1
|
Katane M, Homma H. Biosynthesis and Degradation of Free D-Amino Acids and Their Physiological Roles in the Periphery and Endocrine Glands. Biol Pharm Bull 2024; 47:562-579. [PMID: 38432912 DOI: 10.1248/bpb.b23-00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It was long believed that D-amino acids were either unnatural isomers or laboratory artifacts, and that the important functions of amino acids were exerted only by L-amino acids. However, recent investigations have revealed a variety of D-amino acids in mammals that play important roles in physiological functions, including free D-serine and D-aspartate that are crucial in the central nervous system. The functions of several D-amino acids in the periphery and endocrine glands are also receiving increasing attention. Here, we present an overview of recent advances in elucidating the physiological roles of D-amino acids, especially in the periphery and endocrine glands.
Collapse
Affiliation(s)
- Masumi Katane
- Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University
| | - Hiroshi Homma
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
2
|
Liu Y, Wu Z, Armstrong DW, Wolosker H, Zheng Y. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem 2023; 7:355-373. [PMID: 37117811 PMCID: PMC10175202 DOI: 10.1038/s41570-023-00476-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 04/30/2023]
Abstract
The chirality of small metabolic molecules is important in controlling physiological processes and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical procedures, in part owing to their large variety and low concentration. In this Review, we describe current and emerging techniques that detect and quantify small-molecule enantiomers and their biological importance.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zilong Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX, USA.
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Huang CC, Wei IH, Yang HT, Lane HY. Determination of D-serine and D-alanine Tissue Levels in the Prefrontal Cortex and Hippocampus of Rats After a Single Dose of Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, with Potential Antipsychotic and Antidepressant Properties. Neurochem Res 2023; 48:2066-2076. [PMID: 36786942 DOI: 10.1007/s11064-023-03884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/21/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
The effects of the N-methyl-D-aspartate receptor activators D-serine, D-alanine, and sarcosine against schizophrenia and depression are promising. Nevertheless, high doses of D-serine and sarcosine are associated with undesirable nephrotoxicity or worsened prostatic cancer. Thus, alternatives are needed. DAAO inhibition can increase D-serine as well as D-alanine and protect against D-serine-induced nephrotoxicity. Although several DAAO inhibitors improve the symptoms of schizophrenia and depression, they can increase the plasma levels but not brain levels of D-serine. The mechanism of action of DAAO inhibitors remains unclear. We investigated the effects of the DAAO inhibitor sodium benzoate on the prefrontal cortex and hippocampal level of D-alanine as known another substrate with antipsychotic and antidepressant properties and other NMDAR-related amino acids, such as, L-alanine, D-serine, L-serine, D-glutamate, L-glutamate, and glycine levels. Our results indicate that sodium benzoate exerts antipsychotic and antidepressant-like effects without changing the D-serine levels in the brain prefrontal cortex (PFC) and hippocampus. Moreover, D-alanine levels in the PFC and hippocampus did not change. Despite these negative findings regarding the effects of D-amino acids in the PFC and hippocampus, sodium benzoate exhibited antipsychotic and antidepressant-like effects. Thus, the therapeutic effects of sodium benzoate are independent of D-serine or D-alanine levels. In conclusion, sodium benzoate may be effective among patients with schizophrenia or depression; however, the mechanisms of actions remain to be elucidated.
Collapse
Affiliation(s)
- Chih-Chia Huang
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, No. 161, Yu-Pin Road Tsaotun Township, Nantou, 54249, Taiwan.
- Department of Psychiatry, China Medical University, Taichung, Taiwan.
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - I-Hua Wei
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Hui-Ting Yang
- School of Food Safety, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
4
|
Hasin N, Riggs LM, Shekhtman T, Ashworth J, Lease R, Oshone RT, Humphries EM, Badner JA, Thomson PA, Glahn DC, Craig DW, Edenberg HJ, Gershon ES, McMahon FJ, Nurnberger JI, Zandi PP, Kelsoe JR, Roach JC, Gould TD, Ament SA. Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder. Mol Psychiatry 2022; 27:3842-3856. [PMID: 35546635 DOI: 10.1038/s41380-022-01609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.
Collapse
Affiliation(s)
- Naushaba Hasin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Robert Lease
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rediet T Oshone
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Humphries
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Molecular Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Judith A Badner
- Department of Psychiatry, Rush University Medical College, Chicago, IL, USA
| | - Pippa A Thomson
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David W Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Howard J Edenberg
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot S Gershon
- Departments of Psychiatry and Human Genetics, University of Chicago, Chicago, IL, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Pharmacology and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Shikanai H, Ikimura K, Miura M, Shindo T, Watarai A, Izumi T. Separation and detection of D-/L-serine by conventional HPLC. MethodsX 2022; 9:101752. [PMID: 35769612 PMCID: PMC9234346 DOI: 10.1016/j.mex.2022.101752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
D-serine has a role as an endogenous allosteric agonist of N-methyl-D-aspartate (NMDA) receptor in the mammalian brain. In this study, we present a detailed description of our method that measures D-/L-serine by using conventional high performance liquid chromatography (HPLC). • We reacted D-serine and L-serine with ortho-phthalaldehyde (OPA) and N-acetyl-L-cysteine (NAC) to form diastereomeric isoindole derivatives, then we separated and detected them by conventional reversed phase HPLC with electrochemical detector (ECD). • We present typical measurement data of rat brain homogenate as an example of a convenient, appropriate method for measuring brain concentrations of D-serine. • Since many peaks appear in biological samples, we confirmed that the peaks were derived from serine by treating the sample with D-amino oxidase and catalase to decompose D-serine. As a results, one peak disappeared, suggesting that it is derived from D-serine.
Collapse
Affiliation(s)
- Hiroki Shikanai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan.,Advanced Research Promotion Center, Health Science University of Hokkaido, Japan
| | | | - Momoko Miura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Japan
| | - Tsugumi Shindo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan
| | - Akane Watarai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan
| | - Takeshi Izumi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan.,Advanced Research Promotion Center, Health Science University of Hokkaido, Japan
| |
Collapse
|
6
|
Gonda Y, Ishii C, Mita M, Nishizaki N, Ohtomo Y, Hamase K, Shimizu T, Sasabe J. Astrocytic D -amino acid oxidase degrades D -serine in the hindbrain. FEBS Lett 2022; 596:2889-2897. [PMID: 35665501 DOI: 10.1002/1873-3468.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022]
Abstract
D -serine modulates excitatory neurotransmission by binding to N-methyl-D -aspartate glutamate receptors. D- amino acid oxidase (DAO) degrades D -amino acids, such as D -serine, in the central nervous system, and is associated with neurological and psychiatric disorders. However, cell types that express brain DAO remain controversial, and whether brain DAO influences systemic D -amino acids in addition to brain D -serine remains unclear. Here, we created astrocyte-specific DAO-conditional knockout mice. Knockout in glial fibrillary acidic protein (GFAP)-positive cells eliminated DAO expression in the hindbrain and increased D -serine levels significantly in the cerebellum. Brain DAO did not influence levels of D -amino acids in the forebrain or periphery. These results show that astrocytic DAO regulates D -serine specifically in the hindbrain.
