1
|
Kim NK, Baek JE, Lee YJ, Oh Y, Oh JI. Rel-dependent decrease in the expression of ribosomal protein genes by inhibition of the respiratory electron transport chain in Mycobacterium smegmatis. Front Microbiol 2024; 15:1448277. [PMID: 39188315 PMCID: PMC11345224 DOI: 10.3389/fmicb.2024.1448277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
In this study, we demonstrated that both the expression of most ribosomal protein genes and the amount of ribosomes were decreased in the Δaa 3 mutant of Mycobacterium smegmatis, in which the major terminal oxidase (aa 3 cytochrome c oxidase) of the respiratory electron transport chain (ETC) is inactivated, compared to those in the wild-type strain. Deletion of the rel gene encoding the major (p)ppGpp synthetase in the background of the Δaa 3 mutant restored the reduced expression of ribosomal protein genes, suggesting that inhibition of the respiratory ETC leads to the Rel-dependent stringent response (SR) in this bacterium. Both a decrease in the expression of ribosomal protein genes by overexpression of rel and the increased expression of rel in the Δaa 3 mutant relative to the wild-type strain support the Rel-dependent induction of SR in the Δaa 3 mutant. We also demonstrated that the expression of ribosomal protein genes was decreased in M. smegmatis exposed to respiration-inhibitory conditions, such as KCN and bedaquiline treatment, null mutation of the cytochrome bcc 1 complex, and hypoxia. The MprBA-SigE-SigB regulatory pathway was implicated in both the increased expression of rel and the decreased expression of ribosomal protein genes in the Δaa 3 mutant of M. smegmatis.
Collapse
Affiliation(s)
- Na-Kyeong Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jong-Eun Baek
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Ye-Jin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
2
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
3
|
Sinha S, RS N, Devarakonda Y, Rathi A, Reddy Regatti P, Batra S, Syal K. Tale of Twin Bifunctional Second Messenger (p)ppGpp Synthetases and Their Function in Mycobacteria. ACS OMEGA 2023; 8:32258-32270. [PMID: 37720788 PMCID: PMC10500699 DOI: 10.1021/acsomega.3c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
M. tuberculosis, an etiological agent of tuberculosis, requires a long treatment regimen due to its ability to respond to stress and persist inside the host. The second messenger (p)ppGpp-mediated stress response plays a critical role in such long-term survival, persistence, and antibiotic tolerance which may also lead to the emergence of multiple drug resistance. In mycobacteria, (pp)pGpp molecules are synthesized predominantly by two bifunctional enzymes-long RSH-Rel and short SAS-RelZ. The long RSH-Rel is a major (p)ppGpp synthetase and hydrolase. How it switches its activity from synthesis to hydrolysis remains unclear. RelMtb mutant has been reported to be defective in biofilm formation, cell wall function, and persister cell formation. The survival of such mutants has also been observed to be compromised in infection models. In M. smegmatis, short SAS-RelZ has RNase HII activity in addition to (pp)Gpp synthesis activity. The RNase HII function of RelZ has been implicated in resolving replication-transcription conflicts by degrading R-loops. However, the mechanism and regulatory aspects of such a regulation remain elusive. In this article, we have discussed (p)ppGpp metabolism and its role in managing the stress response network of mycobacteria, which is responsible for long-term survival inside the host, making it an important therapeutic target.
Collapse
Affiliation(s)
- Shubham
Kumar Sinha
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Neethu RS
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Yogeshwar Devarakonda
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Ajita Rathi
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Pavan Reddy Regatti
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Sakshi Batra
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Kirtimaan Syal
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| |
Collapse
|
4
|
Li Y, Majumdar S, Treen R, Sharma MR, Corro J, Gamper HB, Manjari SR, Prusa J, Banavali NK, Stallings CL, Hou YM, Agrawal RK, Ojha AK. Starvation sensing by mycobacterial RelA/SpoT homologue through constitutive surveillance of translation. Proc Natl Acad Sci U S A 2023; 120:e2302006120. [PMID: 37216503 PMCID: PMC10235957 DOI: 10.1073/pnas.2302006120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
The stringent response, which leads to persistence of nutrient-starved mycobacteria, is induced by activation of the RelA/SpoT homolog (Rsh) upon entry of a deacylated-tRNA in a translating ribosome. However, the mechanism by which Rsh identifies such ribosomes in vivo remains unclear. Here, we show that conditions inducing ribosome hibernation result in loss of intracellular Rsh in a Clp protease-dependent manner. This loss is also observed in nonstarved cells using mutations in Rsh that block its interaction with the ribosome, indicating that Rsh association with the ribosome is important for Rsh stability. The cryo-EM structure of the Rsh-bound 70S ribosome in a translation initiation complex reveals unknown interactions between the ACT domain of Rsh and components of the ribosomal L7/L12 stalk base, suggesting that the aminoacylation status of A-site tRNA is surveilled during the first cycle of elongation. Altogether, we propose a surveillance model of Rsh activation that originates from its constitutive interaction with the ribosomes entering the translation cycle.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, New York State Department of Health, Wadsworth Center, Albany, NY12208
| | - Soneya Majumdar
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY12237
| | - Ryan Treen
- Division of Genetics, New York State Department of Health, Wadsworth Center, Albany, NY12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY12208
| | - Manjuli R. Sharma
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY12237
| | - Jamie Corro
- Division of Genetics, New York State Department of Health, Wadsworth Center, Albany, NY12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY12208
| | - Howard B. Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Swati R. Manjari
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY12237
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO63110
| | - Nilesh K. Banavali
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY12237
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO63110
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Rajendra K. Agrawal
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY12237
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY12208
| | - Anil K. Ojha
- Division of Genetics, New York State Department of Health, Wadsworth Center, Albany, NY12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY12208
| |
Collapse
|
5
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
6
|
Mishra S, Saito K. Clinically encountered growth phenotypes of tuberculosis-causing bacilli and their in vitro study: A review. Front Cell Infect Microbiol 2022; 12:1029111. [PMID: 36439231 PMCID: PMC9684195 DOI: 10.3389/fcimb.2022.1029111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 07/11/2024] Open
Abstract
The clinical manifestations of tuberculosis (TB) vary widely in severity, site of infection, and outcomes of treatment-leading to simultaneous efforts to individualize therapy safely and to search for shorter regimens that can be successfully used across the clinical spectrum. In these endeavors, clinicians and researchers alike employ mycobacterial culture in rich media. However, even within the same patient, individual bacilli among the population can exhibit substantial variability in their culturability. Bacilli in vitro also demonstrate substantial heterogeneity in replication rate and cultivation requirements, as well as susceptibility to killing by antimicrobials. Understanding parallels in clinical, ex vivo and in vitro growth phenotype diversity may be key to identifying those phenotypes responsible for treatment failure, relapse, and the reactivation of bacilli that progresses TB infection to disease. This review briefly summarizes the current role of mycobacterial culture in the care of patients with TB and the ex vivo evidence of variability in TB culturability. We then discuss current advances in in vitro models that study heterogenous subpopulations within a genetically identical bulk culture, with an emphasis on the effect of oxidative stress on bacillary cultivation requirements. The review highlights the complexity that heterogeneity in mycobacterial growth brings to the interpretation of culture in clinical settings and research. It also underscores the intricacies present in the interplay between growth phenotypes and antimicrobial susceptibility. Better understanding of population dynamics and growth requirements over time and space promises to aid both the attempts to individualize TB treatment and to find uniformly effective therapies.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Kohta Saito
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
7
|
Shin J, Singal B, Grüber A, Wong DMK, Ragunathan P, Grüber G. Atomic structure of the regulatory TGS domain of Rel protein from Mycobacterium tuberculosis and its interaction with deacylated tRNA. FEBS Lett 2021; 595:3006-3018. [PMID: 34808002 DOI: 10.1002/1873-3468.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022]
Abstract
The stringent response is critical for the survival of Mycobacterium tuberculosis (Mtb) under nutrient starvation. The mechanism is mediated by a GTP pyrophosphokinase known as Rel, containing N-terminal synthetase and hydrolase domains and C-terminal regulatory domains, which include the TGS domain (ThrRS, GTPase, and SpoT proteins) that has been proposed to activate the synthetase domain via interaction with deacylated tRNA. Here, we present the NMR solution structure of the Mtb Rel TGS domain (MtRel TGS), consisting of five antiparallel β-strands and one helix-loop-helix motif. The interaction of MtRel TGS with deacylated tRNA is shown, indicating the critical amino acids of MtRel TGS in tRNA binding, and presenting the first structural evidence of MtRel TGS binding to deacylated tRNA in solution in the absence of the translational machinery.
Collapse
Affiliation(s)
- Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Bharti Singal
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - David Meng Kit Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
8
|
Gupta KR, Arora G, Mattoo A, Sajid A. Stringent Response in Mycobacteria: From Biology to Therapeutic Potential. Pathogens 2021; 10:pathogens10111417. [PMID: 34832573 PMCID: PMC8622095 DOI: 10.3390/pathogens10111417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis is a human pathogen that can thrive inside the host immune cells for several years and cause tuberculosis. This is due to the propensity of M. tuberculosis to synthesize a sturdy cell wall, shift metabolism and growth, secrete virulence factors to manipulate host immunity, and exhibit stringent response. These attributes help M. tuberculosis to manage the host response, and successfully establish and maintain an infection even under nutrient-deprived stress conditions for years. In this review, we will discuss the importance of mycobacterial stringent response under different stress conditions. The stringent response is mediated through small signaling molecules called alarmones “(pp)pGpp”. The synthesis and degradation of these alarmones in mycobacteria are mediated by Rel protein, which is both (p)ppGpp synthetase and hydrolase. Rel is important for all central dogma processes—DNA replication, transcription, and translation—in addition to regulating virulence, drug resistance, and biofilm formation. Rel also plays an important role in the latent infection of M. tuberculosis. Here, we have discussed the literature on alarmones and Rel proteins in mycobacteria and highlight that (p)ppGpp-analogs and Rel inhibitors could be designed and used as antimycobacterial compounds against M. tuberculosis and non-tuberculous mycobacterial infections.
