1
|
Nagar G, Upadhaya D, Sharma AK, Kumar R, Fular A, Ghosh S. Association between overexpression of cytochrome P450 genes and deltamethrin resistance in Rhipicephalus microplus. Ticks Tick Borne Dis 2020; 12:101610. [PMID: 33285351 DOI: 10.1016/j.ttbdis.2020.101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 monooxygenases mediated metabolic detoxification has been recognized as one of the mechanisms involved in resistance to pyrethroids, which is a class of pesticides that includes acaricides such as deltamethrin. Several cytochrome P450 (CYP) genes were identified in arthropod pests which are upregulated in response to exposure to pesticides used as acaricides. However, to date, limited information is available with respect to CYP genes and their response to acaricide exposure in ticks. We cloned and sequenced four CYP genes, the CYP41, CYP3006G8, CYP319A1 and CYP4W1 from reference susceptible IVRI-I strain of Rhipicephalus microplus. The expression pattern of the genes was investigated using qPCR in reference susceptible IVRI-I, pyrethroid-resistant IVRI-IV and multi-acaricide resistant IVRI-V strains. The effect of a single exposure of deltamethrin, at a concentration of 2600 μg/mL and 299.7 μg/mL on IVRI-IV and IVRI-V strains, respectively, on the expression of the four CYP genes was evaluated. In IVRI-IV strain, the CYP41 gene was highly overexpressed (FC 8.72) while CYP3006G8 was underexpressed with FC of 0.06. All the four genes were overexpressed in IVRI-V strain. After exposure to deltamethrin, the CYP3006G8 transcript levels were significantly upregulated at all time intervals in both resistant strains with the highest FC of 11.62 at 12 h in IVRI-IV and 13.38 at 3 h in IVRI-V. Our results suggest that the constitutive overexpression of CYP41 and deltamethrin induced upregulation of CYP3006G8 contribute to the development of pyrethroid resistance, specifically deltamethrin, in these two reference strains.
Collapse
Affiliation(s)
- Gaurav Nagar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Deepak Upadhaya
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Rinesh Kumar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Ashutosh Fular
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India.
| |
Collapse
|
2
|
Liu Y, Ge M, Zhang T, Chen L, Xing Y, Liu L, Li F, Cheng L. Exploring the correlation between deltamethrin stress and Keap1-Nrf2-ARE pathway from Drosophila melanogaster RNASeq data. Genomics 2020; 112:1300-1308. [DOI: 10.1016/j.ygeno.2019.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 01/20/2023]
|
3
|
Fine-mapping nicotine resistance loci in Drosophila using a multiparent advanced generation inter-cross population. Genetics 2015; 198:45-57. [PMID: 25236448 DOI: 10.1534/genetics.114.162107] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals in nature are frequently challenged by toxic compounds, from those that occur naturally in plants as a defense against herbivory, to pesticides used to protect crops. On exposure to such xenobiotic substances, animals mount a transcriptional response, generating detoxification enzymes and transporters that metabolize and remove the toxin. Genetic variation in this response can lead to variation in the susceptibility of different genotypes to the toxic effects of a given xenobiotic. Here we use Drosophila melanogaster to dissect the genetic basis of larval resistance to nicotine, a common plant defense chemical and widely used addictive drug in humans. We identified quantitative trait loci (QTL) for the trait using the DSPR (Drosophila Synthetic Population Resource), a panel of multiparental advanced intercross lines. Mapped QTL collectively explain 68.4% of the broad-sense heritability for nicotine resistance. The two largest-effect loci-contributing 50.3 and 8.5% to the genetic variation-map to short regions encompassing members of classic detoxification gene families. The largest QTL resides over a cluster of ten UDP-glucuronosyltransferase (UGT) genes, while the next largest QTL harbors a pair of cytochrome P450 genes. Using RNAseq we measured gene expression in a pair of DSPR founders predicted to harbor different alleles at both QTL and showed that Ugt86Dd, Cyp28d1, and Cyp28d2 had significantly higher expression in the founder carrying the allele conferring greater resistance. These genes are very strong candidates to harbor causative, regulatory polymorphisms that explain a large fraction of the genetic variation in larval nicotine resistance in the DSPR.
Collapse
|
4
|
Wan H, Liu Y, Li M, Zhu S, Li X, Pittendrigh BR, Qiu X. Nrf2/Maf-binding-site-containing functional Cyp6a2 allele is associated with DDT resistance in Drosophila melanogaster. PEST MANAGEMENT SCIENCE 2014; 70:1048-1058. [PMID: 24038867 DOI: 10.1002/ps.3645] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 08/01/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Increased insecticide detoxification mediated by cytochrome P450s is a common mechanism of insecticide resistance. Although Cyp6a2 has been observed to be overexpressed in many 4,4'-dichlorodiphenyltrichloroethane (DDT)-resistant strains of Drosophila melanogaster, how Cyp6a2 is regulated and whether its overproduction confers DDT resistance remain elusive. RESULTS Molecular analysis identified five Cyp6a2 alleles (Cyp6a2(Canton) (-S-1) , Cyp6a2(Canton) (-S-2) , Cyp6a2(91-C) , Cyp6a2(91-R) and Cyp6a2(Wisconsin) (-) (WD) ) from four D. melanogaster strains, notably differing in the presence or absence of an intact Nrf2/Maf (a transcription factor) binding site in the 5'-promoter core region, a 'G1410' frameshift deletion mutation in the heme-binding region and a long terminal repeat (LTR) of transposable element 17.6 in the 3'-untranslated region (UTR). Linkage analysis confirmed that DDT resistance was genetically linked to a Nrf2/Maf-binding-site-containing, LTR-lacking functional allele of Cyp6a2 (Cyp6a2(91-R) ). The qRT-PCR results showed that overexpression of functional Cyp6a2 was consistently associated with DDT resistance. Luciferase reporter gene assays revealed that an intact Nrf2/Maf binding site in the 5'-promoter core region enhanced the constitutive transcription of Cyp6a2. CONCLUSION The results suggest that the Nrf2/Maf binding-site-containing functional Cyp6a2 allele is associated with DDT resistance in the D. melanogaster strains under study.