Collapse
Affiliation(s)
- Yusuke Gonda
- Department of Pharmacology, Keio University School of Medicine, 160-8582, Tokyo, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate school of Medicine, 113-8431, Tokyo, Japan
| | - Chiharu Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | | | - Naoto Nishizaki
- Department of Pediatrics, Juntendo University Urayasu Hospital, 279-0021, Chiba, Japan
| | - Yoshiyuki Ohtomo
- Department of Pediatrics, Juntendo University Nerima Hospital, 177-8521, Tokyo, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate school of Medicine, 113-8431, Tokyo, Japan
| | - Jumpei Sasabe
- Department of Pharmacology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| |
Collapse
|
7
|
Development of an off-line heart cutting two-dimensional HPLC system for enantioselective analysis of serine, threonine and allo-threonine in human physiological fluids. J Pharm Biomed Anal 2022; 217:114807. [DOI: 10.1016/j.jpba.2022.114807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022]
|
8
|
Yoshikawa M, Kan T, Shirose K, Watanabe M, Matsuda M, Ito K, Kawaguchi M. Free d-Amino Acids in Salivary Gland in Rat. BIOLOGY 2022; 11:390. [PMID: 35336764 PMCID: PMC8944958 DOI: 10.3390/biology11030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Free d-amino acids, which are enantiomers of l-amino acids, are found in mammals, including humans, and play an important role in a range of physiological functions in the central nervous system and peripheral tissues. Several d-amino acids have been observed in saliva, but their origin and the enzymes involved in their metabolism and catabolism remain to be clarified. In the present study, large amounts of d-aspartic acid and small amounts of d-serine and d-alanine were detected in all three major salivary glands in rat. No other d-enantiomers were detected. Protein expression of d-amino acid oxidase and d-aspartate oxidase, the enzymes responsible for the oxidative deamination of neutral and dicarboxylic d-amino acids, respectively, were detected in all three types of salivary gland. Furthermore, protein expression of the d-serine metabolic enzyme, serine racemase, in parotid glands amounted to approximately 40% of that observed in the cerebral cortex. The N-methyl-d-aspartic acid subunit proteins NR1 and NR2D were detected in all three major salivary glands. The results of the present study suggest that d-amino acids play a physiological role in a range of endocrine and exocrine function in salivary glands.
Collapse
Affiliation(s)
- Masanobu Yoshikawa
- Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Takugi Kan
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Kosuke Shirose
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Mariko Watanabe
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Mitsumasa Matsuda
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Kenji Ito
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | | |
Collapse
|
9
|
Meftah A, Hasegawa H, Kantrowitz JT. D-Serine: A Cross Species Review of Safety. Front Psychiatry 2021; 12:726365. [PMID: 34447324 PMCID: PMC8384137 DOI: 10.3389/fpsyt.2021.726365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Background:D-Serine, a direct, full agonist at the D-serine/glycine modulatory site of the N-methyl-D-aspartate-type glutamate receptors (NMDAR), has been assessed as a treatment for multiple psychiatric and neurological conditions. Based on studies in rats, concerns of nephrotoxicity have limited D-serine research in humans, particularly using high doses. A review of D-serine's safety is timely and pertinent, as D-serine remains under active study for schizophrenia, both directly (R61 MH116093) and indirectly through D-amino acid oxidase (DAAO) inhibitors. The principal focus is on nephrotoxicity, but safety in other physiologic and pathophysiologic systems are also reviewed. Methods: Using the search terms "D-serine," "D-serine and schizophrenia," "D-serine and safety," "D-serine and nephrotoxicity" in PubMed, we conducted a systematic review on D-serine safety. D-serine physiology, dose-response and efficacy in clinical studies and dAAO inhibitor safety is also discussed. Results: When D-serine doses >500 mg/kg are used in rats, nephrotoxicity, manifesting as an acute tubular necrosis syndrome, seen within hours of administration is highly common, if not universal. In other species, however, D-serine induced nephrotoxicity has not been reported, even in other rodent species such as mice and rabbits. Even in rats, D--serine related toxicity is dose dependent and reversible; and does not appear to be present in rats at doses producing an acute Cmax of <2,000 nmol/mL. For comparison, the Cmax of D-serine 120 mg/kg, the highest dose tested in humans, is ~500 nmol/mL in acute dosing. Across all published human studies, only one subject has been reported to have abnormal renal values related to D-serine treatment. This abnormality did not clearly map on to the acute tubular necrosis syndrome seen in rats, and fully resolved within a few days of stopping treatment. DAAO inhibitors may be nephroprotective. D-Serine may have a physiologic role in metabolic, extra-pyramidal, cardiac and other systems, but no other clinically significant safety concerns are revealed in the literature. Conclusions: Even before considering human to rat differences in renal physiology, using current FDA guided monitoring paradigms, D-serine appears safe at currently studied maximal doses, with potential safety in combination with DAAO inhibitors.
Collapse
Affiliation(s)
- Amir Meftah
- College of Physicians and Surgeons, Columbia University, New York City, NY, United States
- New York State Psychiatric Institute, New York City, NY, United States
| | - Hiroshi Hasegawa
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Joshua T. Kantrowitz
- College of Physicians and Surgeons, Columbia University, New York City, NY, United States
- New York State Psychiatric Institute, New York City, NY, United States
- Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
10
|
Sherwood MW, Oliet SHR, Panatier A. NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. Int J Mol Sci 2021; 22:7258. [PMID: 34298875 PMCID: PMC8307462 DOI: 10.3390/ijms22147258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Synaptic plasticity is an extensively studied cellular correlate of learning and memory in which NMDARs play a starring role. One of the most interesting features of NMDARs is their ability to act as a co-incident detector. It is unique amongst neurotransmitter receptors in this respect. Co-incident detection is possible because the opening of NMDARs requires membrane depolarisation and the binding of glutamate. Opening of NMDARs also requires a co-agonist. Although the dynamic regulation of glutamate and membrane depolarization have been well studied in coincident detection, the role of the co-agonist site is unexplored. It turns out that non-neuronal glial cells, astrocytes, regulate co-agonist availability, giving them the ability to influence synaptic plasticity. The unique morphology and spatial arrangement of astrocytes at the synaptic level affords them the capacity to sample and integrate information originating from unrelated synapses, regardless of any pre-synaptic and post-synaptic commonality. As astrocytes are classically considered slow responders, their influence at the synapse is widely recognized as modulatory. The aim herein is to reconsider the potential of astrocytes to participate directly in ongoing synaptic NMDAR activity and co-incident detection.
