1
|
Kaur S, Chowdhary S, Kumar D, Bhattacharyya R, Banerjee D. Organophosphorus and carbamate pesticides: Molecular toxicology and laboratory testing. Clin Chim Acta 2023; 551:117584. [PMID: 37805177 DOI: 10.1016/j.cca.2023.117584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Population and food requirements are increasing daily throughout the world. To fulfil these requirements application of pesticides is also increasing. Organophosphorous (OP) and Organocarbamate (OC) compounds are widely used pesticides. These pesticides are used for suicidal purposes too. Both inhibit Acetylcholinesterase (AChE) and cholinergic symptoms are mainly used for the diagnosis of pesticide poisoning. Although the symptoms of the intoxication of OP and OC are similar, recent research has described different targets for OP and OC pesticides. Researchers believe the distinction of OP/OC poisoning will be beneficial for the management of pesticide exposure. OP compounds produce adducts with several proteins. There is a new generation of OP compounds like glyphosate that do not inhibit AChE. Therefore, it's high time to develop biomarkers that can distinguish OP poisoning from OC poisoning.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Sheemona Chowdhary
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Deepak Kumar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| |
Collapse
|
2
|
Szafran BN, Nichols J, Nicaise A, Borazjani A, Carr RL, Wilson JR, Ross MK, Kaplan BLF. Cnr1 -/- has minimal impact on chlorpyrifos-mediated effects in the mouse endocannabinoid system, but it does alter lipopolysaccharide-induced cytokine levels in splenocytes. Chem Biol Interact 2023; 375:110425. [PMID: 36858108 PMCID: PMC10150269 DOI: 10.1016/j.cbi.2023.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphate pesticide that can inhibit endocannabinoid (eCB) metabolizing enzymes in animal models at levels that do not significantly alter acetylcholinesterase (AChE) in the central nervous system (CNS). Previous studies indicated that repeated low-level CPF exposure in developing rats increased the levels of eCBs in the brain. Because eCBs play a role in immune homeostasis through their engagement with cannabinoid receptors, we investigated the role of cannabinoid receptor 1 (CB1, encoded by the Cnr1 gene) on the CPF-mediated effects in the spleen and lung of neonatal and adult female mice. We treated neonatal and adult female Cnr1-/- mice with 2.5 mg/kg oral CPF or vehicle for 7 days. Tissues were harvested 4 h after the last CPF dose to evaluate eCB metabolic enzyme activity, levels of eCBs, and tissue immunophenotype. There were a small number of genotype-dependent alterations noted in the endpoints following CPF treatment that were specific to age and tissue type, and differences in eCB metabolism caused by CPF treatment did not correlate to changes in eCB levels. To explore the role of CB1 in CPF-mediated effects on immune endpoints, in vitro experiments were performed with WT murine splenocytes exposed to chlorpyrifos oxon (CPO; oxon metabolite of CPF) and challenged with lipopolysaccharide (LPS). While CPO did not alter LPS-induced pro-inflammatory cytokine levels, inactivation of CB1 by the antagonist SR141716A augmented LPS-induced IFN-γ levels. Additional experiments with WT and Cnr1-/- murine splenocytes confirmed a role for CB1 in altering the production of LPS-induced pro-inflammatory cytokine levels. We conclude that CPF-mediated effects on the eCB system are not strongly dependent on CB1, although abrogation of CB1 does alter LPS-induced cytokine levels in splenocytes.
Collapse
Affiliation(s)
- Brittany N Szafran
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - James Nichols
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Ashleigh Nicaise
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Juliet R Wilson
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, MS, USA.
| |
Collapse
|
3
|
Gestational exposures to organophosphorus insecticides: From acute poisoning to developmental neurotoxicity. Neuropharmacology 2020; 180:108271. [PMID: 32814088 DOI: 10.1016/j.neuropharm.2020.108271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
For over three-quarters of a century, organophosphorus (OP) insecticides have been ubiquitously used in agricultural, residential, and commercial settings and in public health programs to mitigate insect-borne diseases. Their broad-spectrum insecticidal effectiveness is accounted for by the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that catalyzes acetylcholine (ACh) hydrolysis, in the nervous system of insects. However, because AChE is evolutionarily conserved, OP insecticides are also toxic to mammals, including humans, and acute OP intoxication remains a major public health concern in countries where OP insecticide usage is poorly regulated. Environmental exposures to OP levels that are generally too low to cause marked inhibition of AChE and to trigger acute signs of intoxication, on the other hand, represent an insidious public health issue worldwide. Gestational exposures to OP insecticides are particularly concerning because of the exquisite sensitivity of the developing brain to these insecticides. The present article overviews and discusses: (i) the health effects and therapeutic management of acute OP poisoning during pregnancy, (ii) epidemiological studies examining associations between environmental OP exposures during gestation and health outcomes of offspring, (iii) preclinical evidence that OP insecticides are developmental neurotoxicants, and (iv) potential mechanisms underlying the developmental neurotoxicity of OP insecticides. Understanding how gestational exposures to different levels of OP insecticides affect pregnancy and childhood development is critical to guiding implementation of preventive measures and direct research aimed at identifying effective therapeutic interventions that can limit the negative impact of these exposures on public health.
Collapse
|
4
|
Lumsden EW, McCowan L, Pescrille JD, Fawcett WP, Chen H, Albuquerque EX, Mamczarz J, Pereira EFR. Learning and memory retention deficits in prepubertal guinea pigs prenatally exposed to low levels of the organophosphorus insecticide malathion. Neurotoxicol Teratol 2020; 81:106914. [PMID: 32652103 DOI: 10.1016/j.ntt.2020.106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
High doses of malathion, an organophosphorus (OP) insecticide ubiquitously used in agriculture, residential settings, and public health programs worldwide, induce a well-defined toxidrome that results from the inhibition of acetylcholinesterase (AChE). However, prenatal exposures to malathion levels that are below the threshold for AChE inhibition have been associated with increased risks of neurodevelopmental disorders, including autism spectrum disorder with intellectual disability comorbidity. The present study tested the hypothesis that prenatal exposures to a non-AChE-inhibiting dose of malathion are causally related to sex-biased cognitive deficits later in life in a precocial species. To this end, pregnant guinea pigs were injected subcutaneously with malathion (20 mg/kg) or vehicle (peanut oil, 0.5 ml/kg) once daily between approximate gestational days 53 and 63. This malathion dose regimen caused no significant AChE inhibition in the brain or blood of dams and offspring and had no significant effect on the postnatal growth of the offspring. Around postnatal day 30, locomotor activity and habituation, a form of non-associative learning, were comparable between malathion- and peanut oil-exposed offspring. However, in the Morris water maze, malathion-exposed offspring presented significant sex-dependent spatial learning deficits in addition to memory impairments. These results are far-reaching as they indicate that: (i) malathion is a developmental neurotoxicant and (ii) AChE inhibition is not an adequate biomarker to derive safety limits of malathion exposures during gestation. Continued studies are necessary to identify the time and dose dependence of the developmental neurotoxicity of malathion and the mechanisms underlying the detrimental effects of this insecticide in the developing brain.