Collapse
Affiliation(s)
- Hua Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Chan HH, Wajidi MFF, Zairi J. Molecular cloning and xenobiotic induction of seven novel cytochrome P450 monooxygenases in Aedes albopictus. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:163. [PMID: 25399430 PMCID: PMC5634052 DOI: 10.1093/jisesa/ieu025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/02/2013] [Indexed: 06/04/2023]
Abstract
Cytochrome P450 monooxygenase (P450) is a superfamily of enzymes that is important in metabolism of endogenous and exogenous compounds. In insects, these enzymes confer resistance to insecticides through its metabolic activities. Members of P450 from family 6 in insects are known to play a role in such function. In this study, we have isolated seven novel family 6 P450 from Aedes albopictus (Skuse) (Diptera: Culicidae), a vector of dengue and chikungunya fever. Induction profile of these seven genes was studied using several insecticides and xenobiotics. It was found that deltamethrin and permethrin did not induce expression of any genes. Another insecticide, temephos, inhibited expression of CYP6P15 for fivefold and twofold for CYP6N29, CYP6Y7, and CYP6Z18. In addition, copper II sulfate induced expression of CYP6M17 and CYP6N28 for up to sixfold. Benzothiazole (BZT), a tire leachate induced the expression of CYP6M17 by fourfold, CYP6N28 by sevenfold, but inhibited the expression of CYP6P15 for threefold and CYP6Y7 for twofold. Meanwhile, piperonyl butoxide (PBO) induced the expression CYP6N28 (twofold), while it inhibited the expression of CYP6P15 (fivefold) and CYP6Y7 (twofold). Remarkably, all seven genes were induced two- to eightfold by acetone in larval stage, but not adult stage. Expression of CYP6N28 was twofold higher, while expression of CYP6P15 was 15-fold lower in adult than larva. The other five P450s were not differentially expressed between the larvae and adult. This finding showed that acetone can be a good inducer of P450 in Ae. albopictus. On the other hand, temephos can act as good suppressor of P450, which may affect its own bioefficacy because it needs to be bioactivated by P450. To the best of our knowledge, this is the first report on acetone-inducible P450 in insects. Further study is needed to characterize the mechanisms involved in acetone induction in P450.
Collapse
Affiliation(s)
- Hiang Hao Chan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Jaal Zairi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia
| |
Collapse
|
6
|
Kalajdzic P, Oehler S, Reczko M, Pavlidi N, Vontas J, Hatzigeorgiou AG, Savakis C. Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms. PLoS One 2012; 7:e40296. [PMID: 22768270 PMCID: PMC3386967 DOI: 10.1371/journal.pone.0040296] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/06/2012] [Indexed: 11/18/2022] Open
Abstract
Insecticide resistance is a worldwide problem with major impact on agriculture and human health. Understanding the underlying molecular mechanisms is crucial for the management of the phenomenon; however, this information often comes late with respect to the implementation of efficient counter-measures, particularly in the case of metabolism-based resistance mechanisms. We employed a genome-wide insertional mutagenesis screen to Drosophila melanogaster, using a Minos-based construct, and retrieved a line (MiT[w−]3R2) resistant to the neonicotinoid insecticide Imidacloprid. Biochemical and bioassay data indicated that resistance was due to increased P450 detoxification. Deep sequencing transcriptomic analysis revealed substantial over- and under-representation of 357 transcripts in the resistant line, including statistically significant changes in mixed function oxidases, peptidases and cuticular proteins. Three P450 genes (Cyp4p2, Cyp6a2 and Cyp6g1) located on the 2R chromosome, are highly up-regulated in mutant flies compared to susceptible Drosophila. One of them (Cyp6g1) has been already described as a major factor for Imidacloprid resistance, which validated the approach. Elevated expression of the Cyp4p2 was not previously documented in Drosophila lines resistant to neonicotinoids. In silico analysis using the Drosophila reference genome failed to detect transcription binding factors or microRNAs associated with the over-expressed Cyp genes. The resistant line did not contain a Minos insertion in its chromosomes, suggesting a hit-and-run event, i.e. an insertion of the transposable element, followed by an excision which caused the mutation. Genetic mapping placed the resistance locus to the right arm of the second chromosome, within a ∼1 Mb region, where the highly up-regulated Cyp6g1 gene is located. The nature of the unknown mutation that causes resistance is discussed on the basis of these results.
Collapse
Affiliation(s)
- Predrag Kalajdzic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
7
|
Misra JR, Horner MA, Lam G, Thummel CS. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev 2011; 25:1796-806. [PMID: 21896655 DOI: 10.1101/gad.17280911] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Living organisms, from bacteria to humans, display a coordinated transcriptional response to xenobiotic exposure, inducing enzymes and transporters that facilitate detoxification. Several transcription factors have been identified in vertebrates that contribute to this regulatory response. In contrast, little is known about this pathway in insects. Here we show that the Drosophila Nrf2 (NF-E2-related factor 2) ortholog CncC (cap 'n' collar isoform-C) is a central regulator of xenobiotic detoxification responses. A binding site for CncC and its heterodimer partner Maf (muscle aponeurosis fibromatosis) is sufficient and necessary for robust transcriptional responses to three xenobiotic compounds: phenobarbital (PB), chlorpromazine, and caffeine. Genetic manipulations that alter the levels of CncC or its negative regulator, Keap1 (Kelch-like ECH-associated protein 1), lead to predictable changes in xenobiotic-inducible gene expression. Transcriptional profiling studies reveal that more than half of the genes regulated by PB are also controlled by CncC. Consistent with these effects on detoxification gene expression, activation of the CncC/Keap1 pathway in Drosophila is sufficient to confer resistance to the lethal effects of the pesticide malathion. These studies establish a molecular mechanism for the regulation of xenobiotic detoxification in Drosophila and have implications for controlling insect populations and the spread of insect-borne human diseases.
Collapse
Affiliation(s)
- Jyoti R Misra
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
8
|
Tian L, Cao C, He L, Li M, Zhang L, Zhang L, Liu H, Liu N. Autosomal interactions and mechanisms of pyrethroid resistance in house flies, Musca domestica. Int J Biol Sci 2011; 7:902-11. [PMID: 21814485 PMCID: PMC3149284 DOI: 10.7150/ijbs.7.902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/22/2011] [Indexed: 11/05/2022] Open
Abstract
Five BC₁ lines and 16 house fly mass-cross homozygous lines were generated from crosses of the pyrethroid resistant ALHF (wild-type) and susceptible aabys (bearing recessive morphological markers on each of five autosomes) strains. Each of the resulting homozygous lines had different combinations of autosomes from the resistant ALHF strain. Levels of resistance to permethrin were measured for each line to determine the autosomal linkage, interaction and, possibly, regulation in pyrethroid resistance of house flies. Results indicated that factors on autosome 4 are not involved in the development of resistance in house flies, while factors on autosomes 1, 2, 3 and 5 play important roles in pyrethroid resistance. The sodium channel gene has been mapped on autosome 3 and multiple cytochrome P450 genes overexpressed in resistant ALHF house flies have been genetically mapped on autosome 5, suggesting that P450 mediated detoxification and sodium channel-mediated target site insensitivity located on autosomes 3 and 5, respectively, are major factors related to resistance development in house flies. However, neither the factors on autosome 3 or 5 alone, nor the factors from both autosomes 3 and 5 combined could confer high levels of resistance to pyrethroid. In addition, strong synergistic effects on resistance was obtained when autosomes 1 and 2 interact with autosome 3 and/or 5, suggesting that the trans factors on autosomes 1 and 2 may interact with factors on autosomes 3 and 5, therefore, playing regulatory roles in the development of sodium channel insensitivity- and P450 detoxification-mediated resistance.
