1
|
Su H, Zhang H, Wu J, Huang L, Zhang M, Xu W, Cao J, Liu W, Liu N, Jiang H, Gu X, Qian K. Fast Label-Free Metabolic Profile Recognition Identifies Phenylketonuria and Subtypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305701. [PMID: 38348590 PMCID: PMC11022714 DOI: 10.1002/advs.202305701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Indexed: 04/18/2024]
Abstract
Phenylketonuria (PKU) is the most common inherited metabolic disease in humans. Clinical screening of newborn heel blood samples for PKU is costly and time-consuming because it requires multiple procedures, like isotope labeling and derivatization, and PKU subtype identification requires an additional urine sample. Delayed diagnosis of PKU, or subtype identification can result in mental disability. Here, plasmonic silver nanoshells are used for laser desorption/ionization mass spectrometry (MS) detection of PKU with label-free assay by recognizing metabolic profile in dried blood spot (DBS) samples. A total of 1100 subjects are recruited and each DBS sample can be processed in seconds. This platform achieves PKU screening with a sensitivity of 0.985 and specificity of 0.995, which is comparable to existing clinical liquid chromatography MS (LC-MS) methods. This method can process 360 samples per hour, compared with the LC-MS method which processes only 30 samples per hour. Moreover, this assay enables precise identification of PKU subtypes without the need for a urine sample. It is demonstrated that this platform enables high-performance and fast, low-cost PKU screening and subtype identification. This approach might be suitable for the detection of other clinically relevant biomarkers in blood or other clinical samples.
Collapse
Affiliation(s)
- Haiyang Su
- Henan Key Laboratory of Rare DiseasesEndocrinology and Metabolism CenterThe First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003P. R. China
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Huiwen Zhang
- Xinhua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200092P. R. China
| | - Jiao Wu
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Lin Huang
- Country Department of Clinical Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Mengji Zhang
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Wei Xu
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jing Cao
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Wanshan Liu
- Xinhua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200092P. R. China
| | - Ning Liu
- School of Electronics Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Hongwei Jiang
- Henan Key Laboratory of Rare DiseasesEndocrinology and Metabolism CenterThe First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003P. R. China
| | - Xuefan Gu
- Xinhua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200092P. R. China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| |
Collapse
|
2
|
Nakajima T, Fukuda T, Shibasaki I, Obi S, Sakuma M, Abe S, Fukuda H, Toyoda S, Nakajima T. Pathophysiological roles of the serum acylcarnitine level and acylcarnitine/free carnitine ratio in patients with cardiovascular diseases. IJC HEART & VASCULATURE 2024; 51:101386. [PMID: 38515869 PMCID: PMC10955663 DOI: 10.1016/j.ijcha.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Introduction L-carnitine exerts protective effects, such as maintaining mitochondrial functions and decreasing reactive oxygen species, while acylcarnitine (AC) is linked to the development of heart failure and atherosclerosis. Hypothesis Serum carnitines play important pathophysiological roles in cardiovascular diseases. Methods Pre-operative biochemical data were obtained from 117 patients (71 men, average age 69.9 years) who underwent surgery for cardiovascular diseases. Measurements included pre-operative biochemical data including estimated glomerular filtration rate (eGFR), physical functions, skeletal muscle mass index (SMI) measured by bioelectrical impedance analysis, anterior thigh muscle thickness (MTh) measured by ultrasound, and routine echocardiography. Carnitine components were measured with the enzyme cycling method. Muscle wasting was diagnosed based on the Asian Working Group for Sarcopenia criteria. Results Plasma brain natriuretic peptide (BNP) level was correlated with serum free carnitine (FC) and AC level, and the acylcarnitine/free carnitine ratio (AC/FC). AC/FC was elevated with stage of chronic kidney disease. In multivariate analysis, log (eGFR) and log (BNP) were extracted as independent factors to define log (serum AC) (eGFR: β = 0.258, p = 0.008; BNP: β = 0.273, p = 0.011), even if corrected for age, sex and body mass index. AC/FC was negatively correlated with hand-grip strength (r = -0.387, p = 0.006), SMI (r = -0.314, p = 0.012), and anterior thigh MTh (r = -0.340, p = 0.014) in men. Conclusions A significant association between serum AC level and AC/FC, and chronic kidney disease and heart failure exists in patients with cardiovascular diseases who have undergone cardiovascular surgery. Skeletal muscle loss and muscle wasting are also linked to the elevation of serum AC level and AC/FC.
Collapse
Affiliation(s)
- Takafumi Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Taira Fukuda
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, Yokosuka, Kanagawa, Japan
| | - Ikuko Shibasaki
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Syotaro Obi
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Shichiro Abe
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Hirotsugu Fukuda
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| |
Collapse
|
3
|
Khayat AM, Alshareef BG, Alharbi SF, AlZahrani MM, Alshangity BA, Tashkandi NF. Consanguineous Marriage and Its Association With Genetic Disorders in Saudi Arabia: A Review. Cureus 2024; 16:e53888. [PMID: 38465157 PMCID: PMC10924896 DOI: 10.7759/cureus.53888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Consanguineous marriages, where spouses are related by blood, have been a longstanding practice in human history. The primary medical concern with consanguineous marriages is the increased risk of genetic disorders. When closely related individuals reproduce, there is a higher probability that both parents carry the same genetic mutation. In Arab countries, especially Saudi Arabia, the rate of consanguineous marriage is high compared with Western European and Asian countries. This high rate is directly proportionate with elevated risk of genetic disorders, including congenital heart diseases, renal diseases, and rare blood disorders. Additionally, it was noted that the rate of negative postnatal outcomes is higher in consanguineous marriages compared with the general population. These observations indicate the necessity of tackling this area and highlighting the consequences of this practice. In this review, we aim to discuss the current evidence regarding the association between consanguineous marriages and genetic disorders in Saudi Arabia.
Collapse
Affiliation(s)
| | | | - Sara F Alharbi
- Biotechnology, College of Science, Taif University, Taif, SAU
| | | | | | - Noha Farouk Tashkandi
- Medical Research, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, SAU
| |
Collapse
|
4
|
Victoria Zhang Y, Garg U. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology. Methods Mol Biol 2024; 2737:1-13. [PMID: 38036805 DOI: 10.1007/978-1-0716-3541-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mass spectrometry (MS) coupled with liquid chromatography (LC) or gas chromatography (GC) has been proven to be a powerful platform in research and specialized clinical laboratories for decades. In clinical laboratories, it is used for compound identification and quantification. Due to the ability to provide specific identification, high sensitivity, and simultaneous analysis of multiple analytes (>100) in recent years, application of MS in routine clinical laboratories has increased significantly. Although MS is used in many laboratory areas, therapeutic drug monitoring, drugs of abuse, and clinical toxicology remain the primary focuses of the field. Due to rapid increase in the number of prescription drugs and drugs of abuse (e.g., novel psychoactive substances), clinical laboratories are challenged with developing new MS assays to meet the clinical needs of the patients. We are here to present "off-the-shelf" and "ready-to-use" protocols of recent developments in new assays to help the clinical laboratory community adopt the technology and analysis for the betterment of patient care.
Collapse
Affiliation(s)
- Y Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | - Uttam Garg
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA.
- University of Missouri School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
5
|
Zhang Y, Peng C, Wang L, Chen S, Wang J, Tian Z, Wang C, Chen X, Zhu S, Zhang GF, Wang Y. Prevalence of propionic acidemia in China. Orphanet J Rare Dis 2023; 18:281. [PMID: 37689673 PMCID: PMC10493020 DOI: 10.1186/s13023-023-02898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Propionic acidemia (PA) is a rare autosomal recessive congenital disease caused by mutations in the PCCA or PCCB genes. Elevated propionylcarnitine, 2-methylcitric acid (2MCA), propionylglycine, glycine and 3-hydroxypropionate can be used to diagnose PA. Early-onset PA can lead to acute deterioration, metabolic acidosis, and hyperammonemia shortly after birth, which can result in high mortality and disability. Late-onset cases of PA have a more heterogeneous clinical spectra, including growth retardation, intellectual disability, seizures, basal ganglia lesions, pancreatitis, cardiomyopathy, arrhythmias, adaptive immune defects, rhabdomyolysis, optic atrophy, hearing loss, premature ovarian failure, and chronic kidney disease. Timely and accurate diagnosis and appropriate treatment are crucial to saving patients' lives and improving their prognosis. Recently, the number of reported PA cases in China has increased due to advanced diagnostic techniques and increased research attention. However, an overview of PA prevalence in China is lacking. Therefore, this review provides an overview of recent advances in the pathogenesis, diagnostic strategies, and treatment of PA, including epidemiological data on PA in China. The most frequent variants among Chinese PA patients are c.2002G > A in PCCA and c.1301C > T in PCCB, which are often associated with severe clinical symptoms. At present, liver transplantation from a living (heterozygous parental) donor is a better option for treating PA in China, especially for those exhibiting a severe metabolic phenotype and/or end-organ dysfunction. However, a comprehensive risk-benefit analysis should be conducted as an integral part of the decision-making process. This review will provide valuable information for the medical care of Chinese patients with PA.
Collapse
Affiliation(s)
- Yixing Zhang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Chuwen Peng
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Lifang Wang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Sitong Chen
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Junwei Wang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Ziheng Tian
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Chuangong Wang
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Hospital, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Suhong Zhu
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China.
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China.
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| | - You Wang
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China.
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China.
| |
Collapse
|
6
|
Woo J, Zhang Q. A Streamlined High-Throughput Plasma Proteomics Platform for Clinical Proteomics with Improved Proteome Coverage, Reproducibility, and Robustness. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:754-762. [PMID: 36975161 PMCID: PMC10080683 DOI: 10.1021/jasms.3c00022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Mass spectrometry-based clinical proteomics requires high throughput, reproducibility, robustness, and comprehensive coverage to serve the needs of clinical diagnosis, prognosis, and personalized medicine. Oftentimes these requirements are contradictory to each other. We report the development of a streamlined High-Throughput Plasma Proteomics (sHTPP) platform for untargeted profiling of the blood plasma proteome, which includes 96-well plates and simplified procedures for sample preparation, disposable trap column for peptide loading, robust liquid chromatographic system for separation, data-independent acquisition in tandem mass spectrometry, and DIA-NN, FragPipe, and in-house peptide spectral library-based data analysis. Using the optimized platform at a throughput of 60 samples per day, over 600 protein groups including 57 FDA-approved biomarkers can be consistently identified from whole human plasma, and more than 85% of the detected proteins have 100% completeness in quantitative values across 300 samples. The balance achieved between proteome coverage, throughput, and reproducibility of this sHTPP platform makes it promising in clinical settings, where a large number of samples are to be measured quickly and reliably to support various needs of clinical medicine.