Collapse
Affiliation(s)
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Abid Mattoo
- Pharmaceutical Development, Ultragenyx Gene Therapy, Woburn, MA 01801, USA;
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
- Correspondence: or
| |
Collapse
|
9
|
Danchik C, Wang S, Karakousis PC. Targeting the Mycobacterium tuberculosis Stringent Response as a Strategy for Shortening Tuberculosis Treatment. Front Microbiol 2021; 12:744167. [PMID: 34690990 PMCID: PMC8529327 DOI: 10.3389/fmicb.2021.744167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The stringent response is well conserved across bacterial species and is a key pathway involved both in bacterial survival and virulence and in the induction of antibiotic tolerance in Mycobacteria. It is mediated by the alarmone (p)ppGpp and the regulatory molecule inorganic polyphosphate in response to stress conditions such as nutrient starvation. Efforts to pharmacologically target various components of the stringent response have shown promise in modulating mycobacterial virulence and antibiotic tolerance. In this review, we summarize the current understanding of the stringent response and its role in virulence and tolerance in Mycobacteria, including evidence that targeting this pathway could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - Petros C. Karakousis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Park HE, Lee W, Shin MK, Shin SJ. Understanding the Reciprocal Interplay Between Antibiotics and Host Immune System: How Can We Improve the Anti-Mycobacterial Activity of Current Drugs to Better Control Tuberculosis? Front Immunol 2021; 12:703060. [PMID: 34262571 PMCID: PMC8273550 DOI: 10.3389/fimmu.2021.703060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains a global health threat despite recent advances and insights into host-pathogen interactions and the identification of diverse pathways that may be novel therapeutic targets for TB treatment. In addition, the emergence and spread of multidrug-resistant Mtb strains led to a low success rate of TB treatments. Thus, novel strategies involving the host immune system that boost the effectiveness of existing antibiotics have been recently suggested to better control TB. However, the lack of comprehensive understanding of the immunomodulatory effects of anti-TB drugs, including first-line drugs and newly introduced antibiotics, on bystander and effector immune cells curtailed the development of effective therapeutic strategies to combat Mtb infection. In this review, we focus on the influence of host immune-mediated stresses, such as lysosomal activation, metabolic changes, oxidative stress, mitochondrial damage, and immune mediators, on the activities of anti-TB drugs. In addition, we discuss how anti-TB drugs facilitate the generation of Mtb populations that are resistant to host immune response or disrupt host immunity. Thus, further understanding the interplay between anti-TB drugs and host immune responses may enhance effective host antimicrobial activities and prevent Mtb tolerance to antibiotic and immune attacks. Finally, this review highlights novel adjunctive therapeutic approaches against Mtb infection for better disease outcomes, shorter treatment duration, and improved treatment efficacy based on reciprocal interactions between current TB antibiotics and host immune cells.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
12
|
Shin J, Singal B, Sony Subramanian Manimekalai M, Wei Chen M, Ragunathan P, Grüber G. Atomic structure of, and valine binding to the regulatory ACT domain of the Mycobacterium tuberculosis Rel protein. FEBS J 2020; 288:2377-2397. [PMID: 33067840 DOI: 10.1111/febs.15600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
The stringent response, regulated by the bifunctional (p)ppGpp synthetase/hydrolase Rel in mycobacteria, is critical for long-term survival of the drug-tolerant dormant state of Mycobacterium tuberculosis. During amino acid starvation, MtRel senses a drop in amino acid concentration and synthesizes the messengers pppGpp and ppGpp, collectively called (p)ppGpp. Here, we investigate the role of the regulatory 'Aspartokinase, Chorismate mutase and TyrA' (ACT) domain in MtRel. Using NMR spectroscopy approaches, we report the high-resolution structure of dimeric MtRel ACT which selectively binds to valine out of all other branched-chain amino acids tested. A set of MtRel ACT mutants were generated to identify the residues required for maintaining the head-to-tail dimer. Through NMR titrations, we determined the crucial residues for binding of valine and show structural rearrangement of the MtRel ACT dimer in the presence of valine. This study suggests the direct involvement of amino acids in (p)ppGpp accumulation mediated by MtRel independent to interactions with stalled ribosomes. Database Structural data are available in the PDB database under the accession number 6LXG.
Collapse
Affiliation(s)
- Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Bharti Singal
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | | | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
13
|
Patil PR, Vithani N, Singh V, Kumar A, Prakash B. A revised mechanism for (p)ppGpp synthesis by Rel proteins: The critical role of the 2'-OH of GTP. J Biol Chem 2020; 295:12851-12867. [PMID: 32719004 DOI: 10.1074/jbc.ra120.013636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/15/2020] [Indexed: 11/06/2022] Open
Abstract
Bacterial Rel proteins synthesize hyperphosphorylated guanosine nucleotides, denoted as (p)ppGpp, which by inhibiting energy requiring molecular pathways help bacteria to overcome the depletion of nutrients in its surroundings. (p)ppGpp synthesis by Rel involves transferring a pyrophosphate from ATP to the oxygen of 3'-OH of GTP/GDP. Initially, a conserved glutamate at the active site was believed to generate the nucleophile necessary to accomplish the reaction. Later this role was alluded to a Mg2+ ion. However, no study has unequivocally established a catalytic mechanism for (p)ppGpp synthesis. Here we present a revised mechanism, wherein for the first time we explore a role for 2'-OH of GTP and show how it is important in generating the nucleophile. Through a careful comparison of substrate-bound structures of Rel, we illustrate that the active site does not discriminate GTP from dGTP, for a substrate. Using biochemical studies, we demonstrate that both GTP and dGTP bind to Rel, but only GTP (but not dGTP) can form the product. Reactions performed using GTP analogs substituted with different chemical moieties at the 2' position suggest a clear role for 2'-OH in catalysis by providing an indispensable hydrogen bond; preliminary computational analysis further supports this view. This study elucidating a catalytic role for 2'-OH of GTP in (p)ppGpp synthesis allows us to propose different mechanistic possibilities by which it generates the nucleophile for the synthesis reaction. This study underscores the selection of ribose nucleotides as second messengers and finds its roots in the old RNA world hypothesis.
Collapse
Affiliation(s)
- Pratik Rajendra Patil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Neha Vithani
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Virender Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Balaji Prakash
- Department of Molecular Nutrition, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
14
|
Tamman H, Van Nerom K, Takada H, Vandenberk N, Scholl D, Polikanov Y, Hofkens J, Talavera A, Hauryliuk V, Hendrix J, Garcia-Pino A. A nucleotide-switch mechanism mediates opposing catalytic activities of Rel enzymes. Nat Chem Biol 2020; 16:834-840. [PMID: 32393900 DOI: 10.1038/s41589-020-0520-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
Bifunctional Rel stringent factors, the most abundant class of RelA/SpoT homologs, are ribosome-associated enzymes that transfer a pyrophosphate from ATP onto the 3' of guanosine tri-/diphosphate (GTP/GDP) to synthesize the bacterial alarmone (p)ppGpp, and also catalyze the 3' pyrophosphate hydrolysis to degrade it. The regulation of the opposing activities of Rel enzymes is a complex allosteric mechanism that remains an active research topic despite decades of research. We show that a guanine-nucleotide-switch mechanism controls catalysis by Thermus thermophilus Rel (RelTt). The binding of GDP/ATP opens the N-terminal catalytic domains (NTD) of RelTt (RelTtNTD) by stretching apart the two catalytic domains. This activates the synthetase domain and allosterically blocks hydrolysis. Conversely, binding of ppGpp to the hydrolase domain closes the NTD, burying the synthetase active site and precluding the binding of synthesis precursors. This allosteric mechanism is an activity switch that safeguards against futile cycles of alarmone synthesis and degradation.
Collapse
Affiliation(s)
- Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Katleen Van Nerom
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Niels Vandenberk
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Leuven, Belgium
| | - Daniel Scholl
- SFMB, Université Libre de Bruxelles, Brussels, Belgium
| | - Yury Polikanov
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Johan Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Leuven, Belgium
| | | | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, Umeå, Sweden. .,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
| | - Jelle Hendrix
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Leuven, Belgium. .,Dynamic Bioimaging Laboratory, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Hasselt, Belgium.