Collapse
Affiliation(s)
- Eric W Lumsden
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lillian McCowan
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Joseph D Pescrille
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - William P Fawcett
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Hegang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
5
|
Silva MH. Effects of low‐dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and
Caenorhabditis elegans. Birth Defects Res 2020; 112:445-479. [DOI: 10.1002/bdr2.1661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Marilyn H. Silva
- Retired from a career in regulatory toxicology and risk assessment
| |
Collapse
|
6
|
Ito Y, Tomizawa M, Suzuki K, Shirakawa Y, Ono H, Adachi K, Suzuki H, Shimomura K, Nabeshima T, Kamijima M. Organophosphate Agent Induces ADHD-Like Behaviors via Inhibition of Brain Endocannabinoid-Hydrolyzing Enzyme(s) in Adolescent Male Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2547-2553. [PMID: 31995978 DOI: 10.1021/acs.jafc.9b08195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anticholinergic organophosphate (OP) agents act on the diverse serine hydrolases, thereby revealing unexpected biological effects. Epidemiological studies indicate a relationship between the OP exposure and development of attention-deficit/hyperactivity disorder (ADHD)-like symptoms, whereas no plausible mechanism for the OP-induced ADHD has been established. The present investigation employs ethyl octylphosphonofluoridate (EOPF) as an OP-probe, which is an extremely potent inhibitor of endocannabinoid (EC, anandamide and 2-arachidonoylglycerol)-hydrolyzing enzymes: that is, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). An ex vivo experiment shows that EOPF treatment decreases FAAH and MAGL activities and conversely increases EC levels in the rat brain. Subsequently, EOPF (treated intraperitoneally once at 0, 1, 2, or 3 mg/kg) clearly induces ADHD-like behaviors (in elevated plus-maze test) in both Wistar and spontaneously hypertensive rats. The EOPF-induced behaviors are reduced by a concomitant administration of cannabinoid receptor inverse agonist SLV-319. Accordingly, the EC system is a feasible target for OP-caused ADHD-like behaviors in adolescent rats.
Collapse
Affiliation(s)
- Yuki Ito
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Motohiro Tomizawa
- Department of Chemistry, Faculty of Life Sciences , Tokyo University of Agriculture , Setakaya , Tokyo 156-8502 , Japan
| | - Kazutaka Suzuki
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Yuichi Shirakawa
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Hiromasa Ono
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Keishi Adachi
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Himiko Suzuki
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| | - Kenji Shimomura
- Department of Chemistry, Faculty of Life Sciences , Tokyo University of Agriculture , Setakaya , Tokyo 156-8502 , Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory , Fujita Health University , Nagoya , Aichi 470-1192 , Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health , Nagoya City University Graduate School of Medical Sciences , Nagoya 467-8601 , Japan
| |
Collapse
|
7
|
Perez-Fernandez C, Morales-Navas M, Guardia-Escote L, Garrido-Cárdenas JA, Colomina MT, Giménez E, Sánchez-Santed F. Long-term effects of low doses of Chlorpyrifos exposure at the preweaning developmental stage: A locomotor, pharmacological, brain gene expression and gut microbiome analysis. Food Chem Toxicol 2020; 135:110865. [DOI: 10.1016/j.fct.2019.110865] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
|
8
|
Naughton SX, Terry AV. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018; 408:101-112. [PMID: 30144465 DOI: 10.1016/j.tox.2018.08.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
Abstract
The term organophosphate (OP) refers to a diverse group of chemicals that are found in hundreds of products worldwide. As pesticides, their most common use, OPs are clearly beneficial for agricultural productivity and the control of deadly vector-borne illnesses. However, as a consequence of their widespread use, OPs are now among the most common synthetic chemicals detected in the environment as well as in animal and human tissues. This is an increasing environmental concern because many OPs are highly toxic and both accidental and intentional exposures to OPs resulting in deleterious health effects have been documented for decades. Some of these deleterious health effects include a variety of long-term neurological and psychiatric disturbances including impairments in attention, memory, and other domains of cognition. Moreover, some chronic illnesses that manifest these symptoms such as Gulf War Illness and Aerotoxic Syndrome have (at least in part) been attributed to OP exposure. In addition to acute acetylcholinesterase inhibition, OPs may affect a number of additional targets that lead to oxidative stress, axonal transport deficits, neuroinflammation, and autoimmunity. Some of these targets could be exploited for therapeutic purposes. The purpose of this review is thus to: 1) describe the important uses of organophosphate (OP)-based compounds worldwide, 2) provide an overview of the various risks and toxicology associated with OP exposure, particularly long-term neurologic and psychiatric symptoms, 3) discuss mechanisms of OP toxicity beyond cholinesterase inhibition, 4) review potential therapeutic strategies to reverse the acute toxicity and long term deleterious effects of OPs.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
9
|
Burke RD, Todd SW, Lumsden E, Mullins RJ, Mamczarz J, Fawcett WP, Gullapalli RP, Randall WR, Pereira EFR, Albuquerque EX. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. J Neurochem 2017; 142 Suppl 2:162-177. [PMID: 28791702 DOI: 10.1111/jnc.14077] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
Abstract
Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Richard D Burke
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Spencer W Todd
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric Lumsden
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Roger J Mullins
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - William P Fawcett
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - William R Randall
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Zhang N, Liu J, Chen SN, Huang LH, Feng QL, Zheng SC. Expression profiles of glutathione S-transferase superfamily in Spodoptera litura tolerated to sublethal doses of chlorpyrifos. INSECT SCIENCE 2016; 23:675-87. [PMID: 25641855 DOI: 10.1111/1744-7917.12202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 05/15/2023]
Abstract
Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Glutathione S-transferases (GSTs) in insects are a family of detoxification enzymes and they play critical roles in CPF detoxification. Spodoptera litura is one of the most destructive agricultural pests in tropical and subtropical areas in the world. In this study, 37 Slgsts from 46 unique transcripts of gsts in S. litura transcriptome data, including eight previously reported GSTs, were identified and their expression patterns in susceptible and 12-generation-CPF-treated strains were analyzed to understand the roles of these Slgsts in sublethal doses of CPF tolerance. The results indicate that the members of the S. litura GST superfamily could be distinguished into three major groups: one group, including six cytosolic Slgsts (SlGSTe1, SlGSTe3, SlGSTe10, SlGSTe15, SlGSTo2 and SlGSTs5) and two microsomal Slgsts (SlMGST1-2 and SlMGST1-3), was directly responsible for CPF induction in both 12-generation-treated and susceptible strains; the second group, including three cytosolic Slgsts (SlGSTe13, SlGSTt1 and SlGSTz1) and one microsomal Slgst (SlMGST1-1), was induced only in the 12-generation-treated strain; the third group, including eight cytosolic Slgsts (two epsilon, three delta, one omega, one zeta and one unclassified Slgst), was expressed 1.52-5.15-fold higher in the 12-generation-treated strain than in the susceptible strain.