Collapse
Affiliation(s)
- Jongmin Woo
- Center
for Translational Biomedical Research, University
of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Center
for Translational Biomedical Research, University
of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
- Department
of Chemistry & Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
7
|
Plumb RS, Gethings LA, Rainville PD, Isaac G, Trengove R, King AM, Wilson ID. Advances in high throughput LC/MS based metabolomics: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Zhang H, Yang G, Bao Z, Jin Y, Wang J, Chen J, Qian M. Stereoselective effects of fungicide difenoconazole and its four stereoisomers on gut barrier, microbiota, and glucolipid metabolism in male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150454. [PMID: 34818760 DOI: 10.1016/j.scitotenv.2021.150454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole is a commonly used triazole fungicide that consists of four stereoisomers [(2S,4S)-, (2S,4R)-, (2R,4R)-, and (2R,4S)-isomers] with different bioactivity. For example, the toxicity of the (2R,4S)-isomer to fish is approximately seven times higher than that of the (2S,4S)-isomer. However, the stereoselective toxic effects of difenoconazole stereoisomers on mammals have received little attention. In the present study, adult male mice were orally treated with a mixture of the four stereoisomers or each stereoisomer individually (0, 30, or 100 mg/kg/d) by gavage for 28 days. Pathological staining of the liver sections showed that the (2R,4R)-isomer caused lipid droplet accumulation. The mixture or each individual stereoisomers decreased the levels of amino acids and acyl-carnitine in serum. Moreover, the (2S,4R)-, (2R,4R)-, and (2R,4S)-isomers affected intestinal permeability, causing decreases in mucus secretion and tight junction protein expression in colon. Analysis of the gut microbiota composition showed that the stereoisomers caused decreases of OTU numbers and observed species at different levels. Interestingly, difenoconazole and its four stereoisomers reduced the relative abundance of Bacteroidetes at the phylum level and some short-chain fatty acid (SCFA)-producing bacteria. Taking the findings together, 2R-difenoconazole with strong bioactivity against pathogenic fungi also had significant effects in mammals, disrupting hepatic lipid metabolism, intestinal permeability, and gut microbiota. It is concluded that the health risks of the four difenoconazole stereoisomers to mammals should not be overlooked.
Collapse
Affiliation(s)
- Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianmei Wang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Chen
- Zhejiang Medicine Co., Ltd., Shaoxing 312366, China
| | - Mingrong Qian
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
9
|
Carlo MJ, Patrick AL. Infrared multiple photon dissociation (IRMPD) spectroscopy and its potential for the clinical laboratory. J Mass Spectrom Adv Clin Lab 2022; 23:14-25. [PMID: 34993503 PMCID: PMC8713122 DOI: 10.1016/j.jmsacl.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
Infrared multiple photon dissociation (IRMPD) spectroscopy is a powerful tool used to probe the vibrational modes-and, by extension, the structure-of an ion within an ion trap mass spectrometer. Compared to traditional FTIR spectroscopy, IRMPD spectroscopy has advantages including its sensitivity and its relative ability to handle complex mixtures. While IRMPD has historically been a technique for fundamental analyses, it is increasingly being applied in a more analytical fashion. Notable recent demonstrations pertinent to the clinical laboratory and adjacent interests include analysis of modified amino acids/residues and carbohydrates, structural elucidation (including isomeric differentiation) of metabolites, identification of novel illicit drugs, and structural studies of various biomolecules and pharmaceuticals. Improvements in analysis time, coupling to commercial instruments, and integration with separations methods are all drivers toward the realization of these analytical applications. Additional improvements in these areas, along with advances in benchtop tunable IR sources and increased cross-discipline collaboration, will continue to drive innovation and widespread adoption. The goal of this tutorial article is to briefly present the fundamentals and instrumentation of IRMPD spectroscopy, as an overview of the utility of this technique for helping to answer questions relevant to clinical analysis, and to highlight limitations to widespread adoption, as well as promising directions in which the field may be heading.
Collapse
Key Words
- 2-AEP, 2-aminoethylphosphonic acid
- 2P1EA, 2-phenyl-1-ethanolamine
- CIVP, cryogenic ion vibrational predissociation spectroscopy
- CLIO, Centre Laser Infrarouge d’Orsay
- DFT, density functional theory
- FA, fluoroamphetamine
- FEL, free electron laser
- FELIX, Free Electron Laser for Infrared eXperiments
- FMA, fluoromethamphetamine
- FTICR, Fourier transform ion cyclotron resonance
- GC–MS, gas chromatography-mass spectrometry
- GSNO, S- nitro glutathione
- GlcNAc, n-Acetylglucosamine
- IR, infrared
- IR2MS3, infrared-infrared double-resonance multi-stage mass spectrometry
- IRMPD, infrared multiple photon dissociation (IRMPD)
- IRMPD-MS, infrared multiple photon dissociation spectroscopy mass spectrometry
- IRPD, infrared predissociation spectroscopy
- IVR, intramolecular vibrational redistribution
- Infrared multiple photon dissociation spectroscopy
- LC, liquid chromatography
- LC-MS, liquid chromatography-mass spectrometry
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- MDA, methylenedioxyamphetamine
- MDMA, methylenedioxymethamphetamine
- MMC, methylmethcathinone
- MS/MS, tandem mass spectrometry
- MSn, multi-stage mass spectrometry
- Mass spectrometry
- Metabolites
- NANT, N-acetyl-N-nitrosotryptophan
- OPO/A, optical parametric oscillator/amplifier
- PTM, post-translational modification
- Pharmaceuticals
- Post-translational modifications
- SNOCys, S-nitrosocysteine
- UV, ultraviolet
- UV-IR, ultraviolet-infrared
- Vibrational spectroscopy
- cw, continuous wave
- α-PVP, alpha-pyrrolidinovalerophenone
Collapse
Affiliation(s)
- Matthew J. Carlo
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Amanda L. Patrick
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
10
|
Aldhalaan H, AlBakheet A, AlRuways S, AlMutairi N, AlNakiyah M, AlGhofaili R, Cardona-Londoño KJ, Alahmadi KO, AlQudairy H, AlRasheed MM, Colak D, Arold ST, Kaya N. A Novel GEMIN4 Variant in a Consanguineous Family Leads to Neurodevelopmental Impairment with Severe Microcephaly, Spastic Quadriplegia, Epilepsy, and Cataracts. Genes (Basel) 2021; 13:genes13010092. [PMID: 35052432 PMCID: PMC8774908 DOI: 10.3390/genes13010092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pathogenic variants in GEMIN4 contribute to a hereditary disorder characterized by neurodevelopmental features, microcephaly, cataracts, and renal abnormalities (known as NEDMCR). To date, only two homoallelic variations have been linked to the disease. Moreover, clinical features associated with the variants have not been fully elucidated yet. Here, we identified a novel variant in GEMIN4 (NM_015721:exon2:c.440A>G:p.His147Arg) in two siblings from a consanguineous Saudi family by using whole exome sequencing followed by Sanger sequence verification. We comprehensively investigated the patients’ clinical features, including brain imaging and electroencephalogram findings, and compared their phenotypic characteristics with those of previously reported cases. In silico prediction and structural modeling support that the p.His147Arg variant is pathogenic.
Collapse
Affiliation(s)
- Hesham Aldhalaan
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Albandary AlBakheet
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
| | - Sarah AlRuways
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Nouf AlMutairi
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Maha AlNakiyah
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Reema AlGhofaili
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Kelly J. Cardona-Londoño
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.J.C.-L.); (S.T.A.)
| | - Khalid Omar Alahmadi
- Department of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Hanan AlQudairy
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
| | - Maha M. AlRasheed
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Stefan T. Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.J.C.-L.); (S.T.A.)
| | - Namik Kaya
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Correspondence: ; Tel.: +966-11-4647272 (ext. 39612)
| |
Collapse
|
11
|
El-Naggari MA, Rady M, Althihli K. Transient Insulin Resistance in Propionic Acidaemia: Knowing is half the battle. Sultan Qaboos Univ Med J 2021; 21:648-651. [PMID: 34888089 PMCID: PMC8631204 DOI: 10.18295/squmj.4.2021.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 12/04/2022] Open
Abstract
Propionic acidaemia (PPA) is a disorder of amino acid and odd-chain fatty acid metabolism. Hypoglycaemia is a more commonly described finding rather than hyperglycaemia during metabolic decompensation of PPA. There is a high mortality rate in patients with organic acidaemias having severe insulin-resistant hyperglycaemia. We report a nine-month-old boy with PPA who was admitted to tertiary care hospital in Muscat, Oman, in 2018 with metabolic decompensation, persistent hyperglycaemia and transient insulin resistance. Hyperglycaemia did not respond to high insulin infusion. Plasma glucose only improved when glucose infusion rate (GIR) reached 7 mg/kg/min. The patient has full recovery and was discharged, with follow up plan. It is important to balance the GIR to achieve the targeted insulin level, beyond which the risks of hyperglycaemia start to outweigh the potential anabolic benefits of additional insulin secretion. Timely clinical attention should be given to achieve adequate caloric delivery through alternative sources other than high GIR to permit better glycaemic control, especially when insulin-resistant hyperglycaemia is present.