Collapse
Affiliation(s)
- Li Tian
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Giraudo M, Unnithan GC, Le Goff G, Feyereisen R. Regulation of cytochrome P450 expression in Drosophila: Genomic insights. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2010; 97:115-122. [PMID: 20582327 PMCID: PMC2890303 DOI: 10.1016/j.pestbp.2009.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genomic tools such as the availability of the Drosophila genome sequence, the relative ease of stable transformation, and DNA microarrays have made the fruit fly a powerful model in insecticide toxicology research. We have used transgenic promoter-GFP constructs to document the detailed pattern of induced Cyp6a2 gene expression in larval and adult Drosophila tissues. We also compared various insecticides and xenobiotics for their ability to induce this cytochrome P450 gene, and show that the pattern of Cyp6a2 inducibility is comparable to that of vertebrate CYP2B genes, and different from that of vertebrate CYP1A genes, suggesting a degree of evolutionary conservation for the "phenobarbital-type" induction mechanism. Our results are compared to the increasingly diverse reports on P450 induction that can be gleaned from whole genome or from "detox" microarray experiments in Drosophila. These suggest that only a third of the genomic repertoire of CYP genes is inducible by xenobiotics, and that there are distinct subsets of inducers / induced genes, suggesting multiple xenobiotic transduction mechanisms. A relationship between induction and resistance is not supported by expression data from the literature. The relative abundance of expression data now available is in contrast to the paucity of studies on functional expression of P450 enzymes, and this remains a challenge for our understanding of the toxicokinetic aspects of insecticide action.
Collapse
Affiliation(s)
- Maeva Giraudo
- UMR INRA- CNRS- Université de Nice Sophia Antipolis, 06903 Sophia Antipolis, France
| | | | - Gaëlle Le Goff
- UMR INRA- CNRS- Université de Nice Sophia Antipolis, 06903 Sophia Antipolis, France
| | - René Feyereisen
- UMR INRA- CNRS- Université de Nice Sophia Antipolis, 06903 Sophia Antipolis, France
- corresponding author: (R.Feyereisen)
| |
Collapse
|
10
|
Morra R, Kuruganti S, Lam V, Lucchesi JC, Ganguly R. Functional analysis of the cis-acting elements responsible for the induction of the Cyp6a8 and Cyp6g1 genes of Drosophila melanogaster by DDT, phenobarbital and caffeine. INSECT MOLECULAR BIOLOGY 2010; 19:121-130. [PMID: 20002224 DOI: 10.1111/j.1365-2583.2009.00954.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Many Drosophila cytochrome P450 or Cyp genes are induced by caffeine and phenobarbital (PB). To understand the induction mechanism, we created Drosophila S2 cell lines stably transformed with different luciferase reporter plasmids carrying upstream DNAs of Cyp6a8 allele of the resistant 91-R strain, and the 1.1-kb upstream DNAs of Cyp6g1 of the 91-R and the susceptible 91-C strains. Following 24 h treatment with dichlorodiphenyltrichloroethane (DDT), caffeine or PB, luciferase activity of all cell lines was determined. Results showed that the 0.1-kb DNA of Cyp6a8 and the upstream DNAs of Cyp6g1 from both strains are not induced by these chemicals in S2 cells. However, the 0.2-, 0.5- and 0.8-kb DNAs of Cyp6a8 showed 13-24-, 4-5- and 2.2-2.7-fold induction with caffeine, PB and DDT, respectively. These DNAs also showed a 2-3-fold synergistic effect of caffeine and PB but not of caffeine and DDT. The results suggest that the cis-regulatory elements for all three chemicals are located within the -11/-199 DNA of Cyp6a8. Furthermore, caffeine and PB inductions appear to be mediated via different cis-elements, whereas caffeine and DDT induction may involve common regulatory elements. These stably transformed cell lines should help understand the mechanism of resistance-associated Cyp gene overexpression in Drosophila.
Collapse
Affiliation(s)
- R Morra
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
11
|
Alon M, Alon F, Nauen R, Morin S. Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:940-949. [PMID: 18721883 DOI: 10.1016/j.ibmb.2008.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 05/26/2023]
Abstract
Organophosphate (OP) insecticides are inhibitors of the enzyme acetylcholinesterase (AChE), which terminates nerve impulses by catalyzing the hydrolysis of the neurotransmitter acetylcholine. Previous biochemical studies in Bemisia tabaci (Hemiptera: Aleyrodidae) proposed the existence of two molecular mechanisms for OPs' resistance: carboxylesterase- (COE) mediated hydrolysis or sequestration and decreased sensitivity of AChE. Here, two acetylcholinesterase genes, ace1 and ace2, have been fully cloned and sequenced from an OP-resistant strain and an OP-susceptible strain of B. tabaci. Comparison of nucleic acid and deduced amino acid sequences revealed only silent nucleotide polymorphisms in ace2, and one mutation, Phe392Trp (Phe331 in Torpedo californica), in ace1 of the resistant strain. The Phe392Trp mutation is located in the acyl pocket of the active site gorge and was recently shown to confer OP insensitivity in Culex tritaeniorhynchus. In addition, we also report on the isolation of two carboxylesterase genes (coe1 and coe2) from B. tabaci, the first carboxylesterases to be reported from this species. We show that one of the genes, coe1, is overexpressed ( approximately 4-fold) in the OP-resistant strain, and determine, by quantitative PCR, that the elevated expression is not related to gene amplification but probably to modified transcriptional control. Lastly, we bring new biochemical evidence that support the involvement of both AChE insensitivity and COE metabolism in resistance to OP insecticides in the resistant strain.