Collapse
Affiliation(s)
- Ni Zhang
- Laboratory of Developmental and Molecular Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jia Liu
- Laboratory of Developmental and Molecular Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shu-Na Chen
- Laboratory of Developmental and Molecular Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li-Hua Huang
- Laboratory of Developmental and Molecular Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- Laboratory of Developmental and Molecular Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Laboratory of Developmental and Molecular Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
11
|
Relationships of human α/β hydrolase fold proteins and other organophosphate-interacting proteins. Chem Biol Interact 2016; 259:343-351. [PMID: 27109753 DOI: 10.1016/j.cbi.2016.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Organophosphates (OPs) are either found in nature or synthetized for use as pesticides, flame retardants, neurotoxic warfare agents or drugs (cholinergic enhancers in Alzheimer's disease and myasthenia gravis, or inhibitors of lipases in metabolic diseases). Because of the central role of acetylcholinesterase cholinergic neurotransmission in humans, one of the main purposes for using OPs is inactivation of the enzyme by phosphorylation of the nucleophilic serine residue in the active center. However, hundreds of serine hydrolases are expressed in the human proteome, and many of them are potential targets for OP adduction. In this review, we first situate the α/β hydrolase fold proteins among the distinctively folded proteins known to interact with OPs, in particular the different lipases, peptidases, and enzymes hydrolyzing OPs. Second, we compile the human α/β hydrolases and review those that have been experimentally shown to interact with OPs. Among the 120 human α/β hydrolase fold proteins, 102 have a serine in the consensus GXSXG pentapeptide compatible with an active site, 6 have an aspartate or a cysteine as the active site nucleophile residue, and 12 evidently lack an active site. 76 of the 120 have been experimentally shown to bind an OP.
Collapse
|
12
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
13
|
Flaskos J. The Neuronal Cytoskeleton as a Potential Target in the Developmental Neurotoxicity of Organophosphorothionate Insecticides. Basic Clin Pharmacol Toxicol 2014; 115:201-8. [DOI: 10.1111/bcpt.12204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Affiliation(s)
- John Flaskos
- School of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
14
|
Carvajal F, Sanchez-Amate MDC, Lerma-Cabrera JM, Cubero I. Effects of a single high dose of Chlorpyrifos in long-term feeding, ethanol consumption and ethanol preference in male Wistar rats with a previous history of continued ethanol drinking. J Toxicol Sci 2014; 39:425-35. [DOI: 10.2131/jts.39.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Francisca Carvajal
- Department of Psychology, Universidad Autónoma de Chile
- Department of Psychology, Universidad de Almería
| | | | - José Manuel Lerma-Cabrera
- Department of Psychology, Universidad Autónoma de Chile
- Department of Psychology, Universidad de Almería
| | - Inmaculada Cubero
- Department of Psychology, Universidad Autónoma de Chile
- Department of Psychology, Universidad de Almería
| |
Collapse
|
15
|
Marrs TC, Maynard RL. Neurotranmission systems as targets for toxicants: a review. Cell Biol Toxicol 2013; 29:381-96. [PMID: 24036955 DOI: 10.1007/s10565-013-9259-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022]
Abstract
Neurotransmitters are chemicals that transmit impulses from one nerve to another or from nerves to effector organs. Numerous neurotransmitters have been described in mammals, amongst them acetylcholine, amino acids, amines, peptides and gases. Toxicants may interact with various parts of neurotransmission systems, including synthetic and degradative enzymes, presynaptic vesicles and the specialized receptors that characterize neurotransmission systems. Important toxicants acting on the cholinergic system include the anticholinesterases (organophosphates and carbamates) and substances that act on receptors such as nicotine and the neonicotinoid insecticides, including imidacloprid. An important substance acting on the glutamatergic system is domoic acid, responsible for amnesic shellfish poisoning. 4-Aminobutyric acid (GABA) and glycine are inhibitory neurotransmitters and their antagonists, fipronil (an insecticide) and strychnine respectively, are excitatory. Abnormalities of dopamine neurotransmission occur in Parkinson's disease, and a number of substances that interfere with this system produce Parkinsonian symptoms and clinical signs, including notably 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which is the precursor of 1-methyl-4-phenylpyridinium. Fewer substances are known that interfere with adrenergic, histaminergic or seroninergic neurotransmission, but there are some examples. Among peptide neurotransmission systems, agonists of opioids are the only well-known toxic compounds.
Collapse
Affiliation(s)
- Timothy C Marrs
- Edentox Associates, Pinehurst, Four Elms Road Edenbridge, Kent, TN8 6AQ, UK,
| | | |
Collapse
|
16
|
Ling XP, Lu YH, Huang HQ. Differential protein profile in zebrafish (Danio rerio) brain under the joint exposure of methyl parathion and cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3925-3941. [PMID: 22767353 DOI: 10.1007/s11356-012-1037-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
As different chemicals, methyl parathion (MP) and cadmium (Cd) can induce neurotoxicity on the brain of aquatic ecosystems. This study aims to explore the differential expression proteins in the brain induced by their joint stress and their joint effects, which are poorly reported, and devotes finding novel biomarkers for monitoring their contamination in water and assessing their neurological effects. The bioaccumulation of MP and Cd in tissues after 96 h of exposure was first analyzed by GC and inductively coupled plasma-MS to provide insights into the interaction. Protein profile changes in the brains of the zebrafish (Danio rerio) exposed to MP and Cd were further investigated using the proteomic approach. The correlation of gene expression on the transcription level of mRNA and the translation level of protein was examined by real-time quantitative PCR and Western blotting analysis. It showed that Cd and MP have an interaction on their bioaccumulation, which suggests that their joint effect over 96 h might be antagonistic. Proteomics revealed that 22 protein spots changed their expression levels under stress, of which 16 proteins were identified using MS. These proteins were involved in oxidation/reduction, metabolism, energy production, receptor activity, and cytoskeleton assembly. Among them, five proteins with a remarkable abundance change are significantly suggested to play important roles in the joint effect. This work demonstrates that there exists an interaction between MP and Cd toxicities, which may aid in our understanding of the mechanism of neurotoxicity induced by joint stress. The results may also provide the possibility of the establishment of candidate biomarkers for monitoring MP and Cd contamination in water.