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium. .,WELBIO, Brussels, Belgium.
| |
Collapse
|
15
|
Chuang YM, Dutta NK, Gordy JT, Campodónico VL, Pinn ML, Markham RB, Hung CF, Karakousis PC. Antibiotic Treatment Shapes the Antigenic Environment During Chronic TB Infection, Offering Novel Targets for Therapeutic Vaccination. Front Immunol 2020; 11:680. [PMID: 32411131 PMCID: PMC7198710 DOI: 10.3389/fimmu.2020.00680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/26/2020] [Indexed: 12/03/2022] Open
Abstract
The lengthy and complicated current regimen required to treat drug-susceptible tuberculosis (TB) reflects the ability of Mycobacterium tuberculosis (Mtb) to persist in host tissues. The stringent response pathway, governed by the dual (p)ppGpp synthetase/hydrolase, RelMtb, is a major mechanism underlying Mtb persistence and antibiotic tolerance. In the current study, we addressed the hypothesis that RelMtb is a “persistence antigen” presented during TB chemotherapy and that enhanced immunity to RelMtb can enhance the tuberculocidal activity of the first-line anti-TB drug, isoniazid, which has reduced efficacy against Mtb persisters. C57BL/6 mice and Hartley guinea pigs were aerosol-infected with M. tuberculosis (Mtb) and, 4 weeks later, received either human-equivalent daily doses of isoniazid alone, or isoniazid in combination with a DNA vaccine targeting relMtb. After isoniazid treatment, there was a significant reduction in dominant antigen ESAT6-reactive CD4+ or TB10.4-reactive CD8+ T cells in the lungs and spleens of mice. However, the total number of RelMtb-reactive CD4+ T cells remained stable in mouse lungs and spleens, as did the number of RelMtb-reactive CD8+T cells. Therapeutic vaccination with relMtb DNA vaccine enhanced the activity of isoniazid in Mtb-infected C57BL/6 mice and guinea pigs. When treatment with isoniazid was discontinued, mice immunized with the relMtb DNA vaccine showed a lower mean lung bacterial burden at relapse compared to the control group. Our work shows that antitubercular treatment shapes the antigenic environment, and that therapeutic vaccination targeting the Mtb stringent response may represent a novel approach to enhance immunity against Mtb persisters, with the ultimate goal of shortening curative TB treatment.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Noton K Dutta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James T Gordy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Victoria L Campodónico
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael L Pinn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard B Markham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
16
|
RelZ-Mediated Stress Response in Mycobacterium smegmatis: pGpp Synthesis and Its Regulation. J Bacteriol 2020; 202:JB.00444-19. [PMID: 31659009 DOI: 10.1128/jb.00444-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Stringent response is a conserved stress response mechanism in which bacteria employ the second messengers guanosine tetraphosphate and guanosine pentaphosphate [collectively termed (p)ppGpp] to reprogram their cellular processes under stress. In mycobacteria, these alarmones govern a multitude of cellular phenotypes, such as cell division, biofilm formation, antibiotic tolerance, and long-term survival. Mycobacterium smegmatis possesses the bifunctional RelMsm as a (p)ppGpp synthetase and hydrolase. In addition, it contains a short alarmone synthetase MS_RHII-RSD (renamed RelZ), which contains an RNase H domain in tandem with the (p)ppGpp synthetase domain. The physiological functions of RelMsm have been well documented, but there is no clear picture about the cellular functions of RelZ in M. smegmatis RelZ has been implicated in R-loop induced stress response due to its unique domain architecture. In this study, we elucidate the differential substrate utilization pattern of RelZ compared to that of RelMsm We unveil the ability of RelZ to use GMP as a substrate to synthesize pGpp, thereby expanding the repertoire of second messengers known in mycobacteria. We have demonstrated that the pGpp synthesis activity of RelZ is negatively regulated by RNA and pppGpp. Furthermore, we investigated its role in biofilm formation and antibiotic tolerance. Our findings highlight the complex role played by the RelZ in cellular physiology of M. smegmatis and sheds light upon its functions distinct from those of RelMsm IMPORTANCE Bacteria utilize nucleotide messengers to survive the hostile environmental conditions and the onslaught of attacks within the host. The second messengers guanosine tetraphosphate and pentaphosphate [(p)ppGpp] have a profound impact on the long-term survival, biofilm formation, antibiotic tolerance, virulence, and pathogenesis of bacteria. Therefore, understanding the stress response mechanism regulated by (p)ppGpp is essential for discovering inhibitors of stress response and potential drug targets. Mycobacterium smegmatis contains two (p)ppGpp synthetases: RelMsm and RelZ. Our study unravels the novel regulatory mechanisms of RelZ activity and its role in mediating antibiotic tolerance. We further reveal its ability to synthesize novel second messenger pGpp, which may have regulatory roles in mycobacteria.
Collapse
|
17
|
The Ps and Qs of alarmone synthesis in Staphylococcus aureus. PLoS One 2019; 14:e0213630. [PMID: 31613897 PMCID: PMC6793942 DOI: 10.1371/journal.pone.0213630] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
During the stringent response, bacteria synthesize guanosine-3’,5’-bis(diphosphate) (ppGpp) and guanosine-5’-triphosphate 3’-diphosphate (pppGpp), which act as secondary messengers to promote cellular survival and adaptation. (p)ppGpp ‘alarmones’ are synthesized and/or hydrolyzed by proteins belonging to the RelA/SpoT Homologue (RSH) family. Many bacteria also encode ‘small alarmone synthetase’ (SAS) proteins (e.g. RelP, RelQ) which may also be capable of synthesizing a third alarmone: guanosine-5’-phosphate 3’-diphosphate (pGpp). Here, we report the biochemical properties of the Rel (RSH), RelP and RelQ proteins from Staphylococcus aureus (Sa-Rel, Sa-RelP, Sa-RelQ, respectively). Sa-Rel synthesized pppGpp more efficiently than ppGpp, but lacked the ability to produce pGpp. Sa-Rel efficiently hydrolyzed all three alarmones in a Mn(II) ion-dependent manner. The removal of the C-terminal regulatory domain of Sa-Rel increased its rate of (p)ppGpp synthesis ca. 10-fold, but had negligible effects on its rate of (pp)pGpp hydrolysis. Sa-RelP and Sa-RelQ efficiently synthesized pGpp in addition to pppGpp and ppGpp. The alarmone-synthesizing abilities of Sa-RelQ, but not Sa-RelP, were allosterically-stimulated by the addition of pppGpp, ppGpp or pGpp. The respective (pp)pGpp-synthesizing activities of Sa-RelP/Sa-RelQ were compared and contrasted with SAS homologues from Enterococcus faecalis (Ef-RelQ) and Streptococcus mutans (Sm-RelQ, Sm-RelP). Results indicated that EF-RelQ, Sm-RelQ and Sa-RelQ were functionally equivalent; but exhibited considerable variations in their respective biochemical properties, and the degrees to which alarmones and single-stranded RNA molecules allosterically modulated their respective alarmone-synthesizing activities. The respective (pp)pGpp-synthesizing capabilities of Sa-RelP and Sm-RelP proteins were inhibited by pGpp, ppGpp and pppGpp. Our results support the premise that RelP and RelQ proteins may synthesize pGpp in addition to (p)ppGpp within S. aureus and other Gram-positive bacterial species.
Collapse
|
18
|
Vilchèze C, Jacobs WR. The Isoniazid Paradigm of Killing, Resistance, and Persistence in Mycobacterium tuberculosis. J Mol Biol 2019; 431:3450-3461. [PMID: 30797860 PMCID: PMC6703971 DOI: 10.1016/j.jmb.2019.02.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
Isoniazid (INH) was the first synthesized drug that mediated bactericidal killing of the bacterium Mycobacterium tuberculosis, a major clinical breakthrough. To this day, INH remains a cornerstone of modern tuberculosis (TB) chemotherapy. This review describes the serendipitous discovery of INH, its effectiveness on TB patients, and early studies to discover its mechanisms of bacteriocidal activity. Forty years after its introduction as a TB drug, the development of gene transfer in mycobacteria enabled the discovery of the genes encoding INH resistance, namely, the activator (katG) and the target (inhA) of INH. Further biochemical and x-ray crystallography studies on KatG and InhA proteins and mutants provided comprehensive understanding of INH mode of action and resistance mechanisms. Bacterial cultures can harbor subpopulations that are genetically or phenotypically resistant cells, the latter known as persisters. Treatment of exponentially growing cultures of M. tuberculosis with INH reproducibly kills 99% to 99.9% of cells in 3 days. Importantly, the surviving cells are slowly replicating or non-replicating cells expressing a unique stress response signature: these are the persisters. These persisters can be visualized using dual-reporter mycobacteriophages and their formation prevented using reducing compounds, such as N-acetylcysteine or vitamin C, that enhance M. tuberculosis' respiration. Altogether, this review portrays a detailed molecular analysis of INH killing and resistance mechanisms including persistence. The phenomenon of persistence is clearly the single greatest impediment to TB control, and research aimed at understanding persistence will provide new strategies to improve TB chemotherapy.
Collapse
Affiliation(s)
- Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
19
|
de Wet T, Warner DF, Mizrahi V. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery. Acc Chem Res 2019; 52:2340-2348. [PMID: 31361123 PMCID: PMC6704484 DOI: 10.1021/acs.accounts.9b00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is the leading cause of mortality globally resulting from an infectious disease, killing almost 1.6 million people annually and accounting for approximately 30% of deaths attributed to antimicrobial resistance (AMR). This despite the widespread administration of a neonatal vaccine, and the availability of an effective combination drug therapy against the causative agent, Mycobacterium tuberculosis (Mtb). Instead, TB prevalence worldwide is characterized by high-burden regions in which co-epidemics, such as HIV, and social and economic factors, undermine efforts to control TB. These elements additionally ensure conditions that favor the emergence of drug-resistant Mtb strains, which further threaten prospects for future TB control. To address this challenge, significant resources have been invested in developing a TB drug pipeline, an initiative given impetus by the recent regulatory approval of two new anti-TB drugs. However, both drugs have been reserved for drug-resistant disease, and the seeming inevitability of new resistance plus the recognized need to shorten the duration of chemotherapy demands continual replenishment of the pipeline with high-quality "hits" with novel mechanisms of action. This represents a massive challenge, which has been undermined by key gaps in our understanding of Mtb physiology and metabolism, especially during host infection. Whereas drug discovery for other bacterial infections can rely on predictive in vitro assays and animal models, for Mtb, inherent metabolic flexibility and uncertainties about the nutrients available to infecting bacilli in different host (micro)environments instead requires educated predictions or demonstrations of efficacy in animal models of arguable relevance to human disease. Even microbiological methods for enumeration of viable mycobacterial cells are fraught with complication. Our research has focused on elucidating those aspects of mycobacterial metabolism that contribute to the robustness of the bacillus to host immunological defenses and applied antibiotics and that, possibly, drive the emergence of drug resistance. This work has identified a handful of metabolic pathways that appear vulnerable to antibiotic targeting. Those highlighted, here, include the inter-related functions of pantothenate and coenzyme A biosynthesis and recycling and nucleotide metabolism-the last of which reinforces our view that DNA metabolism constitutes an under-explored area for new TB drug development. Although nonessential functions have traditionally been deprioritized for antibiotic development, a common theme emerging from this work is that these very functions might represent attractive targets because of the potential to cripple mechanisms critical to bacillary survival under stress (for example, the RelMtb-dependent stringent response) or to adaptability under unfavorable, potentially lethal, conditions including antibiotic therapy (for example, DnaE2-dependent SOS mutagenesis). The bar, however, is high: demonstrating convincingly the likely efficacy of this strategy will require innovative models of human TB disease. In the concluding section, we focus on the need for improved techniques to elucidate mycobacterial metabolism during infection and its impact on disease outcomes. Here, we argue that developments in other fields suggest the potential to break through this barrier by harnessing chemical-biology approaches in tandem with the most advanced technologies. As researchers based in a high-burden country, we are impelled to continue participating in this important endeavor.