Collapse
Affiliation(s)
- Michal Alon
- Department of Entomology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
12
|
Li X, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. ANNUAL REVIEW OF ENTOMOLOGY 2007; 52:231-53. [PMID: 16925478 DOI: 10.1146/annurev.ento.51.110104.151104] [Citation(s) in RCA: 1227] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Xenobiotic resistance in insects has evolved predominantly by increasing the metabolic capability of detoxificative systems and/or reducing xenobiotic target site sensitivity. In contrast to the limited range of nucleotide changes that lead to target site insensitivity, many molecular mechanisms lead to enhancements in xenobiotic metabolism. The genomic changes that lead to amplification, overexpression, and coding sequence variation in the three major groups of genes encoding metabolic enzymes, i.e., cytochrome P450 monooxygenases (P450s), esterases, and glutathione-S-transferases (GSTs), are the focus of this review. A substantial number of the adaptive genomic changes associated with insecticide resistance that have been characterized to date are transposon mediated. Several lines of evidence suggest that P450 genes involved in insecticide resistance, and perhaps insecticide detoxification genes in general, may share an evolutionary association with genes involved in allelochemical metabolism. Differences in the selective regime imposed by allelochemicals and insecticides may account for the relative importance of regulatory or structural mutations in conferring resistance.
Collapse
Affiliation(s)
- Xianchun Li
- Department of Entomology and BIO5, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
13
|
Kuruganti S, Lam V, Zhou X, Bennett G, Pittendrigh BR, Ganguly R. High expression of Cyp6g1, a cytochrome P450 gene, does not necessarily confer DDT resistance in Drosophila melanogaster. Gene 2006; 388:43-53. [PMID: 17134855 DOI: 10.1016/j.gene.2006.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/06/2006] [Accepted: 09/18/2006] [Indexed: 11/18/2022]
Abstract
Cytochrome P450 monooxygenases, a family of detoxifying enzymes, are thought to confer resistance to various insecticides including DDT. Daborn et al. [Daborn, P., Yen, J.L., Bogwitz, M., Le Goff, G., Feil, et al. 2002. A single p450 allele associated with insecticide resistance in Drosophila. Science 297, 2253-2256.] suggested that the Accord transposable element causes overexpression of a Cyp6g1 allele, which has spread globally and is the basis of DDT resistance in Drosophila melanogaster populations. To determine whether the same phenomenon also operates in other Drosophila strains, we investigated 91-R, 91-C, ry(506), Wisconsin, Canton-SH and Hikone-RH strains. While the LC(50) values for the 91-R and Wisconsin strains are 8348 microg and 447 microg of DDT, respectively, values for the other four strains range between 0.74 to 20.9 microg. As expected, the susceptible ry(506) and 91-C strains have about 16-33-fold lower levels of CYP6G1 mRNA than the resistant 91-R and Wisconsin strains. Surprisingly, CYP6G1 mRNA and protein levels in the Canton-SH and Hikone-RH strains are as high as in the two resistant strains, yet they are as susceptible as the 91-C strain. The susceptible phenotype of the Canton-SH and Hikone-RH strains is not due to mutation in the Cyp6g1 gene; sequence analysis showed that Cyp6g1 alleles of resistant and susceptible strains are very similar and cannot be classified into resistant and susceptible alleles. As observed by others, we also found that only the 5'-upstream DNA of overexpressing alleles of Cyp6g1 has an insertional DNA, which is similar to Accord and Ninja elements. To examine the role of Cyp6g1 in DDT resistance, we substituted the Cyp6g1 allele of the 91-R strain with the allele from the susceptible 91-C strain via recombination and synthesized three recombinant lines. All three lines lacked Accord insertion and showed low expression of Cyp6g1 like the 91-C strain, yet they were as highly resistant as the 91-R strain. We conclude a strain may not have to have Accord insertion in the Cyp6g1 gene and the Cyp6g1 itself may not have to be overexpressed for DDT resistance to occur.
Collapse
Affiliation(s)
- Srilalitha Kuruganti
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, United States
| | | | | | | | | | | |
Collapse
|
14
|
Sun W, Margam VM, Sun L, Buczkowski G, Bennett GW, Schemerhorn B, Muir WM, Pittendrigh BR. Genome-wide analysis of phenobarbital-inducible genes in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2006; 15:455-64. [PMID: 16907832 DOI: 10.1111/j.1365-2583.2006.00662.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An oligoarray analysis was conducted to determine the differential expression of genes due to phenobarbital exposure in Drosophila melanogaster (w(1118) strain) third instar larvae. Seventeen genes were observed to be induced with increased expression by a statistical analysis of microarrays approach with a q < or = 0.05. At q < or = 0.12, four more genes (Cyp12d1, DmGstd4, and two genes with unknown function) were found to be up-regulated, and 11 genes with unknown function were found to be down-regulated. Fifteen of these genes, Cyp4d14, Cyp6a2, Cyp6a8, Cyp12d1, Cyp6d5, Cyp6w1, CG2065, DmGstd6, DmGstd7, Amy-p/Amy-d, Ugt86Dd, GC5724, Jheh1, Jheh2 and CG11893, were verified using quantitative real time polymerase chain reaction. Some of these genes have been shown to be over-transcribed in metabolically DDT-resistant Drosophila strains.
Collapse
Affiliation(s)
- W Sun
- Department of Entomology, Purdue University, West Lafayette, IN 47907-1158, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
King-Jones K, Horner MA, Lam G, Thummel CS. The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab 2006; 4:37-48. [PMID: 16814731 DOI: 10.1016/j.cmet.2006.06.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 04/27/2006] [Accepted: 06/08/2006] [Indexed: 12/13/2022]
Abstract
Exposure to xenobiotics such as plant toxins, pollutants, or prescription drugs triggers a defense response, inducing genes that encode key detoxification enzymes. Although xenobiotic responses have been studied in vertebrates, little effort has been made to exploit a simple genetic system for characterizing the molecular basis of this coordinated transcriptional response. We show here that approximately 1000 transcripts are significantly affected by phenobarbital treatment in Drosophila. We also demonstrate that the Drosophila ortholog of the human SXR and CAR xenobiotic receptors, DHR96, plays a role in this response. A DHR96 null mutant displays increased sensitivity to the sedative effects of phenobarbital and the pesticide DDT as well as defects in the expression of many phenobarbital-regulated genes. Metabolic and stress-response genes are also controlled by DHR96, implicating its role in coordinating multiple response pathways. This work establishes a new model system for defining the genetic control of xenobiotic stress responses.
