1
|
Soto M, Ramírez L, Pineda MA, González VM, Entringer PF, de Oliveira CI, Nascimento IP, Souza AP, Corvo L, Alonso C, Bonay P, Brodskyn C, Barral A, Barral-Netto M, Iborra S. Searching Genes Encoding Leishmania Antigens for Diagnosis and Protection. ACTA ACUST UNITED AC 2009. [DOI: 10.3814/2009/173039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
2
|
Li M, Zhang W, Liu S, Liu Y, Zheng D. v-Fos transformation effector binds with CD2 cytoplasmic tail. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-005-1509-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Santarém N, Tomás A, Ouaissi A, Tavares J, Ferreira N, Manso A, Campino L, Correia JM, Cordeiro-da-Silva A. Antibodies against a Leishmania infantum peroxiredoxin as a possible marker for diagnosis of visceral leishmaniasis and for monitoring the efficacy of treatment. Immunol Lett 2005; 101:18-23. [PMID: 15885803 DOI: 10.1016/j.imlet.2005.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Indexed: 11/28/2022]
Abstract
Diagnosis of leishmaniasis is frequently based on serological methods, such as direct agglutination, immunofluorescence tests and ELISA assays with Leishmania total extracts, as antigen, however due to highly inconclusive results, more reliable tests are needed. In the present study, the prevalence of antibodies to a number of recombinant proteins (LmSIR2, LmS3a, LimTXNPx, LicTXNPx and LiTXN1) highly conserved among Leishmania species, were evaluated by ELISA in Leishmania infantum infected children from an endemic area of Portugal. We found that sera from children patients had antibodies against the different recombinant proteins, LicTXNPx presented the highest immuno-reactivity compared to the other and the most often recognized in the case of acute visceral leishmaniasis (VL). Moreover, in children treated with meglumine antimoniate or amphotericin B, antibodies against some of the recombinant proteins declined, whereas conventional serology using crude extracts showed little or no difference between the pre- and post-treatment values. The highest reduction was observed in the case of antibodies against the LicTXNPx protein. These results suggest that the antibodies against LicTXNPx might be a useful constituent of a defined serological test for the diagnosis and the monitoring of the therapeutic response in VL. The monitoring and follow-up in a large-scale field trials of such marker in areas where leishmaniasis is endemic will lend support to this.
Collapse
Affiliation(s)
- Nuno Santarém
- Faculdade de Farmácia da, Universidade do Porto, Rua Anibal Cunha, 164, 4050-047 Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Proteins of the Sac10b family, which is highly conserved among hyperthermophilic archaea, have been regarded as DNA-binding proteins. Based on their in vitro DNA-binding properties, these proteins are thought to be involved in chromosomal organization or DNA repair/recombination. We show that Ssh10b, a member of the Sac10b family from Sulfolobus shibatae, bound with similar affinities to double-stranded DNA, single-stranded DNA and RNA in vitro. However, the protein was exclusively bound to RNA in S. shibatae cells, as revealed by in vivo UV cross-linking and co-immunoprecipitation. Ribosomal RNAs were among the RNA species co-immunoprecipitated with Ssh10b. Consistent with this observation, Ssh10b was co-purified with ribosomes under low salt conditions. Furthermore, we demonstrate by UV-cross-linking hybridization that, when the cells were irradiated with UV, Ssh10b became cross-linked to 16S, 23S rRNAs and mRNAs. Our data indicate that RNA is the physiological binding target of the Sac10b family.