Collapse
Affiliation(s)
- Timothy
J. de Wet
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence
for Biomedical TB Research, Department of Pathology and Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South
Africa
- Department
of Integrative Biomedical Sciences, University
of Cape Town, Observatory, Cape Town 7925, South
Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence
for Biomedical TB Research, Department of Pathology and Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South
Africa
- Wellcome
Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, Cape Town 7925, South
Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence
for Biomedical TB Research, Department of Pathology and Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South
Africa
- Wellcome
Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, Cape Town 7925, South
Africa
| |
Collapse
|
20
|
Dutta NK, Klinkenberg LG, Vazquez MJ, Segura-Carro D, Colmenarejo G, Ramon F, Rodriguez-Miquel B, Mata-Cantero L, Porras-De Francisco E, Chuang YM, Rubin H, Lee JJ, Eoh H, Bader JS, Perez-Herran E, Mendoza-Losana A, Karakousis PC. Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence. SCIENCE ADVANCES 2019; 5:eaav2104. [PMID: 30906866 PMCID: PMC6426458 DOI: 10.1126/sciadv.aav2104] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/04/2019] [Indexed: 06/01/2023]
Abstract
The stringent response enables Mycobacterium tuberculosis (Mtb) to shut down its replication and metabolism under various stresses. Here we show that Mtb lacking the stringent response enzyme RelMtb was unable to slow its replication rate during nutrient starvation. Metabolomics analysis revealed that the nutrient-starved relMtb -deficient strain had increased metabolism similar to that of exponentially growing wild-type bacteria in nutrient-rich broth, consistent with an inability to enter quiescence. Deficiency of relMtb increased the susceptibility of mutant bacteria to killing by isoniazid during nutrient starvation and in the lungs of chronically infected mice. We screened a pharmaceutical library of over 2 million compounds for inhibitors of RelMtb and showed that the lead compound X9 was able to directly kill nutrient-starved M. tuberculosis and enhanced the killing activity of isoniazid. Inhibition of RelMtb is a promising approach to target M. tuberculosis persisters, with the potential to shorten the duration of TB treatment.
Collapse
Affiliation(s)
- Noton K. Dutta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lee G. Klinkenberg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Gonzalo Colmenarejo
- Molecular Discovery Research, GlaxoSmithKline, Tres Cantos, Madrid, Spain
- Biostatistics and Bioinformatics Unit, IMDEA Food Institute, Madrid, Spain
| | - Fernando Ramon
- Molecular Discovery Research, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Lydia Mata-Cantero
- Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Yu-Min Chuang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harvey Rubin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esther Perez-Herran
- Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Petros C. Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
21
|
Nazarova EV, Montague CR, Huang L, La T, Russell D, VanderVen BC. The genetic requirements of fatty acid import by Mycobacterium tuberculosis within macrophages. eLife 2019; 8:e43621. [PMID: 30735132 PMCID: PMC6368401 DOI: 10.7554/elife.43621] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) imports and metabolizes fatty acids to maintain infection within human macrophages. Although this is a well-established paradigm, the bacterial factors required for fatty acid import are poorly understood. Previously, we found that LucA and Mce1 are required for fatty acid import in Mtb (Nazarova et al., 2017). Here, we identified additional Mtb mutants that have a reduced ability to import a fluorescent fatty acid substrate during infection within macrophages. This screen identified the novel genes as rv2799 and rv0966c as be necessary for fatty acid import and confirmed the central role for Rv3723/LucA and putative components of the Mce1 fatty acid transporter (Rv0200/OmamB, Rv0172/Mce1D, and Rv0655/MceG) in this process.
Collapse
Affiliation(s)
- Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Christine R Montague
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Lu Huang
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Thuy La
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - David Russell
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| |
Collapse
|
22
|
Bhaskar A, De Piano C, Gelman E, McKinney JD, Dhar N. Elucidating the role of (p)ppGpp in mycobacterial persistence against antibiotics. IUBMB Life 2018; 70:836-844. [PMID: 30092117 DOI: 10.1002/iub.1888] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023]
Abstract
Bacterial persistence, the ability of bacteria to survive high concentrations of antibiotics for extended periods of time, is an important contributing factor to therapy failure and development of chronic and recurrent infections. Several recent studies have suggested that this persistence is mediated primarily by (p)ppGpp, through its interactions with toxin-antitoxin modules and polyphosphates. In this study, we address whether these key players play a role in mycobacterial persistence against antibiotics. We targeted these specific pathways in Mycobacterium smegmatis by constructing deletion strains of (p)ppGpp synthetase/hydrolase (relA), polyphosphate kinases (ppk1 and ppk2), exopolyphosphatases (ppx1 and ppx2), and the lon protease. None of these mutant strains exhibited altered levels of persisters against isoniazid and ciprofloxacin, when compared with wild-type strain. Even under conditions in which the stringent response usually gets activated, these strains displayed wild-type persister levels. Interestingly, we also found that unlike Escherichia coli, maintaining M. smegmatis in exponential phase by repeated passaging does not eliminate persisters suggesting that at least against the antibiotics tested, stationary-phase dependent persisters (type I) are not the major contributors. Thus, our data demonstrate that multiple mechanisms of antibiotic persistence exist and that these vary widely among different bacterial species. © 2018 IUBMB Life, 70(9):836-844, 2018.
Collapse
Affiliation(s)
- Ashima Bhaskar
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Cyntia De Piano
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Ekaterina Gelman
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - John D McKinney
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Neeraj Dhar
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
23
|
Prusa J, Zhu DX, Stallings CL. The stringent response and Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:5035815. [PMID: 29947752 PMCID: PMC7191866 DOI: 10.1093/femspd/fty054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022] Open
Abstract
During infection, the host restrains Mycobacterium tuberculosis (Mtb) from proliferating by imposing an arsenal of stresses. Despite this onslaught of attacks, Mtb is able to persist for the lifetime of the host, indicating that this pathogen has substantial molecular mechanisms to resist host-inflicted damage. The stringent response is a conserved global stress response in bacteria that involves the production of the hyperphosphorylated guanine nucleotides ppGpp and pppGpp (collectively called (p)ppGpp). (p)ppGpp then regulates a number of cellular processes to adjust the physiology of the bacteria to promote survival in different environments. Survival in the presence of host-generated stresses is an essential quality of successful pathogens, and the stringent response is critical for the intracellular survival of a number of pathogenic bacteria. In addition, the stringent response has been linked to virulence gene expression, persistence, latency and drug tolerance. In Mtb, (p)ppGpp synthesis is required for survival in low nutrient conditions, long term culture and during chronic infection in animal models, all indicative of a strict requirement for (p)ppGpp during exposure to stresses associated with infection. In this review we discuss (p)ppGpp metabolism and how this functions as a critical regulator of Mtb virulence.
Collapse
Affiliation(s)
- Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
24
|
Njire M, Wang N, Wang B, Tan Y, Cai X, Liu Y, Mugweru J, Guo J, Hameed HMA, Tan S, Liu J, Yew WW, Nuermberger E, Lamichhane G, Liu J, Zhang T. Pyrazinoic Acid Inhibits a Bifunctional Enzyme in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2017; 61:e00070-17. [PMID: 28438933 PMCID: PMC5487608 DOI: 10.1128/aac.00070-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/01/2017] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide (PZA), an indispensable component of modern tuberculosis treatment, acts as a key sterilizing drug. While the mechanism of activation of this prodrug into pyrazinoic acid (POA) by Mycobacterium tuberculosis has been extensively studied, not all molecular determinants that confer resistance to this mysterious drug have been identified. Here, we report how a new PZA resistance determinant, the Asp67Asn substitution in Rv2783, confers M. tuberculosis resistance to PZA. Expression of the mutant allele but not the wild-type allele in M. tuberculosis recapitulates the PZA resistance observed in clinical isolates. In addition to catalyzing the metabolism of RNA and single-stranded DNA, Rv2783 also metabolized ppGpp, an important signal transducer involved in the stringent response in bacteria. All catalytic activities of the wild-type Rv2783 but not the mutant were significantly inhibited by POA. These results, which indicate that Rv2783 is a target of PZA, provide new insight into the molecular mechanism of the sterilizing activity of this drug and a basis for improving the molecular diagnosis of PZA resistance and developing evolved PZA derivatives to enhance its antituberculosis activity.
