1
|
Enhancement of Vaccine-Induced T-Cell Responses by PD-L1 Blockade in Calves. Vaccines (Basel) 2023; 11:vaccines11030559. [PMID: 36992143 DOI: 10.3390/vaccines11030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Interactions between programmed death 1 (PD-1) and PD-ligand 1 (PD-L1) cause functional exhaustion of T cells by inducing inhibitory signals, thereby attenuating effector functions of T cells. We have developed an anti-bovine PD-L1 blocking antibody (Ab) and have demonstrated that blockade of the interaction between PD-1 and PD-L1 reactivates T-cell responses in cattle. In the present study, we examined the potential utility of PD-1/PD-L1-targeted immunotherapy in enhancing T-cell responses to vaccination. Calves were inoculated with a hexavalent live-attenuated viral vaccine against bovine respiratory infections in combination with treatment with an anti-PD-L1 Ab. The expression kinetics of PD-1 in T cells and T-cell responses to viral antigens were measured before and after vaccination to evaluate the adjuvant effect of anti-PD-L1 Ab. PD-1 expression was upregulated in vaccinated calves after the administration of a booster vaccination. The activation status of CD4+, CD8+, and γδTCR+ T cells was enhanced by the combination of vaccination and PD-L1 blockade. In addition, IFN-γ responses to viral antigens were increased following combinatorial vaccination with PD-L1 blockade. In conclusion, the blockade of the PD-1/PD-L1 interaction enhances T-cell responses induced by vaccination in cattle, indicating the potential utility of anti-PD-L1 Ab in improving the efficacy of current vaccination programs.
Collapse
|
2
|
Sangewar N, Waghela SD, Yao J, Sang H, Bray J, Mwangi W. Novel Potent IFN-γ-Inducing CD8 + T Cell Epitopes Conserved among Diverse Bovine Viral Diarrhea Virus Strains. THE JOURNAL OF IMMUNOLOGY 2021; 206:1709-1718. [PMID: 33762324 DOI: 10.4049/jimmunol.2001424] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022]
Abstract
Studies of immune responses elicited by bovine viral diarrhea virus (BVDV) vaccines have primarily focused on the characterization of neutralizing B cell and CD4+ T cell epitopes. Despite the availability of commercial vaccines for decades, BVDV prevalence in cattle has remained largely unaffected. There is limited knowledge regarding the role of BVDV-specific CD8+ T cells in immune protection, and indirect evidence suggests that they play a crucial role during BVDV infection. In this study, the presence of BVDV-specific CD8+ T cells that are highly cross-reactive in cattle was demonstrated. Most importantly, novel potent IFN-γ-inducing CD8+ T cell epitopes were identified from different regions of BVDV polyprotein. Eight CD8+ T cell epitopes were identified from the following structural BVDV Ags: Erns, E1, and E2 glycoproteins. In addition, from nonstructural BVDV Ags Npro, NS2-3, NS4A-B, and NS5A-B, 20 CD8+ T cell epitopes were identified. The majority of these IFN-γ-inducing CD8+ T cell epitopes were found to be highly conserved among more than 200 strains from BVDV-1 and -2 genotypes. These conserved epitopes were also validated as cross-reactive because they induced high recall IFN-γ+CD8+ T cell responses ex vivo in purified bovine CD8+ T cells isolated from BVDV-1- and -2-immunized cattle. Altogether, 28 bovine MHC class I-binding epitopes were identified from key BVDV Ags that can elicit broadly reactive CD8+ T cells against diverse BVDV strains. The data presented in this study will lay the groundwork for the development of a contemporary CD8+ T cell-based BVDV vaccine capable of addressing BVDV heterogeneity more effectively than current vaccines.
Collapse
Affiliation(s)
- Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Jianxiu Yao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| |
Collapse
|
3
|
Sangewar N, Hassan W, Lokhandwala S, Bray J, Reith R, Markland M, Sang H, Yao J, Fritz B, Waghela SD, Abdelsalam KW, Chase CCL, Mwangi W. Mosaic Bovine Viral Diarrhea Virus Antigens Elicit Cross-Protective Immunity in Calves. Front Immunol 2020; 11:589537. [PMID: 33281819 PMCID: PMC7690067 DOI: 10.3389/fimmu.2020.589537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) is an important pathogen that plays a significant role in initiating Bovine Respiratory Disease Complex (BRDC) in cattle. The disease causes multi-billion dollar losses globally due to high calf mortality and increased morbidity leading to heavy use of antibiotics. Current commercial vaccines provide limited cross-protection with several drawbacks such as safety, immunosuppression, potential reversion to virulence, and induction of neonatal pancytopenia. This study evaluates two prototype vaccines containing multiple rationally designed recombinant mosaic BVDV antigens for their potential to confer cross-protection against diverse BVDV strains. Genes encoding three novel mosaic antigens, designated E2123, NS2-31, and NS2-32, were designed in silico and expressed in mammalian cells for the formulation of a prototype protein-based vaccine. The mosaic antigens contain highly conserved protective epitopes from BVDV-1a, -1b, and -2, and included unique neutralizing epitopes from disparate strains to broaden coverage. We tested immunogenicity and protective efficacy of Expi293TM-expressed mosaic antigens (293F-E2123, 293F-NS2-31, and 293F-NS2-32), and baculovirus-expressed E2123 (Bac-E2123) mosaic antigen in calves. The Expi293TM-expressed antigen cocktail induced robust BVDV-specific cross-reactive IFN-γ responses, broadly neutralizing antibodies, and following challenge with a BVDV-1b strain, the calves had significantly (p < 0.05) reduced viremia and clinical BVD disease compared to the calves vaccinated with a commercial killed vaccine. The Bac-E2123 antigen was not as effective as the Expi293TM-expressed antigen cocktail, but it protected calves from BVD disease better than the commercial killed vaccine. The findings support feasibility for development of a broadly protective subunit BVDV vaccine for safe and effective management of BRD.