Collapse
Affiliation(s)
- Kirst King-Jones
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E 5100, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
16
|
Bhaskara S, Dean ED, Lam V, Ganguly R. Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture. Gene 2006; 377:56-64. [PMID: 16713132 DOI: 10.1016/j.gene.2006.02.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/07/2006] [Accepted: 02/28/2006] [Indexed: 11/25/2022]
Abstract
To examine whether caffeine, the most widely used xenobiotic compound, would induce insect cytochrome P450 or CYP gene expression, upstream DNA fragments of Cyp6a2 (0.12, 0.26, 0.52 and 0.98-kb) and Cyp6a8 (0.06, 0.1, 0.2, 0.5 and 0.8-kb) genes of Drosophila melanogaster were individually fused to the firefly luciferase (luc) reporter gene. Promoter activities of these constructs were examined in Drosophila SL-2 cells using luciferase assays. Activity of 0.2- and 0.8-kb upstream DNA of Cyp6a8 was also measured in transgenic female flies. When these flies were treated with 2 mM pure caffeine or Vivarin caffeine, both DNA fragments showed a 4-5-fold induction of promoter activity. Endogenous Cyp6a8 and Cyp6a2 genes in these flies also showed caffeine-induced expression. In addition, both 0.2- and 0.8-kb DNAs showed differential basal and caffeine-induced activity in head, ovaries, gut, cuticle plus fat body and malpighian tubules. However, in all tissues 0.8-kb DNA always showed higher basal and caffeine-induced activities compared to the 0.2-kb DNA, suggesting that the additional DNA present in the 0.8-kb fragment has sequences that enhance both activities. In SL-2 cells, all reporter constructs of each Cyp6 gene showed significantly higher basal activity than the empty vector. Sequences that boost basal activity are located in -265/-129 and -983/-522 DNA of Cyp6a2, and -199/-109 and -491/-199 DNA of Cyp6a8 genes. While the 0.12- and 0.1-kb upstream DNAs of Cyp6a2 and Cyp6a8 genes respectively did not show caffeine-inducibility in SL-2 cells, the longest upstream DNA of each gene gave the highest level of induction. Caffeine-responsive sequences are not clustered at one place; they appear to be dispersed in -983/-126 and -761/-109 regions of Cyp6a2 and Cyp6a8 genes which also contain many binding sites for activator protein 1 (AP1) and cyclic AMP response element binding protein (CRE-BP). Significance of these binding sites in caffeine-inducibility has been discussed.
Collapse
Affiliation(s)
- Srividya Bhaskara
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA
| | | | | | | |
Collapse
|
17
|
Jensen HR, Scott IM, Sims S, Trudeau VL, Arnason JT. Gene expression profiles of Drosophila melanogaster exposed to an insecticidal extract of Piper nigrum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:1289-95. [PMID: 16478250 DOI: 10.1021/jf052046n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Black pepper, Piper nigrum L. (Piperaceae), has insecticidal properties and could potentially be utilized as an alternative to synthetic insecticides. Piperine extracted from P. nigrum has a biphasic effect upon cytochrome P450 monooxygenase activity with an initial suppression followed by induction. In this study, an ethyl acetate extract of P. nigrum seeds was tested for insecticidal activity toward adult Musca domestica and Drosophila melanogaster. The effect of this same P. nigrum extract upon differential gene expression in D. melanogaster was investigated using cDNA microarray analysis of 7380 genes. Treatment of D. melanogaster with P. nigrum extract led to a greater than 2-fold upregulation of transcription of the cytochrome P450 phase I metabolism genes Cyp 6a8, Cyp 9b2, and Cyp 12d1 as well as the glutathione-S-transferase phase II metabolism gene Gst-S1. These data suggests a complex effect of P. nigrum upon toxin metabolism.
Collapse
Affiliation(s)
- Helen R Jensen
- Department of Biology, University of Ottawa, Ottawa-Carleton Institute of Biology, 30 Marie-Curie Street, Ottawa, Ontario K1N 6N5, Canada
| | | | | | | | | |
Collapse
|
18
|
Festucci-Buselli RA, Carvalho-Dias AS, de Oliveira-Andrade M, Caixeta-Nunes C, Li HM, Stuart JJ, Muir W, Scharf ME, Pittendrigh BR. Expression of Cyp6g1 and Cyp12d1 in DDT resistant and susceptible strains of Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2005; 14:69-77. [PMID: 15663776 DOI: 10.1111/j.1365-2583.2005.00532.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Rst(2)DDT locus (loci) in Drosophila is associated with the over-expression of two cytochrome P450 genes, Cyp6g1 and Cyp12d1. Using northern and western blot analysis we observed the expression pattern of these two genes in two DDT susceptible (Canton-S and 91-C) and three DDT resistant strains (Wisconsin, 91-R and Hikone-R). In Canton-S and 91-R, the CYP6G1 protein was constitutively expressed throughout development. In the Wisconsin strain, CYP6G1 was not expressed in third instar larvae unless the larvae are exposed to DDT. CYP12D1 protein was only expressed in adults. Cyp12d1 mRNA is induced in DDT resistant strains post-exposure to DDT and the expression patterns of Cyp12d1 mRNA varied across DDT resistant strains. Our data support the hypothesis that there is evolutionary plasticity in the expression patterns of P450s associated with metabolic pesticide resistance.
Collapse
Affiliation(s)
- R A Festucci-Buselli
- Department of Entomology, Purdue University, 1158 Smith Hall, West Lafayette, IN 47907-1158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Helvig C, Tijet N, Feyereisen R, Walker FA, Restifo LL. Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (ω-1)-hydroxylation. Biochem Biophys Res Commun 2004; 325:1495-502. [PMID: 15555597 DOI: 10.1016/j.bbrc.2004.10.194] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Only a handful of P450 genes have been functionally characterized from the approximately 90 recently identified in the genome of Drosophila melanogaster. Cyp6a8 encodes a 506-amino acid protein with 53.6% amino acid identity with CYP6A2. CYP6A2 has been shown to catalyze the metabolism of several insecticides including aldrin and heptachlor. CYP6A8 is expressed at many developmental stages as well as in adult life. CYP6A8 was produced in Saccharomyces cerevisiae and enzymatically characterized after catalytic activity was reconstituted with D. melanogaster P450 reductase and NADPH. Although several saturated or non-saturated fatty acids were not metabolized by CYP6A8, lauric acid (C12:0), a short-chain unsaturated fatty acid, was oxidized by CYP6A8 to produce 11-hydroxylauric acid with an apparent V(max) of 25 nmol/min/nmol P450. This is the first report showing that a member of the CYP6 family catalyzes the hydroxylation of lauric acid. Our data open new prospects for the CYP6 P450 enzymes, which could be involved in important physiological functions through fatty acid metabolism.