Collapse
Affiliation(s)
| | | | - Khalid Althihli
- Metabolic & Genetic Disease, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
12
|
Newborn screening with targeted sequencing: a multicenter investigation and a pilot clinical study in China. J Genet Genomics 2021; 49:13-19. [PMID: 34474183 DOI: 10.1016/j.jgg.2021.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Different newborn screening (NBS) programs have been practiced in many countries since the 1960s. It is of considerable interest whether next-generation sequencing is applicable in NBS. We have developed a panel of 465 causative genes for 596 early-onset, relatively high incidence, and potentially actionable severe inherited diseases in our Newborn Screening with Targeted Sequencing (NESTS) program to screen 11,484 babies in 8 Women and Children's hospitals nationwide in China retrospectively. The positive rate from preliminary screening of NESTS was 7.85% (902/11,484). With 45.89% (414/902) follow-up of preliminary positive cases, the overall clinically confirmative diagnosis rate of monogenic disorders was 12.07% (50/414), estimating an average of 0.95% (7.85% × 12.07%) clinical diagnosis rate, suggesting that monogenic disorders account for a considerable proportion of birth defects. The disease/gene spectrum varied in different regions of China. NESTS was implemented in a hospital by screening 3923 newborns to evaluate its clinical application. The turn-around time of a primary report, including the sequencing period of < 7 days, was within 11 days by our automatic interpretation pipeline. Our results suggest that NESTS is feasible and cost-effective as a first-tier NBS program, which will change the status of current clinical practice of NBS in China.
Collapse
|
13
|
Guenzel AJ, Hall PL, Scott AI, Lam C, Chang IJ, Thies J, Ferreira CR, Pichurin P, Laxen W, Raymond K, Gavrilov DK, Oglesbee D, Rinaldo P, Matern D, Tortorelli S. The low excretor phenotype of glutaric acidemia type I is a source of false negative newborn screening results and challenging diagnoses. JIMD Rep 2021; 60:67-74. [PMID: 34258142 PMCID: PMC8260482 DOI: 10.1002/jmd2.12217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Glutaric acidemia type I (GA1) is an organic acidemia that is often unrecognized in the newborn period until patients suffer an acute encephalopathic crisis, which can be mistaken for nonaccidental trauma. Presymptomatic identification of GA1 patients is possible by newborn screening (NBS). However, the biochemical "low-excretor" (LE) phenotype with nearly normal levels of disease metabolites can be overlooked, which may result in untreated disease and irreversible neurological sequelae. The LE phenotype is also a potential source of false negative (FN) NBS results that merits further investigation. METHODS Samples from six LE GA1 patients were analyzed by biochemical and molecular methods and newborn screen outcomes were retrospectively investigated. RESULTS Five LE GA1 patients were identified that had normal NBS results and three of these presented clinically with GA1 symptoms. One additional symptomatic patient was identified who did not undergo screening. Semiquantitative urine organic acid analysis was consistent with a GA1 diagnosis in two (33%) of the six patients, while plasma glutarylcarnitine was elevated in four (67%) of the six and urine glutarylcarnitine was elevated in four (80%) of five patients. Five GCDH variants were identified in these patients; three of which have not been previously linked to the biochemical LE phenotype. CONCLUSIONS The data presented here raise awareness of potential FN NBS results for LE GA1 patients. The LE phenotype is not protective against adverse clinical outcomes, and the possibility of FN NBS results calls for high vigilance amongst clinicians, even in the setting of a normal NBS result.
Collapse
Affiliation(s)
- Adam J. Guenzel
- Biochemical Genetics Laboratory, Mayo ClinicRochesterMinnesotaUSA
| | | | - Anna I. Scott
- Biochemical Genetics LaboratorySeattle Children's HospitalSeattleWashingtonUSA
| | - Christina Lam
- Division of Genetic Medicine, Department of PediatricsUniversity of Washington and Seattle Children's HospitalSeattleWashingtonUSA
| | - Irene J. Chang
- Division of Genetic Medicine, Department of PediatricsUniversity of Washington and Seattle Children's HospitalSeattleWashingtonUSA
| | - Jenny Thies
- Division of Genetic Medicine, Department of PediatricsUniversity of Washington and Seattle Children's HospitalSeattleWashingtonUSA
| | | | - Pavel Pichurin
- Division of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - William Laxen
- Biochemical Genetics Laboratory, Mayo ClinicRochesterMinnesotaUSA
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Mayo ClinicRochesterMinnesotaUSA
| | | | - Devin Oglesbee
- Biochemical Genetics Laboratory, Mayo ClinicRochesterMinnesotaUSA
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Mayo ClinicRochesterMinnesotaUSA
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Mayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
14
|
Borges R, Colby SM, Das S, Edison AS, Fiehn O, Kind T, Lee J, Merrill AT, Merz KM, Metz TO, Nunez JR, Tantillo DJ, Wang LP, Wang S, Renslow RS. Quantum Chemistry Calculations for Metabolomics. Chem Rev 2021; 121:5633-5670. [PMID: 33979149 PMCID: PMC8161423 DOI: 10.1021/acs.chemrev.0c00901] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 02/07/2023]
Abstract
A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials ("standards"), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for "standards-free" identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.
Collapse
Affiliation(s)
- Ricardo
M. Borges
- Walter
Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Sean M. Colby
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Susanta Das
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arthur S. Edison
- Departments
of Genetics and Biochemistry and Molecular Biology, Complex Carbohydrate
Research Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, United States
| | - Oliver Fiehn
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Tobias Kind
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Jesi Lee
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Amy T. Merrill
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Thomas O. Metz
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Jamie R. Nunez
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Shunyang Wang
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ryan S. Renslow
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
15
|
Liu F, Bao LS, Liang RJ, Zhao XY, Li Z, Du ZF, Lv SG. Identification of rare variants causing urea cycle disorders: A clinical, genetic, and biophysical study. J Cell Mol Med 2021; 25:4099-4109. [PMID: 33611823 PMCID: PMC8051738 DOI: 10.1111/jcmm.16379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/23/2022] Open
Abstract
Urea cycle disorders (UCDs) are a group of rare metabolic conditions characterized by hyperammonemia and a broad spectrum of phenotypic severity. They are caused by the congenital deficiency in the eight biomolecules involved in urea cycle. In the present study, five cases of UCD were recruited and submitted to a series of clinical, biochemical, and genetic analysis with a combination of high throughput techniques. Moreover, in silico analysis was conducted on the identified missense genetic variants. Various clinical and biochemical indications (including profiles of amino acids and urinary orotic acids) of UCD were manifested by the five probands. Sequence analysis revealed nine diagnostic variants, including three novel ones, which caused Argininosuccinic aciduria (ASA) in one case, Carbamoyl phosphate synthetase 1deficiency (CPS1D) in two cases, Ornithine transcarbamylase deficiency (OTCD) in one case, and Citrin deficiency in 1case. Results of in silico biophysical analysis strongly suggested the pathogenicity of each the five missense variants and provided insight into their intramolecular impacts. In conclusion, this study expanded the genetic variation spectrum of UCD, gave solid evidence for counselling to the affected families, and should facilitate the functional study on the proteins in urea cycle.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pediatrics, NICU, Bethune International Peace Hospital (the 980th Hospital of the People's Liberation Army Joint Service Support Force), Shijiazhuang, China
| | - Li-Sha Bao
- Department of Pediatrics, NICU, Bethune International Peace Hospital (the 980th Hospital of the People's Liberation Army Joint Service Support Force), Shijiazhuang, China
| | - Ru-Jia Liang
- Department of Pediatrics, NICU, Bethune International Peace Hospital (the 980th Hospital of the People's Liberation Army Joint Service Support Force), Shijiazhuang, China
| | - Xiao-Ying Zhao
- Department of Pediatrics, NICU, Bethune International Peace Hospital (the 980th Hospital of the People's Liberation Army Joint Service Support Force), Shijiazhuang, China
| | - Zhi Li
- Department of Pediatrics, NICU, Bethune International Peace Hospital (the 980th Hospital of the People's Liberation Army Joint Service Support Force), Shijiazhuang, China
| | - Zhi-Fang Du
- Department of Pediatrics, NICU, Bethune International Peace Hospital (the 980th Hospital of the People's Liberation Army Joint Service Support Force), Shijiazhuang, China
| | - Shao-Guang Lv
- Department of Pediatrics, NICU, Bethune International Peace Hospital (the 980th Hospital of the People's Liberation Army Joint Service Support Force), Shijiazhuang, China
| |
Collapse
|
16
|
High resolution mass spectrometry newborn screening applications for quantitative analysis of amino acids and acylcarnitines from dried blood spots. Anal Chim Acta 2020; 1120:85-96. [PMID: 32475395 PMCID: PMC10046147 DOI: 10.1016/j.aca.2020.04.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
Amino acid and acylcarnitine first-tier newborn screening typically employs derivatized or non-derivatized sample preparation methods followed by FIA coupled to triple quadrupole (TQ) MS/MS. The low resolving power of TQ instruments results in difficulties distinguishing nominal isobaric metabolites, especially those with identical quantifying product ions such as malonylcarnitine (C3DC) and 4-hydroxybutylcarnitine (C4OH). Twenty-eight amino acids and acylcarnitines extracted from dried blood spots (DBS) were analyzed by direct injection (DI)-HRMS on a Q-Exactive Plus across available mass resolving powers in SIM, in PRM at 17,000 full width at half maximum (FWHM), and a developed SIM/PRM hybrid MS method. Most notably, quantitation of C3DC and C4OH was successful by HRMS in non-derivatized samples, thus, potentially eliminating sample derivatization requirements. Quantitation differed between SIM and PRM acquired data for several metabolites, and it was determined these quantitative differences were due to collision energy differences or kinetic isotope effects between the unlabeled metabolites and the corresponding labeled isotopologue internal standards. Overall quantitative data acquired by HRMS were similar to data acquired on TQ MS/MS platform. A proof-of-concept hybrid DI-HRMS and SIM/PRM/FullScan method was developed demonstrating the ability to hybridize targeted newborn screening with metabolomic screening.