Collapse
Affiliation(s)
- Xue-Ping Ling
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China,
| | | | | |
Collapse
|
17
|
Terry AV. Functional consequences of repeated organophosphate exposure: potential non-cholinergic mechanisms. Pharmacol Ther 2012; 134:355-65. [PMID: 22465060 DOI: 10.1016/j.pharmthera.2012.03.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022]
Abstract
The class of chemicals known as the "organophosphates" (OPs) comprises many of the most common agricultural and commercial pesticides that are used worldwide as well as the highly toxic chemical warfare agents. The mechanism of the acute toxicity of OPs in both target and non-target organisms is primarily attributed to inhibitory actions on various forms of cholinesterase leading to excessive peripheral and central cholinergic activity. However, there is now substantial evidence that this canonical (cholinesterase-based) mechanism cannot alone account for the wide-variety of adverse consequences of OP exposure that have been described, especially those associated with repeated exposures to levels that produce no overt signs of acute toxicity. This type of exposure has been associated with prolonged impairments in attention, memory, and other domains of cognition, as well as chronic illnesses where these symptoms are manifested (e.g., Gulf War Illness, Alzheimer's disease). Due to their highly reactive nature, it is not surprising that OPs might alter the function of a number of enzymes and proteins (in addition to cholinesterase). However, the wide variety of long-term neuropsychiatric symptoms that have been associated with OPs suggests that some basic or fundamental neuronal process was adversely affected during the exposure period. The purpose of this review is to discuss several non-cholinesterase targets of OPs that might affect such fundamental processes and includes cytoskeletal and motor proteins involved in axonal transport, neurotrophins and their receptors, and mitochondria (especially their morphology and movement in axons). Potential therapeutic implications of these OP interactions are also discussed.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, GA 30912, USA.
| |
Collapse
|
18
|
Flaskos J. The developmental neurotoxicity of organophosphorus insecticides: A direct role for the oxon metabolites. Toxicol Lett 2012; 209:86-93. [DOI: 10.1016/j.toxlet.2011.11.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/25/2011] [Accepted: 11/26/2011] [Indexed: 01/14/2023]
|
19
|
Terry AV, Beck WD, Warner S, Vandenhuerk L, Callahan PM. Chronic impairments in spatial learning and memory in rats previously exposed to chlorpyrfos or diisopropylfluorophosphate. Neurotoxicol Teratol 2011; 34:1-8. [PMID: 22024239 DOI: 10.1016/j.ntt.2011.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 10/16/2022]
Abstract
The acute toxicity of organophosphates (OPs) has been studied extensively; however, much less attention has been given to the subject of repeated exposures that are not associated with overt signs of toxicity (i.e., subthreshold exposures). The objective of this study was to determine if the protracted spatial learning impairments we have observed previously after repeated subthreshold exposures to the insecticide chlorpyrifos (CPF) or the alkylphosphate OP, diisopropylfluorophosphate (DFP) persisted for longer periods after exposure. Male Wistar rats (beginning at two months of age) were initially injected subcutaneously with CPF (10.0 or 18.0mg/kg) or DFP (0.25 or 0.75 mg/kg) every other day for 30 days. After an extended OP-free washout period (behavioral testing begun 50 days after the last OP exposure), rats previously exposed to CPF, but not DFP, were impaired in a radial arm maze (RAM) win-shift task as well as a delayed non-match to position procedure. Later experiments (i.e., beginning 140 days after the last OP exposure) revealed impairments in the acquisition of a water maze hidden platform task associated with both OPs. However, only rats previously exposed to DFP were impaired in a second phase of testing when the platform location was changed (indicative of deficits of cognitive flexibility). These results indicate, therefore, that repeated, subthreshold exposures to CPF and DFP may lead to chronic deficits in spatial learning and memory (i.e., long after cholinesterase inhibition has abated) and that insecticide and alkylphosphate-based OPs may have differential effects depending on the cognitive domain evaluated.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | | | |
Collapse
|
20
|
The G protein-coupled cannabinoid-1 (CB1) receptor of mammalian brain: inhibition by phthalate esters in vitro. Neurochem Int 2011; 59:706-13. [PMID: 21763743 DOI: 10.1016/j.neuint.2011.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 01/29/2023]
Abstract
This research examines the in vitro interaction of phthalate diesters and monoesters with the G protein-coupled cannabinoid 1 (CB(1)) receptor, a presynaptic complex involved in the regulation of synaptic activity in mammalian brain. The diesters, n-butylbenzylphthalate (nBBP), di-n-hexylphthalate (DnHP), di-n-butylphthalate (DnBP), di-2-ethylhexylphthalate (DEHP), di-isooctylphthalate (DiOP) and di-n-octylphthalate (DnOP) inhibited the specific binding of the CB(1) receptor agonist [(3)H]CP-55940 to mouse whole brain membranes at micromolar concentrations (IC(50)s: nBBP 27.4 μM; DnHP 33.9 μM; DnBP 45.9 μM; DEHP 47.4 μM; DiOP 55.4 μM; DnOP 75.2 μM). DnHP, DnBP and nBBP achieved full (or close to full) blockade of [(3)H]CP-55940 binding, whereas DEHP, DiOP and DnOP produced partial (55-70%) inhibition. Binding experiments with phenylmethane-sulfonylfluoride (PMSF) indicated that the ester linkages of nBBP and DnBP remain intact during assay. The monoesters mono-2-ethylhexylphthalate (M2EHP) and mono-isohexylphthalate (MiHP) failed to reach IC(50) at 150 μM and mono-n-butylphthalate (MnBP) was inactive. Inhibitory potencies in the [(3)H]CP-55940 binding assay were positively correlated with inhibition of CB(1) receptor agonist-stimulated binding of [(35)S]GTPγS to the G protein, demonstrating that phthalates cause functional impairment of this complex. DnBP, nBBP and DEHP also inhibited binding of [(3)H]SR141716A, whereas inhibition with MiHP was comparatively weak and MnBP had no effect. Equilibrium binding experiments with [(3)H]SR141716A showed that phthalates reduce the B(max) of radioligand without changing its K(d). DnBP and nBBP also rapidly enhanced the dissociation of [(3)H]SR141716A. Our data are consistent with an allosteric mechanism for inhibition, with phthalates acting as relatively low affinity antagonists of CB(1) receptors and cannabinoid agonist-dependent activation of the G-protein. Further studies are warranted, since some phthalate esters may have potential to modify CB(1) receptor-dependent behavioral and physiological outcomes in the whole animal.