Collapse
Affiliation(s)
- Christian Helvig
- Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
20
|
Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:653-65. [PMID: 15242706 DOI: 10.1016/j.ibmb.2004.03.018] [Citation(s) in RCA: 638] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/09/2023]
Abstract
Insecticide resistance is an inherited characteristic involving changes in one or more insect gene. The molecular basis of these changes are only now being fully determined, aided by the availability of the Drosophila melanogaster and Anopheles gambiae genome sequences. This paper reviews what is currently known about insecticide resistance conferred by metabolic or target site changes in mosquitoes.
Collapse
Affiliation(s)
- Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | |
Collapse
|
21
|
Sousa-Polezzi RDC, Bicudo HEMDC. Effect of phenobarbital on inducing insecticide tolerance and esterase changes in Aedes aegypti (Diptera: Culicidae). Genet Mol Biol 2004. [DOI: 10.1590/s1415-47572004000200024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Petersen RA, Niamsup H, Berenbaum MR, Schuler MA. Transcriptional response elements in the promoter of CYP6B1, an insect P450 gene regulated by plant chemicals. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:269-82. [PMID: 12573487 DOI: 10.1016/s0304-4165(02)00486-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Papilio polyxenes, a lepidopteran continually exposed to toxic furanocoumarins in its hostplants, owes its tolerance to these compounds to the transcriptional induction of the CYP6B1 gene encoding a P450 capable of metabolizing linear furanocoumarins, such as xanthotoxin, at high rates. Transient expression of various lengths of wild-type and mutant CYP6B1v3 promoter in lepidopteran Sf9 cells defines a positive element (XRE-xan) from -136 to -119 required for both basal and xanthotoxin-inducible transcription and a negative element from -228 to -146 that represses basal transcription. Fusion of the CYP6B1v3 XRE-xan element to the Drosophila melanogaster Eip28/29 core promoter indicates that the XRE-xan functions in conjunction with its own core promoter but not with a heterologous core promoter. Sequence searches of the CYP6B1v3 proximal promoter region revealed a number of putative elements (XRE-AhR, ARE, OCT-1, EcRE, C/EBP, Inr) sharing sequence similarity with those in other regulated vertebrate and insect promoters. Mutation of TGAC nucleotides shared by the overlapping EcRE/ARE/XRE-xan indicates that this sequence is essential for basal and regulated transcription of this gene. Mutagenesis in the non-overlapping region of the EcRE indicates it modulates basal transcription. These findings are incorporated into a working model for regulation of this toxin-inducible promoter.
Collapse
Affiliation(s)
- Rebecca A Petersen
- Department of Entomology, 320 Morrill Hall, 505 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
23
|
Zhu YC, Snodgrass GL. Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae) having different susceptibilities to pyrethroid insecticide. INSECT MOLECULAR BIOLOGY 2003; 12:39-49. [PMID: 12542634 DOI: 10.1046/j.1365-2583.2003.00385.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three cDNAs, cloned from both pyrethroid-susceptible and -resistant strains of Lygus lineolaris, contained a 1548 nucleotide open reading frame encoding a 516 amino acid residue protein. Predicted cytochrome P450s from cDNAs were classified as the first three new members of subfamily CYP6X, CYP6X1v1 for a susceptible strain and CYP6X1v2 and CYP6X1v3 for two resistant strains. Putative cytochrome P450 CYP6X1s from L. lineolaris were highly similar (up to 42% amino acid sequence identity) to several insect CYP6s that are responsible for reduced sensitivity to pyrethroid insecticides. A total of twenty-six nucleotide substitutions were revealed between cDNAs of susceptible and resistant strains. Two nucleotide substitutions resulted in amino acid changes, Asp373 to Ala373 and Ser487 to Ala487, between susceptible and resistant strains. The resistant laboratory strain contained 2.1-fold higher cytochrome P450 mRNA per microgram total RNA than the susceptible laboratory strain. Topical treatment with 10 ng permethrin elevated cytochrome P450 mRNA levels by approximately 2-fold. The results of this study indicated that cytochrome P450 gene mutation, coupled with up-regulation, was present only in the pyrethroid resistant strains, and was possibly related to resistance development in the tarnished plant bug.
Collapse
Affiliation(s)
- Y C Zhu
- Jamie Whitten Delta States Research Center, ARS-USDA, Stoneville, Mississippi 38776, USA.
| | | |
Collapse
|
24
|
Boake CRB, McDonald K, Maitra S, Ganguly R. Forty years of solitude: life-history divergence and behavioural isolation between laboratory lines of Drosophila melanogaster. J Evol Biol 2003; 16:83-90. [PMID: 14635883 DOI: 10.1046/j.1420-9101.2003.00505.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The study of the early stages of speciation can benefit from examination of differences between populations of known history that have been separated for a short time, such as a few thousands of generations. We asked whether two lines of Drosophila melanogaster that were isolated more than 40 years ago have evolved differences in life-history characters, or have begun to evolve behavioural or postzygotic isolation. One line, which is resistant to DDT, showed lower egg production and a shorter lifespan than a susceptible line. These differences are not a pleiotropic effect of resistance because they are not attributable to the chromosome that contains the resistance factors. The two lines have begun to become behaviourally isolated. Again, the isolation is not attributable to genes on the chromosome that contains resistance factors. The lines show only prezygotic isolation; there is no evidence of reduced fitness of F1 or F2 hybrids. These lines and others like them, should be excellent subjects for analyses of genetic changes that could lead to speciation.
Collapse
Affiliation(s)
- C R B Boake
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA.
| | | | | | | |
Collapse
|
25
|
Maitra S, Price C, Ganguly R. Cyp6a8 of Drosophila melanogaster: gene structure, and sequence and functional analysis of the upstream DNA. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:859-870. [PMID: 12110293 DOI: 10.1016/s0965-1748(01)00174-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In Drosophila, the insecticide resistant 91-R strain is an overproducer and susceptible 91-C and ry(506) strains are the underproducers of CYP6A8 mRNA encoded by a cytochrome P450 gene, Cyp6a8. Low expression of Cyp6a8 in the underproducer strains is due to a downregulatory effect of a putative repressor locus, which is thought to be mutant in the overproducer strain. In the present investigation, organization of Cyp6a8 and promoter activity of its upstream DNA were analyzed. Cyp6a8 has two introns of which intron II is similar to the introns of other insect CYP genes with respect to its length and position. Intron I is only 36 bp long and lacks consensus splice sites. It is also in-frame with the CYP6A8 open reading frame. Therefore, inefficient splicing of intron I may produce two isoforms of CYP6A8. Analysis of Cyp6a8 upstream DNA of the overproducer 91-R strain showed that DNA sequences between -199 and -761 bp are required for the highest constitutive and barbital-induced expression of Cyp6a8. This region has six barbie boxes and binding sites for various transcription factors. Promoter activity of the -11/-761 DNA of the overproducer 91-R strain was found to be 4-fold lower in the genome of underproducer ry(506) strain, which is wild type for the putative repressor gene, than in the genome of F1 hybrids of 91-R and ry(506) strains. These results suggest that -11/-761 Cyp6a8 DNA of the 91-R strain can respond to the active repressor present in the hybrid genome and further support our previous findings that overexpression of Cyp6a8 is a result of mutation of a repressor gene rather than mutation of the cis-regulatory sequences.