Collapse
Affiliation(s)
- Moses Njire
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Bangxing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Xingshan Cai
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Yanwen Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jintao Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, the Chinese University of Hong Kong, Hong Kong, China
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Auxotrophy-based High Throughput Screening assay for the identification of Bacillus subtilis stringent response inhibitors. Sci Rep 2016; 6:35824. [PMID: 27775002 PMCID: PMC5075769 DOI: 10.1038/srep35824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/05/2016] [Indexed: 11/11/2022] Open
Abstract
The stringent response is a central adaptation mechanism that allows bacteria to adjust their growth and metabolism according to environmental conditions. The functionality of the stringent response is crucial for bacterial virulence, survival during host invasion as well as antibiotic resistance and tolerance. Therefore, specific inhibitors of the stringent response hold great promise as molecular tools for disarming and pacifying bacterial pathogens. By taking advantage of the valine amino acid auxotrophy of the Bacillus subtilis stringent response-deficient strain, we have set up a High Throughput Screening assay for the identification of stringent response inhibitors. By screening 17,500 compounds, we have identified a novel class of antibacterials based on the 4-(6-(phenoxy)alkyl)-3,5-dimethyl-1H-pyrazole core. Detailed characterization of the hit compounds as well as two previously identified promising stringent response inhibitors – a ppGpp-mimic nucleotide Relacin and cationic peptide 1018 – showed that neither of the compounds is sufficiently specific, thus motivating future application of our screening assay to larger and more diverse molecular libraries.
Collapse
|
26
|
Stringent Response Factors PPX1 and PPK2 Play an Important Role in Mycobacterium tuberculosis Metabolism, Biofilm Formation, and Sensitivity to Isoniazid In Vivo. Antimicrob Agents Chemother 2016; 60:6460-6470. [PMID: 27527086 DOI: 10.1128/aac.01139-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium tuberculosis remains a global health threat largely due to the lengthy duration of curative antibiotic treatment, contributing to medical nonadherence and the emergence of drug resistance. This prolonged therapy is likely due to the presence of M. tuberculosis persisters, which exhibit antibiotic tolerance. Inorganic polyphosphate [poly(P)] is a key regulatory molecule in the M. tuberculosis stringent response mediating antibiotic tolerance. The polyphosphate kinase PPK1 is responsible for poly(P) synthesis in M. tuberculosis, while the exopolyphosphatases PPX1 and PPX2 and the GTP synthase PPK2 are responsible for poly(P) hydrolysis. In the present study, we show by liquid chromatography-tandem mass spectrometry that poly(P)-accumulating M. tuberculosis mutant strains deficient in ppx1 or ppk2 had significantly lower intracellular levels of glycerol-3-phosphate (G3P) and 1-deoxy-xylulose-5-phosphate. Real-time PCR revealed decreased expression of genes in the G3P synthesis pathway in each mutant. The ppx1-deficient mutant also showed a significant accumulation of metabolites in the tricarboxylic acid cycle, as well as altered arginine and NADH metabolism. Each poly(P)-accumulating strain showed defective biofilm formation, while deficiency of ppk2 was associated with increased sensitivity to plumbagin and meropenem and deficiency of ppx1 led to enhanced susceptibility to clofazimine. A DNA vaccine expressing ppx1 and ppk2, together with two other members of the M. tuberculosis stringent response, M. tuberculosis rel and sigE, did not show protective activity against aerosol challenge with M. tuberculosis, but vaccine-induced immunity enhanced the killing activity of isoniazid in a murine model of chronic tuberculosis. In summary, poly(P)-regulating factors of the M. tuberculosis stringent response play an important role in M. tuberculosis metabolism, biofilm formation, and antibiotic sensitivity in vivo.
Collapse
|
27
|
Wu ML, Chan CL, Dick T. Rel Is Required for Morphogenesis of Resting Cells in Mycobacterium smegmatis. Front Microbiol 2016; 7:1390. [PMID: 27630635 PMCID: PMC5005932 DOI: 10.3389/fmicb.2016.01390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 01/15/2023] Open
Abstract
Recently we showed that upon transfer of growing Mycobacterium smegmatis into saline, the bacilli exited the canonical cell division cycle and formed septated multi-nucleoided cells. Under shock starvation (i.e., in saline without any carbon source), differentiation terminated at this stage with internally remodeled Large Resting Cells (LARCs). Whereas under gentle starvation (i.e., in saline with trace amounts of a carbon source), the septated multi-nucleoided bacilli completed cell division and separated into mono-nucleoided Small Resting Cells (SMRCs). This demonstrated that the non-sporulating mycobacteria are in fact capable of forming morphologically differentiated resting cells when exposed to starvation. Depending on the specific starvation conditions they can form two different resting cell types, LARCs or SMRCs, which share a common cellular differentiation pathway. The mRNA encoding the (p)ppGpp synthetase Rel was found to be transiently upregulated immediately upon starvation under both conditions, suggesting a role for the stringent response factor in both LARC and SMRC development. Here, we disrupted Rel function by generating two types of mutant M. smegmatis strains: a rel nonsense mutant (relE4TAG) in which translation is prematurely terminated at codon 4, and a rel deletion mutant (Δrel) in which the entire coding sequence was deleted. Both mutants showed identical phenotypes: sparse septum formation, less DNA compaction, and failure in formation of both the septated multi-nucleoided LARCs and the small-cell morphotype SMRC under starvation conditions. All phenotypes were rescued through the introduction of a wild-type copy of rel. Therefore, we conclude that loss-of-function mutations in rel block the development of both LARCs and SMRCs by preventing the first morphogenetic step in mycobacterial resting cell development, the formation of septated multi-nucleoided cells. Interestingly, in contrast to Rel’s role in most other bacteria, starvation survival was not affected by loss of rel function. Our results suggest that Rel may play a starvation-induced morphogenetic role in mycobacteria.
Collapse
Affiliation(s)
- Mu-Lu Wu
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Chuu Ling Chan
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Thomas Dick
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
28
|
Krishnan S, Petchiappan A, Singh A, Bhatt A, Chatterji D. R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence. Mol Microbiol 2016; 102:168-82. [PMID: 27349932 DOI: 10.1111/mmi.13453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 02/03/2023]
Abstract
Persistent R-loops lead to replicative stress due to RNA polymerase stalling and DNA damage. RNase H enzymes facilitate the organisms to survive in the hostile condition by removing these R-loops. MS_RHII-RSD was previously identified to be the second (p)ppGpp synthetase in Mycobacterium smegmatis. The unique presence of an additional RNase HII domain raises an important question regarding the significance of this bifunctional protein. In this report, we demonstrate its ability to hydrolyze R-loops in Escherichia coli exposed to UV stress. MS_RHII-RSD gene expression was upregulated under UV stress, and this gene deleted strain showed increased R-loop accumulation as compared to the wild type. The domains in isolation are known to be inactive, and the full length protein is required for its function. Domain interdependence studies using active site mutants reveal the necessity of a hexamer form with high alpha helical content. In previous studies, bacterial RNase type HI has been mainly implicated in R-loop hydrolysis, but in this study, the RNase HII domain containing protein showed the activity. The prospective of this differential RNase HII activity is discussed. This is the first report to implicate a (p)ppGpp synthetase protein in R-loop-induced stress response.
Collapse
Affiliation(s)
- Sushma Krishnan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anushya Petchiappan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Albel Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
29
|
Regulation of Growth, Cell Shape, Cell Division, and Gene Expression by Second Messengers (p)ppGpp and Cyclic Di-GMP in Mycobacterium smegmatis. J Bacteriol 2016; 198:1414-22. [PMID: 26903417 DOI: 10.1128/jb.00126-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The alarmone (p)ppGpp regulates transcription, translation, replication, virulence, lipid synthesis, antibiotic sensitivity, biofilm formation, and other functions in bacteria. Signaling nucleotide cyclic di-GMP (c-di-GMP) regulates biofilm formation, motility, virulence, the cell cycle, and other functions. In Mycobacterium smegmatis, both (p)ppGpp and c-di-GMP are synthesized and degraded by bifunctional proteins Rel(Msm) and DcpA, encoded by rel(Msm) and dcpA genes, respectively. We have previously shown that the Δrel(Msm) and ΔdcpA knockout strains are antibiotic resistant and defective in biofilm formation, show altered cell surface properties, and have reduced levels of glycopeptidolipids and polar lipids in their cell wall (K. R. Gupta, S. Kasetty, and D. Chatterji, Appl Environ Microbiol 81:2571-2578, 2015,http://dx.doi.org/10.1128/AEM.03999-14). In this work, we have explored the phenotypes that are affected by both (p)ppGpp and c-di-GMP in mycobacteria. We have shown that both (p)ppGpp and c-di-GMP are needed to maintain the proper growth rate under stress conditions such as carbon deprivation and cold shock. Scanning electron microscopy showed that low levels of these second messengers result in elongated cells, while high levels reduce the cell length and embed the cells in a biofilm-like matrix. Fluorescence microscopy revealed that the elongated Δrel(Msm) and ΔdcpA cells are multinucleate, while transmission electron microscopy showed that the elongated cells are multiseptate. Gene expression analysis also showed that genes belonging to functional categories such as virulence, detoxification, lipid metabolism, and cell-wall-related processes were differentially expressed. Our results suggests that both (p)ppGpp and c-di-GMP affect some common phenotypes in M. smegmatis, thus raising a possibility of cross talk between these two second messengers in mycobacteria. IMPORTANCE Our work has expanded the horizon of (p)ppGpp and c-di-GMP signaling in Gram-positive bacteria. We have come across a novel observation that M. smegmatis needs (p)ppGpp and c-di-GMP for cold tolerance. We had previously shown that the Δrel(Msm) and ΔdcpA strains are defective in biofilm formation. In this work, the overproduction of (p)ppGpp and c-di-GMP encased M. smegmatis in a biofilm-like matrix, which shows that both (p)ppGpp and c-di-GMP are needed for biofilm formation. The regulation of cell length and cell division by (p)ppGpp was known in mycobacteria, but our work shows that c-di-GMP also affects the cell size and cell division in mycobacteria. This is perhaps the first report of c-di-GMP regulating cell division in mycobacteria.
