial scale are described. These include improvements in screening techniques, taxonomic studies to identify beneficial strains more precisely, and studies on various aspects of the large-scale production of biocontrol agents. Another broad area of studies covers the ecological aspects of biocontrol agents-their interaction with the pathogen, with the plant and with other aspects of the environmental complex. Examples of these studies are given and their relevance to the further development and expansion of biocontrol agents is discussed.
Collapse
Affiliation(s)
- Daniel P Roberts
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705-2350, USA.
| | | |
Collapse
|
29
|
Yadav G, Gokhale RS, Mohanty D. Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J Mol Biol 2003; 328:335-63. [PMID: 12691745 DOI: 10.1016/s0022-2836(03)00232-8] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.
Collapse
Affiliation(s)
- Gitanjali Yadav
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
30
|
Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ. Phenazines and their role in biocontrol by Pseudomonas bacteria. THE NEW PHYTOLOGIST 2003; 157:503-523. [PMID: 33873412 DOI: 10.1046/j.1469-8137.2003.00686.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Various rhizosphere bacteria are potential (micro)biological pesticides which are able to protect plants against diseases and improve plant yield. Knowledge of the molecular mechanisms that govern these beneficial plant-microbe interactions enables optimization, enhancement and identification of potential synergistic effects in plant protection. The production of antifungal metabolites, induction of systemic resistance, and the ability to compete efficiently with other resident rhizobacteria are considered to be important prerequisites for the optimal performance of biocontrol agents. Intriguing aspects in the molecular mechanisms of these processes have been discovered recently. Phenazines and phloroglucinols are major determinants of biological control of soilborne plant pathogens by various strains of fluorescent Pseudomonas spp. This review focuses on the current state of knowledge on biocontrol by phenazine-producing Pseudomonas strains and the action, biosynthesis, and regulation mechanisms of the production of microbial phenazines.
Collapse
Affiliation(s)
| | - Guido V Bloemberg
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | - Ben J J Lugtenberg
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| |
Collapse
|
31
|
Haas D, Keel C. Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:117-53. [PMID: 12730389 DOI: 10.1146/annurev.phyto.41.052002.095656] [Citation(s) in RCA: 371] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Certain strains of fluorescent pseudomonads are important biological components of agricultural soils that are suppressive to diseases caused by pathogenic fungi on crop plants. The biocontrol abilities of such strains depend essentially on aggressive root colonization, induction of systemic resistance in the plant, and the production of diffusible or volatile antifungal antibiotics. Evidence that these compounds are produced in situ is based on their chemical extraction from the rhizosphere and on the expression of antibiotic biosynthetic genes in the producer strains colonizing plant roots. Well-characterized antibiotics with biocontrol properties include phenazines, 2,4-diacetylphloroglucinol, pyoluteorin, pyrrolnitrin, lipopeptides, and hydrogen cyanide. In vitro, optimal production of these compounds occurs at high cell densities and during conditions of restricted growth, involving (i) a number of transcriptional regulators, which are mostly pathway-specific, and (ii) the GacS/GacA two-component system, which globally exerts a positive effect on the production of extracellular metabolites at a posttranscriptional level. Small untranslated RNAs have important roles in the GacS/GacA signal transduction pathway. One challenge in future biocontrol research involves development of new strategies to overcome the broad toxicity and lack of antifungal specificity displayed by most biocontrol antibiotics studied so far.