Collapse
Affiliation(s)
- Mark W. Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| | | | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| |
Collapse
|
11
|
Kajitani K, Ishikawa T, Shibata K, Kouya T, Kera Y, Takahashi S. Development of an enzymatic screening method for d-aspartate-producing lactic acid bacteria. Enzyme Microb Technol 2021; 149:109835. [PMID: 34311880 DOI: 10.1016/j.enzmictec.2021.109835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
d-Aspartate (d-Asp) is an important intermediate for synthetic penicillin and an endogenous amino acid that plays important roles in the endocrine and nervous systems in animals including humans. Lactic acid bacteria (LABs) have been used as probiotics in humans, and some LAB species produce d-Asp as a component of cell wall peptidoglycan. LAB strains with greater d-Asp production would therefore be valuable for industrial d-Asp production. In this study, we developed an enzymatic screening method for d-Asp-producing LABs and isolated a strain with high d-Asp production. The d-Asp concentration in the culture medium was colorimetrically estimated up to 4 mM using d-aspartate oxidase (ChDDO) from the yeast Cryptococcus humicola strain UJ1 coupled with horseradish peroxidase, although a more accurate determination required correction because of interference by the medium component Mn2+. We isolated 628 LAB strains from various foods and screened them for d-Asp production using the enzymatic d-Asp assay method. The screening identified 13 d-Asp-producing LAB strains, which were suggested to belong to the genera Latilactobacillus, Levilactobacillus, Lactococcus, and Enterococcus. d-Asp production ability was likely to widely differ among the strains in the same genera and species. One strain, named strain WDN19, produced much higher d-Asp levels (1.84 mM), and it was closely related to Latilactobacillus curvatus. These results indicated that the enzymatic screening method was useful for identifying and isolating d-Asp-producing LABs rapidly and easily, and it might provide novel findings regarding d-Asp production by LABs.
Collapse
Affiliation(s)
- Kengo Kajitani
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Takumi Ishikawa
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Kimihiko Shibata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, Fukushima, 970-8034, Japan
| | - Tomoaki Kouya
- Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, Tochigi, 323-0806, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
12
|
Orzylowski M, Fujiwara E, Mousseau DD, Baker GB. An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia. Front Psychiatry 2021; 12:754032. [PMID: 34707525 PMCID: PMC8542907 DOI: 10.3389/fpsyt.2021.754032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Dementia, of which Alzheimer's disease (AD) is the most common form, is characterized by progressive cognitive deterioration, including profound memory loss, which affects functioning in many aspects of life. Although cognitive deterioration is relatively common in aging and aging is a risk factor for AD, the condition is not necessarily a part of the aging process. The N-methyl-D-aspartate glutamate receptor (NMDAR) and its co-agonist D-serine are currently of great interest as potential important contributors to cognitive function in normal aging and dementia. D-Serine is necessary for activation of the NMDAR and in maintenance of long-term potentiation (LTP) and is involved in brain development, neuronal connectivity, synaptic plasticity and regulation of learning and memory. In this paper, we review evidence, from both preclinical and human studies, on the involvement of D-serine (and the enzymes involved in its metabolism) in regulation of cognition. Potential mechanisms of action of D-serine are discussed in the context of normal aging and in dementia, as is the potential for using D-serine as a potential biomarker and/or therapeutic agent in dementia. Although there is some controversy in the literature, it has been proposed that in normal aging there is decreased expression of serine racemase and decreased levels of D-serine and down-regulation of NMDARs, resulting in impaired synaptic plasticity and deficits in learning and memory. In contrast, in AD there appears to be activation of serine racemase, increased levels of D-serine and overstimulation of NMDARs, resulting in cytotoxicity, synaptic deficits, and dementia.
Collapse
Affiliation(s)
- Magdalena Orzylowski
- Villa Caritas Geriatric Psychiatry Hospital, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Usiello A, Di Fiore MM, De Rosa A, Falvo S, Errico F, Santillo A, Nuzzo T, Chieffi Baccari G. New Evidence on the Role of D-Aspartate Metabolism in Regulating Brain and Endocrine System Physiology: From Preclinical Observations to Clinical Applications. Int J Mol Sci 2020; 21:E8718. [PMID: 33218144 PMCID: PMC7698810 DOI: 10.3390/ijms21228718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.
Collapse
Affiliation(s)
- Alessandro Usiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Arianna De Rosa
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Francesco Errico
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, 80055 Portici, Italy;
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Tommaso Nuzzo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| |
Collapse
|
14
|
Lee CJ, Qiu TA, Sweedler JV. d-Alanine: Distribution, origin, physiological relevance, and implications in disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140482. [DOI: 10.1016/j.bbapap.2020.140482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
|
15
|
Chieffi Baccari G, Falvo S, Santillo A, Di Giacomo Russo F, Di Fiore MM. D-Amino acids in mammalian endocrine tissues. Amino Acids 2020; 52:1263-1273. [PMID: 32930873 DOI: 10.1007/s00726-020-02892-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/07/2020] [Indexed: 01/05/2023]
Abstract
D-Aspartate, D-serine and D-alanine are a regular occurrence in mammalian endocrine tissues, though in amounts varying with the type of gland. The pituitary gland, pineal gland, thyroid, adrenal glands and testis contain relatively large amounts of D-aspartate in all species examined. D-alanine is relatively abundant in the pituitary gland and pancreas. High levels of D-serine characterize the hypothalamus. D-leucine, D-proline and D-glutamate are generally low. The current knowledge of physiological roles of D-amino acids in endocrine tissues is far from exhaustive, yet the topic is attracting increasing interest because of its potential in pharmacological application. D-aspartate is known to act at all levels of the hypothalamus-pituitary-testis axis, playing a key role in reproductive biology in several vertebrate classes. An involvement of D-amino acids in the endocrine function of the pancreas is emerging. D-Aspartate has been immunolocalized in insulin-containing secretory granules in INS-1 E clonal β cells and is co-secreted with insulin by exocytosis. Specific immunolocalization of D-alanine in pituitary ACTH-secreting cells and pancreatic β-cells suggests that this amino acid participates in blood glucose regulation in mammals. By modulating insulin secretion, D-serine probably participates in the control of systemic glucose metabolism by modulating insulin secretion. We anticipate that future investigation will significantly increase the functional repertoire of D-amino acids in homeostatic control.