Collapse
|
30
|
Duan X, Li Y, Du Q, Huang Q, Guo S, Xu M, Lin Y, Liu Z, Xie J. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level. Sci Rep 2016; 6:19695. [PMID: 26806099 PMCID: PMC4726150 DOI: 10.1038/srep19695] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/16/2015] [Indexed: 01/07/2023] Open
Abstract
Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance.
Collapse
Affiliation(s)
- Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, key laboratory of Eco-environment three gorges reservoir, Ministry of Education, School of Life Sciences, Southwest University. Chongqing 400715, China
| | - Yunsong Li
- Department of thoracic surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Qinglin Du
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, key laboratory of Eco-environment three gorges reservoir, Ministry of Education, School of Life Sciences, Southwest University. Chongqing 400715, China
| | - Qinqin Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, key laboratory of Eco-environment three gorges reservoir, Ministry of Education, School of Life Sciences, Southwest University. Chongqing 400715, China
| | - Siyao Guo
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, key laboratory of Eco-environment three gorges reservoir, Ministry of Education, School of Life Sciences, Southwest University. Chongqing 400715, China.,Hanhong College, Southwest University. Chongqing 400715, China
| | - Mengmeng Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, key laboratory of Eco-environment three gorges reservoir, Ministry of Education, School of Life Sciences, Southwest University. Chongqing 400715, China
| | - Yanping Lin
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, key laboratory of Eco-environment three gorges reservoir, Ministry of Education, School of Life Sciences, Southwest University. Chongqing 400715, China
| | - Zhidong Liu
- Department of thoracic surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, key laboratory of Eco-environment three gorges reservoir, Ministry of Education, School of Life Sciences, Southwest University. Chongqing 400715, China
| |
Collapse
|
31
|
Biochemical studies on Francisella tularensis RelA in (p)ppGpp biosynthesis. Biosci Rep 2015; 35:BSR20150229. [PMID: 26450927 PMCID: PMC4708007 DOI: 10.1042/bsr20150229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Francisella tularensis RelA shows significant sequence differences from other members of the RelA family of enzymes. In the present study, we describe the functional similarities and differences between F. tularensis RelA and the model RelA from Escherichia coli. The bacterial stringent response is induced by nutrient deprivation and is mediated by enzymes of the RSH (RelA/SpoT homologue; RelA, (p)ppGpp synthetase I; SpoT, (p)ppGpp synthetase II) superfamily that control concentrations of the ‘alarmones’ (p)ppGpp (guanosine penta- or tetra-phosphate). This regulatory pathway is present in the vast majority of pathogens and has been proposed as a potential anti-bacterial target. Current understanding of RelA-mediated responses is based on biochemical studies using Escherichia coli as a model. In comparison, the Francisella tularensis RelA sequence contains a truncated regulatory C-terminal region and an unusual synthetase motif (EXSD). Biochemical analysis of F. tularensis RelA showed the similarities and differences of this enzyme compared with the model RelA from Escherichia coli. Purification of the enzyme yielded a stable dimer capable of reaching concentrations of 10 mg/ml. In contrast with other enzymes from the RelA/SpoT homologue superfamily, activity assays with F. tularensis RelA demonstrate a high degree of specificity for GTP as a pyrophosphate acceptor, with no measurable turnover for GDP. Steady state kinetic analysis of F. tularensis RelA gave saturation activity curves that best fitted a sigmoidal function. This kinetic profile can result from allosteric regulation and further measurements with potential allosteric regulators demonstrated activation by ppGpp (5′,3′-dibisphosphate guanosine) with an EC50 of 60±1.9 μM. Activation of F. tularensis RelA by stalled ribosomal complexes formed with ribosomes purified from E. coli MRE600 was observed, but interestingly, significantly weaker activation with ribosomes isolated from Francisella philomiragia.
Collapse
|
32
|
Deficiency of the novel exopolyphosphatase Rv1026/PPX2 leads to metabolic downshift and altered cell wall permeability in Mycobacterium tuberculosis. mBio 2015; 6:e02428. [PMID: 25784702 PMCID: PMC4453511 DOI: 10.1128/mbio.02428-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis can persist for decades in the human host. Stringent response pathways involving inorganic polyphosphate [poly(P)], which is synthesized and hydrolyzed by polyphosphate kinase (PPK) and exopolyphosphatase (PPX), respectively, are believed to play a key regulatory role in bacterial persistence. We show here that M. tuberculosis poly(P) accumulation is temporally linked to bacillary growth restriction. We also identify M. tuberculosis Rv1026 as a novel exopolyphosphatase with hydrolytic activity against long-chain poly(P). Using a tetracycline-inducible expression system to knock down expression of Rv1026 (ppx2), we found that M. tuberculosis poly(P) accumulation leads to slowed growth and reduced susceptibility to isoniazid, increased resistance to heat and acid pH, and enhanced intracellular survival during macrophage infection. By transmission electron microscopy, the ppx2 knockdown strain exhibited increased cell wall thickness, which was associated with reduced cell wall permeability to hydrophilic drugs rather than induction of drug efflux pumps or altered biofilm formation relative to the empty vector control. Transcriptomic and metabolomic analysis revealed a metabolic downshift of the ppx2 knockdown characterized by reduced transcription and translation and a downshift of glycerol-3-phosphate levels. In summary, poly(P) plays an important role in M. tuberculosis growth restriction and metabolic downshift and contributes to antibiotic tolerance through altered cell wall permeability. The stringent response, involving the regulatory molecules inorganic polyphosphate [poly(P)] and (p)ppGpp, is believed to mediate Mycobacterium tuberculosis persistence. In this study, we identified a novel enzyme (Rv1026, PPX2) responsible for hydrolyzing long-chain poly(P). A genetically engineered M. tuberculosis strain deficient in the ppx2 gene showed increased poly(P) levels, which were associated with early bacterial growth arrest and reduced susceptibility to the first-line drug isoniazid, as well as increased bacterial survival during exposure to stress conditions and within macrophages. Relative to the control strain, the mutant showed increased thickness of the cell wall and reduced drug permeability. Global gene expression and metabolite analysis revealed reduced expression of the transcriptional and translational machinery and a shift in carbon source utilization. In summary, regulation of the poly(P) balance is critical for persister formation in M. tuberculosis.
Collapse
|
33
|
Novel functions of (p)ppGpp and Cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of Mycobacterium smegmatis. Appl Environ Microbiol 2015; 81:2571-8. [PMID: 25636840 DOI: 10.1128/aem.03999-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bacterial second messengers (p)ppGpp and bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulate important functions, such as transcription, virulence, biofilm formation, and quorum sensing. In mycobacteria, they regulate long-term survival during starvation, pathogenicity, and dormancy. Recently, a Pseudomonas aeruginosa strain lacking (p)ppGpp was shown to be sensitive to multiple classes of antibiotics and defective in biofilm formation. We were interested to find out whether Mycobacterium smegmatis strains lacking the gene for either (p)ppGpp synthesis (ΔrelMsm) or c-di-GMP synthesis (ΔdcpA) would display similar phenotypes. We used phenotype microarray technology to compare the growth of the wild-type and the knockout strains in the presence of several antibiotics. Surprisingly, the ΔrelMsm and ΔdcpA strains showed enhanced survival in the presence of many antibiotics, but they were defective in biofilm formation. These strains also displayed altered surface properties, like impaired sliding motility, rough colony morphology, and increased aggregation in liquid cultures. Biofilm formation and surface properties are associated with the presence of glycopeptidolipids (GPLs) in the cell walls of M. smegmatis. Thin-layer chromatography analysis of various cell wall fractions revealed that the levels of GPLs and polar lipids were reduced in the knockout strains. As a result, the cell walls of the knockout strains were significantly more hydrophobic than those of the wild type and the complemented strains. We hypothesize that reduced levels of GPLs and polar lipids may contribute to the antibiotic resistance shown by the knockout strains. Altogether, our data suggest that (p)ppGpp and c-di-GMP may be involved in the metabolism of glycopeptidolipids and polar lipids in M. smegmatis.
Collapse
|
34
|
Ekal L, Ganesh B, Joshi H, Lama D, Jain V. Evidence of a conserved intrinsically disordered region in the C-terminus of the stringent response protein Rel from mycobacteria. FEBS Lett 2014; 588:1839-49. [PMID: 24717772 DOI: 10.1016/j.febslet.2014.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 11/16/2022]
Abstract
The RelA/SpoT enzyme produces (p)ppGpp that helps the bacterium survive during stress. The domains present in it are interspersed with connecting linkers whose functions have been poorly elucidated. We rationally analyzed the sequence and structural property of the regulatory C-terminal region in the Rel family of proteins and report the presence of an intrinsically disordered region between two successive domains in this region that are separated by a defined amino acid sequence length. We show that the length and secondary structure of this linker are conserved in Rel proteins, further signifying its importance in rendering flexibility for domain movement and domain-domain interaction.
Collapse
Affiliation(s)
- Lakhan Ekal
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Bylapudi Ganesh
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Himanshu Joshi
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Dilraj Lama
- Biomolecular Modeling and Design Division, Bioinformatics Institute, A(*)STAR, Singapore 138671, Singapore.