Collapse
Affiliation(s)
- Dieter Haas
- Institut de Microbiologie Fondamentale, Universite de Lausanne, CH-1015 Lausanne, Switzerland;
| | | |
Collapse
|
32
|
Gaitatzis N, Silakowski B, Kunze B, Nordsiek G, Blöcker H, Höfle G, Müller R. The biosynthesis of the aromatic myxobacterial electron transport inhibitor stigmatellin is directed by a novel type of modular polyketide synthase. J Biol Chem 2002; 277:13082-90. [PMID: 11809757 DOI: 10.1074/jbc.m111738200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deductions from the molecular analysis of the 65,000-bp stigmatellin biosynthetic gene cluster are reported. The biosynthetic genes (stiA-J) encode an unusual bacterial modular type I polyketide synthase (PKS) responsible for the formation of this aromatic electron transport inhibitor produced by the myxobacterium Stigmatella aurantiaca. Involvement of the PKS gene cluster in stigmatellin biosynthesis is shown using site-directed mutagenesis. One module of the PKS is assumed to be used iteratively during the biosynthetic process, which seems to involve an unusual transacylation of the biosynthetic intermediate from an acyl carrier protein domain back to the preceding ketosynthase domain. Finally, the polyketide chain which is presumably catalyzed by a novel C-terminal domain in StiJ that does not resemble thioesterases, is cyclized and aromatized. The presented results of feeding experiments are in good agreement with the proposed biosynthetic scheme. In contrast to all other PKS type I systems reported to date, each module of StiA-J is encoded on a separate gene. The gene cluster contains a "stand alone" O-methyltransferase and two unusual O-methyltransferase domains embedded in the PKS. In addition, inactivation of a cytochrome P450 monooxygenase-encoding gene involved in post-PKS hydroxylation of the aromatic ring leads to the formation of two novel stigmatellin derivatives.
Collapse
Affiliation(s)
- Nikolaos Gaitatzis
- GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Sohn YS, Nam DH, Ryu DD. Biosynthetic pathway of cephabacins in Lysobacter lactamgenus: molecular and biochemical characterization of the upstream region of the gene clusters for engineering of novel antibiotics. Metab Eng 2001; 3:380-92. [PMID: 11676571 DOI: 10.1006/mben.2001.0200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cephabacins, one of the beta-lactam antibiotics, are produced by Lysobacter lactamgenus. The previous studies the cephabacin biosynthesis were limited to a gene cluster that encodes the gene products responsible for the biosynthesis of the cephem nucleus. The long-term goal of this research is to elucidate the metabolic diversity and biosynthetic pathway of cephabacins and to design and/or discover new pharmacologically active compounds by engineering the cephabacin biosynthetic pathway in L. lactamgenus. In this study, we have cloned and sequenced a 24-kb fragment of a DNA locus upstream of the previously reported but incomplete putative ORF9 of L. lactamgenus. This contains three putative ORFs (the complete ORF9, ORF10, and ORF11) transcribed in the same direction and one putative ORF (ORF12) in the opposite direction. The isolated DNA locus extends the previously cloned part of the DNA locus containing the genes responsible for biosynthesis of the cephem nucleus up to 45 kb. The 42-kb fragment of the 45-kb gene cluster is located between a potential TATA box just upstream of the ORF11 and a termination loop just downstream of the previously reported bla gene. The complete ORF9 contains three nonribosomal peptide synthetase (NRPS) modules and one polyketide synthase (PKS) module and the ORF11 contains one NRPS module. The complete ORF9 also contains a putative thioesterase domain at the C-terminal end. We predicted the amino acid specificity of the four NRPSs by generating specificity binding pockets and expressed one of the NRPSs to confirm the amino acid specificity. The adenylation domain of the NRPS1, which is the last module of the NRPSs, showed significant amino acid specificity for L-arginine. These findings are in perfect agreement with the composition that was expected for the structure of cephabacins which contain an acetate residue, an L-arginine, and one to three L-alanines at the C-3' position of the cephem nucleus of cephabacins. The ORF10, encoding a putative ABC transporter which might be involved in conferring resistance against cephabacins, was identified between the complete ORF9 and the ORF11. Therefore, the complete ORF9, ORF10, ORF11 reported here and the other genes previously reported constitute an operon for the biosynthesis of cephabacins in L. lactamgenus. Based on our results, the biosynthetic pathways of acetate and elongated peptide moieties and a mechanism by which cephabacins are assembled by connecting the peptide moiety synthesized by the gene products of the complete ORF9 and the ORF11 to the C-3' position of the cephem nucleus synthesized by the gene products of pcbAB, pcbC, cefE, cefF, and cefD have been elucidated.