Collapse
|
17
|
Bene J, Szabo A, Komlósi K, Melegh B. Mass Spectrometric Analysis of L-carnitine and its Esters: Potential Biomarkers of Disturbances in Carnitine Homeostasis. Curr Mol Med 2020; 20:336-354. [PMID: 31729298 PMCID: PMC7231908 DOI: 10.2174/1566524019666191113120828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE After a golden age of classic carnitine research three decades ago, the spread of mass spectrometry opened new perspectives and a much better understanding of the carnitine system is available nowadays. In the classic period, several human and animal studies were focused on various distinct physiological functions of this molecule and these revealed different aspects of carnitine homeostasis in normal and pathological conditions. Initially, the laboratory analyses were based on the classic or radioenzymatic assays, enabling only the determination of free and total carnitine levels and calculation of total carnitine esters' amount without any information on the composition of the acyl groups. The introduction of mass spectrometry allowed the measurement of free carnitine along with the specific and sensitive determination of different carnitine esters. Beyond basic research, mass spectrometry study of carnitine esters was introduced into the newborn screening program because of being capable to detect more than 30 metabolic disorders simultaneously. Furthermore, mass spectrometry measurements were performed to investigate different disease states affecting carnitine homeostasis, such as diabetes, chronic renal failure, celiac disease, cardiovascular diseases, autism spectrum disorder or inflammatory bowel diseases. RESULTS This article will review the recent advances in the field of carnitine research with respect to mass spectrometric analyses of acyl-carnitines in normal and various pathological states. CONCLUSION The growing number of publications using mass spectrometry as a tool to investigate normal physiological conditions or reveal potential biomarkers of primary and secondary carnitine deficiencies shows that this tool brought a new perspective to carnitine research.
Collapse
Affiliation(s)
- Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andras Szabo
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Katalin Komlósi
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Bela Melegh
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
18
|
Luo T, Zhang Y, Wang C, Wang X, Zhou J, Shen M, Zhao Y, Fu Z, Jin Y. Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113122. [PMID: 31520900 DOI: 10.1016/j.envpol.2019.113122] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/25/2019] [Indexed: 05/25/2023]
Abstract
Microplastics (MPs) are highly concerned environmental pollutants that are ubiquitous in the environmental and might affect human and animal health. In this study, we exposed pregnant mice to 0.5 and 5 μm with 100 and 1000 μg/L polystyrene MPs, then investigated maternal MPs exposure during gestation and evaluated the potential effects on the mice offspring (PND42). In the F1 offspring, the serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels and hepatic TC, TG levels were altered, while some of them were only significant in 5 μm MPs-treated group. Various serum metabolites including amino acids and acyl-carnitines were carried out by nonderivatized tandem mass spectrometry, there were 11 and 15 kinds of metabolites changes significantly in 0.5 and 5 μm MPs-treated groups, respectively. Furthermore, the changes of C0 and C0/(C16 + 18) indicators suggested the potential risk of fatty acid metabolism disorder, which was verified by hepatic genes expression. These results indicated that maternal exposure of two different sizes of polystyrene MPs increased risks of metabolic disorder in their offspring, and greater effects were observed in 5 μm MPs-treated groups. The data provides a preliminary exploration of the potential relationship between MPs and the risk metabolic disorder even in the next generation, which might offer new insights into the health risk assessment of MPs.
Collapse
Affiliation(s)
- Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yi Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaoyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiajie Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Manlu Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yao Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
19
|
Häberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, Mandel H, Martinelli D, Pintos-Morell G, Santer R, Skouma A, Servais A, Tal G, Rubio V, Huemer M, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis 2019; 42:1192-1230. [PMID: 30982989 DOI: 10.1002/jimd.12100] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
In 2012, we published guidelines summarizing and evaluating late 2011 evidence for diagnosis and therapy of urea cycle disorders (UCDs). With 1:35 000 estimated incidence, UCDs cause hyperammonemia of neonatal (~50%) or late onset that can lead to intellectual disability or death, even while effective therapies do exist. In the 7 years that have elapsed since the first guideline was published, abundant novel information has accumulated, experience on newborn screening for some UCDs has widened, a novel hyperammonemia-causing genetic disorder has been reported, glycerol phenylbutyrate has been introduced as a treatment, and novel promising therapeutic avenues (including gene therapy) have been opened. Several factors including the impact of the first edition of these guidelines (frequently read and quoted) may have increased awareness among health professionals and patient families. However, under-recognition and delayed diagnosis of UCDs still appear widespread. It was therefore necessary to revise the original guidelines to ensure an up-to-date frame of reference for professionals and patients as well as for awareness campaigns. This was accomplished by keeping the original spirit of providing a trans-European consensus based on robust evidence (scored with GRADE methodology), involving professionals on UCDs from nine countries in preparing this consensus. We believe this revised guideline, which has been reviewed by several societies that are involved in the management of UCDs, will have a positive impact on the outcomes of patients by establishing common standards, and spreading and harmonizing good practices. It may also promote the identification of knowledge voids to be filled by future research.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | - Anupam Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Trust, London, UK
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Lindner
- University Children's Hospital, Frankfurt am Main, Germany
| | - Hanna Mandel
- Institute of Human Genetics and metabolic disorders, Western Galilee Medical Center, Nahariya, Israel
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guillem Pintos-Morell
- Centre for Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
- CIBERER_GCV08, Research Institute IGTP, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Skouma
- Institute of Child Health, Agia Sofia Children's Hospital, Athens, Greece
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, Paris, France
| | - Galit Tal
- The Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), Valencia, Spain
| | - Martina Huemer
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | | |
Collapse
|
20
|
Luo T, Wang C, Pan Z, Jin C, Fu Z, Jin Y. Maternal Polystyrene Microplastic Exposure during Gestation and Lactation Altered Metabolic Homeostasis in the Dams and Their F1 and F2 Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10978-10992. [PMID: 31448906 DOI: 10.1021/acs.est.9b03191] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) are considered as a pollutant of marine environments and have become a global environmental problem in recent years. A number of studies have demonstrated that MPs can enter the human food chain, and MPs have even been detected in human stools. Therefore, there is increasing concern about the potential risks of MPs to human and animal health. Here, we investigated maternal polystyrene MPs exposure during gestation and lactation and evaluated the potential effects on dams and the F1 (both PND 42 and 280) and F2 (PND 42) generations. The results of transcriptome and 16S rRNA sequencing indicated that MPs caused the metabolic disorder in maternal MPs associated with gut microbiota dysbiosis and gut barrier dysfunction. Simultaneously, maternal MPs exposure also had the intergenerational effects and even caused long-term metabolic consequences in the F1 and F2 generations. In addition, in F1 (PND 42), the composition of gut microbiota did not change significantly, while the hepatic transcriptome and serum metabolite changes showed the potential risk in metabolic disorder. Then, the potential of hepatic lipid accumulation was observed in adult F1 mice (PND 280), especially in the female mice. Our results demonstrated that maternal MPs exposure during gestation and lactation increases the risk of metabolic disorder, and these results provide new insight into the potential long-term hazards of MPs.
Collapse
Affiliation(s)
- Ting Luo
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Zihong Pan
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| |
Collapse
|
21
|
Urea cycle disorders-update. J Hum Genet 2019; 64:833-847. [PMID: 31110235 DOI: 10.1038/s10038-019-0614-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
The urea cycle is a metabolic pathway for the disposal of excess nitrogen, which arises primarily as ammonia. Nitrogen is essential for growth and life-maintenance, but excessive ammonia leads to life-threatening conditions. The urea cycle disorders (UCDs) comprise diseases presenting with hyperammonemia that arise in either the neonatal period (about 50% of cases) or later. Congenital defects of the enzymes or transporters of the urea cycle cause the disease. This cycle utilizes five enzymes, two of which, carbamoylphosphate synthetase 1 and ornithine transcarbamylase are present in the mitochondrial matrix, whereas the others (argininosuccinate synthetase, argininosuccinate lyase and arginase 1) are present in the cytoplasm. In addition, N-acetylglutamate synthase and at least two transporter proteins are essential to urea cycle function. Severity and age of onset depend on residual enzyme or transporter function and are related to the respective gene mutations. The strategy for therapy is to prevent the irreversible toxicity of high-ammonia exposure to the brain. The pathogenesis and natural course are poorly understood because of the rarity of the disease, so an international registry system and novel clinical trials are much needed. We review here the current concepts of the pathogenesis, diagnostics, including genetics and treatment of UCDs.
Collapse
|
22
|
Colby SM, Thomas DG, Nuñez JR, Baxter DJ, Glaesemann KR, Brown JM, Pirrung MA, Govind N, Teeguarden JG, Metz TO, Renslow RS. ISiCLE: A Quantum Chemistry Pipeline for Establishing in Silico Collision Cross Section Libraries. Anal Chem 2019; 91:4346-4356. [PMID: 30741529 PMCID: PMC6526953 DOI: 10.1021/acs.analchem.8b04567] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-throughput, comprehensive, and confident identifications of metabolites and other chemicals in biological and environmental samples will revolutionize our understanding of the role these chemically diverse molecules play in biological systems. Despite recent technological advances, metabolomics studies still result in the detection of a disproportionate number of features that cannot be confidently assigned to a chemical structure. This inadequacy is driven by the single most significant limitation in metabolomics, the reliance on reference libraries constructed by analysis of authentic reference materials with limited commercial availability. To this end, we have developed the in silico chemical library engine (ISiCLE), a high-performance computing-friendly cheminformatics workflow for generating libraries of chemical properties. In the instantiation described here, we predict probable three-dimensional molecular conformers (i.e., conformational isomers) using chemical identifiers as input, from which collision cross sections (CCS) are derived. The approach employs first-principles simulation, distinguished by the use of molecular dynamics, quantum chemistry, and ion mobility calculations, to generate structures and chemical property libraries, all without training data. Importantly, optimization of ISiCLE included a refactoring of the popular MOBCAL code for trajectory-based mobility calculations, improving its computational efficiency by over 2 orders of magnitude. Calculated CCS values were validated against 1983 experimentally measured CCS values and compared to previously reported CCS calculation approaches. Average calculated CCS error for the validation set is 3.2% using standard parameters, outperforming other density functional theory (DFT)-based methods and machine learning methods (e.g., MetCCS). An online database is introduced for sharing both calculated and experimental CCS values ( metabolomics.pnnl.gov ), initially including a CCS library with over 1 million entries. Finally, three successful applications of molecule characterization using calculated CCS are described, including providing evidence for the presence of an environmental degradation product, the separation of molecular isomers, and an initial characterization of complex blinded mixtures of exposure chemicals. This work represents a method to address the limitations of small molecule identification and offers an alternative to generating chemical identification libraries experimentally by analyzing authentic reference materials. All code is available at github.com/pnnl .