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India.
| |
Collapse
|
35
|
Essential roles for Mycobacterium tuberculosis Rel beyond the production of (p)ppGpp. J Bacteriol 2013; 195:5629-38. [PMID: 24123821 DOI: 10.1128/jb.00759-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In Mycobacterium tuberculosis, the stringent response to amino acid starvation is mediated by the M. tuberculosis Rel (RelMtb) enzyme, which transfers a pyrophosphate from ATP to GDP or GTP to synthesize ppGpp and pppGpp, respectively. (p)ppGpp then influences numerous metabolic processes. RelMtb also encodes a second, distinct catalytic domain that hydrolyzes (p)ppGpp into pyrophosphate and GDP or GTP. RelMtb is required for chronic M. tuberculosis infection in mice; however, it is unknown which catalytic activity of RelMtb mediates pathogenesis and whether (p)ppGpp itself is necessary. In order to individually investigate the roles of (p)ppGpp synthesis and hydrolysis during M. tuberculosis pathogenesis, we generated RelMtb point mutants that were either synthetase dead (RelMtb(H344Y)) or hydrolase dead (RelMtb(H80A)). M. tuberculosis strains expressing the synthetase-dead RelMtb(H344Y) mutant did not persist in mice, demonstrating that the RelMtb (p)ppGpp synthetase activity is required for maintaining bacterial titers during chronic infection. Deletion of a second predicted (p)ppGpp synthetase had no effect on pathogenesis, demonstrating that RelMtb was the major contributor to (p)ppGpp production during infection. Interestingly, expression of an allele encoding the hydrolase-dead RelMtb mutant, RelMtb(H80A), that is incapable of hydrolyzing (p)ppGpp but still able to synthesize (p)ppGpp decreased the growth rate of M. tuberculosis and changed the colony morphology of the bacteria. In addition, RelMtb(H80A) expression during acute or chronic M. tuberculosis infection in mice was lethal to the infecting bacteria. These findings highlight a distinct role for RelMtb-mediated (p)ppGpp hydrolysis that is essential for M. tuberculosis pathogenesis.
Collapse
|
36
|
He P, Deng C, Liu B, Zeng L, Zhao W, Zhang Y, Jiang X, Guo X, Qin J. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. FEMS Microbiol Lett 2013; 348:133-42. [PMID: 24111633 DOI: 10.1111/1574-6968.12279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/05/2013] [Accepted: 09/17/2013] [Indexed: 12/01/2022] Open
Abstract
Alarmone Guanosine 5'-diphosphate (or 5'-triphosphate) 3'-diphosphate [(p)ppGpp] is the key component that globally regulates stringent control in bacteria. There are two homologous enzymes, RelA and SpoT in Escherichia coli, which are responsible for fluctuations in (p)ppGpp concentration inside the cell, whereas there exists only a single RelA/SpoT enzyme in Gram-positive bacteria. We have identified a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. We show that the relLin gene (LA_3085) encodes a protein that fully complements the relA/spoT double mutants in E. coli. The protein functions as a (p)ppGpp degradase as well as a (p)ppGpp synthase when the cells encounter amino acid stress and deprivation of carbon sources. N-terminus HD and RSD domains of relLin (relLinN ) were observed to restore growth of double mutants of E. coli. Finally, We demonstrate that purified RelLin and RelLinN show high (p)ppGpp synthesis activity in vitro. Taken together, our results suggest that L. interrogans contain a single Rel-like bifunctional protein, RelLin , which plays an important role in maintaining the basal level of (p)ppGpp in the cell potentially contributing to the regulation of bacterial stress response.
Collapse
Affiliation(s)
- Ping He
- Department of Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kulis-Horn RK, Persicke M, Kalinowski J. Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microb Biotechnol 2013; 7:5-25. [PMID: 23617600 PMCID: PMC3896937 DOI: 10.1111/1751-7915.12055] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023] Open
Abstract
l-Histidine biosynthesis is an ancient metabolic pathway present in bacteria, archaea, lower eukaryotes, and plants. For decades l-histidine biosynthesis has been studied mainly in Escherichia coli and Salmonella typhimurium, revealing fundamental regulatory processes in bacteria. Furthermore, in the last 15 years this pathway has been also investigated intensively in the industrial amino acid-producing bacterium Corynebacterium glutamicum, revealing similarities to E. coli and S. typhimurium, as well as differences. This review summarizes the current knowledge of l-histidine biosynthesis in C. glutamicum. The genes involved and corresponding enzymes are described, in particular focusing on the imidazoleglycerol-phosphate synthase (HisFH) and the histidinol-phosphate phosphatase (HisN). The transcriptional organization of his genes in C. glutamicum is also reported, including the four histidine operons and their promoters. Knowledge of transcriptional regulation during stringent response and by histidine itself is summarized and a translational regulation mechanism is discussed, as well as clues about a histidine transport system. Finally, we discuss the potential of using this knowledge to create or improve C. glutamicum strains for the industrial l-histidine production.
Collapse
Affiliation(s)
- Robert K Kulis-Horn
- Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, 33615, Bielefeld, Germany
| | | | | |
Collapse
|
38
|
Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 2011; 36:463-85. [PMID: 22092372 DOI: 10.1111/j.1574-6976.2011.00302.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/31/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Attempts to control this disease have proved difficult owing to our poor understanding of the pathobiology of Mycobacterium tuberculosis and the emergence of strains that are resistant to multiple drugs currently available for treatment. Genome-wide expression profiling has provided new insight into the transcriptome signatures of the bacterium during infection, notably of macrophages and dendritic cells. These data indicate that M. tuberculosis expresses numerous genes to evade the host immune responses, to suit its intracellular life style, and to respond to various antibiotic drugs. Among the intracellularly induced genes, several have functions in lipid metabolism, cell wall synthesis, iron uptake, oxidative stress resistance, protein secretion, or inhibition of apoptosis. Herein we review these findings and discuss possible ways to exploit the data to understand the complex etiology of TB and to find new effective drug targets.
Collapse
Affiliation(s)
- Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India.
| | | | | |
Collapse
|
39
|
English BP, Hauryliuk V, Sanamrad A, Tankov S, Dekker NH, Elf J. Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc Natl Acad Sci U S A 2011; 108:E365-73. [PMID: 21730169 PMCID: PMC3150888 DOI: 10.1073/pnas.1102255108] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RelA-mediated stringent response is at the heart of bacterial adaptation to starvation and stress, playing a major role in the bacterial cell cycle and virulence. RelA integrates several environmental cues and synthesizes the alarmone ppGpp, which globally reprograms transcription, translation, and replication. We have developed and implemented novel single-molecule tracking methodology to characterize the intracellular catalytic cycle of RelA. Our single-molecule experiments show that RelA is on the ribosome under nonstarved conditions and that the individual enzyme molecule stays off the ribosome for an extended period of time after activation. This suggests that the catalytically active part of the RelA cycle is performed off, rather than on, the ribosome, and that rebinding to the ribosome is not necessary to trigger each ppGpp synthesis event. Furthermore, we find fast activation of RelA in response to heat stress followed by RelA rapidly being reset to its inactive state, which makes the system sensitive to new environmental cues and hints at an underlying excitable response mechanism.
Collapse
Affiliation(s)
- Brian P. English
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Vasili Hauryliuk
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Arash Sanamrad
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Stoyan Tankov
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Nynke H. Dekker
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands; and
| | - Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Payoe R, Fahlman RP. Dependence of RelA-mediated (p)ppGpp formation on tRNA identity. Biochemistry 2011; 50:3075-83. [PMID: 21410133 DOI: 10.1021/bi1015309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The bacterial stringent response is a cellular response to amino acid limitations and is characterized by the accumulation of the alarmone polyphosphate guanosine ((p)ppGpp). A key molecular event leading to (p)ppGpp synthesis is the binding of a deacylated tRNA to the vacant A-Site of a ribosome. The resulting ribosomal complex is recognized by and activates RelA, the (p)ppGpp synthetase. Activated RelA catalyzes (p)ppGpp formation until the deacylated tRNA passively dissociates from the ribosomal A-Site. In this report, we have investigated a novel role for the identity of A-Site bound tRNA in RelA-mediated (p)ppGpp synthesis. A comparison in the stimulation of RelA activity was made using ribosome complexes with either a tightly or weakly binding deacylated tRNA occupying the A-Site. In vitro analysis reveals that ribosome complexes formed with tight binding tRNA(Val) stimulate RelA activity at lower concentrations than that required for ribosome complexes formed with the weaker binding tRNA(Phe). The data suggest that the recovery from the stringent response may be dependent on the identity of the amino acid that was initially limiting for the bacteria.
Collapse
Affiliation(s)
- Roshani Payoe
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
41
|
Boutte CC, Crosson S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol Microbiol 2011; 80:695-714. [PMID: 21338423 DOI: 10.1111/j.1365-2958.2011.07602.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bacteria rapidly adapt to nutritional changes via the stringent response, which entails starvation-induced synthesis of the small molecule, ppGpp, by RelA/SpoT homologue (Rsh) enzymes. Binding of ppGpp to RNA polymerase modulates the transcription of hundreds of genes and remodels the physiology of the cell. Studies of the stringent response have primarily focused on copiotrophic bacteria such as Escherichia coli; little is known about how stringent signalling is regulated in species that live in consistently nutrient-limited (i.e. oligotrophic) environments. Here we define the input logic and transcriptional output of the stringent response in the oligotroph, Caulobacter crescentus. The sole Rsh protein, SpoT(CC), binds to and is regulated by the ribosome, and exhibits AND-type control logic in which amino acid starvation is a necessary but insufficient signal for activation of ppGpp synthesis. While both glucose and ammonium starvation upregulate the synthesis of ppGpp, SpoT(CC) detects these starvation signals by two independent mechanisms. Although the logic of stringent response control in C. crescentus differs from E. coli, the global transcriptional effects of elevated ppGpp are similar, with the exception of 16S rRNA transcription, which is controlled independently of spoT(CC). This study highlights how the regulatory logic controlling the stringent response may be adapted to the nutritional niche of a bacterial species.