Collapse
Affiliation(s)
- Y S Sohn
- Biochemical Engineering Program, Department of Chemical Engineering and Material Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
34
|
Jiralerspong S, Rangaswamy V, Bender CL, Parry RJ. Analysis of the enzymatic domains in the modular portion of the coronafacic acid polyketide synthase. Gene 2001; 270:191-200. [PMID: 11404016 DOI: 10.1016/s0378-1119(01)00476-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coronafacic acid (CFA) is the polyketide component of coronatine (COR), a phytotoxin produced by the plant pathogen Pseudomonas syringae. The CFA polyketide synthase (PKS) consists of two open reading frames (ORFs) that encode type I multifunctional proteins and several ORFs that encode monofunctional proteins. Sequence comparisons of the modular portions of the CFA PKS with other prokaryotic, modular PKSs elucidated the boundaries of the domains that are involved in the individual stages of polyketide assembly. The two beta-ketoacyl:acyl carrier protein synthase (KS) domains in the modular portion of the CFA PKS exhibit a high degree of similarity to each other (53%), but are even more similar to the KS domains of DEBS, RAPS, and RIF. Cfa6 possesses two acyltransferases- AT0, which is associated with a loading domain, and AT1, which uses ethylmalonyl-CoA (eMCoA) as a substrate for chain extension. Cfa7 contains an AT that uses malonyl-CoA as a substrate for chain extension. The Cfa6 AT0 shows 35 and 32% similarity to the DEBS1 and NidA1 AT0s, respectively, and 32 and 36% similarity to the Cfa6 and Cfa7 AT1s. Sequence motifs have previously been identified that correlate with AT substrates. The motifs in Cfa6 AT1 were found to correlate reasonably well with those predicted for methylmalonyl-CoA (mMCoA) ATs. The motifs in the AT of Cfa7 correlated more poorly with those predicted for MCoA ATs. Three ACP domains occur in the modular proteins of the COR PKS. The loading domain-associated ACP0 showed 38% similarity to the loading domain ACP0s of DEBS1 and NidA1 and 32-36% similarity to the two module-associated ACPs of the COR PKS. It exhibited a higher degree of similarity to the module-associated ACPs of RAPS. The two module-associated ACPs show 39% similarity to each other, but appear more closely related to module-associated ACP domains in RAPS and RIFS. Furthermore, the DH and KR domains of Cfa6 and Cfa7 show greater similarity to DH and KR domains in RAPS and RIFS than to each other. The CFA PKS includes a thioesterase domain (TE I) that resides at the C-terminus of Cfa7 and a second thioesterase, which exists as a separate ORF (Cfa9, a TE II). Analysis of a Cfa7 thioesterase mutant demonstrated that the TE domain is required for the production of CFA. The co-existence of TE domains within modular PKSs along with physically separated, monofunctional TEs (TE IIs) has been reported for a number of modular polyketide and non-ribosomal peptide synthases (NRPS). An analysis of the two types of thioesterases using Clustal X yielded a dendrogram showing that TE IIs from PKSs and NRPSs are more closely related to each other than to domain TEs from either PKSs or NRPSs. Furthermore, the dendrogram indicates that both types of TE IIs are more closely related to TE domains associated with PKSs than to TE domains in NRPSs. Finally, the overall % G+C content and the % G+C content at the third codon for all of the PKS genes in the COR cluster suggest that these genes may have been recruited from a gram-positive bacterium.