Collapse
|
21
|
Kim K, Tsay OG, Atwood DA, Churchill DG. Destruction and detection of chemical warfare agents. Chem Rev 2011; 111:5345-403. [PMID: 21667946 DOI: 10.1021/cr100193y] [Citation(s) in RCA: 569] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | | | | | | |
Collapse
|
22
|
Cross state-dependency of learning between WIN55, 212-2 and scopolamine in rat dorsal hippocampus. Neurosci Lett 2011; 491:227-31. [DOI: 10.1016/j.neulet.2011.01.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/14/2010] [Accepted: 01/23/2011] [Indexed: 11/19/2022]
|
23
|
The actions of benzophenanthridine alkaloids, piperonyl butoxide and (S)-methoprene at the G-protein coupled cannabinoid CB1 receptor in vitro. Eur J Pharmacol 2011; 654:26-32. [DOI: 10.1016/j.ejphar.2010.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 09/30/2010] [Accepted: 11/26/2010] [Indexed: 01/25/2023]
|
24
|
Huang QY, Huang L, Huang HQ. Proteomic analysis of methyl parathion-responsive proteins in zebrafish (Danio rerio) brain. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:67-74. [PMID: 20826231 DOI: 10.1016/j.cbpc.2010.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 12/22/2022]
Abstract
Methyl parathion (MP), an organophosphorus pesticide used worldwide, has been associated with a wide spectrum of toxic effects on organisms in the environment. This study set out to analyze the alteration of protein profiles in MP-exposed zebrafish (Danio rerio) brain and find the proteins responsive to MP toxicity. Zebrafish were subjected to 1, 3 and 5mg/L MP and the proteomic changes in their brains were revealed using two-dimensional gel electrophoresis. Six protein spots were observed to be significantly changed by MP exposure. Among these, 4 spots were down-regulated, while 2 spots were up-regulated. These altered spots were excised from the gels and identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry and database searching. The results indicate that these proteins were involved in binding, catalysis, regulation of energy metabolism and cell structure. These data may provide novel biomarkers for the evaluation of MP contamination and useful insights for understanding the mechanisms of MP toxicity.
Collapse
Affiliation(s)
- Qing-Yu Huang
- Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
25
|
Pope C, Mechoulam R, Parsons L. Endocannabinoid signaling in neurotoxicity and neuroprotection. Neurotoxicology 2010; 31:562-71. [PMID: 19969019 PMCID: PMC2891218 DOI: 10.1016/j.neuro.2009.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/02/2009] [Indexed: 01/23/2023]
Abstract
The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Delta(9)-tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways.
Collapse
Affiliation(s)
- C Pope
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | |
Collapse
|
26
|
Ray A, Liu J, Karanth S, Gao Y, Brimijoin S, Pope C. Cholinesterase inhibition and acetylcholine accumulation following intracerebral administration of paraoxon in rats. Toxicol Appl Pharmacol 2009; 236:341-7. [PMID: 19272400 DOI: 10.1016/j.taap.2009.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 02/13/2009] [Accepted: 02/21/2009] [Indexed: 10/21/2022]
Abstract
We evaluated the inhibition of striatal cholinesterase activity following intracerebral administration of paraoxon assaying activity either in tissue homogenates ex vivo or by substrate hydrolysis in situ. Artificial cerebrospinal fluid (aCSF) or paraoxon in aCSF was infused unilaterally (0.5 microl/min for 2 h) and ipsilateral and contralateral striata were harvested for ChE assay ex vivo. High paraoxon concentrations were needed to inhibit ipsilateral striatal cholinesterase activity (no inhibition at <0.1 mM; 27% at 0.1 mM; 79% at 1 mM paraoxon). With 3 mM paraoxon infusion, substantial ChE inhibition was also noted in contralateral striatum. ChE histochemistry generally confirmed these concentration- and side-dependent effects. Microdialysates collected for up to 4 h after paraoxon infusion inhibited ChE activity when added to striatal homogenate, suggesting prolonged efflux of paraoxon. Since paraoxon efflux could complicate acetylcholine analysis, we evaluated the effects of paraoxon (0, 0.03, 0.1, 1, 10 or 100 microM, 1.5 microl/min for 45 min) administered by reverse dialysis through a microdialysis probe. ChE activity was then monitored in situ by perfusing the colorimetric substrate acetylthiocholine through the same probe and measuring product (thiocholine) in dialysates. Concentration-dependent inhibition was noted but reached a plateau of about 70% at 1 microM and higher concentrations. Striatal acetylcholine was below the detection limit at all times with 0.1 microM paraoxon but was transiently elevated (0.5-1.5 h) with 10 microM paraoxon. In vivo paraoxon (0.4 mg/kg, sc) in adult rats elicited about 90% striatal ChE inhibition measured ex vivo, but only about 10% inhibition measured in situ. Histochemical analyses revealed intense AChE and glial fibrillary acidic protein staining near the cannula track, suggesting proliferation of inflammatory cells/glia. The findings suggest that ex vivo and in situ cholinesterase assays can provide very different views into enzyme-inhibitor interactions. Furthermore, the proliferation/migration of cells containing high amounts of cholinesterase just adjacent to a dialysis probe could affect the recovery and thus detection of extracellular acetylcholine in microdialysis studies.
Collapse
Affiliation(s)
- A Ray
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | | | | | | | | | | |
Collapse
|
27
|
Nallapaneni A, Liu J, Karanth S, Pope C. Pharmacological enhancement of endocannabinoid signaling reduces the cholinergic toxicity of diisopropylfluorophosphate. Neurotoxicology 2008; 29:1037-43. [PMID: 18765251 PMCID: PMC2659532 DOI: 10.1016/j.neuro.2008.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/17/2008] [Accepted: 08/04/2008] [Indexed: 11/23/2022]
Abstract
Diisopropylfluorophosphate (DFP) elicits cholinergic toxicity by inhibiting acetylcholinesterase, leading to accumulation of the neurotransmitter acetylcholine and excessive stimulation of cholinergic receptors throughout the body. Endocannabinoids inhibit the release of neurotransmitters including acetylcholine via a widely distributed retrograde signaling pathway. Endocannabinoid signaling is therefore a potential therapeutic target for the management of OP poisoning. We first evaluated the relative in vitro and in vivo (2.5mg/kg, sc) effects of DFP on cholinesterase, fatty acid amide hydrolase (FAAH, an endocannabinoid degrading enzyme), monoacylglycerol lipase (MAGL, another endocannabinoid degrading enzyme) and cannabinoid receptor (CB1) binding in rat hippocampus. The effects of WIN 55212-2 (cannabinoid receptor agonist, 1.5mg/kg), URB597 (FAAH inhibitor, 3mg/kg), URB602 (MAGL inhibitor, 10mg/kg) or AM404 (endocannabinoid uptake inhibitor, 10mg/kg) on DFP toxicity were then examined. Adult male rats were given either peanut oil or DFP followed immediately by vehicle or one of the four cannabinomimetic drugs. Functional signs of toxicity were evaluated for 24h and then rats were sacrificed for neurochemical measurements. DFP inhibited cholinesterase, FAAH, MAGL and CB1 receptor binding in vitro in a concentration-dependent manner, with highest and lowest potency against cholinesterase and FAAH, respectively. In vivo, DFP inhibited hippocampal cholinesterase (89%) and FAAH (42%), but had no significant effect on MAGL or CB1 binding. Rats treated with DFP alone showed typical signs of cholinergic toxicity including involuntary movements and excessive secretions (SLUD signs). WIN 55212-2, URB597, URB602 and AM404 all significantly reduced involuntary movements following DFP exposure in a time-dependent manner, and most (URB597, URB602 and AM404) also significantly reduced DFP-induced SLUD signs. These results suggest that enhancing endocannabinoid signaling can attenuate the acute toxicity of DFP and provide rationale for further investigations on the role of endocannabinoids in cholinergic toxicity.