Collapse
Affiliation(s)
- Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Wisam Hassan
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rachel Reith
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Mary Markland
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jianxiu Yao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Bailey Fritz
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Karim W Abdelsalam
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
4
|
Risalde MA, Romero-Palomo F, Lecchi C, Ceciliani F, Bazzocchi C, Comazzi S, Besozzi M, Gómez-Villamandos JC, Luzzago C. BVDV permissiveness and lack of expression of co-stimulatory molecules on PBMCs from calves pre-infected with BVDV. Comp Immunol Microbiol Infect Dis 2019; 68:101388. [PMID: 31790941 DOI: 10.1016/j.cimid.2019.101388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022]
Abstract
Bovine viral diarrhea virus (BVDV) has been detected in peripheral blood mononuclear cells (PBMCs) of immunocompetent animals, not being clear whether the development of a specific humoral immune response can prevent BVDV infection. The aim of this study was to evaluate the ability of non-cytopathic BVDV to replicate and produce infectious virus in PBMCs from calves pre-infected with BVDV and to elucidate the immunomodulatory effect of BVDV on these cells in an in vitro model. Quantification of virus was by quantitative PCR, while its replicative capacity and shedding into the extracellular environment was evaluated by viral titration. Apoptosis was assessed by flow cytometry analysis of annexin V and propidium iodide, and by expression of caspase-3/7. Flow cytometry was used to analyze the expression of CD14/CD11b/CD80, CD4/CD8/CD25, MHC-I/MHC-II and B-B2 markers. Our results showed that PBMCs from cattle naturally infected with BVDV were more susceptible to in vitro BVDV infection and showed a more severe apoptosis response than those from naïve animals. Non-cytopathic BVDV in vitro infection also resulted in a lack of effect in the expression of antigen presentation surface markers. All these findings could be related to the immunosuppressive capacity of BVDV and the susceptibility of cattle to this infection.
Collapse
Affiliation(s)
- María A Risalde
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy; Dpto. de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba (UCO), Agrifood Excellence International Campus (ceiA3), 14071, Córdoba, Spain
| | - Fernando Romero-Palomo
- Dpto. de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba (UCO), Agrifood Excellence International Campus (ceiA3), 14071, Córdoba, Spain
| | - Cristina Lecchi
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy; Centro di Ricerca Coordinata, Epidemiologia e Sorveglianza Molecolare delle Infezioni - EpiSoMI, University of Milan, Milano, Italy
| | - Stefano Comazzi
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - Martina Besozzi
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - Jose C Gómez-Villamandos
- Dpto. de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba (UCO), Agrifood Excellence International Campus (ceiA3), 14071, Córdoba, Spain.
| | - Camilla Luzzago
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy; Centro di Ricerca Coordinata, Epidemiologia e Sorveglianza Molecolare delle Infezioni - EpiSoMI, University of Milan, Milano, Italy
| |
Collapse
|
5
|
Lokhandwala S, Fang X, Waghela SD, Bray J, Njongmeta LM, Herring A, Abdelsalam KW, Chase C, Mwangi W. Priming Cross-Protective Bovine Viral Diarrhea Virus-Specific Immunity Using Live-Vectored Mosaic Antigens. PLoS One 2017; 12:e0170425. [PMID: 28099492 PMCID: PMC5242483 DOI: 10.1371/journal.pone.0170425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/04/2017] [Indexed: 02/04/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) plays a key role in bovine respiratory disease complex, which can lead to pneumonia, diarrhea and death of calves. Current vaccines are not very effective due, in part, to immunosuppressive traits and failure to induce broad protection. There are diverse BVDV strains and thus, current vaccines contain representative genotype 1 and 2 viruses (BVDV-1 & 2) to broaden coverage. BVDV modified live virus (MLV) vaccines are superior to killed virus vaccines, but they are susceptible to neutralization and complement-mediated destruction triggered by passively acquired antibodies, thus limiting their efficacy. We generated three novel mosaic polypeptide chimeras, designated NproE2123; NS231; and NS232, which incorporate protective determinants that are highly conserved among BVDV-1a, 1b, and BVDV-2 genotypes. In addition, strain-specific protective antigens from disparate BVDV strains were included to broaden coverage. We confirmed that adenovirus constructs expressing these antigens were strongly recognized by monoclonal antibodies, polyclonal sera, and IFN-γ-secreting T cells generated against diverse BVDV strains. In a proof-of-concept efficacy study, the multi-antigen proto-type vaccine induced higher, but not significantly different, IFN-γ spot forming cells and T-cell proliferation compared to a commercial MLV vaccine. In regards to the humoral response, the prototype vaccine induced higher BVDV-1 specific neutralizing antibody titers, whereas the MLV vaccine induced higher BVDV-2 specific neutralizing antibody titers. Following BVDV type 2a (1373) challenge, calves immunized with the proto-type or the MLV vaccine had lower clinical scores compared to naïve controls. These results support the hypothesis that a broadly protective subunit vaccine can be generated using mosaic polypeptides that incorporate rationally selected and validated protective determinants from diverse BVDV strains. Furthermore, regarding biosafety of using a live vector in cattle, we showed that recombinant human adenovirus-5 was cleared within one week following intradermal inoculation.
Collapse
Affiliation(s)
- Shehnaz Lokhandwala
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Xin Fang
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Leo M. Njongmeta
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Andy Herring
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Karim W. Abdelsalam
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Christopher Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Downey-Slinker E, Ridpath J, Sawyer J, Skow L, Herring A. Antibody titers to vaccination are not predictive of level of protection against a BVDV type 1b challenge in Bos indicus - Bos taurus steers. Vaccine 2016; 34:5053-5059. [DOI: 10.1016/j.vaccine.2016.08.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
|
7
|
Abstract
Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics.
Collapse
Affiliation(s)
- Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald, Insel Riems, 17493, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald, Insel Riems, 17493, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald, Insel Riems, 17493, Germany
| |
Collapse
|
8
|
BVD-2 outbreak leads to high losses in cattle farms in Western Germany. Heliyon 2015; 1:e00019. [PMID: 27441213 PMCID: PMC4939757 DOI: 10.1016/j.heliyon.2015.e00019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/04/2015] [Indexed: 12/14/2022] Open
Abstract
In November 2012, a dairy farmer in the district Kleve first observed a reduction in milk yield, respiratory symptoms, nasal discharge, fever, sporadic diarrhoea and sudden deaths in dairy cows and calves. In the following months, further farms were found infected with cattle showing similar clinical signs. An epidemiological investigation was carried out to identify the source of infection, the date of introduction, potential transmission pathways and to analyse the extent of the epidemic. Furthermore, laboratory analyses were conducted to characterise the causative agent. BVDV had been diagnosed in the index herd in December 2012, but due to the atypical clinical picture, the virus was not immediately recognised as the causative agent. Further laboratory analysis showed that this outbreak and subsequent infections in the area were caused by a BVD type 2c virus with a characteristic genome insertion, which seems to be associated with the occurrence of severe clinical symptoms in infected cattle. Epidemiological investigations showed that the probable date of introduction was in mid-October 2012. The high risk period was estimated as three months. A total of 21 affected farms with 5325 cattle were identified in two German Federal States. The virus was mainly transmitted by person contacts, but also by cattle trade and vehicles. The case-fatality rate was up to 60% and mortality in outbreak farms varied between 2.3 and 29.5%. The competent veterinary authorities imposed trade restrictions on affected farms. All persons who had been in contact with affected animals were advised to increase biosecurity measures (e.g. using farm-owned or disposable protective clothing). In some farms, affected animals were vaccinated against BVD to reduce clinical signs as an "emergency measure". These measures stopped the further spread of the disease.