Collapse
Affiliation(s)
- S Jiralerspong
- Department of Chemistry MS60, Rice University, Houston, TX 77251-1892, USA
| | | | | | | |
Collapse
|
35
|
Huang G, Zhang L, Birch RG. A multifunctional polyketide-peptide synthetase essential for albicidin biosynthesis in Xanthomonas albilineans. MICROBIOLOGY (READING, ENGLAND) 2001; 147:631-642. [PMID: 11238970 DOI: 10.1099/00221287-147-3-631] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Albicidins, a family of potent antibiotics and phytotoxins produced by the sugarcane leaf scald pathogen Xanthomonas albilineans, inhibit DNA replication in bacteria and plastids. A gene located by Tn5-tagging was confirmed by complementation to participate in albicidin biosynthesis. The gene (xabB) encodes a large protein (predicted M:(r) 525695), with a modular architecture indicative of a multifunctional polyketide synthase (PKS) linked to a non-ribosomal peptide synthetase (NRPS). At 4801 amino acids in length, XabB is the largest reported PKS-NRPS. Twelve catalytic domains in this multifunctional enzyme are arranged in the order N terminus-acyl-CoA ligase (AL)-acyl carrier protein (ACP)-beta-ketoacyl synthase (KS)-beta-ketoacyl reductase (KR)-ACP-ACP-KS-peptidyl carrier protein (PCP)-condensation (C)-adenylation-PCP-C. The modular architecture of XabB indicates likely steps in albicidin biosynthesis and approaches to enhance antibiotic yield. The novel pattern of domains, in comparison with known PKS-NRPS enzymes for antibiotic production, also contributes to the knowledge base for rational design of enzymes producing novel antibiotics.
Collapse
Affiliation(s)
- Guozhong Huang
- Department of Botany, The University of Queensland, Brisbane 4072, Australia1
| | - Lianhui Zhang
- Institute of Molecular Agrobiology, The National University of Singapore, Singapore1176042
- Department of Botany, The University of Queensland, Brisbane 4072, Australia1
| | - Robert G Birch
- Department of Botany, The University of Queensland, Brisbane 4072, Australia1
| |
Collapse
|
36
|
|
37
|
Witkowski A, Joshi AK, Lindqvist Y, Smith S. Conversion of a beta-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine. Biochemistry 1999; 38:11643-50. [PMID: 10512619 DOI: 10.1021/bi990993h] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
beta-Ketoacyl synthases involved in the biosynthesis of fatty acids and polyketides exhibit extensive sequence similarity and share a common reaction mechanism, in which the carbanion participating in the condensation reaction is generated by decarboxylation of a malonyl or methylmalonyl moiety; normally, the decarboxylation step does not take place readily unless an acyl moiety is positioned on the active-site cysteine residue in readiness for the ensuing condensation reaction. Replacement of the cysteine nucleophile (Cys-161) with glutamine, in the beta-ketoacyl synthase domain of the multifunctional animal fatty acid synthase, completely inhibits the condensation reaction but increases the uncoupled rate of malonyl decarboxylation by more than 2 orders of magnitude. On the other hand, replacement with Ser, Ala, Asn, Gly, and Thr compromises the condensation reaction without having any marked effect on the decarboxylation reaction. The affinity of the beta-ketoacyl synthase for malonyl moieties, in the absence of acetyl moieties, is significantly increased in the Cys161Gln mutant compared to that in the wild type and is similar to that exhibited by the wild-type beta-ketoacyl synthase in the presence of an acetyl primer. These results, together with modeling studies of the Cys --> Gln mutant from the crystal structure of the Escherichia coli beta-ketoacyl synthase II enzyme, suggest that the side chain carbonyl group of the Gln-161 can mimic the carbonyl of the acyl moiety in the acyl-enzyme intermediate so that the mutant adopts a conformation analogous to that of the acyl-enzyme intermediate. Catalysis of the decarboxylation of malonyl-CoA requires the dimeric form of the Cys161Gln fatty acid synthase and involves prior transfer of the malonyl moiety from the CoA ester to the acyl carrier protein domain and subsequent release of the acetyl product by transfer back to a CoA acceptor. These results suggest that the role of the Cys --> Gln beta-ketoacyl synthases found in the loading domains of some modular polyketide synthases likely is to act as malonyl, or methylmalonyl, decarboxylases that provide a source of primer for the chain extension reactions catalyzed by associated modules containing fully competent beta-ketoacyl synthases.