Collapse
Affiliation(s)
- Rong Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | |
Collapse
|
5
|
Castro H, Sousa C, Santos M, Cordeiro-da-Silva A, Flohé L, Tomás AM. Complementary antioxidant defense by cytoplasmic and mitochondrial peroxiredoxins in Leishmania infantum. Free Radic Biol Med 2002; 33:1552-62. [PMID: 12446213 DOI: 10.1016/s0891-5849(02)01089-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Kinetoplastida 2-Cys peroxiredoxins are the ultimate members of unique enzymatic cascades for detoxification of peroxides, which are dependent on trypanothione, a small thiol specific to these organisms. Here we report on two distinct Leishmania infantum peroxiredoxins, LicTXNPx and LimTXNPx, that may be involved in such a pathway. LicTXNPx, found in the cytoplasm, is a typical 2-Cys peroxiredoxin encoded by LicTXNPx, a member of a multicopy gene family. LimTXNPx, encoded by a single copy gene, LimTXNPx, is confined to the mitochondrion and is unusual in possessing an Ile-Pro-Cys motif in the distal redox center, replacing the common peroxiredoxin Val-Cys-Pro sequence, apart from an N-terminal mitochondrial leader sequence. Based on sequence and subcellular localization, the peroxiredoxins of Kinetoplastida can be separated in two distinct subfamilies. As an approach to investigate the function of both peroxiredoxins in the cell, L. infantum promastigotes overexpressing LicTXNPx and LimTXNPx were assayed for their resistance to H(2)O(2) and tert-butyl hydroperoxide. The results show evidence that both enzymes are active as peroxidases in vivo and that they have complementary roles in parasite protection against oxidative stress.
Collapse
Affiliation(s)
- Helena Castro
- Institute for Molecular and Cell Biology, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
6
|
Ouaissi A, Ouaissi M, Sereno D. Glutathione S-transferases and related proteins from pathogenic human parasites behave as immunomodulatory factors. Immunol Lett 2002; 81:159-64. [PMID: 11947919 DOI: 10.1016/s0165-2478(02)00035-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a rapidly expanding interest into the glutathione S-transferases (GSTs) and the structurally related molecules. Many of the latter have been identified as members of conserved protein families sharing structural and some times functional properties being particularly involved in heat-shock response, drug resistance and carcinogenesis. Also, evidence is emerging that members of the GST super family from some pathogens could exert immunomodulatory functions toward the cell of the immune system, involving separate profiles of cytokine gene transcription and different patterns of cell growth, illustrating therefore the 'one gene-dual function' phenomenon. The implication of these biological properties for pathogenesis is discussed.
Collapse
Affiliation(s)
- Ali Ouaissi
- IRD UR 008 Pathogénie des Trypanosomatidés, Centre IRD de Montpellier, 911 Av. Agropolis, BP 5045, 34032, Montpellier, France.
| | | | | |
Collapse
|
7
|
Cordeiro-Da-Silva A, Borges MC, Guilvard E, Ouaissi A. Dual role of the Leishmania major ribosomal protein S3a homologue in regulation of T- and B-cell activation. Infect Immun 2001; 69:6588-96. [PMID: 11598026 PMCID: PMC100031 DOI: 10.1128/iai.69.11.6588-6596.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 08/09/2001] [Indexed: 11/20/2022] Open
Abstract
We have recently characterized a novel Leishmania major gene encoding a polypeptide of 30 kDa that was homologous to mammalian ribosomal protein S3a and was named LmS3a-related protein (LmS3arp). The protein was found to be expressed by all the Leishmania species so far examined (L. infantum, L. amazonensis, and L. mexicana). In the present study we have extended our approach to the analysis of LmS3arp activity on T- and B-cell functions in a murine model. The results presented in this report show that LmS3arp plays a dual role in the regulation of T- and B-cell reactivity. Indeed, we found that injection of the LmS3arp recombinant protein (rLmS3arp) into BALB/c mice induces preferential activation of B cells, as shown by the following criteria: (i) increased expression of CD69 molecules on immunoglobulin M (IgM)-secreting spleen cells, (ii) a considerable increase of IgM-secreting B cells, and (iii) elevated levels of IgM antibodies in the sera of injected animals. Moreover, the IgM antibodies are not specific to the Leishmania antigens but preferentially recognize heterologous antigens like myosin, thyroglobulin, DNA, and keyhole limpet hemocyanin. Furthermore, the strong polyclonal expansion of nonspecific, non-parasite-directed B-cell clones induced by rLmS3arp is concomitant with a marked inhibition of T-cell proliferation. Analysis of cytokine production revealed a significant downregulation of gamma interferon, interleukin-2 (IL-2), and IL-12 secretion. Taken together, our data suggest that rLmS3arp, through direct or indirect action toward B and T cells and cytokine secretion, could participate in the immunoregulatory processes that play a role in the balance of the Th1 and Th2 immune response.