Collapse
Affiliation(s)
- Gabriella Chieffi Baccari
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Sara Falvo
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Alessandra Santillo
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Federica Di Giacomo Russo
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dip. Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy.
| |
Collapse
|
16
|
Yoneyama T, Sato S, Sykes A, Fradley R, Stafford S, Bechar S, Howley E, Patel T, Tagawa Y, Moriwaki T, Asahi S. Mechanistic Multilayer Quantitative Model for Nonlinear Pharmacokinetics, Target Occupancy and Pharmacodynamics (PK/TO/PD) Relationship of D-Amino Acid Oxidase Inhibitor, TAK-831 in Mice. Pharm Res 2020; 37:164. [PMID: 32901384 PMCID: PMC7478952 DOI: 10.1007/s11095-020-02893-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Purpose TAK-831 is a highly selective and potent inhibitor of D-amino acid oxidase (DAAO) currently under clinical development for schizophrenia. In this study, a mechanistic multilayer quantitative model that parsimoniously connects pharmacokinetics (PK), target occupancy (TO) and D-serine concentrations as a pharmacodynamic (PD) readout was established in mice. Methods PK, TO and PD time-profiles were obtained in mice and analyzed by mechanistic binding kinetics model connected with an indirect response model in a step wise fashion. Brain distribution was investigated to elucidate a possible mechanism driving the hysteresis between PK and TO. Results The observed nonlinear PK/TO/PD relationship was well captured by mechanistic modeling framework within a wide dose range of TAK-831 in mice. Remarkably different brain distribution was observed between target and reference regions, suggesting that the target-mediated slow binding kinetics rather than slow penetration through the blood brain barrier caused the observed distinct kinetics between PK and TO. Conclusion A quantitative mechanistic model for concentration- and time-dependent nonlinear PK/TO/PD relationship was established for TAK-831 in mice with accounting for possible rate-determining process. The established mechanistic modeling framework will provide a quantitative means for multilayer biomarker-assisted clinical development in multiple central nervous system indications. Electronic supplementary material The online version of this article (10.1007/s11095-020-02893-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoki Yoneyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| | - Sho Sato
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Andy Sykes
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Cambridge Ltd, Cambridge, UK
| | - Rosa Fradley
- Pharmacology, Takeda Cambridge Ltd, Cambridge, UK
| | | | - Shyam Bechar
- Pharmacology, Takeda Cambridge Ltd, Cambridge, UK
| | | | - Toshal Patel
- Pharmacology, Takeda Cambridge Ltd, Cambridge, UK
| | - Yoshihiko Tagawa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Toshiya Moriwaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Satoru Asahi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
17
|
Abstract
D-Amino acids occur in modest amounts in bacterial proteins and the bacterial cell wall, as well as in peptide antibiotics. Therefore, D-amino acids present in terrestrial vertebrates were believed to be derived from bacteria present in the gastrointestinal tract or fermented food. However, both exogenous and endogenous origins of D-amino acids have been confirmed. Terrestrial vertebrates possess an enzyme for converting certain L-isomers to D-isomers. D-Amino acids have nutritional aspects and functions, some are similar to, and others are different from those of L-isomers. Here, we describe the nutritional characteristics and functions of D-amino acids and also discuss the future perspectives of D-amino acid nutrition in the chicken.
Collapse
|
18
|
Furusho A, Koga R, Akita T, Mita M, Kimura T, Hamase K. Three-Dimensional High-Performance Liquid Chromatographic Determination of Asn, Ser, Ala, and Pro Enantiomers in the Plasma of Patients with Chronic Kidney Disease. Anal Chem 2019; 91:11569-11575. [DOI: 10.1021/acs.analchem.9b01615] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aogu Furusho
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Reiko Koga
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takeyuki Akita
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masashi Mita
- Shiseido Co., Ltd., 1-6-2 Higashi-shimbashi, Minato-ku, Tokyo 105-8310, Japan
| | - Tomonori Kimura
- National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saitoasagi, Ibaraki 567-0085, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
19
|
Mo TT, Dai H, Du H, Zhang RY, Chai KP, An Y, Chen JJ, Wang JK, Chen ZJ, Chen CZ, Jiang XJ, Tang R, Wang LP, Tan Q, Tang P, Miao XY, Meng P, Zhang LB, Cheng SQ, Peng B, Tu BJ, Han TL, Xia YY, Baker PN. Gas chromatography-mass spectrometry based metabolomics profile of hippocampus and cerebellum in mice after chronic arsenic exposure. ENVIRONMENTAL TOXICOLOGY 2019; 34:103-111. [PMID: 30375170 DOI: 10.1002/tox.22662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Intake of arsenic (As) via drinking water has been a serious threat to global public health. Though there are numerous reports of As neurotoxicity, its pathogenesis mechanisms remain vague especially its chronic effects on metabolic network. Hippocampus is a renowned area in relation to learning and memory, whilst recently, cerebellum is argued to be involved with process of cognition. Therefore, the study aimed to explore metabolomics alternations in these two areas after chronic As exposure, with the purpose of further illustrating details of As neurotoxicity. Twelve 3-week-old male C57BL/6J mice were divided into two groups, receiving deionized drinking water (control group) or 50 mg/L of sodium arsenite (via drinking water) for 24 weeks. Learning and memory abilities were tested by Morris water maze (MWM) test. Pathological and morphological changes of hippocampus and cerebellum were captured via transmission electron microscopy (TEM). Metabolic alterations were analyzed by gas chromatography-mass spectrometry (GC-MS). MWM test confirmed impairments of learning and memory abilities of mice after chronic As exposure. Metabolomics identifications indicated that tyrosine increased and aspartic acid (Asp) decreased simultaneously in both hippocampus and cerebellum. Intermediates (succinic acid) and indirect involved components of tricarboxylic acid cycle (proline, cysteine, and alanine) were found declined in cerebellum, indicating disordered energy metabolism. Our findings suggest that these metabolite alterations are related to As-induced disorders of amino acids and energy metabolism, which might therefore, play an important part in mechanisms of As neurotoxicity.