Collapse
|
9
|
Chase CCL. The impact of BVDV infection on adaptive immunity. Biologicals 2012; 41:52-60. [PMID: 23137817 DOI: 10.1016/j.biologicals.2012.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 11/29/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) causes immunosuppression of the adaptive immune response. The level of suppression of the adaptive immune response is strain dependent. The early events of antigen presentation require activation of toll-like receptors that results in the release of pro-inflammatory cytokines. Non-cytopathic (ncp) BVDV infection stimulates cytokines from macrophages in vitro but the effect of BVDV infection in vivo on macrophages or in vitro with monocytes is not clear. Antigen presentation is decreased and co-stimulatory molecules are down regulated. T-lymphocytes numbers are reduced following BVDV infection in a strain dependent manner. There is recruitment of lymphocytes to the bronchial alveolar space following cytopathic (cp) BVDV infection. Depletion of T-lymphocytes occurs in the lymphoid tissue and is strain dependent. BVDV cp T-lymphocyte responses appear to be primarily a T helper 1 response while the response following ncp BVDV induces a T helper 2 response. Cytotoxic T-lymphocytes (CTL), an important BVDV defense mechanism are compromised. The major neutralizing antigens are well characterized but cross-protection between strains is variable. PI animals have normal adaptive immune responses with the exception of the PI strain immunotolerance and mucosal disease may be a function of the level of gamma delta T cells.
Collapse
Affiliation(s)
- Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, PO Box 2175, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
10
|
Weiner C, Smirnova N, Webb B, Van Campen H, Hansen T. Interferon stimulated genes, CXCR4 and immune cell responses in peripheral blood mononuclear cells infected with bovine viral diarrhea virus. Res Vet Sci 2012; 93:1081-8. [DOI: 10.1016/j.rvsc.2012.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/13/2012] [Accepted: 01/20/2012] [Indexed: 01/10/2023]
|
11
|
Leifer I, Blome S, Blohm U, König P, Küster H, Lange B, Beer M. Characterization of C-strain "Riems" TAV-epitope escape variants obtained through selective antibody pressure in cell culture. Vet Res 2012; 43:33. [PMID: 22515281 PMCID: PMC3463427 DOI: 10.1186/1297-9716-43-33] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/23/2012] [Indexed: 02/02/2023] Open
Abstract
Classical swine fever virus (CSFV) C-strain “Riems” escape variants generated under selective antibody pressure with monoclonal antibodies and a peptide-specific antiserum in cell culture were investigated. Candidates with up to three amino acid exchanges in the immunodominant and highly conserved linear TAV-epitope of the E2-glycoprotein, and additional mutations in the envelope proteins ERNS and E1, were characterized both in vitro and in vivo. It was further demonstrated, that intramuscular immunization of weaner pigs with variants selected after a series of passages elicited full protection against lethal CSFV challenge infection. These novel CSFV C-strain variants with exchanges in the TAV-epitope present potential marker vaccine candidates. The DIVA (differentiating infected from vaccinated animals) principle was tested for those variants using commercially available E2 antibody detection ELISA. Moreover, direct virus differentiation is possible using a real-time RT-PCR system specific for the new C-strain virus escape variants or using differential immunofluorescence staining.
Collapse
Affiliation(s)
- Immanuel Leifer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Lucchini B, Ponti W, Turin L, Bronzo V, Scaccabarozzi L, Luzzago C. In vitro permissivity of bovine peripheral blood mononuclear cells to bovine viral diarrhoea virus is dependent on the animal specific immune status. Vet J 2012; 192:126-8. [DOI: 10.1016/j.tvjl.2011.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 04/27/2011] [Accepted: 05/05/2011] [Indexed: 11/28/2022]
|
13
|
TURIN L, LUCCHINI B, BRONZO V, LUZZAGO C. In vitro Replication Activity of Bovine Viral Diarrhea Virus in an Epithelial Cell Line and in Bovine Peripheral Blood Mononuclear Cells. J Vet Med Sci 2012; 74:1397-400. [DOI: 10.1292/jvms.12-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lauretta TURIN
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Via Celoria 10, 20133 Milano, Italy
| | - Barbara LUCCHINI
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Via Celoria 10, 20133 Milano, Italy
| | - Valerio BRONZO
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Via Celoria 10, 20133 Milano, Italy
| | - Camilla LUZZAGO
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Via Celoria 10, 20133 Milano, Italy
| |
Collapse
|
14
|
Effect of supplementation with an electrolyte containing a Bacillus-based direct-fed microbial on immune development in dairy calves. Res Vet Sci 2011; 92:427-34. [PMID: 21561634 DOI: 10.1016/j.rvsc.2011.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 12/12/2022]
Abstract
Immune characteristics in 65 calves were evaluated in response to a Bacillus-based direct-fed microbial (DFM) provided in electrolyte scour treatment. Blood samples were analyzed for cell surface markers and α(1)-acid glycoprotein (AGP) concentration. AGP increased in scouring calves given electrolyte containing Bacillus at day 7 post-placement compared to scouring calves administered electrolyte alone and non-scouring calves, enhancing the inflammatory response for pathogen clearance. The Bacillus promotes T cell subsets including greater proportions of activated, mature cells (CD8(-)CD25(+), CD8(-)CD45RO(+), CD8(-)TCR1(+)) in calves given electrolyte containing Bacillus than scouring calves administered electrolyte alone and non-scouring calves. Also, the Bacillus may be alleviating inflammation at day 3 post-placement as the proportion of monocytes and granulocytes lacking L-selectin (CD172a(+)CD62L(-)) was greater in scouring calves given electrolyte compared to the other groups. Electrolyte containing Bacillus administered at the onset of scours influences components of innate and adaptive immune development during and following the scouring event.