Collapse
Affiliation(s)
- A Cordeiro-Da-Silva
- Department of Biochemistry, Faculty of Pharmacy and Institute of Molecular and Cellular Biology, University of Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
8
|
Abstract
Glutathione S-transferases (GSTs) are an important part of the cellular detoxification system and, perhaps, evolved to protect cells against reactive oxygen metabolites. Theta is considered the most ancient among the GSTs and theta-like GSTs are found in mammals, fish, insects, plants, unicellular algae, and bacteria. It is thought that an ancestral theta-gene underwent an early duplication before the divergence of fungi and animals and further duplications generated the variety of the other classes of GSTs (alpha, mu, phi, etc.). The comparison of the aminoacidic homologies among mammals suggests that a duplication of an ancient GST theta occurred before the speciation of mammals and resulted in the subunits GSTT1 and GSTT2. The ancestral GST theta has a dehalogenase activity towards several halogenated compounds, such as the dichloromethane. In fact, some aerobic and anaerobic methylotrophic bacteria can use these molecules as the sole carbon and energy source. The mammalian GST theta cannot sustain the growth of bacteria but still retains the dehalogenating activity. Therefore, although mammalian GST theta behaves as a scavenger towards electrophiles, such as epoxides, it acts also as metabolic activator for halogenated compounds, producing a variety of intermediates potentially dangerous for DNA and cells. For example, mice exposed to dichloromethane show a dose-dependent incidence of cancer via the GSTT1-1 pathway. Because GSTT1-1 is polymorphic in humans, with about 20% of Caucasians and 80% of Asians lacking the enzyme, the relationship between the phenotype and the incidence of cancer has been investigated extensively in order to detect GSTT1-1-associated differential susceptibility towards endogenous or exogenous carcinogens. The lack of the enzyme is related to a slightly increased risk of cancer of the bladder, gastro-intestinal tract, and for tobacco-related tumors (lung or oral cavity). More pronounced risks were found in males with the GSTT1-null genotype for brain diseases and skin basal cell carcinomas not related to sunlight exposures. Moreover, there was an increased risk of kidney and liver tumors in humans with the GSTT1-1 positive genotype following exposures to halogenated solvents. Interestingly, the liver and kidney are two organs that express the highest level of GST theta in the human body. Thus, the GSTT1-1 genotype is suspected to confer decreased or increased risk of cancer in relation to the source of exposure; in vitro studies, mostly conducted on metabolites of butadiene, confirm the protective action of GSTT1-1, whereas, thus far, experimental studies prove that the increasing risk is limited.
Collapse
Affiliation(s)
- S Landi
- Environmental Carcinogenesis Division, US Environmental Protection Agency, Research, Triangle Park, NC 27711, USA.
| |
Collapse
|
9
|
Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, Boeke JD. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A 2000; 97:6658-63. [PMID: 10841563 PMCID: PMC18692 DOI: 10.1073/pnas.97.12.6658] [Citation(s) in RCA: 593] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast Sir2 protein, required for transcriptional silencing, has an NAD(+)-dependent histone deacetylase (HDA) activity. Yeast extracts contain a NAD(+)-dependent HDA activity that is eliminated in a yeast strain from which SIR2 and its four homologs have been deleted. This HDA activity is also displayed by purified yeast Sir2p and homologous Archaeal, eubacterial, and human proteins, and depends completely on NAD(+) in all species tested. The yeast NPT1 gene, encoding an important NAD(+) synthesis enzyme, is required for rDNA and telomeric silencing and contributes to silencing of the HM loci. Null mutants in this gene have significantly reduced intracellular NAD(+) concentrations and have phenotypes similar to sir2 null mutants. Surprisingly, yeast from which all five SIR2 homologs have been deleted have relatively normal bulk histone acetylation levels. The evolutionary conservation of this regulated activity suggests that the Sir2 protein family represents a set of effector proteins in an evolutionarily conserved signal transduction pathway that monitors cellular energy and redox states.
Collapse
Affiliation(s)
- J S Smith
- Department of Molecular Biology and Genetics, Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|