Collapse
Affiliation(s)
- Ting-Ting Mo
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Hua Dai
- Department of Public Health, Guiyang Center for Disease Control and Prevention, Guiyang, China
| | - Hang Du
- Center of Experimental Medicine, Chongqing Municipal Hospital for Prevention and Control of Occupational Diseases, Chongqing, China
| | - Rui-Yuan Zhang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ke-Ping Chai
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Yao An
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ji-Ji Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Jun-Ke Wang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Zi-Jin Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Cheng-Zhi Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Xue-Jun Jiang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Rong Tang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Li-Ping Wang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Qiang Tan
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ping Tang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Xin-Yu Miao
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Pan Meng
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Long-Bin Zhang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Shu-Qun Cheng
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Bin Peng
- Department of Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Bai-Jie Tu
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yin-Yin Xia
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
20
|
Pollegioni L, Sacchi S, Murtas G. Human D-Amino Acid Oxidase: Structure, Function, and Regulation. Front Mol Biosci 2018; 5:107. [PMID: 30547037 PMCID: PMC6279847 DOI: 10.3389/fmolb.2018.00107] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
D-Amino acid oxidase (DAAO) is an FAD-containing flavoenzyme that catalyzes with absolute stereoselectivity the oxidative deamination of all natural D-amino acids, the only exception being the acidic ones. This flavoenzyme plays different roles during evolution and in different tissues in humans. Its three-dimensional structure is well conserved during evolution: minute changes are responsible for the functional differences between enzymes from microorganism sources and those from humans. In recent years several investigations focused on human DAAO, mainly because of its role in degrading the neuromodulator D-serine in the central nervous system. D-Serine is the main coagonist of N-methyl D-aspartate receptors, i.e., excitatory amino acid receptors critically involved in main brain functions and pathologic conditions. Human DAAO possesses a weak interaction with the FAD cofactor; thus, in vivo it should be largely present in the inactive, apoprotein form. Binding of active-site ligands and the substrate stabilizes flavin binding, thus pushing the acquisition of catalytic competence. Interestingly, the kinetic efficiency of the enzyme on D-serine is very low. Human DAAO interacts with various proteins, in this way modulating its activity, targeting, and cell stability. The known properties of human DAAO suggest that its activity must be finely tuned to fulfill a main physiological function such as the control of D-serine levels in the brain. At present, studies are focusing on the epigenetic modulation of human DAAO expression and the role of post-translational modifications on its main biochemical properties at the cellular level.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Giulia Murtas
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
21
|
FURUSHO A, KOGA R, AKITA T, MIYOSHI Y, MITA M, HAMASE K. Development of a Highly-Sensitive Two-Dimensional HPLC System with Narrowbore Reversed-Phase and Microbore Enantioselective Columns and Application to the Chiral Amino Acid Analysis of the Mammalian Brain. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Aogu FURUSHO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Reiko KOGA
- Graduate School of Pharmaceutical Sciences, Kyushu University
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
22
|
Regulators of Long-Term Memory Revealed by Mushroom Body-Specific Gene Expression Profiling in Drosophila melanogaster. Genetics 2018; 209:1167-1181. [PMID: 29925565 PMCID: PMC6063240 DOI: 10.1534/genetics.118.301106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
Memory formation is achieved by genetically tightly controlled molecular pathways that result in a change of synaptic strength and synapse organization. While for short-term memory traces, rapidly acting biochemical pathways are in place, the formation of long-lasting memories requires changes in the transcriptional program of a cell. Although many genes involved in learning and memory formation have been identified, little is known about the genetic mechanisms required for changing the transcriptional program during different phases of long-term memory (LTM) formation. With Drosophila melanogaster as a model system, we profiled transcriptomic changes in the mushroom body—a memory center in the fly brain—at distinct time intervals during appetitive olfactory LTM formation using the targeted DamID technique. We describe the gene expression profiles during these phases and tested 33 selected candidate genes for deficits in LTM formation using RNAi knockdown. We identified 10 genes that enhance or decrease memory when knocked-down in the mushroom body. For vajk-1 and hacd1—the two strongest hits—we gained further support for their crucial role in appetitive learning and forgetting. These findings show that profiling gene expression changes in specific cell-types harboring memory traces provides a powerful entry point to identify new genes involved in learning and memory. The presented transcriptomic data may further be used as resource to study genes acting at different memory phases.
Collapse
|
23
|
Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio J Med 2018; 68:1-16. [PMID: 29794368 DOI: 10.2302/kjm.2018-0001-ir] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.
Collapse
|
24
|
Variations of l- and d-amino acid levels in the brain of wild-type and mutant mice lacking d-amino acid oxidase activity. Anal Bioanal Chem 2018. [DOI: 10.1007/s00216-018-0979-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Li J, Chen X, Cui Y, Liu W, Feng J, Wu Q, Zhu D. Enzymatic synthesis of d-alanine from a renewable starting material by co-immobilized dehydrogenases. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Guercio GD, Panizzutti R. Potential and Challenges for the Clinical Use of d-Serine As a Cognitive Enhancer. Front Psychiatry 2018; 9:14. [PMID: 29459833 PMCID: PMC5807334 DOI: 10.3389/fpsyt.2018.00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022] Open
Abstract
After 25 years of its discovery in the rat brain, d-serine is a recognized modulator of synaptic plasticity and cognitive processes through its actions on the NMDA-glutamate receptor. Importantly, cognitive impairment is a core feature of conditions, such as schizophrenia, Alzheimer's disease, depression, and aging, and is associated to disturbances in NMDA-glutamate receptors. The d-serine pathway has been associated with cognitive deficits and these conditions, and, for this reason, d-serine signaling is subject of intense research to probe its role in aiding diagnosis and therapy. Nevertheless, this has not resulted in new therapies being incorporated into clinical practice. Therefore, in this review we will address many questions that need to be solved by future studies, regarding d-serine pharmacokinetics, possible side effects, other strategies to modulate its levels, and combination with other therapies to increase its efficacy.
Collapse
Affiliation(s)
- Gerson D. Guercio
- Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rogerio Panizzutti
- Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Kühnreich R, Holzgrabe U. High-performance liquid chromatography evaluation of the enantiomeric purity of amino acids by means of automated precolumn derivatization with ortho-phthalaldehyde and chiral thiols. Chirality 2018; 28:795-804. [PMID: 27897327 DOI: 10.1002/chir.22660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/21/2023]
Abstract
The use of ortho-phthalaldehyde (OPA) for the derivatization of amino acids (AA) is well known. It enables the separation of the derivatives on common reversed phase columns and improves the sensitivity with fluorescence detection. With the use of a chiral thiol an indirect enantioseparation of chiral amines and AAs is feasible. The major drawback of the OPA-derivatization is the poor stability of the products. Here, a method with an in-needle derivatization procedure is optimized to facilitate a quantitative conversion of the AA with OPA and the chiral thiols N-acetyl-L-cysteine or N-isobutyryl-L-cysteine, followed by a subsequent analysis, eluding the stability issue. Both enantiomers of a single AA were separated as OPA-derivatives with a pentafluorophenyl column and a gradient program consisting of 50 mM sodium acetate buffer pH = 5.0 and acetonitrile. Fluorescence detection is commonly used to achieve sufficient sensitivity. In this study, the enantiomeric impurity of an AA can be detected indirectly with common UV spectrophotometric detection with a limit of quantitation of 0.04%. Seventeen different L-AAs were tested and the amount of D-AA for each individual AA was calculated by means of area normalization, which ranged from not detectable up to 4.29%. The recovery of the minor enantiomer of L- and D-AA was demonstrated for three AAs at a 0.04% level and ranged between 92.3 and 113.3%, with the relative standard deviation between 1.7 and 8.2%.