Collapse
Affiliation(s)
- Sean M. Colby
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dennis G. Thomas
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jamie R. Nuñez
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Douglas J. Baxter
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kurt R. Glaesemann
- Communications and Information Technology Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joseph M. Brown
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Meg A. Pirrung
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Justin G. Teeguarden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Thomas O. Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ryan S. Renslow
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
23
|
Giordano G, Gucciardi A, Pirillo P, Naturale M. Quantification of Underivatized Amino Acids on Dry Blood Spot, Plasma, and Urine by HPLC-ESI-MS/MS. Methods Mol Biol 2019; 2030:153-172. [PMID: 31347117 DOI: 10.1007/978-1-4939-9639-1_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enzyme deficiencies in amino acid metabolism may increase the levels of a single or several compounds in physiological fluids becoming diagnostically significant biomarkers for one or a group of metabolic disorders. Therefore, it is important to monitor a wide range of free amino acids simultaneously and to quantify them. This is time consuming if we use the classical methods and, especially now that many laboratories have introduced Newborn Screening Programs for the semiquantitative analysis, the detection and quantification of some amino acids need to be performed in a short time to reduce the rate of false positives.We have modified the stable isotope dilution HPLC-ESI-MS/MS method previously described by Qu (Qu et al., 2002) for a more rapid, robust, sensitive, and specific detection and quantification of underivatized amino acids. The modified method reduces the time of analysis to 10 min with very good reproducibility of retention times and a better separation of the metabolites and their isomers.The omission of the derivatization step, enabled to achieve some important advantages: fast and simple sample preparation, exclusion of artifacts, and interferences. The use of this technique is highly sensitive and specific and allowed to monitor 40 underivatized amino acids including the key isomers and quantification of some of them, in order to cover many diagnostically important intermediates of metabolic pathways.We propose this HPLC-ESI-MS/MS method for underivatized amino acids as a support for the newborn screening as secondary test using the same dried blood spots for a more accurate and specific examination in case of suspected metabolic diseases. In this way we avoid plasma collection from the patient as it normally occurs, reducing anxiety for the parents and further costs for analysis.The same method was validated and applied also to plasma and urine samples with good reproducibility, accuracy, and precision. The fast run time, the feasibility of high sample throughput, and the small amount of sample required make this method very suitable for routine analysis in the clinical setting.
Collapse
Affiliation(s)
- Giuseppe Giordano
- Mass Spectrometry Laboratory, Women's and Children's Health Department, Institute for Pediatrics Research (IRP), Padua University, Padova, Italy.
| | - Antonina Gucciardi
- Mass Spectrometry Laboratory, Women's and Children's Health Department, Institute for Pediatrics Research (IRP), Padua University, Padova, Italy
| | - Paola Pirillo
- Mass Spectrometry Laboratory, Women's and Children's Health Department, Institute for Pediatrics Research (IRP), Padua University, Padova, Italy
| | - Mauro Naturale
- Mass Spectrometry Laboratory, Women's and Children's Health Department, Institute for Pediatrics Research (IRP), Padua University, Padova, Italy
| |
Collapse
|
24
|
Turova P, Stekolshchikova E, Baygildiev T, Shpigun O, Rodin I, Stavrianidi A. Unified strategy for HPLC-MS evaluation of bioactive compounds for quality control of herbal products. Biomed Chromatogr 2018; 32:e4363. [DOI: 10.1002/bmc.4363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Polina Turova
- Chemistry Department; Lomonosov Moscow State University; Moscow Russia
| | | | - Timur Baygildiev
- Chemistry Department; Lomonosov Moscow State University; Moscow Russia
| | - Oleg Shpigun
- Chemistry Department; Lomonosov Moscow State University; Moscow Russia
| | - Igor Rodin
- Chemistry Department; Lomonosov Moscow State University; Moscow Russia
| | | |
Collapse
|
25
|
Forier K, Van Heck V, Carlier M, Van Braeckel E, Van Daele S, De Baets F, Schelstraete P, Haerynck F, Stove V, Van Simaey L, Vaneechoutte M, Verstraete AG. Development and validation of an LC tandem MS assay for the quantification of β-lactam antibiotics in the sputum of cystic fibrosis patients. J Antimicrob Chemother 2018; 73:95-101. [PMID: 29029070 DOI: 10.1093/jac/dkx331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives Antibiotic therapy is of vital importance for the control of infectious exacerbations in cystic fibrosis (CF) patients. However, very little is known regarding the fraction of systemically administered antibiotics reaching the lower respiratory tract secretions. We developed and validated a method to measure the concentrations of piperacillin, ceftazidime, meropenem and aztreonam in CF sputum, and present the validation data. Methods Ultra-performance LC coupled to tandem MS was used. A single sample can be measured in 2.5 min with multiple reaction monitoring in positive electrospray ionization mode. Deuterated internal standards were used and a concentration range of 0.7-160 mg/L was covered. The method was validated according to the EMA guideline on analytical method validation. Results The boundaries within which a reliable measurement in CF sputum can be performed were determined. A few constraints are linked to the instability of the antibiotics in sputum. Piperacillin showed limited stability at room temperature and during freeze-thaw cycles. Autosampler instability was observed after 15 h for aztreonam at low concentrations. Conclusions The method allows a reliable measurement of the selected antibiotics, if precautions are taken regarding the limited stability of piperacillin at room temperature. Due to freeze-thaw instability, piperacillin should always be analysed on the day of sampling. Quick review of the analytical data and reanalysis are needed as low concentrations of aztreonam are not stable in the autosampler.
Collapse
Affiliation(s)
- Katrien Forier
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Virginie Van Heck
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Mieke Carlier
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.,Cystic Fibrosis Reference Centre, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Sabine Van Daele
- Cystic Fibrosis Reference Centre, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.,Department of Paediatric Pulmonology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Frans De Baets
- Cystic Fibrosis Reference Centre, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.,Department of Paediatric Pulmonology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Petra Schelstraete
- Cystic Fibrosis Reference Centre, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.,Department of Paediatric Pulmonology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Filomeen Haerynck
- Cystic Fibrosis Reference Centre, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.,Department of Paediatric Pulmonology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Veronique Stove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Leen Van Simaey
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Mario Vaneechoutte
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Alain G Verstraete
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Ostrinskaya A, Kunz RR, Clark M, Kingsborough RP, Ong T, Deneault S. Rapid Quantitative Analysis of Multiple Explosive Compound Classes on a Single Instrument via Flow‐Injection Analysis Tandem Mass Spectrometry. J Forensic Sci 2018; 64:223-230. [DOI: 10.1111/1556-4029.13827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Alla Ostrinskaya
- Chemical, Microsystem, and Nanoscale Technology Group MIT‐Lincoln Laboratory 244 Wood Street Lexington MA 02421
| | - Roderick R. Kunz
- Chemical, Microsystem, and Nanoscale Technology Group MIT‐Lincoln Laboratory 244 Wood Street Lexington MA 02421
| | - Michelle Clark
- Chemical, Microsystem, and Nanoscale Technology Group MIT‐Lincoln Laboratory 244 Wood Street Lexington MA 02421
| | - Richard P. Kingsborough
- Chemical, Microsystem, and Nanoscale Technology Group MIT‐Lincoln Laboratory 244 Wood Street Lexington MA 02421
| | - Ta‐Hsuan Ong
- Chemical, Microsystem, and Nanoscale Technology Group MIT‐Lincoln Laboratory 244 Wood Street Lexington MA 02421
| | - Sandra Deneault
- Chemical, Microsystem, and Nanoscale Technology Group MIT‐Lincoln Laboratory 244 Wood Street Lexington MA 02421
| |
Collapse
|
27
|
Nakano M, Uemura O, Honda M, Ito T, Nakajima Y, Saitoh S, Saitoh S. Development of tandem mass spectrometry-based creatinine measurement using dried blood spot for newborn mass screening. Pediatr Res 2017; 82:237-243. [PMID: 28422942 DOI: 10.1038/pr.2017.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022]
Abstract
BackgroundCongenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent etiologies of pediatric chronic kidney disease (CKD). However, no robust mass screening methods have been developed to detect patients with CAKUT, making early intervention to prevent progressive renal failure challenging.MethodsWe applied tandem mass spectrometry (MS/MS) to measure the creatinine (Cr) value from dried blood spot (DBS) analysis, which has been used for newborn mass screening. Subsequently, we evaluated the correlation between DBS Cr measured by MS/MS and serum Cr measured by the conventional method in pediatric patients with CKD. Finally, DBS Cr was measured in 190 full-term, healthy newborns on days 4-6 after birth.ResultsWe established a system of MS/MS-based measurement of Cr from DBS. Measured DBS Cr in the pediatric patients showed a strong association with serum Cr (r=0.86; P<0.01). The median DBS Cr value in newborns was 0.222 (interquartile range: 0.189, 0.269) mg/dl. No significant correlations were found between DBS Cr values and body weight, Apgar score, gestational age, and sex in newborns.ConclusionWe successfully established a method for MS/MS-based measurement of Cr for newborn screening and determined normal reference values for full-term newborns.