Collapse
|
15
|
Reimann I, Depner K, Utke K, Leifer I, Lange E, Beer M. Characterization of a new chimeric marker vaccine candidate with a mutated antigenic E2-epitope. Vet Microbiol 2010; 142:45-50. [DOI: 10.1016/j.vetmic.2009.09.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Modified live marker vaccine candidate CP7_E2alf provides early onset of protection against lethal challenge infection with classical swine fever virus after both intramuscular and oral immunization. Vaccine 2009; 27:6522-9. [DOI: 10.1016/j.vaccine.2009.08.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 11/23/2022]
|
17
|
Zemke J, König P, Mischkale K, Reimann I, Beer M. Novel BVDV-2 mutants as new candidates for modified-live vaccines. Vet Microbiol 2009; 142:69-80. [PMID: 19875253 DOI: 10.1016/j.vetmic.2009.09.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Protection against Bovine viral diarrhea virus (BVDV) type 2 infection of commercially available vaccines is often limited due to marked genetic and antigenic differences between BVDV types 1 (BVDV-1) and 2 (BVDV-2). Therefore, the immunogenicity of selected BVDV-1 and BVDV-2 mutants derived from infectious full-length cDNA clones and their use as modified-live vaccine candidates against challenge infection with a virulent heterologous BVDV-2 field isolate were investigated. Deletion mutants of BVDV-1 and BVDV-2 lacking a part of the N(pro) gene (BVDV-1DeltaN(pro)/BVDV-2DeltaN(pro)) were used as well as a packaged replicon with a deletion in the structural core protein encoding region (BVDV-2DeltaC-pseudovirions). The 25 calves used in this vaccination/challenge trial were allocated in five groups (n=5/group). One group received BVDV-1DeltaN(pro) (1 shot), one group BVDV-2DeltaN(pro) (1 shot), one group received both, BVDV-1DeltaN(pro) and BVDV-2DeltaN(pro) (1 shot), and one group was immunised with the BVDV-2DeltaC-pseudovirions (2 shots). The fifth group served as non-vaccinated control group. All groups were challenged intranasally with the BVDV-2 strain HI916 and monitored for signs of clinical disease, virus shedding and viremia. All tested BVDV vaccine candidates markedly reduced the outcome of the heterologous virulent BVDV-2 challenge infection showing graduated protective effects. The BVDV-2DeltaN(pro) mutant was able to induce complete protection and a "sterile immunity" upon challenge. Thus it represents a promising candidate for an efficacious future live vaccine.
Collapse
Affiliation(s)
- Johanna Zemke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald - Insel Riems, Germany
| | | | | | | | | |
Collapse
|
18
|
Reimann I, Semmler I, Beer M. Packaged replicons of bovine viral diarrhea virus are capable of inducing a protective immune response. Virology 2007; 366:377-86. [PMID: 17544049 DOI: 10.1016/j.virol.2007.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/12/2007] [Accepted: 05/04/2007] [Indexed: 12/17/2022]
Abstract
Bovine viral diarrhea virus (BVDV) replicons with deletions within the capsid, E(RNS) or E1 encoding region were constructed and efficiently packaged with a helper cell line. High titres of packaged replicons were observed as early as 24 h after transfection, whereas no virus progeny could be detected after transfection of non-complementing cells. Infection of bovine cell cultures with rescued viruses resulted in one cycle of replication without release of infectious virus particles, and no genetic reversion of the generated viruses was detected. Packaged replicons with a deletion within the capsid-coding region were characterized in vivo in immunization and challenge trials. Following immunization of calves with the replication-deficient virus, neither virus shedding nor viremia was detected. After challenge infection with virulent BVDV, all vaccinates were completely protected from disease as measured by the absence of viremia and shedding of challenge virus, which indicated that a 'sterilizing immunity' could be induced with the generated replication-deficient packaged replicons.
Collapse
Affiliation(s)
- Ilona Reimann
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
19
|
Moennig V, Houe H, Lindberg A. BVD control in Europe: current status and perspectives. Anim Health Res Rev 2007; 6:63-74. [PMID: 16164009 DOI: 10.1079/ahr2005102] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractFor several decades after the first description of bovine viral diarrhea and its causative agent (BVDV) the economic impact of the infection was underestimated and in addition there were no suitable diagnostics and procedures for a systematic control at hand. Today, there are several estimates on the real economic impact of the infection and during the last 15 years the serological and virological laboratory diagnosis of BVDV infections has improved. Also, successful procedures aimed at eradicating BVDV infections by using a strict test and removal policy for animals persistently infected (PI) with BVDV accompanied by movement restrictions for infected herds have been implemented in the Scandinavian countries. The success of these efforts has encouraged other European countries to follow the same procedures. However, the Scandinavian control strategy might—for a number of reasons—not be acceptable for all European countries. In such cases, the test and removal strategy, with its fundamental elements of biosecurity, removal of PI animals and monitoring of herd status, in combination with systematic vaccination, might be an acceptable compromise. The impact of the BVDV-free status of regions and nations on international trade is not yet clear. In any case, biosecurity measures will be of utmost importance for individual control programs as well as multiple control programs to co-exist in Europe.
Collapse
Affiliation(s)
- Volker Moennig
- Institute of Virology, School of Veterinary Medicine, D-30559 Hannover, Germany.
| | | | | |
Collapse
|
20
|
Moennig V, Eicken K, Flebbe U, Frey HR, Grummer B, Haas L, Greiser-Wilke I, Liess B. Implementation of two-step vaccination in the control of bovine viral diarrhoea (BVD). Prev Vet Med 2005; 72:109-14; discussion 215-9. [PMID: 16169620 DOI: 10.1016/j.prevetmed.2005.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 03/08/2005] [Accepted: 03/17/2005] [Indexed: 11/16/2022]
Abstract
Bovine viral diarrhoea (BVD) control/eradication programmes based on the test and removal of persistently infected cattle without use of vaccination were first introduced by the Scandinavian countries in the early 1990s. Within the last 10 years the programmes have proven to be very successful and have served as a blueprint for several other European regions. However, in areas with high cattle densities, intense animal trade and high BVD prevalence this control approach is risky, because there is a high probability that herds, which have been cleared of persistently infected (PI) animals and have become partly or fully susceptible to reintroduction of the virus, will come in contact with a BVD virus (BVDV) infected animal. A combination of the test and removal strategy with subsequent systematic vaccination of cattle could overcome this problem. The goals of vaccination in such a programme is protection against reintroduction of BVDV into herds free from PI cattle and foetal protection of pregnant animals accidentally exposed to the virus. Two-step vaccination is based on the use of inactivated BVDV-1 vaccine for priming followed by a live attenuated vaccine booster 4 weeks later. The immune response elicited by such a vaccination scheme has proven to be long lasting and foetal infection after challenge with BVDV-1 and BVDV-2 was prevented in pregnant animals 5 months after vaccination. These findings suggest that the implementation of a two-step vaccination in the initial phase of control programmes in addition to test and removal of PI animals in areas with high cattle densities and endemic BVD is practical and efficacious.