Collapse
Affiliation(s)
- Raphael Kühnreich
- University of Würzburg, Institute for Pharmacy and Food Chemistry, Würzburg, Germany
| | - Ulrike Holzgrabe
- University of Würzburg, Institute for Pharmacy and Food Chemistry, Würzburg, Germany
| |
Collapse
|
28
|
Koga R, Miyoshi Y, Sakaue H, Hamase K, Konno R. Mouse d-Amino-Acid Oxidase: Distribution and Physiological Substrates. Front Mol Biosci 2017; 4:82. [PMID: 29255714 PMCID: PMC5722847 DOI: 10.3389/fmolb.2017.00082] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/14/2017] [Indexed: 01/05/2023] Open
Abstract
d-Amino-acid oxidase (DAO) catalyzes the oxidative deamination of d-amino acids. DAO is present in a wide variety of organisms and has important roles. Here, we review the distribution and physiological substrates of mouse DAO. Mouse DAO is present in the kidney, brain, and spinal cord, like DAOs in other mammals. However, in contrast to other animals, it is not present in the mouse liver. Recently, DAO has been detected in the neutrophils, retina, and small intestine in mice. To determine the physiological substrates of mouse DAO, mutant mice lacking DAO activity are helpful. As DAO has wide substrate specificity and degrades various d-amino acids, many d-amino acids accumulate in the tissues and body fluids of the mutant mice. These amino acids are d-methionine, d-alanine, d-serine, d-leucine, d-proline, d-phenylalanine, d-tyrosine, and d-citrulline. Even in wild-type mice, administration of DAO inhibitors elevates D-serine levels in the plasma and brain. Among the above d-amino acids, the main physiological substrates of mouse DAO are d-alanine and d-serine. These two d-amino acids are most abundant in the tissues and body fluids of mice. d-Alanine derives from bacteria and produces bactericidal reactive oxygen species by the action of DAO. d-Serine is synthesized by serine racemase and is present especially in the central nervous system, where it serves as a neuromodulator. DAO is responsible for the metabolism of d-serine. Since DAO has been implicated in the etiology of neuropsychiatric diseases, mouse DAO has been used as a representative model. Recent reports, however, suggest that mouse DAO is different from human DAO with respect to important properties.
Collapse
Affiliation(s)
- Reiko Koga
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yurika Miyoshi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Sakaue
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Konno
- Department of Pharmacological Sciences, International University of Health and Welfare, Ohtawara, Japan
| |
Collapse
|
29
|
Patel AV, Kawai T, Wang L, Rubakhin SS, Sweedler JV. Chiral Measurement of Aspartate and Glutamate in Single Neurons by Large-Volume Sample Stacking Capillary Electrophoresis. Anal Chem 2017; 89:12375-12382. [PMID: 29064231 PMCID: PMC5800852 DOI: 10.1021/acs.analchem.7b03435] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
d-Amino acids (d-AAs) are endogenous molecules found throughout the metazoan, the functions of which remain poorly understood. Measurements of low abundance and heterogeneously distributed d-AAs in complex biological samples, such as cells and multicellular structures of the central nervous system (CNS), require the implementation of sensitive and selective analytical approaches. In order to measure the d- and l-forms of aspartate and glutamate, we developed and applied a stacking chiral capillary electrophoresis (CE) with laser-induced fluorescence detection method. The achieved online analyte preconcentration led to a 480-fold enhancement of detection sensitivity relative to capillary zone electrophoresis, without impacting separation resolution or analysis time. Additionally, the effects of inorganic ions on sample preconcentration and CE separation were evaluated. The approach enabled the relative quantification of d-aspartate and d-glutamate in individual neurons mechanically isolated from the CNS of the sea slug Aplysia californica, a well characterized neurobiological model. Levels of these structurally similar d-AAs were significantly different in subpopulations of cells collected from the investigated neuronal clusters.
Collapse
Affiliation(s)
- Amit V. Patel
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Takayuki Kawai
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Liping Wang
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Stanislav S. Rubakhin
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| |
Collapse
|
30
|
Fontanarosa C, Pane F, Sepe N, Pinto G, Trifuoggi M, Squillace M, Errico F, Usiello A, Pucci P, Amoresano A. Quantitative determination of free D-Asp, L-Asp and N-methyl-D-aspartate in mouse brain tissues by chiral separation and Multiple Reaction Monitoring tandem mass spectrometry. PLoS One 2017; 12:e0179748. [PMID: 28662080 PMCID: PMC5491048 DOI: 10.1371/journal.pone.0179748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 06/02/2017] [Indexed: 02/02/2023] Open
Abstract
Several studies have suggested that free d-Asp has a crucial role in N-methyl d-Asp receptor-mediated neurotransmission playing very important functions in physiological and pathological processes. This paper describes the development of an analytical procedure for the direct and simultaneous determination of free d-Asp, l-Asp and N-methyl d-Asp in specimens of different mouse brain tissues using chiral LC-MS/MS in Multiple Reaction Monitoring scan mode. After comparing three procedures and different buffers and extraction solvents, a simple preparation procedure was selected the analytes of extraction. The method was validated by analyzing l-Asp, d-Asp and N-methyl d-Asp recovery at different spiked concentrations (50, 100 and 200 pg/μl) yielding satisfactory recoveries (75–110%), and good repeatability. Limits of detection (LOD) resulted to be 0.52 pg/μl for d-Asp, 0.46 pg/μl for l-Asp and 0.54 pg/μl for NMDA, respectively. Limits of quantification (LOQ) were 1.57 pg/μl for d-Asp, 1.41 pg/μl for l-Asp and 1.64 pg/μl for NMDA, respectively. Different concentration levels were used for constructing the calibration curves which showed good linearity. The validated method was then successfully applied to the simultaneous detection of d-Asp, l-Asp and NMDA in mouse brain tissues. The concurrent, sensitive, fast, and reproducible measurement of these metabolites in brain tissues will be useful to correlate the amount of free d-Asp with relevant neurological processes, making the LC-MS/MS MRM method well suited, not only for research work but also for clinical analyses.
Collapse
Affiliation(s)
- Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Nunzio Sepe
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Marta Squillace
- CEINGE Advanced Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Francesco Errico
- CEINGE Advanced Biotechnology, University of Naples “Federico II”, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Alessandro Usiello
- CEINGE Advanced Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
- * E-mail:
| |
Collapse
|
31
|
Kato Y, Fukui K. Structure models of G72, the product of a susceptibility gene to schizophrenia. J Biochem 2017; 161:223-230. [PMID: 27815320 DOI: 10.1093/jb/mvw064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/07/2016] [Indexed: 11/15/2022] Open
Abstract
The G72 gene is one of the most susceptible genes to schizophrenia and is contained exclusively in the genomes of primates. The product of the G72 gene modulates the activity of D-amino acid oxidase (DAO) and is a small protein prone to aggregate, which hampers its structural studies. In addition, lack of a known structure of a homologue makes it difficult to use the homology modelling method for the prediction of the structure. Thus, we first developed a hybrid ab initio approach for small proteins prior to the prediction of the structure of G72. The approach uses three known ab initio algorithms. To evaluate the hybrid approach, we tested our prediction of the structure of the amino acid sequences whose structures were already solved and compared the predicted structures with the experimentally solved structures. Based on these comparisons, the average accuracy of our approach was calculated to be ∼5 Å. We then applied the approach to the sequence of G72 and successfully predicted the structures of the N- and C-terminal domains (ND and CD, respectively) of G72. The predicted structures of ND and CD were similar to membrane-bound proteins and adaptor proteins, respectively.