Collapse
Affiliation(s)
- Anuradha Nallapaneni
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Jing Liu
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078
| | | | - Carey Pope
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
28
|
Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, Neubert D, Schulte-Hermann R, Spencer PS. Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Crit Rev Toxicol 2008; 38 Suppl 2:1-125. [PMID: 18726789 DOI: 10.1080/10408440802272158] [Citation(s) in RCA: 428] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Li B, Schopfer LM, Grigoryan H, Thompson CM, Hinrichs SH, Masson P, Lockridge O. Tyrosines of human and mouse transferrin covalently labeled by organophosphorus agents: a new motif for binding to proteins that have no active site serine. Toxicol Sci 2008; 107:144-55. [PMID: 18930948 DOI: 10.1093/toxsci/kfn211] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The expectation from the literature is that organophosphorus (OP) agents bind to proteins that have an active site serine. However, transferrin, a protein with no active site serine, was covalently modified in vitro by 0.5mM 10-fluoroethoxyphosphinyl-N-biotinamido pentyldecanamide, chlorpyrifos oxon, diisopropylfluorophosphate, dichlorvos, sarin, and soman. The site of covalent attachment was identified by analyzing tryptic peptides in the mass spectrometer. Tyr 238 and Tyr 574 in human transferrin and Tyr 238, Tyr 319, Tyr 429, Tyr 491, and Tyr 518 in mouse transferrin were labeled by OP. Tyrosine in the small synthetic peptide ArgTyrThrArg made a covalent bond with diisopropylfluorophosphate, chlorpyrifos oxon, and dichlorvos at pH 8.3. These results, together with our previous demonstration that albumin and tubulin bind OP on tyrosine, lead to the conclusion that OP bind covalently to tyrosine, and that OP binding to tyrosine is a new OP-binding residue. The OP-reactive tyrosines are activated by interaction with Arg or Lys. It is suggested that many proteins in addition to those already identified may be modified by OP on tyrosine. The extent to which tyrosine modification by OP can occur in vivo and the toxicological implications of such modifications require further investigation.
Collapse
Affiliation(s)
- Bin Li
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Duan Y, Liao C, Jain S, Nicholson RA. The cannabinoid receptor agonist CP-55,940 and ethyl arachidonate interfere with [(3)H]batrachotoxinin A 20 alpha-benzoate binding to sodium channels and inhibit sodium channel function. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:244-9. [PMID: 18599378 DOI: 10.1016/j.cbpc.2008.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
Recent investigations in our laboratory showed that voltage-gated sodium channels (VGSCs) in brain are sensitive to inhibition by various synthetic cannabinoids and endocannabinoids. The present experiments examined the effects of the cannabinoid-1 (CB1) receptor agonist CP-55,940 and ethyl arachidonate on [(3)H]batrachotoxinin A 20 alpha-benzoate ([(3)H]BTX-B]) binding and VGSC-dependent depolarization of the nerve membrane in synaptoneurosomes isolated from mouse whole brain. CP-55,940 acted as a full inhibitor of [(3)H]BTX-B binding and its IC(50) was established at 22.3 microM. At its maximum effect concentration, ethyl arachidonate achieved partial (approximately 70%) inhibition and was less effective than CP-55,940 as an inhibitor of binding (IC(50)=262.7 microM). The potent CB1 receptor antagonist AM251 (2 microM) had no significant effect on the displacement of [(3)H]BTX-B by either compound (P>0.05). Scatchard analyses showed that CP-55,940 and ethyl arachidonate reduce the binding of [(3)H]BTX-B by lowering its B(max) but ethyl arachidonate also increased the K(d) of radioligand binding. In kinetic experiments, CP-55,940 and ethyl arachidonate were found to boost the dissociation of [(3)H]BTX-B from VGSCs to rates that exceed the maximum velocity achievable by veratridine, indicating they operate as allosteric inhibitors of [(3)H]BTX-B binding. Neither compound was effective at changing the initial rate of association of [(3)H]BTX-B with sodium channels. CP-55,940 and ethyl arachidonate inhibited veratridine-dependent (TTX-suppressible) depolarization of the plasma membrane of synaptoneurosomes with IC(50)s of 3.2 and 50.1 microM respectively. These inhibitory effects were again not influenced by 2 microM AM251. Our data demonstrate that the potent cannabinoid receptor agonist CP-55,940 and the ethyl ester of arachidonic acid have the ability to associate with VGSCs and inhibit their function independently of effects on CB1 receptors. Binding data comparisons using mouse brain preparations indicate CP-55,940 is approximately 10,000 times more potent as a CB1 receptor ligand than a sodium channel ligand while ethyl arachidonate shows a much smaller differential. Ethyl arachidonate has been shown previously to be the principal metabolite of ethanol in the brains of intoxicated individuals and effects of this ester on VGSCs and CB1 receptors may contribute to the depressant effects of alcohol.
Collapse
Affiliation(s)
- Yin Duan
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | | | | | | |
Collapse
|
31
|
Karanth S, Liu J, Ray A, Pope C. Comparative in vivo effects of parathion on striatal acetylcholine accumulation in adult and aged rats. Toxicology 2007; 239:167-79. [PMID: 17707571 DOI: 10.1016/j.tox.2007.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 11/27/2022]
Abstract
Aged rats are more sensitive to the acute toxicity of the prototype organophosphate insecticide, parathion. We compared the acute effects of parathion on diaphragm and brain regional cholinesterase activity, muscarinic receptor binding and striatal acetylcholine levels in 3- and 18-month-old male Sprague-Dawley rats. Adult and aged rats were surgically implanted with a microdialysis cannula into the right striatum 5-7 days prior to parathion treatment. Rats were given either vehicle (peanut oil, 2 ml/kg) or one of a range of dosages of parathion (adult: 1.8, 3.4, 6.0, 9.0, 18 and 27 mg/kg, s.c.; aged: 1.8, 3.4, 6 and 9 mg/kg, s.c.) and body weight, functional signs of toxicity, and nocturnal motor activity were recorded for seven days. Three and seven days after parathion treatment, microdialysis samples were collected and rats were subsequently sacrificed for biochemical measurements. Higher dosages of parathion led to significant time-dependent reductions in body weight in both age groups. Rats in both age groups treated with lower dosages showed few overt signs of cholinergic toxicity while equitoxic high dosages (adult, 27 mg/kg; aged, 9 mg/kg) elicited marked signs of cholinergic toxicity (involuntary movements and SLUD [i.e., acronym for Salivation, Lacrimation, Urination and Defecation] signs) with peak effects being noted 3-4 days after treatment. Nocturnal activity (ambulation and rearing) was reduced in both age groups following parathion dosing, with more prominent effects in adults and rearing being more consistently affected. Dose- and time-dependent inhibition of cholinesterase activity was noted in both diaphragm and striatum. Total muscarinic receptor ([(3)H]quinuclidinyl benzilate, QNB) binding was significantly lower in aged rats, and both total binding and muscarinic agonist ([(3)H]oxotremorine methiodide] binding was significantly reduced in both age-groups treated with the highest dosages of parathion (adult, 27 mg/kg; aged, 9 mg/kg). In contrast to relatively similar levels of cholinesterase inhibition, striatal extracellular acetylcholine levels were significantly lower (2.2- to 2.9-fold) in aged rats at both 3 and 7 day time-points compared to adult rats treated with equitoxic dosages (i.e., 9 and 27 mg/kg, respectively). No age-related differences in in vitro striatal acetylcholine synthesis or in vivo acetylcholine accumulation following direct infusion of the cholinesterase inhibitor neostigmine (1 microM) were noted. While aged rats are more sensitive than adults to the acute toxicity of parathion, lesser acetylcholine accumulation was noted in the striatum of aged rats exhibiting similar levels of cholinesterase inhibition. These findings suggest that lesser acetylcholine accumulation may be required to elicit cholinergic signs in the aged rat, possibly based on aging-associated changes in muscarinic receptor density.