Collapse
Affiliation(s)
- Masaru Nakano
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Osamu Uemura
- Japanese Red Cross Toyota College of Nursing, Toyota, Japan
| | - Masataka Honda
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University, Toyoake, Japan
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University, Toyoake, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | |
Collapse
|
28
|
Alfadhel M, Al Othaim A, Al Saif S, Al Mutairi F, Alsayed M, Rahbeeni Z, Alzaidan H, Alowain M, Al-Hassnan Z, Saeedi M, Aljohery S, Alasmari A, Faqeih E, Alwakeel M, AlMashary M, Almohameed S, Alzahrani M, Migdad A, Al-Dirbashi OY, Rashed M, Alamoudi M, Jacob M, Alahaidib L, El-Badaoui F, Saadallah A, Alsulaiman A, Eyaid W, Al-Odaib A. Expanded Newborn Screening Program in Saudi Arabia: Incidence of screened disorders. J Paediatr Child Health 2017; 53:585-591. [PMID: 28337809 DOI: 10.1111/jpc.13469] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/01/2016] [Accepted: 11/13/2016] [Indexed: 11/29/2022]
Abstract
AIM To address the implementation of the National Newborn Screening Program (NBS) in Saudi Arabia and stratify the incidence of the screened disorders. METHODS A retrospective study conducted between 1 August 2005 and 31 December 2012, total of 775 000 newborns were screened from 139 hospitals distributed among all regions of Saudi Arabia. The NBS Program screens for 16 disorders from a selective list of inborn errors of metabolism (IEM) and endocrine disorders. Heel prick dry blood spot samples were obtained from all newborns for biochemical and immunoassay testing. Recall screening testing was performed for Initial positive results and confirmed by specific biochemical assays. RESULTS A total of 743 cases were identified giving an overall incidence of 1:1043. Frequently detected disorders nationwide were congenital hypothyroidism and congenital adrenal hyperplasia with an incidence of 1:7175 and 1:7908 correspondingly. The highest incidence among the IEM was propionic acidaemia with an incidence rate of 1:14 000. CONCLUSION The article highlights the experience of the NBS Program in Saudi Arabia and providing data on specific regional incidences of all the screened disorders included in the programme; and showed that the incidence of these disorders is one of the highest reported so far world-wide.
Collapse
Affiliation(s)
- Majid Alfadhel
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ali Al Othaim
- King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saif Al Saif
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Moeenaldeen Alsayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,The National Newborn Screening Program, Ministry of Health, Riyadh, Saudi Arabia
| | - Mohamad Saeedi
- Noncommunicable Disease, Ministry of Health, Riyadh, Saudi Arabia
| | - Saeed Aljohery
- Noncommunicable Disease, Ministry of Health, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Medical Genetic Section, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Medical Genetic Section, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | | | - Maher AlMashary
- Armed Forces Medical Services Directorate, Riyadh, Saudi Arabia
| | | | - Mohammed Alzahrani
- Department of Pediatrics, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Abeer Migdad
- Department of Pediatrics, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Osama Y Al-Dirbashi
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Children Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | | | | | - Minnie Jacob
- Research Center, Ministry of Health, Riyadh, Saudi Arabia
| | | | | | - Amal Saadallah
- Research Center, Ministry of Health, Riyadh, Saudi Arabia
| | | | - Wafaa Eyaid
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ali Al-Odaib
- Research Center, Ministry of Health, Riyadh, Saudi Arabia.,King Salman Center for Disability Research, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Suzuki M, Nishiumi S, Kobayashi T, Sakai A, Iwata Y, Uchikata T, Izumi Y, Azuma T, Bamba T, Yoshida M. Use of on-line supercritical fluid extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze disease biomarkers in dried serum spots compared with serum analysis using liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:886-894. [PMID: 28332299 DOI: 10.1002/rcm.7857] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 06/06/2023]
Abstract
RATIONALE The analytical stability and throughput of biomarker assays based on dried serum spots (DSS) are strongly dependent on the extraction process and determination method. In the present study, an on-line system based on supercritical fluid extraction-supercritical fluid chromatography coupled with tandem mass spectrometry (SFE-SFC/MS/MS) was established for analyzing the levels of disease biomarkers in DSS. METHODS The chromatographic conditions were investigated using the ODS-EP, diol, and SIL-100A columns. Then, we optimized the SFE-SFC/MS/MS method using the diol column, focusing on candidate biomarkers of oral, colorectal, and pancreatic cancer that were identified using liquid chromatography (LC)/MS/MS. RESULTS By using this system, four hydrophilic metabolites and 17 hydrophobic metabolites were simultaneously detected within 15 min. In an experiment involving clinical samples, PC 16:0-18:2/16:1-18:1 exhibited 93.8% sensitivity and 64.3% specificity, whereas PC 17:1-18:1/17:0-18:2 showed 81.3% sensitivity and 92.9% specificity for detecting oral cancer. In addition, assessments of the creatine levels demonstrated 92.3% sensitivity and 78.6% specificity for detecting colorectal cancer. CONCLUSIONS The results of this study indicate that our method has great potential for clinical diagnosis and would be suitable for large-scale screening. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Makoto Suzuki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Arata Sakai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yosuke Iwata
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Takato Uchikata
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Yoshihiro Izumi
- Medical Institute of Bioregulation, Kyusyu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Azuma
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takeshi Bamba
- Medical Institute of Bioregulation, Kyusyu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
- Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
- AMED-CREST, AMED, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
30
|
Abstract
Metabolomics based on direct mass spectrometry (MS) analysis, either by direct infusion or flow injection of crude sample extracts, shows a great potential for metabolic fingerprinting because of its high-throughput screening capability, wide metabolite coverage and reduced time of analysis. Considering that numerous metabolic pathways are significantly perturbed during the initiation and progression of diseases, these metabolomic tools can be used to get a deeper understanding about disease pathogenesis and discover potential biomarkers for early diagnosis. In this work, we describe the most common metabolomic platforms used in biomedical research, with special focus on strategies based on direct MS analysis. Then, a comprehensive review on the application of direct MS fingerprinting in clinical issues is provided.
Collapse
|
31
|
Gupta A, Kumar S, Kashyap S, Kumar D, Kapoor A. Nuclear Magnetic Resonance-Based Metabolomics of Human Filtered Serum: A Great White Hope in Appraisal of Chronic Stable Angina and Myocardial Infarction. J Appl Lab Med 2016; 1:280-293. [PMID: 33626845 DOI: 10.1373/jalm.2016.020776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/17/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Biochemical detection of chronic stable angina (CSA) and myocardial infarction (MI) are challenging. To address the shortcomings of the conventional biochemical approach for detection of MI, we applied serum lacking proteins and lipoprotein-based metabolomics in an approach using proton nuclear magnetic resonance (1H NMR) spectroscopy for screening of coronary artery disease (CAD) and especially MI. Our aim was to discover differential biomarkers among subjects with normal coronary (NC), CSA, and MI. METHODS The study comprised serum samples from nondiabetic angiographically proven CAD [CSA (n = 88), MI (n = 90)] and NC (n = 55). 1H NMR spectroscopy was used to acquire metabolomics data. Clinical variables such as troponin I (TI), lactate dehydrogenase (LD), creatine kinase (CK, CK-MB, CK-MM), serum creatinine, and lipid profiles were also measured in all subjects. Metabolomic data and clinical measures were appraised separately using a chemometric approach and ROC analysis. RESULTS The screening outcomes revealed that the pattern of methylguanidine, lactate, creatinine, threonine, aspartate, and trimethylamine (TMA), and TI, LD, CK, and serum creatinine were changed in CAD compared to NC. Statistical analysis demonstrated high precision (93.6% by NMR and 67.4% by clinical measures) to distinguish CAD from NC. Further analysis indicated that methylguanidine, arginine, and threonine, and TI, LD, and serum creatinine were significantly changed in CSA compared to MI. Statistical analysis demonstrated high accuracy (88.2% by NMR and 92.1% by clinical measures) to discriminate CSA from MI. CONCLUSIONS In contrast to other laboratory methods, 1H NMR-based metabolomics of filtered sera appears to be a robust, rapid, and minimally invasive approach to probe CSA and MI.
Collapse
Affiliation(s)
| | - Sudeep Kumar
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Shiridhar Kashyap
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | - Aditya Kapoor
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
32
|
Zayed H. Propionic acidemia in the Arab World. Gene 2015; 564:119-24. [PMID: 25865301 DOI: 10.1016/j.gene.2015.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/29/2015] [Accepted: 04/07/2015] [Indexed: 12/16/2022]
Abstract
The autosomal recessive disease propionic acidemia (PA) is an inborn error of metabolism with highly variable clinical manifestations, caused by a deficiency of propionyl-CoA carboxylase (PCC) enzyme, due to mutations in either PCCA or PCCB genes, which encode the alpha and beta subunits of the PCC enzyme, respectively. The classical clinical presentation consists of poor feeding, vomiting, metabolic acidosis, hyperammonemia, lethargy, neurological problems, and developmental delay. PA seems to be a prevalent disease in the Arab World. Arab patients with PA seem to have the same classical clinical picture for PA with distinctive associated complications and other diseases. Most of the mutations found in Arab patients seem to be specific to the Arab population, and not observed in other ethnic groups. In this review, I will discuss in details the clinical and molecular profile of Arab patients with PA.
Collapse
Affiliation(s)
- Hatem Zayed
- Department of Health Sciences, Biomedical Program, Qatar University, Doha, Qatar.
| |
Collapse
|
33
|
Emerging mass spectrometry techniques for the direct analysis of microbial colonies. Curr Opin Microbiol 2014; 19:120-129. [PMID: 25064218 DOI: 10.1016/j.mib.2014.06.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022]
Abstract
One of the emerging areas in microbiology is detecting specialized metabolites produced by microbial colonies and communities with mass spectrometry. In this review/perspective, we illustrate the emerging mass spectrometry methodologies that enable the interrogation of specialized metabolites directly from microbial colonies. Mass spectrometry techniques such as imaging mass spectrometry and real-time mass spectrometry allow two and three-dimensional visualization of the distribution of metabolites, often with minimal sample pretreatment. The speed in which molecules are captured using these methods requires the development of new molecular visualization tools such as molecular networking. Together, these tools are beginning to provide unprecedented insight into the chemical world that microbes experience.