Collapse
Affiliation(s)
- V Moennig
- Institute of Virology, Department of Infectious Diseases, School of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kuhne S, Schroeder C, Holmquist G, Wolf G, Horner S, Brem G, Ballagi A. Detection of Bovine Viral Diarrhoea Virus Infected Cattle - Testing Tissue Samples Derived from Ear Tagging Using an Erns Capture ELISA. ACTA ACUST UNITED AC 2005; 52:272-7. [PMID: 16219090 DOI: 10.1111/j.1439-0450.2005.00861.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A new diagnostic approach testing tissue samples derived from cattle ear tagging for bovine viral diarrhoea virus (BVDV) antigen in a commercially available antigen capture enzyme-linked immunosorbent assay (ACE) was developed. To validate this method, 99 positive and 469 negative samples were tested. With those samples the assay yielded a sensitivity of 100% and specificity of >or=99.6%. Serum and ear tissue samples from 11 persistently infected (PI) BVDV calves were tested. While serum samples were negative after intake of colostrum, the ear tissue samples could be detected positive for BVDV all the time. Testing multiple samples derived from the same ear from PI cattle yielded positive results and low variation. Using cattle ear tags combining the ear tag application with sampling of a small ear tissue plug and testing those tissue samples with an ACE could be a reliable and economic way of BVDV testing.
Collapse
Affiliation(s)
- S Kuhne
- Institute for Medical Microbiology, Infectious and Epidemic Diseases, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Trapp S, von Einem J, Hofmann H, Köstler J, Wild J, Wagner R, Beer M, Osterrieder N. Potential of equine herpesvirus 1 as a vector for immunization. J Virol 2005; 79:5445-54. [PMID: 15827159 PMCID: PMC1082783 DOI: 10.1128/jvi.79.9.5445-5454.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key problems using viral vectors for vaccination and gene therapy are antivector immunity, low transduction efficiencies, acute toxicity, and limited capacity to package foreign genetic information. It could be demonstrated that animal and human cells were efficiently transduced with equine herpesvirus 1 (EHV-1) reconstituted from viral DNA maintained and manipulated in Escherichia coli. Between 13 and 23% of primary human CD3+, CD4+, CD8+, CD11b+, and CD19+ cells and more than 70% of CD4+ MT4 cells or various human tumor cell lines (MeWo, Huh7, HeLa, 293T, or H1299) could be transduced with one infectious unit of EHV-1 per cell. After intranasal instillation of EHV-1 into mice, efficient transgene expression in lungs was detectable. Successful immunization using EHV-1 was shown after delivery of the human immunodeficiency virus type 1 Pr55gag precursor by the induction of a Gag-specific CD8+ immune response in mice. Because EHV-1 was not neutralized by human sera containing high titers of antibodies directed against human herpesviruses 1 to 5, it is concluded that this animal herpesvirus has enormous potential as a vaccine vector, because it is able to efficiently transduce a variety of animal and human cells, has high DNA packaging capacity, and can conveniently be maintained and manipulated in prokaryotic cells.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cattle
- Cell Line
- Cross Reactions
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV Infections/immunology
- HIV Infections/prevention & control
- Herpesvirus 1, Equid/genetics
- Herpesvirus 1, Equid/immunology
- Horses
- Humans
- Immune Sera
- Immunity, Cellular
- Immunization
- Leukocytes, Mononuclear/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Spleen/immunology
- Transduction, Genetic
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
Collapse
Affiliation(s)
- Sascha Trapp
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Silflow RM, Degel PM, Harmsen AG. Bronchoalveolar immune defense in cattle exposed to primary and secondary challenge with bovine viral diarrhea virus. Vet Immunol Immunopathol 2005; 103:129-39. [PMID: 15626468 DOI: 10.1016/j.vetimm.2004.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 08/03/2004] [Accepted: 09/01/2004] [Indexed: 11/18/2022]
Abstract
To evaluate immune defense mechanisms against bovine viral diarrhea virus (BVDV), four calves received primary and secondary intrabronchial infections with the cytopathic, type I Singer strain of BVDV. The cellular and humoral responses to these site-specific infections with BVDV were monitored by sequential bronchoalveolar lavages (BAL) conducted prior to infection (day 0, non-infected controls) and on days 4, 7, 10, 17 (day 31, secondary infection), 35, 38, 41, 48 and 62 post-infection. Peak quantities of BVDV were recovered from BAL on day 4. BVDV clearance from the lung was complete between days 17 and 31. Immune clearance of BVDV from the lower airways upon secondary infection was swift, within 4 days, and sustained throughout a 1-month period. Total numbers of BAL CD4(+) and CD8(+) T-lymphocytes increased >200-fold by day 10, and increased to levels >70-fold higher than background by 4 days after a secondary BVDV infection. gammadelta(+) T-lymphocytes increased 100-fold by day 7 and remained at levels at least 10-fold higher than pre-infection throughout the study. B-lymphocytes increased to levels 30-fold greater than pre-infection levels by day 10, and further increased to levels 100-fold higher following secondary BVDV infection. Activation (defined by the phenotype CD25(+)/CD62L(-)) and memory (defined by the phenotype CD45RO(+)/CD45R(-)) profiles of lymphocytes in the lower airways were characterized. Activated subpopulations of CD4(+) and CD8(+) cells increased nearly 300- and 150-fold, respectively, by day 10, and to levels 100- and 50-fold 4 days after the secondary infection. Memory subpopulations of CD4(+) and CD8(+) cells increased to levels 170- and 120-fold, respectively, by day 10, and to levels approximately 400- and 300-fold, respectively, 7 days after the secondary infection. The primary antibody response consisted of increased titers of anti-BVDV-specific IgA in bronchoalveolar lavage fluid (BALF). A strong secondary antibody response with high levels of anti-BVDV-specific IgA and IgG in BALF before day 4 post-secondary BVDV infection, likely contributed, along with cellular defenses, to the rapid clearance of virus from the lung upon secondary exposure. These results demonstrate that primary infection of the bovine lung with BVDV initiates cell-mediated immune responses capable of clearing the virus within 2-3 weeks. Furthermore, populations of immune-activated and memory T-lymphocytes, combined with BVDV-specific antibody production, contribute to rapid BVDV clearance upon secondary exposure to the virus.