Collapse
Affiliation(s)
- Subramanya Karanth
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, United States
| | | | | | | |
Collapse
|
32
|
Howard MD, Mirajkar N, Karanth S, Pope CN. Comparative effects of oral chlorpyrifos exposure on cholinesterase activity and muscarinic receptor binding in neonatal and adult rat heart. Toxicology 2007; 238:157-65. [PMID: 17644233 PMCID: PMC2954647 DOI: 10.1016/j.tox.2007.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/29/2007] [Accepted: 05/31/2007] [Indexed: 11/29/2022]
Abstract
Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M(2) muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M(2) receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor-mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M(2) receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age-related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac cholinesterase (ChE) activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1x LD(10): neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1x LD(10), relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (approximately 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC(50) values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not responsible for the age-related difference in cholinesterase sensitivity between age groups. Pre-incubation of neonatal and adult tissues with selective inhibitors of AChE and butyrylcholinesterase (BChE) indicated that a majority (82-90%) of ChE activity in the heart of both neonates and adults was BChE. The rapid onset (by 4h after dosing) of changes in muscarinic receptor binding in adult heart may be a reflection of the more potent direct binding to muscarinic receptors by chlorpyrifos oxon previously reported in adult tissues. The results suggest that ChE activity (primarily BChE) in neonatal heart may be inherently more sensitive to inhibition by some anticholinesterases and that toxicologically significant binding to muscarinic receptors may be possible with acute chlorpyrifos intoxication, potentially contributing to age-related differences in sensitivity.
Collapse
Affiliation(s)
| | | | | | - Carey N. Pope
- Corresponding author. Tel. (405) 744-6257, fax (405) 744-0462,
| |
Collapse
|
33
|
Microtubule-associated targets in chlorpyrifos oxon hippocampal neurotoxicity. Neuroscience 2007; 146:330-9. [PMID: 17321052 DOI: 10.1016/j.neuroscience.2007.01.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 01/08/2007] [Accepted: 01/12/2007] [Indexed: 11/21/2022]
Abstract
Prolonged exposure to organophosphate (OP) pesticides may produce cognitive deficits reflective of hippocampal injury in both humans and rodents. Recent work has indicated that microtubule trafficking is also adversely affected by exposure to the OP pesticide chlorpyrifos, suggesting a novel mode of OP-induced neurotoxicity. The present studies examined effects of prolonged exposure to chlorpyrifos oxon (CPO) on acetylcholinesterase (AChE) activity, immunoreactivity (IR) of microtubule-associated proteins, neuronal injury, and tubulin polymerization using in vitro organotypic slice cultures of rat hippocampus and bovine tubulin. Cultures were exposed to CPO (0.1-10 microM) in cell culture medium for 1-7 days, a regimen producing progressive reductions in AChE activity of 15-60%. Cytotoxicity (somatic uptake of the non-vital marker propidium iodide), as well as IR of alpha-tubulin and microtubule-associated protein-2 (a/b) [MAP-2], was assessed 1, 3, and 7 days after the start of CPO exposure. As early as 24 h after the start of exposure, CPO-induced deficits in MAP-2 IR were evident and progressive in each region of slice cultures at concentrations as low as 0.1 microM. CPO exposure did not alter alpha-tubulin IR at any time point. Concentration-dependent injury in the cornu ammonis (CA)1 pyramidal cell layer and to a lesser extent, CA3 and dentate cells, was evident 3 days after the start of CPO exposure (>or=0.1 microM) and was greatest after 7 days. Tubulin polymerization assays indicated that CPO (>or=0.1 microM) markedly inhibited the polymerization of purified tubulin and MAP-rich tubulin, though effects on MAP-rich tubulin were more pronounced. These data suggest that exposure to CPO produces a progressive decrease in neuronal viability that may be associated with impaired microtubule synthesis and/or function.
Collapse
|
34
|
Nallapaneni A, Liu J, Karanth S, Pope C. Modulation of paraoxon toxicity by the cannabinoid receptor agonist WIN 55,212-2. Toxicology 2006; 227:173-83. [PMID: 16956707 DOI: 10.1016/j.tox.2006.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 07/24/2006] [Accepted: 08/02/2006] [Indexed: 11/22/2022]
Abstract
Cannabinoids can reduce the pre-synaptic release of acetylcholine and other neurotransmitters in the mammalian brain through a retrograde signaling pathway. Organophosphorus insecticides elicit toxicity by inhibiting acetylcholinesterase and thereby increasing synaptic acetylcholine levels. Several studies suggest that some organophosphorus toxicants can potentially modify cannabinergic signaling by direct binding to cannabinoid receptors and inhibition of enzymes responsible for cannabinoid degradation (i.e., fatty acid amide hydrolase and monoacylglycerol lipase). We hypothesized that exposure to the cannabinoid receptor agonist WIN 55,212-2 (WIN) could alter the acute toxicity of the prototype anticholinesterase, paraoxon. In vitro, paraoxon inhibited hippocampal cholinesterase and fatty acid amide hydrolase activities, and displaced specific binding to the cannabinoid receptor ligand ([(3)H]CP 55,940) in a concentration-dependent manner. WIN (0.5, 1.5 or 5mg/kg/day) had a complex dose-related effect on locomotor activity when evaluated for 2h after either the first or last of seven daily exposures, and significantly decreased hippocampal CB1 binding following repeated dosing. Four hours after dosing, paraoxon (0.4 mg/kg, sc) elicited classical signs of cholinergic toxicity and significantly reduced hippocampal cholinesterase and fatty acid amide hydrolase activities as well as [(3)H]CP 55,940 binding. A single exposure to WIN (1.5 mg/kg) significantly reduced involuntary movements and SLUD signs following acute paraoxon exposure (0.4 and 0.6 mg/kg, sc). In contrast, when rats were challenged with paraoxon (0.4 mg/kg) after the seventh daily exposure to WIN (1.5mg/kg/day), involuntary movements were significantly increased at later timepoints, while SLUD signs were unaffected. These results suggest that acute and repeated exposure to cannabinoid agonists may differentially modify acute cholinergic toxicity, possibly through modulation of acetylcholine release and adaptation in cannabinergic signaling associated with repeated cannabinoid exposures.