Collapse
|
34
|
Chiu YH, Liu YN, Liao WL, Chang YC, Lin SP, Hsu CC, Chiu PC, Niu DM, Wang CH, Ke YY, Chien YH, Hsiao KJ, Liu TT. Two frequent mutations associated with the classic form of propionic acidemia in Taiwan. Biochem Genet 2014; 52:415-29. [PMID: 24863100 DOI: 10.1007/s10528-014-9657-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/18/2014] [Indexed: 12/15/2022]
Abstract
Propionyl-CoA carboxylase (PCC) is involved in the catabolism of branched chain amino acids, odd-numbered fatty acids, cholesterol, and other metabolites. PCC consists of two subunits, α and β, encoded by the PCCA and PCCB genes, respectively. Mutations in the PCCA or PCCB subunit gene may lead to propionic acidemia. In this study, we performed mutation analysis on ten propionic acidemia patients from eight unrelated and nonconsanguineous families in Taiwan. Two PCCA mutations, c.229C→T (p.R77W) and c.1262A→C (p.Q421P), were identified in a PCCA-deficient patient. Six mutations in the PCCB gene, including c.-4156_183+3713del, c.580T→C (p.S194P), c.838dup (p.L280Pfs 11), c.1301C→T (p.A434V), c.1316A→G (P.Y439C), and c.1534C→T (p.R512C), were identified in seven PCCB-deficient families. The c.-4156_183+3713del mutation is the first known large deletion that affects the PCCB gene functions. Furthermore, the c.1301C→T and c.-4156_183+3713del mutations in the PCCB gene have not been reported previously. Clinical features demonstrated that these two frequent mutations are associated with low enzyme activity and a classic propionic acidemia phenotype.
Collapse
Affiliation(s)
- Yen-Hui Chiu
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Noguchi T, Roy B, Yoshihara D, Tsuchiya Y, Yamamoto T, Shinkai S. Cyclization-Induced Turn-On Fluorescence System Applicable to Dicarboxylate Sensing. Chemistry 2013; 20:381-4. [DOI: 10.1002/chem.201304031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 01/22/2023]
|
36
|
|
37
|
Bene J, Márton M, Mohás M, Bagosi Z, Bujtor Z, Oroszlán T, Gasztonyi B, Wittmann I, Melegh B. Similarities in serum acylcarnitine patterns in type 1 and type 2 diabetes mellitus and in metabolic syndrome. ANNALS OF NUTRITION AND METABOLISM 2012; 62:80-5. [PMID: 23296094 DOI: 10.1159/000345759] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/10/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND/AIMS In type 1 diabetes (T1D), type 2 diabetes (T2D) and metabolic syndrome (MetS), the associated complex metabolomic changes in the involvement of carnitine metabolism in total carnitine ester level has already been documented; here we extended the investigations to the individual acylcarnitines. METHODS The fasting serum acylcarnitine concentrations were determined in 49 T1D, 38 T2D and 38 MetS patients and 40 controls by isotope dilution electrospray ionization tandem mass spectrometry. RESULTS The acylcarnitine profiles of the 3patient groups shared elements with the controls. Considerably higher levels of almost all short-chain acylcarnitines (p < 0.05) and lower levels of some long-chain acylcarnitines were detected in T2D and MetS patients. The amounts of C3 and C4 carnitine were higher and most of the medium-chain and long-chain acylcarnitine levels were lower (p < 0.05) in T1D and MetS patients than in the controls. In T1D and T2D, the levels of C3 and C4 acylcarnitines were markedly elevated and some long-chain acylcarnitines were lower than the controls (p < 0.05). Moreover, significantly lower concentrations of free- and total carnitine were observed in T1D patients (p < 0.05). CONCLUSIONS Profound alterations were detected in acylcarnitine profiles in the 3 patient groups. Similarities in the patterns suggest different degrees of involvement of the same metabolic systems in a systems biology approach.
Collapse
Affiliation(s)
- Judit Bene
- Department of Medical Genetics, Clinical Center, University of Pécs, Pécs, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dénes J, Szabó E, Robinette SL, Szatmári I, Szőnyi L, Kreuder JG, Rauterberg EW, Takáts Z. Metabonomics of Newborn Screening Dried Blood Spot Samples: A Novel Approach in the Screening and Diagnostics of Inborn Errors of Metabolism. Anal Chem 2012; 84:10113-20. [DOI: 10.1021/ac302527m] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Júlia Dénes
- Biomolecular Medicine, Department
of Surgery and Cancer, Imperial College London, United Kingdom
| | | | - Steven L. Robinette
- Biomolecular Medicine, Department
of Surgery and Cancer, Imperial College London, United Kingdom
| | - Ildikó Szatmári
- Metabolic Diagnostic Laboratory,
1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - László Szőnyi
- Metabolic Diagnostic Laboratory,
1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Joachim G. Kreuder
- Hesse
Child Health Centre, Johann Wolfgang Goethe University Hospital, Giessen,
Germany
| | - Ernst W. Rauterberg
- Hesse
Child Health Centre, Johann Wolfgang Goethe University Hospital, Giessen,
Germany
| | - Zoltán Takáts
- Biomolecular Medicine, Department
of Surgery and Cancer, Imperial College London, United Kingdom
- Metabolic Diagnostic Laboratory,
1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
39
|
Garelnabi M, Litvinov D, Parthasarathy S. Evaluation of a gas chromatography method for azelaic acid determination in selected biological samples. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 2:397-402. [PMID: 22558586 PMCID: PMC3339096 DOI: 10.4297/najms.2010.2397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background: Azelaic acid (AzA) is the best known dicarboxilic acid to have pharmaceutical benefits and clinical applications and also to be associated with some diseases pathophysiology. Materials and Methods: We extracted and methylesterified AzA and determined its concentration in human plasma obtained from healthy individuals and also in mice fed AzA containing diet for three months. Results: AzA was detected in Gas Chromatography (GC) and confirmed by Liquid chromatography mass spectrometry (LCMS), and gas chromatography mass spectrometry (GCMC). Our results have shown that AzA can be determined efficiently in selected biological samples by GC method with 1nM limit of detection (LoD) and the limit of quantification (LoQ); was established at 50nM. Analytical Sensitivity as assayed by hexane demonstrated an analytical sensitivity at 0.050nM. The method has demonstrated 8-10% CV batch repeatability across the sample types and 13-18.9% CV for the Within-Lab Precision analysis. The method has shown that AzA can efficiently be recovered from various sample preparation including liver tissue homogenate (95%) and human plasma (97%). Conclusions: Because of its simplicity and lower limit of quantification, the present method provides a useful tool for determining AzA in various biological sample preparations.
Collapse
Affiliation(s)
- Mahdi Garelnabi
- Department of Laboratory and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | | | | |
Collapse
|
40
|
Lu C, Jiang Z, Fan X, Liao G, Li S, He C, Han L, Luo S, Liu Y, Lin H, Li L, Li X, Liang Q, Wang Y, Luo G. A metabonomic approach to the effect evaluation of treatment in patients infected with influenza A (H1N1). Talanta 2012; 100:51-6. [DOI: 10.1016/j.talanta.2012.07.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 11/28/2022]
|
41
|
Al-Owain M, Al-Zaidan H, Al-Hassnan Z. Map of autosomal recessive genetic disorders in Saudi Arabia: Concepts and future directions. Am J Med Genet A 2012; 158A:2629-40. [DOI: 10.1002/ajmg.a.35551] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/06/2012] [Indexed: 12/23/2022]
|
42
|
Comparison of Quenching and Extraction Methods for Metabolome Analysis of Vibrio Parahaemolyticus. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.3724/sp.j.1096.2011.01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Häberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, Karall D, Martinelli D, Crespo PS, Santer R, Servais A, Valayannopoulos V, Lindner M, Rubio V, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 2012; 7:32. [PMID: 22642880 PMCID: PMC3488504 DOI: 10.1186/1750-1172-7-32] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
Urea cycle disorders (UCDs) are inborn errors of ammonia detoxification/arginine synthesis due to defects affecting the catalysts of the Krebs-Henseleit cycle (five core enzymes, one activating enzyme and one mitochondrial ornithine/citrulline antiporter) with an estimated incidence of 1:8.000. Patients present with hyperammonemia either shortly after birth (~50%) or, later at any age, leading to death or to severe neurological handicap in many survivors. Despite the existence of effective therapy with alternative pathway therapy and liver transplantation, outcomes remain poor. This may be related to underrecognition and delayed diagnosis due to the nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity. These guidelines aim at providing a trans-European consensus to: guide practitioners, set standards of care and help awareness campaigns. To achieve these goals, the guidelines were developed using a Delphi methodology, by having professionals on UCDs across seven European countries to gather all the existing evidence, score it according to the SIGN evidence level system and draw a series of statements supported by an associated level of evidence. The guidelines were revised by external specialist consultants, unrelated authorities in the field of UCDs and practicing pediatricians in training. Although the evidence degree did hardly ever exceed level C (evidence from non-analytical studies like case reports and series), it was sufficient to guide practice on both acute and chronic presentations, address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Also, it identified knowledge voids that must be filled by future research. We believe these guidelines will help to: harmonise practice, set common standards and spread good practices with a positive impact on the outcomes of UCD patients.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zurich, 8032, Switzerland
| | - Nathalie Boddaert
- Radiologie Hopital Necker, Service Radiologie Pediatrique, 149 Rue De Sevres, Paris 15, 75015, France
| | - Alberto Burlina
- Department of Pediatrics, Division of Inborn Metabolic Disease, University Hospital Padua, Via Giustiniani 3, Padova, 35128, Italy
| | - Anupam Chakrapani
- Birmingham Children’s Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, United Kingdom
| | - Marjorie Dixon
- Dietetic Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, United Kingdom
| | - Martina Huemer
- Kinderabteilung, LKH Bregenz, Carl-Pedenz-Strasse 2, Bregenz, A-6900, Austria
| | - Daniela Karall
- University Children’s Hospital, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, Rome, I-00165, Italy
| | | | - René Santer
- Universitätsklinikum Hamburg Eppendorf, Klinik für Kinder- und Jugendmedizin, Martinistr. 52, Hamburg, 20246, Germany
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, rue de Sèvres, Paris, 75015, France
| | - Vassili Valayannopoulos
- Reference Center for Inherited Metabolic Disorders (MaMEA), Hopital Necker-Enfants Malades, 149 Rue de Sevres, Paris, 75015, France
| | - Martin Lindner
- University Children’s Hospital, Im Neuenheimer Feld 430, Heidelberg, 69120, Germany
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC) and Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), C/ Jaume Roig 11, Valencia, 46010, Spain
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, Rome, I-00165, Italy
| |
Collapse
|
44
|
Wang X, Kapoor V, Smythe GA. Extraction and Chromatography-Mass Spectrometric Analysis of the Active Principles from Selected Chinese Herbs and Other Medicinal Plants. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 31:927-44. [PMID: 14992545 DOI: 10.1142/s0192415x0300165x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Medicinal herbs have a long history of use in the practice of traditional Chinese medicine and a substantial body of evidence has, over recent decades, demonstrated a range of important pharmacological properties. Western biomedical researchers are examining not only the efficacy of the traditional herbal products but, through the use of a range of bioassays and analytical techniques, are developing improved methods to isolate and characterize active components. This review briefly describes the different extraction methodologies used in the preparation of herbal extracts and reviews the utility of chromatography-mass spectrometry for the analysis of their active components. In particular, applications of gas or liquid chromatography with mass spectrometry for the isolation and characterization of active components of ginseng are critically assessed. The analysis of toxic substances from herb extracts with mass spectrometric techniques is also discussed along with the potential for mass spectrometric methods to investigate the proteomics of herbal extracts.