Collapse
Affiliation(s)
- Sushmita Maitra
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
26
|
Brandt A, Scharf M, Pedra JHF, Holmes G, Dean A, Kreitman M, Pittendrigh BR. Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. INSECT MOLECULAR BIOLOGY 2002; 11:337-341. [PMID: 12144699 DOI: 10.1046/j.1365-2583.2002.00344.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Previous studies have shown that the major metabolic resistance locus in the insecticide-resistant Drosophila line Rst(2)DDT(Wisconsin) maps between the markers cn and vg on chromosome 2. Six cytochrome P450 genes exist in this region. We investigated the expression levels of these P450 genes in DDT-resistant and -susceptible fly lines. We report: (i) DDT resistance is significant (> 30-fold) and dominant, (ii) resistance is reduced by the cytochrome P450 inhibitor PBO, (iii) there is constitutive over-expression relative to susceptible flies of two genes encoding cytochrome P450 enzymes within the cn-vg region (CYP6G1 = 4.3-fold; CYP12D1 = 6.0-fold), and (iv) exposure to DDT results in an increased expression of only one of these two P450 genes (CYP12D1 > or = 6-fold above constitutive resistant fly baselines).
Collapse
Affiliation(s)
- A Brandt
- Department of Entomology, Room 100, 1158 Smith Hall, Purdue University, West Lafayette, IN 47907-1158, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Liu N, Zhang L. Identification of two new cytochrome P450 genes and their 5'-flanking regions from the housefly, Musca domestica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:755-764. [PMID: 12044492 DOI: 10.1016/s0965-1748(01)00158-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two new cytochrome P450 cDNAs, named CYP28B1 and CYP4G13v2, and their 5'-flanking regions were cloned and sequenced from a housefly strain, ALHF. The cDNA sequences of CYP28B1 and CYP4G13v2 have open reading frames of 1449 and 1653 nucleotides encoding proteins of 483 and 551 amino acid residues, respectively. Sequence analysis shows that both CYP28B1 and CYP4G13v2 putative P450 proteins contain: (1) a highly hydrophobic N terminus; (2) a P450 protein signature motif, FXXGXRXCXG, known as the important ligand for heme binding; (3) a motif, YXXAXXXEXXR, which is a conserved P450 sequence coinciding with Helix K; and (4) a typical aromatic sequence, A(1)XXPXXA(2)XPXBA(3), which is conserved within most P450s. The 5'-flanking regions of CYP28B1 (>2kb) and CYP4G13v2 (>1 kb) were isolated from adaptor-ligated ALHF genomic DNA libraries. The transcription start points of CYP28B1 and CYP4G13v2 were mapped to 176 and 163 nucleotides upstream of the ATG translation start codon within the conserved arthropod promoter elements of TCATT and ACAGT, respectively. Possible regulatory binding sites for general transcription factors, Sp1 and AP1, were mapped in the 5' promoter regions of CYP28B1 whereas TFIID and Oct-1 were mapped in CYP4G13v2. Five conserved cis-acting elements for tissue- or cell-specific transcription regulatory factors were identified in the promoter regions of both P450 genes. A structure of five 153-nucleotide (nt) highly identical repeats and two partial repeat sequences were found in the promoter region of CYP28B1. The homologous (90% identity) sequences of the 153-nt repeat were also found in the promoter region of CYP4G13v2. The homologous sequences of the repeat in other insect P450 gene promoter regions are discussed.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, 36849, Auburn, AL, USA.
| | | |
Collapse
|
28
|
Sabourault C, Guzov VM, Koener JF, Claudianos C, Plapp FW, Feyereisen R. Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdalphaE7) gene in resistant house flies. INSECT MOLECULAR BIOLOGY 2001; 10:609-618. [PMID: 11903631 DOI: 10.1046/j.0962-1075.2001.00303.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Up-regulation of detoxifying enzymes in insecticide-resistant strains of the house fly is a common mechanism for metabolic resistance. However, the molecular basis of this increased insecticide metabolism is not well understood. In the multiresistant Rutgers strain, several cytochromes P450 and glutathione S-transferases are constitutively overexpressed at the transcriptional level. Overexpression is the result of trans-regulation, and a regulatory gene has been located on chromosome 2. A Gly137 to Asp point mutation in alphaE7 esterase gene, leading to the loss of carboxylesterase activity, has been associated with organophosphate resistance in the house fly and the sheep blowfly. We show here that purified recombinant CYP6A1 is able to detoxify diazinon with a high efficiency. We also show that either the Gly137 to Asp point mutation in alphaE7 esterase gene or a deletion at this locus confer resistance and overproduction of the CYP6A1 protein. Based on these findings, we propose it is the absence of the wild-type Gly137 allele of the alphaE7 gene that releases the transcriptional repression of genes coding for detoxification enzymes such as CYP6A1, thereby leading to metabolic resistance to diazinon.
Collapse
Affiliation(s)
- C Sabourault
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
29
|
Korytko PJ, MacLntyre RJ, Scott JG. Expression and activity of a house-fly cytochrome P450, CYP6D1, in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2000; 9:441-449. [PMID: 11029662 DOI: 10.1046/j.1365-2583.2000.00207.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The cytochrome P450 system of animals comprises many individual cytochromes P450 in addition to a single cytochrome P450 reductase and cytochrome b5. Although individual genes of the cytochrome P450 superfamily are highly diverged, the P450 reductase and cytochrome b(5) remain more conserved across taxa. Here, we describe the transformation of Drosophila melanogaster with a house-fly-specific cytochrome P450, CYP6D1. Functional activity of ectopically expressed cytochromes P450 requires successful interaction between the transgenic P450 and the requisite coenzymes of the host organism. Transformed Drosophila, but not controls, contained CYP6D1 protein as identified by protein immunoblotting, elevated total P450 and elevated CYP6D1 enzymatic activity. These data demonstrate that house-fly CYP6D1 can interact with low to moderate efficiency with Drosophila P450 reductase and cytochrome b(5).