Collapse
Affiliation(s)
- Ronald M Silflow
- Department of Veterinary Molecular Biology, Montana State University, PO Box 173610, Bozeman, MT 59717-3610, USA.
| | | | | |
Collapse
|
24
|
Liebler-Tenorio EM, Ridpath JE, Neill JD. Distribution of Viral Antigen and Tissue Lesions in Persistent and Acute Infection with the Homologous Strain of Noncytopathic Bovine Viral Diarrhea Virus. J Vet Diagn Invest 2004; 16:388-96. [PMID: 15460320 DOI: 10.1177/104063870401600504] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Viral distribution and lesions were compared between calves born with persistent infection (PI) and calves acutely infected with the same bovine viral diarrhea virus (BVDV) isolate. Two PI calves from 1 dairy herd were necropsied. The PI viruses from these calves were isolated, characterized by sequencing, and found to be identical. This virus strain, designated BVDV2-RS886, was characterized as a noncytopathic (ncp) type 2 BVDV. To establish acute infections, BVDV2-RS886 was used to inoculate clinically healthy, seronegative calves which were 3 weeks to 3 months old. Nine calves received 106–107 tissue culture infective dose of BVDV2-RS886 intranasally. Four additional age-matched animals served as noninfected controls. Infected calves were necropsied at 3, 6, 9, or 13 days postinoculation (dpi). Viral antigen was detected by immunohistochemistry in frozen sections, and lesions were evaluated in hematoxylin eosin–stained paraplast sections. In the PI calves, a wide distribution of viral antigen was found in all tissues and was not associated with lesions. In the acutely infected calves, viral antigen was widespread in lymphoid tissues at 6 dpi but had been mostly eliminated at 9 and 13 dpi. Depletion of lymphoid tissues was seen at 6, 9, and 13 dpi and repopulation at 9 and 13 dpi. In 1 of the calves at 13 dpi, severe arteritis was present in lymph nodes and myocardium. This comparison shows that an ncp BVDV strain that causes no lesions in PI animals is able to induce marked depletion of lymphoid tissues in calves with acute infection. Therefore, the failure to eliminate PI cattle from a herd causes problems not only in pregnant cattle but may also affect other age groups.
Collapse
Affiliation(s)
- Elisabeth M Liebler-Tenorio
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | | | | |
Collapse
|
25
|
Reimann I, Depner K, Trapp S, Beer M. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus. Virology 2004; 322:143-57. [PMID: 15063124 DOI: 10.1016/j.virol.2004.01.028] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 11/25/2003] [Accepted: 01/24/2004] [Indexed: 11/26/2022]
Abstract
A chimeric Pestivirus was constructed using an infectious cDNA clone of bovine viral diarrhea virus (BVDV) [J. Virol. 70 (1996) 8606]. After deletion of the envelope protein E2-encoding region, the respective sequence of classical swine fever virus (CSFV) strain Alfort 187 was inserted in-frame resulting in plasmid pA/CP7_E2alf. After transfection of in vitro-transcribed CP7_E2alf RNA, autonomous replication of chimeric RNA in bovine and porcine cell cultures was observed. Efficient growth of chimeric CP7_E2alf virus, however, could only be demonstrated on porcine cells, and in contrast to the parental BVDV strain CP7, CP7_E2alf only inefficiently infected and propagated in bovine cells. The virulence, immunogenicity, and "marker vaccine" properties of the generated chimeric CP7_E2alf virus were determined in an animal experiment using 27 pigs. After intramuscular inoculation of 1 x 10(7) TCID(50), CP7_E2alf proved to be completely avirulent, and neither viremia nor virus transmission to contact animals was observed; however, CSFV-specific neutralizing antibodies were detected from day 11 after inoculation. In addition, sera from all animals reacted positive in an E2-specific CSFV-antibody ELISA, but were negative for CSFV-E(RNS)-specific antibodies as determined with a CSFV marker ELISA. After challenge infection with highly virulent CSFV strain Eystrup, pigs immunized with CP7_E2alf were fully protected against clinical signs of CSFV infection, viremia, and shedding of challenge virus, and almost all animals scored positive in a CSFV marker ELISA. From our results, we conclude that chimeric CP7_E2alf may not only serve as a tool for a better understanding of Pestivirus attachment, entry, and assembly, but also represents an innocuous and efficacious modified live CSFV "marker vaccine".
Collapse
Affiliation(s)
- Ilona Reimann
- Federal Research Center for Virus Diseases of Animals, Institute of Infectology, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | |
Collapse
|
26
|
Chase CCL, Elmowalid G, Yousif AAA. The immune response to bovine viral diarrhea virus: a constantlychanging picture. Vet Clin North Am Food Anim Pract 2004; 20:95-114. [PMID: 15062477 DOI: 10.1016/j.cvfa.2003.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the major immuno-suppressive viruses of cattle. The effect on the innate and acquired immune system is unique and results in dramatic immune dysfunction. BVDV infection also has the ability to cause persistent infection (PI) in the developing fetus. This Pl syndrome creates a requirement for high levels of BVDV immunity from vaccines to prevent these infections. BVDV vaccines and their future development continue to be an enigma in the control of BVDV.