Collapse
Affiliation(s)
- A Witkowski
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | | | |
Collapse
|
38
|
Bangera MG, Thomashow LS. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 1999; 181:3155-63. [PMID: 10322017 PMCID: PMC93771 DOI: 10.1128/jb.181.10.3155-3163.1999] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polyketide metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) is produced by many strains of fluorescent Pseudomonas spp. with biocontrol activity against soilborne fungal plant pathogens. Genes required for 2,4-DAPG synthesis by P. fluorescens Q2-87 are encoded by a 6.5-kb fragment of genomic DNA that can transfer production of 2,4-DAPG to 2,4-DAPG-nonproducing recipient Pseudomonas strains. In this study the nucleotide sequence was determined for the 6.5-kb fragment and flanking regions of genomic DNA from strain Q2-87. Six open reading frames were identified, four of which (phlACBD) comprise an operon that includes a set of three genes (phlACB) conserved between eubacteria and archaebacteria and a gene (phlD) encoding a polyketide synthase with homology to chalcone and stilbene synthases from plants. The biosynthetic operon is flanked on either side by phlE and phlF, which code respectively for putative efflux and regulatory (repressor) proteins. Expression in Escherichia coli of phlA, phlC, phlB, and phlD, individually or in combination, identified a novel polyketide biosynthetic pathway in which PhlD is responsible for the production of monoacetylphloroglucinol (MAPG). PhlA, PhlC, and PhlB are necessary to convert MAPG to 2,4-DAPG, and they also may function in the synthesis of MAPG.
Collapse
Affiliation(s)
- M G Bangera
- Department of Microbiology, Washington State University, Pullman, Washington 99164-4233, USA
| | | |
Collapse
|
39
|
Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 1999; 181:2166-74. [PMID: 10094695 PMCID: PMC93630 DOI: 10.1128/jb.181.7.2166-2174.1999] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1998] [Accepted: 01/19/1999] [Indexed: 11/20/2022] Open
Abstract
Ten genes (plt) required for the biosynthesis of pyoluteorin, an antifungal compound composed of a bichlorinated pyrrole linked to a resorcinol moiety, were identified within a 24-kb genomic region of Pseudomonas fluorescens Pf-5. The deduced amino acid sequences of eight plt genes were similar to the amino acid sequences of genes with known biosynthetic functions, including type I polyketide synthases (pltB, pltC), an acyl coenzyme A (acyl-CoA) dehydrogenase (pltE), an acyl-CoA synthetase (pltF), a thioesterase (pltG), and three halogenases (pltA, pltD, and pltM). Insertions of the transposon Tn5 or Tn3-nice or a kanamycin resistance gene in each of these genes abolished pyoluteorin production by Pf-5. The presumed functions of the eight plt products are consistent with biochemical transformations involved in pyoluteorin biosynthesis from proline and acetate precursors. Isotope labeling studies demonstrated that proline is the primary precursor to the dichloropyrrole moiety of pyoluteorin. The deduced amino acid sequence of the product of another plt gene, pltR, is similar to those of members of the LysR family of transcriptional activators. pltR and pltM are transcribed divergently from the pltLABCDEFG gene cluster, and a sequence with the characteristics of a LysR binding site was identified within the 486-bp intergenic region separating pltRM from pltLABCDEFG. Transcription of the pyoluteorin biosynthesis genes pltB, pltE, and pltF, assessed with transcriptional fusions to an ice nucleation reporter gene, was significantly greater in Pf-5 than in a pltR mutant of Pf-5. Therefore, PltR is proposed to be a transcriptional activator of linked pyoluteorin biosynthesis genes.