Collapse
Affiliation(s)
- Yusuke Kato
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Kiyoshi Fukui
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
32
|
Wolosker H, Balu DT, Coyle JT. The Rise and Fall of the d-Serine-Mediated Gliotransmission Hypothesis. Trends Neurosci 2016; 39:712-721. [PMID: 27742076 DOI: 10.1016/j.tins.2016.09.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/26/2023]
Abstract
d-Serine modulates N-methyl d-aspartate receptors (NMDARs) and regulates synaptic plasticity, neurodevelopment, and learning and memory. However, the primary site of d-serine synthesis and release remains controversial, with some arguing that it is a gliotransmitter and others defining it as a neuronal cotransmitter. Results from several laboratories using different strategies now show that the biosynthetic enzyme of d-serine, serine racemase (SR), is expressed almost entirely by neurons, with few astrocytes appearing to contain d-serine. Cell-selective suppression of SR expression demonstrates that neuronal, rather than astrocytic d-serine, modulates synaptic plasticity. Here, we propose an alternative conceptualization whereby astrocytes affect d-serine levels by synthesizing l-serine that shuttles to neurons to fuel the neuronal synthesis of d-serine.
Collapse
Affiliation(s)
- Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA 02478, USA.
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Laboratory of Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
33
|
Abstract
Homochirality is fundamental for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, D- amino acids were recently detected in various living organisms, including mammals. Of these D-amino acids, D-serine has been most extensively studied. D-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl- D-aspartate receptor (NMDAr). D-Serine binds with high affinity to a co-agonist site at the NMDAr and, along with glutamate, mediates several vital physiological and pathological processes, including NMDAr transmission, synaptic plasticity and neurotoxicity. Therefore, a key role for D-serine as a determinant of NMDAr mediated neurotransmission in mammalian CNS has been suggested. In this context, we review the known functions of D-serine in human physiology, such as CNS development, and pathology, such as neuro-psychiatric and neurodegenerative diseases related to NMDAr dysfunction.
Collapse
|
34
|
Indirect Enantioseparation of Amino Acids by CE Using Automated In-Capillary Derivatization with ortho-Phthalaldehyde and N-Acetyl-l-Cysteine. Chromatographia 2016. [DOI: 10.1007/s10337-016-3122-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Enantioseparation of N -derivatized amino acids by micro-liquid chromatography/laser induced fluorescence detection using quinidine-based monolithic columns. J Pharm Biomed Anal 2016; 121:244-252. [DOI: 10.1016/j.jpba.2015.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022]
|
36
|
TODOROKI K, NAKAMURA M, SATO Y, GOTO K, NAKANO T, ISHII Y, MIN JZ, INOUE K, TOYO’OKA T. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium Chloride as an Enantioseparation Enhancer for Chiral Derivatization-LC Analysis of D- and L-Amino acids. CHROMATOGRAPHY 2016. [DOI: 10.15583/jpchrom.2015.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | | | - Yuhi SATO
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Kanoko GOTO
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Tatsuki NAKANO
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasuhiro ISHII
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Jun Zhe MIN
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Koichi INOUE
- School of Pharmaceutical Sciences, University of Shizuoka
| | | |
Collapse
|
37
|
Changes in d-aspartic acid and d-glutamic acid levels in the tissues and physiological fluids of mice with various d-aspartate oxidase activities. J Pharm Biomed Anal 2015; 116:47-52. [DOI: 10.1016/j.jpba.2015.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 01/16/2023]
|
38
|
Furuse M. Screening of central functions of amino acids and their metabolites for sedative and hypnotic effects using chick models. Eur J Pharmacol 2015; 762:382-93. [DOI: 10.1016/j.ejphar.2015.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
|
39
|
Sasabe J, Suzuki M, Imanishi N, Aiso S. Activity of D-amino acid oxidase is widespread in the human central nervous system. Front Synaptic Neurosci 2014; 6:14. [PMID: 24959138 PMCID: PMC4050652 DOI: 10.3389/fnsyn.2014.00014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/20/2014] [Indexed: 12/11/2022] Open
Abstract
It has been proposed that D-amino acid oxidase (DAO) plays an essential role in degrading D-serine, an endogenous coagonist of N-methyl-D-aspartate (NMDA) glutamate receptors. DAO shows genetic association with amyotrophic lateral sclerosis (ALS) and schizophrenia, in whose pathophysiology aberrant metabolism of D-serine is implicated. Although the pathology of both essentially involves the forebrain, in rodents, enzymatic activity of DAO is hindbrain-shifted and absent in the region. Here, we show activity-based distribution of DAO in the central nervous system (CNS) of humans compared with that of mice. DAO activity in humans was generally higher than that in mice. In the human forebrain, DAO activity was distributed in the subcortical white matter and the posterior limb of internal capsule, while it was almost undetectable in those areas in mice. In the lower brain centers, DAO activity was detected in the gray and white matters in a coordinated fashion in both humans and mice. In humans, DAO activity was prominent along the corticospinal tract, rubrospinal tract, nigrostriatal system, ponto-/olivo-cerebellar fibers, and in the anterolateral system. In contrast, in mice, the reticulospinal tract and ponto-/olivo-cerebellar fibers were the major pathways showing strong DAO activity. In the human corticospinal tract, activity-based staining of DAO did not merge with a motoneuronal marker, but colocalized mostly with excitatory amino acid transporter 2 and in part with GFAP, suggesting that DAO activity-positive cells are astrocytes seen mainly in the motor pathway. These findings establish the distribution of DAO activity in cerebral white matter and the motor system in humans, providing evidence to support the involvement of DAO in schizophrenia and ALS. Our results raise further questions about the regulation of D-serine in DAO-rich regions as well as the physiological/pathological roles of DAO in white matter astrocytes.
Collapse
Affiliation(s)
- Jumpei Sasabe
- Department of Anatomy, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| | - Masataka Suzuki
- Department of Anatomy, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| | - Nobuaki Imanishi
- Department of Anatomy, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| | - Sadakazu Aiso
- Department of Anatomy, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
40
|
Establishment and Application of an Automated Chiral Two-dimensional High Performance Liquid Chromatography Method for Bio-analysis of D-Acidic Amino Acids. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(14)60746-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Arginine vasopressin regulated ASCT1 expression in astrocytes from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats. Neuroscience 2014; 267:277-85. [DOI: 10.1016/j.neuroscience.2014.02.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 11/21/2022]
|
42
|
D-Alanine in the islets of Langerhans of rat pancreas. Biochem Biophys Res Commun 2014; 447:328-33. [PMID: 24721429 DOI: 10.1016/j.bbrc.2014.03.153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
Abstract
Relatively high levels of D-alanine (D-Ala), an endogenous D-amino acid, have been found in the endocrine systems of several animals, especially in the anterior pituitary; however, its functional importance remains largely unknown. We observed D-Ala in islets of Langerhans isolated from rat pancreas in significantly higher levels than in the anterior/intermediate pituitary; specifically, 180±60 fmol D-Ala per islet (300±100 nmol/gislet), and 10±2.5 nmol/g of wet tissue in pituitary. Additionally, 12±5% of the free Ala in the islets was in the d form, almost an order of magnitude higher than the percentage of D-Ala found in the pituitary. Surprisingly, glucose stimulation of the islets resulted in D-Ala release of 0.6±0.5 fmol per islet. As D-Ala is stored in islets and released in response to changes in extracellular glucose, D-Ala may have a hormonal role.