Collapse
Affiliation(s)
- P J Korytko
- Field of Environmental Toxicology, Rice Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
30
|
Maitra S, Dombrowski SM, Basu M, Raustol O, Waters LC, Ganguly R. Factors on the third chromosome affect the level of cyp6a2 and cyp6a8 expression in Drosophila melanogaster. Gene 2000; 248:147-56. [PMID: 10806360 DOI: 10.1016/s0378-1119(00)00129-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of two second chromosome-linked cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster was measured in various strains. Six different strains, including ry(506) and 91-C, showed low or undetectable levels of CYP6A2 and CYP6A8 mRNAs, suggesting that low expression is the wild-type phenotype of Cyp6a2 and Cyp6a8 genes. In the 91-R and MHIII-D23 strains, however, both these genes are overexpressed. In order to examine the genetic basis of Cyp6a2 and Cyp6a8 expression, CYP6A2 and CYP6A8 RNA levels were measured in the F1 hybrids of overproducer (91-R and MHIII-D23) and underproducer (ry(506) and 91-C) strains. Results showed that the total amounts of CYP6A2 and CYP6A8 mRNAs in the F1 hybrids were lower than half the amounts of these RNAs found in the overproducer parental strains. This suggested that the underproducer strains carry loci which downregulate Cyp6a2 and Cyp6a8 gene expression. To determine the chromosome linkage of these loci, several stocks homozygous for the second chromosome of overproducer 91-R strain and, therefore, homozygous for the Cyp6a2-91R and Cyp6a8-91R alleles were synthesized. The third chromosomes in all these stocks were from the underproducer ry(506) strain. The levels of expression of both Cyp6a2-91R and Cyp6a8-91R genes in these three stocks were significantly lower than that observed in the 91-R strain. One of these stocks, named iso-2, showing reduced expression, was used to synthesize two new isogenic stocks by resubstituting the third chromosome of ry(506) origin with third chromosomes of the 91-R strain. Expression of both Cyp6a2-91R and Cyp6a8-91R alleles was found to be much higher in these two resubstituted isogenic stocks than in the progenitor iso-2 stock. Taken together, these results suggest that the second chromosome-linked Cyp6a2 and Cypa8 genes are regulated by loci present on the third chromosome, and the wild-type function of these loci is to repress these two Cyp genes. The data also suggest that Cyp6a2 and Cyp6a8 overexpression in the 91-R and MHIII-D23 strains is more likely due to mutation in the repressor locus (or loci) rather than in the cis-regulatory sequences of the Cyp6a2 and Cyp6a8 genes.
Collapse
Affiliation(s)
- S Maitra
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
31
|
Snyder MJ. Cytochrome P450 enzymes in aquatic invertebrates: recent advances and future directions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2000; 48:529-547. [PMID: 10794835 DOI: 10.1016/s0166-445x(00)00085-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A variety of enzymes and other proteins are produced by organisms in response to xenobiotic exposures. Cytochrome P450s (CYP) are one of the major phase I-type classes of detoxification enzymes found in terrestrial and aquatic organisms ranging from bacteria to vertebrates. These enzymes metabolize a wide variety of substrates including endogenous molecules (e.g. fatty acids, eicosenoids, steroids) and xenobiotics (e.g. hydrocarbons, pesticides, drugs). Aquatic invertebrates, especially those in marine habitats, occupy every aspect of the environment, from above the surface (intertidal) to below the sediments. In turn, they have extremely diverse physiologies and are exposed to a vast array of potential toxicants. Aspects of aquatic invertebrate cytochrome P450 enzymes have been studied for the last 25 years. In a few phyla, P450 activities have been measured and are responsive to xenobiotic exposures. Until the last several years, little progress had occurred in the identification of P450 gene diversity in aquatic invertebrates. Molecular biology tools have greatly aided this search, and are likely to identify as much diversity for this protein superfamily as is present in higher marine and terrestrial organisms. Recent work has expanded our knowledge of the CYP superfamily, and new developments will rapidly advance the usefulness of these genes into such fields as biomarker research. Advances of the last decade are reviewed and insights are presented from related insect studies.
Collapse
Affiliation(s)
- MJ Snyder
- Bodega Marine Laboratory, University of California, Davis, PO Box 247, Bodega Bay, CA, USA
| |
Collapse
|
32
|
Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. ANNUAL REVIEW OF ENTOMOLOGY 2000; 45:371-91. [PMID: 10761582 DOI: 10.1146/annurev.ento.45.1.371] [Citation(s) in RCA: 854] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Insecticide resistance is an increasing problem in many insect vectors of disease. Our knowledge of the basic mechanisms underlying resistance to commonly used insecticides is well established. Molecular techniques have recently allowed us to start and dissect most of these mechanisms at the DNA level. The next major challenge will be to use this molecular understanding of resistance to develop novel strategies with which we can truly manage resistance. State-of-the-art information on resistance in insect vectors of disease is reviewed in this context.
Collapse
Affiliation(s)
- J Hemingway
- School of Biosciences, University of Wales Cardiff
| | | |
Collapse
|
33
|
Abstract
The cytochrome P450-dependent monooxygenases (monooxygenases) are an extremely important metabolic system involved in the catabolism and anabolism of xenobiotics and endogenous compounds. Monooxygenase-mediated metabolism is a common mechanism by which insects become resistant to insecticides as evidenced by the numerous insect species and insecticides affected. This review begins by presenting background information about P450s, the role of monooxygenases in insects, and the different techniques that have been used to isolate individual insect P450s. Next, insecticide resistance is briefly described, and then historical information about monooxygenase-mediated insecticide resistance is reviewed. For any case of monooxygenase-mediated resistance, identification of the P450(s) involved, out of the dozens that are present in an insect, has proven very challenging. Therefore, the next section of the review focuses on the minimal criteria for establishing that a P450 is involved in resistance. This is followed by a comprehensive examination of the literature concerning the individual P450s that have been isolated from insecticide resistant strains. In each case, the history of the strain and the evidence for monooxygenase-mediated resistance are reviewed. The isolation and characterization of the P450(s) from the strain are then described, and the evidence of whether or not the isolated P450(s) is involved in resistance is summarized. The remainder of the review summarizes our current knowledge of the molecular basis of monooxygenase-mediated resistance and the implications for the future. The importance of these studies for development of effective insecticide resistance management strategies is discussed.
Collapse
Affiliation(s)
- J G Scott
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA. jgs5@.cornell.edu
| |
Collapse
|