Collapse
Affiliation(s)
- B Nowak-Thompson
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon 97330, USA
| | | | | | | | | |
Collapse
|
40
|
Bender CL, Rangaswamy V, Loper J. POLYKETIDE PRODUCTION BY PLANT-ASSOCIATED PSEUDOMONADS. ANNUAL REVIEW OF PHYTOPATHOLOGY 1999; 37:175-196. [PMID: 11701821 DOI: 10.1146/annurev.phyto.37.1.175] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Polyketides constitute a huge family of structurally diverse natural products including antibiotics, chemotherapeutic compounds, and antiparasitics. Most of the research on polyketide synthesis in bacteria has focused on compounds synthesized by Streptomyces or other actinomycetes; however, plant-associated pseudomonads also produce a variety of compounds via the polyketide pathway including the phytotoxin coronatine, the antibiotic mupirocin, and the antifungal compounds pyoluteorin and 2,4-diacetylphloroglucinol. This review focuses on the mode of action, regulation, biosynthesis, and genetics of these four compounds and the potential use of Pseudomonas-derived polyketide synthases in the generation of novel compounds with unique activities.
Collapse
Affiliation(s)
- CL Bender
- Department of Entomology and Plant Pathology, 110 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078-3032; e-mail: ;
| | | | | |
Collapse
|
41
|
Rangaswamy V, Jiralerspong S, Parry R, Bender CL. Biosynthesis of the Pseudomonas polyketide coronafacic acid requires monofunctional and multifunctional polyketide synthase proteins. Proc Natl Acad Sci U S A 1998; 95:15469-74. [PMID: 9860992 PMCID: PMC28066 DOI: 10.1073/pnas.95.26.15469] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coronafacic acid (CFA) is the polyketide component of the phytotoxin coronatine, a virulence factor of the plant pathogen Pseudomonas syringae. Our current knowledge of polyketide biosynthesis largely is based on the analysis of polyketide synthases (PKSs) in actinomycetes and other Gram-positive bacteria. Consequently, the cloning and characterization of the CFA biosynthetic gene cluster will contribute significantly to our knowledge of polyketide synthesis in Pseudomonas. In this report, we describe two genes in the CFA biosynthetic gene cluster that encode PKSs that are structurally and functionally similar to the multifunctional modular PKSs, which catalyze the synthesis of macrolide antibiotics. The CFA PKS genes were overproduced in Escherichia coli and shown to cross-react with antisera made to a modular PKS involved in erythromycin synthesis. A scheme for CFA biosynthesis is presented that incorporates the activities of all proteins in the CFA PKS. In this report a gene cluster encoding a pseudomonad polyketide has been completely sequenced and the deduced gene functions have been used to develop a biosynthetic scheme.
Collapse
Affiliation(s)
- V Rangaswamy
- Department of Entomology and Plant Pathology, 110 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|
42
|
Rangaswamy V, Mitchell R, Ullrich M, Bender C. Analysis of genes involved in biosynthesis of coronafacic acid, the polyketide component of the phytotoxin coronatine. J Bacteriol 1998; 180:3330-8. [PMID: 9642184 PMCID: PMC107286 DOI: 10.1128/jb.180.13.3330-3338.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coronafacic acid (CFA) is the polyketide component of coronatine (COR), a phytotoxin produced by the plant-pathogenic bacterium Pseudomonas syringae. The genes involved in CFA biosynthesis are encoded by a single transcript which encompasses 19 kb of the COR gene cluster. In the present study, the nucleotide sequence was determined for a 4-kb region located at the 3' end of the CFA biosynthetic gene cluster. Three open reading frames were identified and designated cfa8, cfa9, and tnp1; the predicted translation products of these genes showed relatedness to oxidoreductases, thioesterases, and transposases, respectively. The translational products of cfa8 and cfa9 were overproduced in Escherichia coli BL21; however, tnp1 was not translated in these experiments. Mutagenesis and complementation analysis indicated that cfa8 is required for the production of CFA and COR. Analysis of a cfa9 mutant indicated that this gene is dispensable for CFA and COR production but may increase the release of enzyme-bound products from the COR pathway; tnp1, however, had no obvious function in CFA or COR biosynthesis. A genetic strategy was used to produce CFA in a P. syringae strain which lacks the COR gene cluster; this approach will be useful in future studies designed to investigate biosynthetic products of the CFA gene cluster.
Collapse
Affiliation(s)
- V Rangaswamy
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater 74078-3032, USA
| | | | | | | |
Collapse
|