Collapse
Affiliation(s)
- Anuradha Nallapaneni
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, United States
| | | | | | | |
Collapse
|
35
|
Costa LG. Current issues in organophosphate toxicology. Clin Chim Acta 2006; 366:1-13. [PMID: 16337171 DOI: 10.1016/j.cca.2005.10.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Organophosphates (OPs) are one of the main classes of insecticides, in use since the mid 1940s. OPs can exert significant adverse effects in non-target species including humans. Because of the phosphorylation of acetylcholinesterase, they exert primarily a cholinergic toxicity, however, some can also cause a delayed polyneuropathy. Currently debated and investigated issues in the toxicology of OPs are presented in this review. These include: 1) possible long-term effects of chronic low-level exposures; 2) genetic susceptibility to OP toxicity; 3) developmental toxicity and neurotoxicity; 4) common mechanism of action; 5) mechanisms of delayed neurotoxicity; and 6) possible additional OP targets. Continuing and recent debates, and molecular advances in these areas, and their contributions to our understanding of the toxicology of OPs are discussed.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100 Seattle, WA 98105, USA.
| |
Collapse
|
36
|
Quistad GB, Klintenberg R, Caboni P, Liang SN, Casida JE. Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice. Toxicol Appl Pharmacol 2006; 211:78-83. [PMID: 16310817 DOI: 10.1016/j.taap.2005.10.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 11/20/2022]
Abstract
Three components of the cannabinoid system are sensitive to selected organophosphorus (OP) compounds: monoacylglycerol (MAG) lipase that hydrolyzes the major endogenous agonist 2-arachidonoylglycerol (2-AG); fatty acid amide hydrolase (FAAH) that cleaves the agonist anandamide present in smaller amounts; the CB1 receptor itself. This investigation considers which component of the cannabinoid system is the most likely contributor to OP-induced hypomotility in mice. Structure-activity studies by our laboratory and others rule against major involvement of a direct toxicant-CB1 receptor interaction for selected OPs. Attention was therefore focused on the OP sensitivities of MAG lipase and FAAH, assaying 19 structurally diverse OP chemicals (pesticides, their metabolites and designer compounds) for in vitro inhibition of both enzymes. Remarkably high potency and low selectivity is observed with three O-alkyl (C1, C2, C3) alkylphosphonofluoridates (C8, C12) (IC50 0.60-3.0 nM), five S-alkyl (C5, C7, C9) and alkyl (C10, C12) benzodioxaphosphorin oxides (IC50 0.15-5.7 nM) and one OP insecticide metabolite (chlorpyrifos oxon, IC50 34-40 nM). In ip-treated mice, the OPs at 1-30 mg/kg more potently inhibit brain FAAH than MAG lipase, but FAAH inhibition is not correlated with hypomotility. However, the alkylphosphonofluoridate-treated mice show dose-dependent increases in severity of hypomotility, inhibition of MAG lipase activity and elevation of 2-AG. Moderate to severe hypomotility is accompanied by 64 to 86% MAG lipase inhibition and about 6-fold elevation of brain 2-AG level. It therefore appears that OP-induced MAG lipase inhibition leads to elevated 2-AG and the associated hypomotility.
Collapse
Affiliation(s)
- Gary B Quistad
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, 115 Wellman Hall, Berkeley, CA 94720-3112, USA
| | | | | | | | | |
Collapse
|
37
|
Pope C, Karanth S, Liu J. Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:433-446. [PMID: 21783509 DOI: 10.1016/j.etap.2004.12.048] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cholinesterase inhibitors have been used in the treatment of human diseases, the control of insect pests, and more notoriously as chemical warfare agents and weapons of terrorism. Most uses of cholinesterase inhibitors are based on a common mechanism of action initiated by inhibition of acetylcholinesterase (AChE). Extensive inhibition of this enzyme leads to accumulation of the neurotransmitter acetylcholine and enhanced stimulation of postsynaptic cholinergic receptors. This action is beneficial in cases where a reduction in cholinergic transmission contributes to clinical symptoms, e.g., low muscle tone in the autoimmune disorder myasthenia gravis due to loss of nicotinic receptors. Under normal conditions, however, extensive inhibition of AChE leads to excess synaptic acetylcholine levels, over-stimulation of cholinergic receptors, alteration of postsynaptic cell function and consequent signs of cholinergic toxicity. This biochemical cascade forms the basis for the use of anticholinesterase insecticides in pest control as well as for nerve agents in chemical warfare. Paradoxically, the short-acting cholinesterase inhibitor pyridostigmine, an important therapeutic agent in the treatment of myasthenia gravis, was used during the Persian Gulf War to prevent the long-term clinical consequences of possible organophosphate nerve agent exposure. As shown in the attacks in Matsumoto and Tokyo, these same nerve agents can be effectively used to inflict urban terror. Cholinesterase inhibitors thus share a common mechanism of pharmacological or toxicological action, ultimately modifying cholinergic signaling through disruption of acetylcholine degradation. While the use of cholinesterase inhibitors relies on their interaction with AChE, a variety of reports indicate that a number of cholinesterase inhibitors have additional sites of action that may have pharmacologic or toxicologic relevance. A variety of esterase and non-esterase enzymes, neurotransmitter receptors and elements of cell signaling pathways are targeted by some anticholinesterases. In some cases, these actions may occur at concentrations/dosages below those affecting cholinergic transmission. Studies of interactive toxicity of binary mixtures of common organophosphorus insecticides indicate that non-cholinesterase targets may be important in cumulative toxicity. Exposure to multiple anticholinesterases having selective effects on other macromolecules could confound the assumption of additivity in cumulative risk assessment. Knowledge of such selective additional targets may aid, however, in the optimization of strategies for poisoning therapy and in the further elucidation of mechanisms of toxicity for this class of compounds.
Collapse
Affiliation(s)
- Carey Pope
- 264 McElroy Hall, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
38
|
Casida JE, Quistad GB. Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol 2005; 17:983-98. [PMID: 15310231 DOI: 10.1021/tx0499259] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA.
| | | |
Collapse
|
39
|
Segall Y, Quistad GB, Casida JE. Cannabinoid CB1 Receptor Chemical Affinity Probes: Methods Suitable for Preparation of Isopropyl [11,12-3H]Dodecylfluorophosphonate and [11,12-3H]Dodecanesulfonyl Fluoride. SYNTHETIC COMMUN 2003. [DOI: 10.1081/scc-120021043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|