Collapse
Affiliation(s)
- Christopher C L Chase
- Department of Veterinary Science, South Dakota State University, P.O. Box 2175, Brookings, SD 57007, USA.
| | | | | |
Collapse
|
27
|
Endsley JJ, Ridpath JF, Neill JD, Sandbulte MR, Roth JA. Induction of T Lymphocytes Specific for Bovine Viral Diarrhea Virus in Calves with Maternal Antibody. Viral Immunol 2004; 17:13-23. [PMID: 15018659 DOI: 10.1089/088282404322875421] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Passive antibody to bovine viral diarrhea virus (BVDV) acquired through colostrum intake may interfere with the development of a protective immune response by calves to this virus. The objective of this study was to determine if calves, with a high level of maternal antibody to bovine viral diarrhea virus (BVDV), develop CD4(+), CD8(+), or gammadelta T lymphocyte responses to BVDV in the absence of a measurable humoral immune response. Colostrum or milk replacer fed calves were challenged with virulent BVDV at 2-5 weeks of age and/or after maternal antibody had waned. Calves exposed to BVDV while passive antibody levels were high did not mount a measurable humoral immune response to BVDV. However, compared to nonexposed animals, these animals had CD4(+), CD8(+), and gammadelta T lymphocytes that were activated by BVDV after exposure to in vitro BVDV. The production of IFNgamma by lymphocytes after in vitro BVDV exposure was also much greater in lymphocytes from calves exposed to BVDV in the presence of maternal antibody compared to the nonexposed calves. These data indicate that calves exposed to BVDV while maternal antibody levels are high can develop antigen specific CD4(+), CD8(+), and gammadelta T lymphocytes in the absence of an active antibody response. A manuscript presented separately demonstrates that the calves with T lymphocytes specific for BVDV in this study were also protected from virulent BVDV genotype 2 challenge after maternal antibody became undetectable.
Collapse
Affiliation(s)
- Janice J Endsley
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | | | | | | | | |
Collapse
|
28
|
Frey HR, Eicken K, Grummer B, Kenklies S, Oguzoglu TC, Moennig V. Foetal protection against bovine virus diarrhoea virus after two-step vaccination. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2002; 49:489-93. [PMID: 12485359 DOI: 10.1046/j.1439-0450.2002.00599.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to assess the efficacy of a two-step vaccination protocol with respect to foetal protection against transplacental infections with bovine virus diarrhoea virus (BVDV) with special attention to BVDV-2 seronegative heifers were vaccinated with an inactivated BVDV-1 vaccine and boostered with a modified live BVDV-1 vaccine after 4 weeks. A second group was left unvaccinated as control. Between days 30 and 120 of pregnancy the heifers of both groups were intranasally challenged with a mixture of BVDV-1 and -2. All heifers of the vaccinated group gave birth to nine clinically healthy, seronegative (precolostral) and BVDV-free calves. In contrast in the control group four BVDV viraemic underdeveloped calves were born. Additionally, one calf was stillborn and another viraemic calf was not viable and died 2 days after birth. All six calves of the control group were viraemic with BVDV-2. This study demonstrated for the first time that two-step vaccination of breeding cattle with a modified live BVDV vaccine 4 weeks after application of an inactivated BVDV vaccine was capable of providing a foetal protection against transplacental infection with BVDV-2.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/genetics
- Antibodies, Viral/isolation & purification
- Bovine Virus Diarrhea-Mucosal Disease/prevention & control
- Bovine Virus Diarrhea-Mucosal Disease/transmission
- Bovine Virus Diarrhea-Mucosal Disease/virology
- Cattle
- Diarrhea Virus 1, Bovine Viral/immunology
- Diarrhea Virus 1, Bovine Viral/pathogenicity
- Diarrhea Virus 2, Bovine Viral/immunology
- Diarrhea Virus 2, Bovine Viral/pathogenicity
- Drug Administration Schedule
- Female
- Infectious Disease Transmission, Vertical/prevention & control
- Infectious Disease Transmission, Vertical/veterinary
- Injections, Subcutaneous/veterinary
- Neutralization Tests/veterinary
- Pregnancy
- Pregnancy Complications, Infectious/prevention & control
- Pregnancy Complications, Infectious/veterinary
- Vaccination
- Vaccines, Inactivated
- Viral Vaccines
Collapse
Affiliation(s)
- H-R Frey
- Institute of Virology, School of Veterinary Medicine, Buenteweg 17, D-30559 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Beer M, Wolf G, Kaaden OR. Phylogenetic analysis of the 5'-untranslated region of german BVDV type II isolates. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2002; 49:43-7. [PMID: 11911592 DOI: 10.1046/j.1439-0450.2002.00536.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
On the basis of genetic differences, bovine viral diarrhoea viruses (BVDV) are subclassified into two distinct genotypes, BVDV type I and BVDV type II. We selected German BVDV type II isolates using the BVDV type I-specific monoclonal antibody WB160 and flow cytometric analysis for further characterization. For molecular characterization, a 288-bp fragment of the 5'-untranslated region (5'-UTR) of the selected isolates was investigated by reverse transcription-polymerase chain reaction (RT-PCR) and sequencing. Sequence comparisons of the partial 5'-UTR sequences and their phylogenetic analyses demonstrated that the 18 German BVDV type II isolates all belong to either subtype IIa (10 isolates) or subtype IIc (eight isolates). Nevertheless, the German BVDV type II isolates were genetically different (89.9-94.3% sequence identity) from the standard BVDV type II strain 890 from North America, which was recently classified as BVDV type IIa. Furthermore, a clear subdivision of the German BVDV type II isolates into two distinct subtypes (BVDV IIa Germany and BVDV IIc Germany) is shown. Viruses of both subgroups differed in the analysed 5'-UTR fragment from each other (91.6-95.2% sequence identity), but were highly conserved within the same German subtype (97.2-100% sequence identity). These findings are discussed in the context of BVDV type II origin, possible introduction into Germany, its epidemiology and impact for vaccine development.
Collapse
Affiliation(s)
- M Beer
- Institute for Medical Microbiology, Epidemic and Infectious Diseases, Veterinary Faculty, Munich, Germany.
| | | | | |
Collapse
|
30
|
Nobiron I, Thompson I, Brownlie J, Collins ME. Cytokine adjuvancy of BVDV DNA vaccine enhances both humoral and cellular immune responses in mice. Vaccine 2001; 19:4226-35. [PMID: 11457549 DOI: 10.1016/s0264-410x(01)00157-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effect of cytokine adjuvancy on a bovine viral diarrhoea virus (BVDV) DNA vaccine expressing the major glycoprotein E2 was investigated in mice. Murine interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were chosen for their potential ability to enhance the humoral and cellular immune responses involved in protection against BVDV. Both cytokines, co-administered as separate plasmid constructs, had a marked effect on ELISA and neutralising antibody titres, improving the spectrum of neutralisation induced by the E2 DNA vaccine, as demonstrated in heterologous neutralisation assays. The predominance of IgG2a isotypes, in sera from all DNA injected groups, indicated a Th1 biased immune response. Antigen specific proliferation of murine splenocytes from immunised mice was enhanced by cytokine co-administration, with the highest stimulation indexes observed in the group co-injected with the GM-CSF construct. These results obtained in the mouse (Balb/c; H2-kd) animal model demonstrate the value of the two cytokines as adjuvants for the E2 DNA vaccine. The need for an adjuvant in this system was emphasised by the MHC restriction observed when C57BL/6 mice (H2-kb) were immunised with the E2 DNA construct. Antibody levels were dramatically lower in this mouse strain.