Collapse
Affiliation(s)
- Cara C Boutte
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
42
|
Genes and regulatory networks involved in persistence of Mycobacterium tuberculosis. SCIENCE CHINA-LIFE SCIENCES 2011; 54:300-10. [PMID: 21267668 DOI: 10.1007/s11427-011-4134-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/06/2010] [Indexed: 10/18/2022]
Abstract
The causative agent of tuberculosis, Mycobacterium tuberculosis, is one of the most successful of human pathogens. It can evade the host immune response and establish a persistent infection or enter a dormant state within the host which can be reactivated if the host becomes immuno-compromised. Both of these features are major obstacles to tuberculosis eradication. Dormancy and reactivation of M. tuberculosis are tightly coordinated dynamic processes involving numerous genes and their products. Molecular mechanisms underlying M. tuberculosis persistence may provide an opportunity for the discovery of effective drug targets for tuberculosis control. Here, we review the genes required for M. tuberculosis persistence and propose a regulatory network for the action of these genes using text mining. This should provide fresh insights into the persistence mechanisms of M. tuberculosis and suggest candidates for new drug targets and immune intervention.
Collapse
|
43
|
Lamichhane G. Novel targets in M. tuberculosis: search for new drugs. Trends Mol Med 2011; 17:25-33. [DOI: 10.1016/j.molmed.2010.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 12/15/2022]
|
44
|
Klinkenberg LG, Lee JH, Bishai WR, Karakousis PC. The stringent response is required for full virulence of Mycobacterium tuberculosis in guinea pigs. J Infect Dis 2010; 202:1397-404. [PMID: 20863231 DOI: 10.1086/656524] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
During human latent tuberculosis infection, Mycobacterium tuberculosis likely resides within the nutrient‐starved environment of caseous lung granulomas. The stringent response alarmone (p)ppGpp is synthesized by Rel in response to nutrient starvation, thus enabling tubercle bacilli to restrict growth and shut down metabolism in a coordinated fashion. In this study, we investigated the virulence of a rel‐deficient M. tuberculosis mutant in the guinea pig model. Quantitative reverse‐transcription polymerase chain reaction was used to study the effect of (p)ppGpp deficiency on expression of key cytokine and chemokine genes in guinea pig lungs. The rel‐deficient mutant showed impaired initial growth and survival relative to the wild‐type strain. Loss of Rel was associated with the striking absence of tubercle lesions grossly and of caseous granulomas histologically. The attenuated phenotype of the rel‐deficient mutant was not associated with increased expression of genes encoding the proinflammatory cytokines interferon‐γ and tumor necrosis factor α in the lungs 28 days after infection.
Collapse
Affiliation(s)
- Lee G Klinkenberg
- Department of Medicine, Johns Hopkins University School of Medicine, Center for Tuberculosis Research, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Like for all microbes, the goal of every pathogen is to survive and replicate. However, to overcome the formidable defenses of their hosts, pathogens are also endowed with traits commonly associated with virulence, such as surface attachment, cell or tissue invasion, and transmission. Numerous pathogens couple their specific virulence pathways with more general adaptations, like stress resistance, by integrating dedicated regulators with global signaling networks. In particular, many of nature's most dreaded bacteria rely on nucleotide alarmones to cue metabolic disturbances and coordinate survival and virulence programs. Here we discuss how components of the stringent response contribute to the virulence of a wide variety of pathogenic bacteria.
Collapse
Affiliation(s)
- Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah L. Svensson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michele S. Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Stallings CL, Stephanou NC, Chu L, Hochschild A, Nickels BE, Glickman MS. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 2009; 138:146-59. [PMID: 19596241 DOI: 10.1016/j.cell.2009.04.041] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/01/2009] [Accepted: 04/13/2009] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis is arguably the world's most successful infectious agent because of its ability to control its own cell growth within the host. Bacterial growth rate is closely coupled to rRNA transcription, which in E. coli is regulated through DksA and (p)ppGpp. The mechanisms of rRNA transcriptional control in mycobacteria, which lack DksA, are undefined. Here we identify CarD as an essential mycobacterial protein that controls rRNA transcription. Loss of CarD is lethal for mycobacteria in culture and during infection of mice. CarD depletion leads to sensitivity to killing by oxidative stress, starvation, and DNA damage, accompanied by failure to reduce rRNA transcription. CarD can functionally replace DksA for stringent control of rRNA transcription, even though CarD associates with a different site on RNA polymerase. These findings highlight a distinct molecular mechanism for regulating rRNA transcription in mycobacteria that is critical for M. tuberculosis pathogenesis.
Collapse
|
47
|
Ducati RG, Santos DS, Basso LA. Substrate specificity and kinetic mechanism of purine nucleoside phosphorylase from Mycobacterium tuberculosis. Arch Biochem Biophys 2009; 486:155-64. [DOI: 10.1016/j.abb.2009.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/23/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
|
48
|
Sajish M, Kalayil S, Verma SK, Nandicoori VK, Prakash B. The significance of EXDD and RXKD motif conservation in Rel proteins. J Biol Chem 2009; 284:9115-23. [PMID: 19201753 PMCID: PMC2666561 DOI: 10.1074/jbc.m807187200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monofunctional and bifunctional classes of Rel proteins catalyze
pyrophosphoryl transfer from ATP to 3′-OH of GTP/GDP to synthesize
(p)ppGpp, which is essential for normal microbial physiology and survival.
Bifunctional proteins additionally catalyze the hydrolysis of (p)ppGpp. We
have earlier demonstrated that although both catalyze identical the (p)ppGpp
synthesis reaction, they exhibit a differential response to Mg2+
due to a unique charge reversal in the synthesis domain; an RXKD
motif in the synthesis domain of bifunctional protein is substituted by an
EXDD motif in that of the monofunctional proteins. Here, we show that
these motifs also determine substrate specificities (GTP/GDP), cooperativity,
and regulation of catalytic activities at the N-terminal region through the
C-terminal region. Most importantly, a mutant bifunctional Rel carrying an
EXDD instigates a novel catalytic reaction, resulting in the
synthesis of pGpp by an independent hydrolysis of the
5′Pα-O-Pβ bond of GTP/GDP or (p)ppGpp.
Further experiments with RelA from Escherichia coli wherein
EXDD is naturally present also revealed the presence of pGpp, albeit
at low levels. This work brings out the biological significance of
RXKD/EXDD motif conservation in Rel proteins and reveals an
additional catalytic activity for the monofunctional proteins, prompting an
extensive investigation for the possible existence and role of pGpp in the
biological system.
Collapse
Affiliation(s)
- Mathew Sajish
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | | | | | | |
Collapse
|
49
|
Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 2008; 72:126-56, table of contents. [PMID: 18322037 DOI: 10.1128/mmbr.00028-07] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Mycobacterium is best known for its two major pathogenic species, M. tuberculosis and M. leprae, the causative agents of two of the world's oldest diseases, tuberculosis and leprosy, respectively. M. tuberculosis kills approximately two million people each year and is thought to latently infect one-third of the world's population. One of the most remarkable features of the nonsporulating M. tuberculosis is its ability to remain dormant within an individual for decades before reactivating into active tuberculosis. Thus, control of cell division is a critical part of the disease. The mycobacterial cell wall has unique characteristics and is impermeable to a number of compounds, a feature in part responsible for inherent resistance to numerous drugs. The complexity of the cell wall represents a challenge to the organism, requiring specialized mechanisms to allow cell division to occur. Besides these mycobacterial specializations, all bacteria face some common challenges when they divide. First, they must maintain their normal architecture during and after cell division. In the case of mycobacteria, that means synthesizing the many layers of complex cell wall and maintaining their rod shape. Second, they need to coordinate synthesis and breakdown of cell wall components to maintain integrity throughout division. Finally, they need to regulate cell division in response to environmental stimuli. Here we discuss these challenges and the mechanisms that mycobacteria employ to meet them. Because these organisms are difficult to study, in many cases we extrapolate from information known for gram-negative bacteria or more closely related GC-rich gram-positive organisms.
Collapse
|
50
|
Szalewska-Palasz A, Wegrzyn G, Wegrzyn A. Mechanisms of physiological regulation of RNA synthesis in bacteria: new discoveries breaking old schemes. J Appl Genet 2007; 48:281-94. [PMID: 17666783 DOI: 10.1007/bf03195225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although in bacterial cells all genes are transcribed by RNA polymerase, there are 2 additional enzymes capable of catalyzing RNA synthesis: poly(A) polymerase I, which adds poly(A) residues to transcripts, and primase, which produces primers for DNA replication. Mechanisms of actions of these 3 RNA-synthesizing enzymes were investigated for many years, and schemes of their regulations have been proposed and generally accepted. Nevertheless, recent discoveries indicated that apart from well-understood mechanisms, there are additional regulatory processes, beyond the established schemes, which allow bacterial cells to respond to changing environmental and physiological conditions. These newly discovered mechanisms, which are discussed in this review, include: (i) specific regulation of gene expression by RNA polyadenylation, (ii) control of DNA replication by interactions of the starvation alarmones, guanosine pentaphosphate and guanosine tetraphosphate, (p)ppGpp, with DnaG primase, (iii) a role for the DksA protein in ppGpp-mediated regulation of transcription, (iv) allosteric modulation of the RNA polymerase catalytic reaction by specific inhibitors of transcription, rifamycins, (v) stimulation of transcription initiation by proteins binding downstream of the promoter sequences, and (vi) promoter-dependent control of transcription antitermination efficiency.
Collapse
|