Collapse
Affiliation(s)
- Xiaosuo Wang
- Bioanalytical Mass Spectrometry Facility, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
45
|
Krug S, Kastenmüller G, Stückler F, Rist MJ, Skurk T, Sailer M, Raffler J, Römisch‐Margl W, Adamski J, Prehn C, Frank T, Engel K, Hofmann T, Luy B, Zimmermann R, Moritz F, Schmitt‐Kopplin P, Krumsiek J, Kremer W, Huber F, Oeh U, Theis FJ, Szymczak W, Hauner H, Suhre K, Daniel H. The dynamic range of the human metabolome revealed by challenges. FASEB J 2012; 26:2607-19. [DOI: 10.1096/fj.11-198093] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Susanne Krug
- Department of Nutritional MedicineResearch Center for Nutrition and Food SciencesTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Ferdinand Stückler
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Manuela J. Rist
- Molecular Nutrition UnitTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Thomas Skurk
- Department of Nutritional MedicineResearch Center for Nutrition and Food SciencesTechnische Universität MünchenFreising‐WeihenstephanGermany
- Medical Radiation Physics and Diagnostics Research UnitHelmholtz Zentrum MünchenNeuherbergGermany
| | - Manuela Sailer
- Molecular Nutrition UnitTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Johannes Raffler
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Faculty of BiologyLudwig‐Maximilians‐UniversitätPlanegg‐MartinsriedGermany
| | - Werner Römisch‐Margl
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Jerzy Adamski
- Institute of Experimental GeneticsGenome Analysis CenterHelmholtz Zentrum MünchenNeuherbergGermany
| | - Cornelia Prehn
- Institute of Experimental GeneticsGenome Analysis CenterHelmholtz Zentrum MünchenNeuherbergGermany
| | - Thomas Frank
- Department of General Food TechnologyTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Karl‐Heinz Engel
- Department of General Food TechnologyTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Thomas Hofmann
- Department of Food Chemistry and Molecular Sensory ScienceTechnische Universität MünchenFreising‐WeihenstephanGermany
| | - Burkhard Luy
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany
- Institute for Biological Interfaces IIKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Ralf Zimmermann
- Comprehensive Molecular Analytics Cooperation Group, Joint Mass Spectrometry CentreHelmholtz Zentrum MünchenNeuherbergGermany
- Department of Analytical ChemistryUniversity of RostockRostockGermany
| | - Franco Moritz
- Analytical Biogeochemistry Research UnitHelmholtz Zentrum MünchenNeuherbergGermany
| | | | - Jan Krumsiek
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Werner Kremer
- LipoFIT Analytic GmbHRegensburgGermany
- Institute of Biophysics and Physical BiochemistryUniversity of RegensburgRegensburgGermany
- Center for Magnetic Resonance in Chemistry and BiomedicineUniversity of RegensburgRegensburgGermany
| | | | - Uwe Oeh
- Medical Radiation Physics and Diagnostics Research UnitHelmholtz Zentrum MünchenNeuherbergGermany
| | - Fabian J. Theis
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Department of MathematicsTechnische Universität MünchenMunichGermany
| | - Wilfried Szymczak
- Medical Radiation Physics and Diagnostics Research UnitHelmholtz Zentrum MünchenNeuherbergGermany
| | - Hans Hauner
- Department of Nutritional MedicineResearch Center for Nutrition and Food SciencesTechnische Universität MünchenFreising‐WeihenstephanGermany
- Klinikum Rechts der IsarTechnische Universität MünchenMunichGermany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Faculty of BiologyLudwig‐Maximilians‐UniversitätPlanegg‐MartinsriedGermany
- Department of Physiology and BiophysicsWeill Cornell Medical College in QatarDohaQatar
| | - Hannelore Daniel
- Molecular Nutrition UnitTechnische Universität MünchenFreising‐WeihenstephanGermany
| |
Collapse
|
46
|
Fong BMW, Tam S, Leung KSY. Quantification of acylglycines in human urine by HPLC electrospray ionization-tandem mass spectrometry and the establishment of pediatric reference interval in local Chinese. Talanta 2012; 88:193-200. [DOI: 10.1016/j.talanta.2011.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
|
47
|
Giordano G, Di Gangi IM, Gucciardi A, Naturale M. Quantification of underivatised amino acids on dry blood spot, plasma, and urine by HPLC-ESI-MS/MS. Methods Mol Biol 2012; 828:219-242. [PMID: 22125148 DOI: 10.1007/978-1-61779-445-2_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Enzyme deficiencies in amino acid (AA) metabolism affecting the levels of amino acids and their derivatives in physiological fluids may serve as diagnostically significant biomarkers for one or a group of metabolic disorders. Therefore, it is important to monitor a wide range of free amino acids simultaneously and to quantify them. This is time consuming if we use the classical methods and more than ever now that many laboratories have introduced Newborn Screening Programs for the semiquantitative analysis, detection, and quantification of some amino acids needed to be performed in a short time to reduce the rate of false positives.We have modified the stable isotope dilution HPLC-electrospray ionization (ESI)-MS/MS method previously described by Qu et al. (Anal Chem 74: 2034-2040, 2002) for a more rapid, robust, sensitive, and specific detection and quantification of underivatised amino acids. The modified method reduces the time of analysis to 10 min with very good reproducibility of retention times and a better separation of the metabolites and their isomers.The omission of the derivatization step allowed us to achieve some important advantages: fast and simple sample preparation and exclusion of artefacts and interferences. The use of this technique is highly sensitive, specific, and allows monitoring of 40 underivatized amino acids, including the key isomers and quantification of some of them, in order to cover many diagnostically important intermediates of metabolic pathways.We propose this HPLC-ESI-MS/MS method for underivatized amino acids as a support for the Newborn Screening as secondary test using the same dried blood spots for a more accurate and specific examination in case of suspected metabolic diseases. In this way, we avoid plasma collection from the patient as it normally occurs, reducing anxiety for the parents and further costs for analysis.The same method was validated and applied also to plasma and urine samples with good reproducibility, accuracy, and precision. The fast run time, feasibility of high sample throughput, and small amount of sample required make this method very suitable for routine analysis in the clinical setting.
Collapse
|
48
|
Waybright TJ, Van QN, Muschik GM, Conrads TP, Veenstra TD, Issaq HJ. LC‐MS in Metabonomics: Optimization of Experimental Conditions for the Analysis of Metabolites in Human Urine. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826070600914638] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Timothy J. Waybright
- a Laboratory of Proteomics and Analytical Technologies , SAIC‐Frederick, Inc., NCI‐Frederick , Frederick, Maryland, USA
| | - Que N. Van
- a Laboratory of Proteomics and Analytical Technologies , SAIC‐Frederick, Inc., NCI‐Frederick , Frederick, Maryland, USA
| | - Gary M. Muschik
- a Laboratory of Proteomics and Analytical Technologies , SAIC‐Frederick, Inc., NCI‐Frederick , Frederick, Maryland, USA
| | - Thomas P. Conrads
- a Laboratory of Proteomics and Analytical Technologies , SAIC‐Frederick, Inc., NCI‐Frederick , Frederick, Maryland, USA
| | - Timothy D. Veenstra
- a Laboratory of Proteomics and Analytical Technologies , SAIC‐Frederick, Inc., NCI‐Frederick , Frederick, Maryland, USA
| | - Haleem J. Issaq
- a Laboratory of Proteomics and Analytical Technologies , SAIC‐Frederick, Inc., NCI‐Frederick , Frederick, Maryland, USA
| |
Collapse
|
49
|
Proteomics in molecular diagnosis: typing of amyloidosis. J Biomed Biotechnol 2011; 2011:754109. [PMID: 22131817 PMCID: PMC3205904 DOI: 10.1155/2011/754109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/01/2011] [Accepted: 07/11/2011] [Indexed: 12/21/2022] Open
Abstract
Amyloidosis is a group of disorders caused by deposition of misfolded proteins as aggregates in the extracellular tissues of the body, leading to impairment of organ function. Correct identification of the causal amyloid protein is absolutely crucial for clinical management in order to avoid misdiagnosis and inappropriate, potentially harmful treatment, to assess prognosis and to offer genetic counselling if relevant. Current diagnostic methods, including antibody-based amyloid typing, have limited ability to detect the full range of amyloid forming proteins. Recent investigations into proteomic identification of amyloid protein have shown promise. This paper will review the current state of the art in proteomic analysis of amyloidosis, discuss the suitability of techniques based on the properties of amyloidosis, and further suggest potential areas of development. Establishment of mass spectrometry aided amyloid typing procedures in the pathology laboratory will allow accurate amyloidosis diagnosis in a timely manner and greatly facilitate clinical management of the disease.
Collapse
|
50
|
Alodaib A, Carpenter K, Wiley V, Sim K, Christodoulou J, Wilcken B. An improved ultra performance liquid chromatography-tandem mass spectrometry method for the determination of alloisoleucine and branched chain amino acids in dried blood samples. Ann Clin Biochem 2011; 48:468-70. [DOI: 10.1258/acb.2011.010283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|