Collapse
Affiliation(s)
- I Nobiron
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK
| | | | | | | |
Collapse
|
31
|
Hegde NR, Srikumaran S. Reverse immunogenetic and polyepitopic approaches for the induction of cell-mediated immunity against bovine viral pathogens. Anim Health Res Rev 2000; 1:103-18. [PMID: 11708596 DOI: 10.1017/s1466252300000098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The control of several infectious diseases of animals by vaccination is perhaps the most outstanding accomplishment of veterinary medicine in the last century. Even the eradication of some pathogens is in sight, at least in some parts of the world. However, infectious diseases continue to cost millions of dollars to the livestock industry. One of the reasons for the failure to control certain pathogens is the limited emphasis placed on cell-mediated immunity (CMI) in the design of vaccines against these pathogens. Traditionally, vaccine-induced immunity has been studied in relation to antibody-mediated protection. More recent studies, however, have focused on understanding CMI and developing means of inducing CMI. This review focuses on recent advances made in the study of CMI in general and of cytotoxic T lymphocytes in particular. Parallels from studies in human and mouse immunology are drawn in order to point out implications to bovine immunology, specifically for immunity against bovine herpesvirus 1.
Collapse
Affiliation(s)
- N R Hegde
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | |
Collapse
|
32
|
Piriou L, Chilmonczyk S, Genetet N, Albina E. Design of a flow cytometric assay for the determination of natural killer and cytotoxic T-lymphocyte activity in human and in different animal species. CYTOMETRY 2000; 41:289-97. [PMID: 11084614 DOI: 10.1002/1097-0320(20001201)41:4<289::aid-cyto7>3.0.co;2-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The most common assay used to detect natural killer (NK) and cytotoxic T-lymphocyte (CTL) activity is the (51)Cr release assay. The numerous disadvantages of this method led us to evaluate cytotoxicity functions by flow cytometry. We described a flow cytometric assay to assess NK and CTL activity from different species. METHODS This assay is based on a dual fluorescent staining of target cells. The dye, DIOC18((3)) (3, 3'-dioctadecyloxacarbocyanine perchlorate), is used to stain the membrane of different target cells. Propidium iodide (PI) is used to label dead target and effector cells. This labeling allows a clear discrimination between both cell populations. RESULTS A good correlation was observed between the percentage of target lysis and the effector-to-target cell (E/T) ratios with human and porcine peripheral blood mononuclear cells (PBMC) as effector cells. The flow cytometric assay was shown to be as sensitive and as reliable as the (51)Cr release performed with human cells. The assay was also applied successfully to measure NK cell activity in other animal species (pig, rabbit, hen, and mouse) and to measure murine CTL activity against the influenza virus. CONCLUSIONS We provide evidence that the flow cytometric assay using DIOC18((3)) is highly reproducible and is suitable to measure different types of cell cytotoxicity.
Collapse
Affiliation(s)
- L Piriou
- Agence Française de Sécurité Sanitaire des Aliments, Unité de Virologie et Immunologie Porcines, Ploufragan, France.
| | | | | | | |
Collapse
|
33
|
Abstract
Friesian calves were infected with one of three isolates of bovine viral diarrhoea virus (BVDV) and used to establish parameters for an in vitro model of BVDV-reactive T-cell responses in cattle. The study assessed virus clearance, seroconversion, maturation of lymphoproliferative responses (both during and following disease resolution) and the antigen-specificity of CD4(+) T cells from recovered animals. Seroconversion and virus-specific lymphoproliferation were not detected until viraemia had resolved. Interestingly, lymphoproliferation was detected earlier in the animals infected with cytopathic viruses than in those infected with noncytopathic virus despite broadly similar rates of virus clearance and seroconversion for both biotypes. CD4(+) and CD8(+) T cells were induced to proliferate by virus-infected stimulator cells whereas only CD4(+) T cells responded to non-infectious antigens. Lymphoproliferation was strain cross-reactive and MHC-restricted. Induction of T-cell proliferation by recombinant proteins identified the major envelope proteins E(rns) and E2 and the nonstructural (NS) 2-3 protein as T-cell determinants. In addition, the capsid (C) and/or the amino-terminal proteinase, N(pro) were identified as T-cell determinants from the responses of short-term T-cell lines. Thus, in this model, the CD4(+) T-cell repertoire induce by acute BVDV infection includes at least the major envelope proteins, NS2-3, and capsid and/or N(pro).
Collapse
Affiliation(s)
- T Collen
- Division of Immunopathology, Institute for Animal Health, Compton, UK.
| | | |
Collapse
|
34
|
Hegde NR, Deshpande MS, Godson DL, Babiuk LA, Srikumaran S. Bovine lymphocyte antigen-A11--specific peptide motif as a means to identify cytotoxic T-lymphocyte epitopes of bovine herpesvirus 1. Viral Immunol 1999; 12:149-61. [PMID: 10413361 DOI: 10.1089/vim.1999.12.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Major histocompatibility complex (MHC) class I molecules present 8- to 10-mer viral peptides to antiviral cytotoxic T lymphocytes (CTLs). Identification of the allele-specific peptide motifs (ASPMs) of class I molecules enables the prediction of potential CTL epitopes of a virus from its protein sequences. Based on the bovine herpesvirus 1 (BHV-1) protein sequences that conform to the BoLA-A11 ASPM that we identified previously, potential CTL epitopes of BHV-1 were synthesized for use in cytotoxicity assays with CTLs from BHV-1-immunized calves. A peptide binding assay used to select the peptides that are most likely to be CTL epitopes categorized the peptides into groups of high, intermediate, and low binding capacity. Synthetic peptides stimulated lymphocytes from BHV-1-immunized calves to secrete interferon-gamma. Groups of peptides from the major glycoproteins of BHV-1 restimulated CTLs in vitro and sensitized targets for lysis by means of restimulated bulk CTLs.
Collapse
Affiliation(s)
- N R Hegde
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 68583-0905, USA
| | | | | | | | | |
Collapse
|