Collapse
|
43
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
44
|
Savignac HM, Corona G, Mills H, Chen L, Spencer JPE, Tzortzis G, Burnet PWJ. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int 2013; 63:756-64. [PMID: 24140431 PMCID: PMC3858812 DOI: 10.1016/j.neuint.2013.10.006] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/24/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Abstract
Prebiotic feeding elevated BDNF and NR1subunit mRNAs, in the rat hippocampus. The GOS prebiotic increased cortical NR1, d-serine, and hippocampal NR2A subunits. GOS feeding elevated plasma levels of the gut peptide PYY. GOS plasma increased BDNF release from human SH-SY5Y neuroblastoma cells. BDNF secretion from cells by GOS plasma was blocked by PYY antisera.
The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and adjunctive treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helene M Savignac
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Hopkins SC, Campbell UC, Heffernan MLR, Spear KL, Jeggo RD, Spanswick DC, Varney MA, Large TH. Effects of D-amino acid oxidase inhibition on memory performance and long-term potentiation in vivo. Pharmacol Res Perspect 2013; 1:e00007. [PMID: 25505561 PMCID: PMC4184572 DOI: 10.1002/prp2.7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR) activation can initiate changes in synaptic strength, evident as long-term potentiation (LTP), and is a key molecular correlate of memory formation. Inhibition of d-amino acid oxidase (DAAO) may increase NMDAR activity by regulating d-serine concentrations, but which neuronal and behavioral effects are influenced by DAAO inhibition remain elusive. In anesthetized rats, extracellular field excitatory postsynaptic potentials (fEPSPs) were recorded before and after a theta frequency burst stimulation (TBS) of the Schaffer collateral pathway of the CA1 region in the hippocampus. Memory performance was assessed after training with tests of contextual fear conditioning (FC, mice) and novel object recognition (NOR, rats). Oral administration of 3, 10, and 30 mg/kg 4H-furo[3,2-b]pyrrole-5-carboxylic acid (SUN) produced dose-related and steady increases of cerebellum d-serine in rats and mice, indicative of lasting inhibition of central DAAO. SUN administered 2 h prior to training improved contextual fear conditioning in mice and novel object recognition memory in rats when tested 24 h after training. In anesthetized rats, LTP was established proportional to the number of TBS trains. d-cycloserine (DCS) was used to identify a submaximal level of LTP (5× TBS) that responded to NMDA receptor activation; SUN administered at 10 mg/kg 3-4 h prior to testing similarly increased in vivo LTP levels compared to vehicle control animals. Interestingly, in vivo administration of DCS also increased brain d-serine concentrations. These results indicate that DAAO inhibition increased NMDAR-related synaptic plasticity during phases of post training memory consolidation to improve memory performance in hippocampal-dependent behavioral tests.
Collapse
Affiliation(s)
| | | | | | - Kerry L Spear
- Sunovion Pharmaceuticals IncMarlborough, Massachusetts
| | | | - David C Spanswick
- Neurosolutions Ltd.Coventry, U.K
- Department of Physiology, Monash UniversityClayton, Victoria, Australia
- Warwick Medical School, University of WarwickCoventry, U.K
| | - Mark A Varney
- Sunovion Pharmaceuticals IncMarlborough, Massachusetts
| | | |
Collapse
|
46
|
Two-dimensional high-performance liquid chromatographic determination of day–night variation of d-alanine in mammals and factors controlling the circadian changes. Anal Bioanal Chem 2013; 405:8083-91. [DOI: 10.1007/s00216-013-7071-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/04/2013] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
|
47
|
Horio M, Ishima T, Fujita Y, Inoue R, Mori H, Hashimoto K. Decreased levels of free d-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice. Neurochem Int 2013; 62:843-7. [DOI: 10.1016/j.neuint.2013.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 11/16/2022]
|
48
|
Hopkins SC, Heffernan MLR, Saraswat LD, Bowen CA, Melnick L, Hardy LW, Orsini MA, Allen MS, Koch P, Spear KL, Foglesong RJ, Soukri M, Chytil M, Fang QK, Jones SW, Varney MA, Panatier A, Oliet SHR, Pollegioni L, Piubelli L, Molla G, Nardini M, Large TH. Structural, Kinetic, and Pharmacodynamic Mechanisms of d-Amino Acid Oxidase Inhibition by Small Molecules. J Med Chem 2013; 56:3710-24. [DOI: 10.1021/jm4002583] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seth C. Hopkins
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | | | - Lakshmi D. Saraswat
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Carrie A. Bowen
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Laurence Melnick
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Larry W. Hardy
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Michael A. Orsini
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | | | - Patrick Koch
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Kerry L. Spear
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | | | | | - Milan Chytil
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Q. Kevin Fang
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Steven W. Jones
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Mark A. Varney
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Aude Panatier
- Neurocentre Magendie, Inserm U862 and Université de Bordeaux, Bordeaux, F-33077, France
| | - Stephane H. R. Oliet
- Neurocentre Magendie, Inserm U862 and Université de Bordeaux, Bordeaux, F-33077, France
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie
e Scienze della Vita, Università degli Studi dell’Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
- The Protein Factory, Politecnico di Milano, ICRM-CNR and Università degli Studi dell’Insubria, Via Mancinelli 7,
20131 Milano, Italy
| | - Luciano Piubelli
- Dipartimento di Biotecnologie
e Scienze della Vita, Università degli Studi dell’Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
- The Protein Factory, Politecnico di Milano, ICRM-CNR and Università degli Studi dell’Insubria, Via Mancinelli 7,
20131 Milano, Italy
| | - Gianluca Molla
- Dipartimento di Biotecnologie
e Scienze della Vita, Università degli Studi dell’Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
- The Protein Factory, Politecnico di Milano, ICRM-CNR and Università degli Studi dell’Insubria, Via Mancinelli 7,
20131 Milano, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milan, I-20133 Milano, Italy
| | - Thomas H. Large
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| |
Collapse
|
49
|
Hondo T, Warizaya M, Niimi T, Namatame I, Yamaguchi T, Nakanishi K, Hamajima T, Harada K, Sakashita H, Matsumoto Y, Orita M, Takeuchi M. 4-Hydroxypyridazin-3(2H)-one derivatives as novel D-amino acid oxidase inhibitors. J Med Chem 2013; 56:3582-92. [PMID: 23566269 DOI: 10.1021/jm400095b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-Amino acid oxidase (DAAO) catalyzes the oxidation of d-amino acids including d-serine, a coagonist of the N-methyl-d-aspartate receptor. We identified a series of 4-hydroxypyridazin-3(2H)-one derivatives as novel DAAO inhibitors with high potency and substantial cell permeability using fragment-based drug design. Comparisons of complex structures deposited in the Protein Data Bank as well as those determined with in-house fragment hits revealed that a hydrophobic subpocket was formed perpendicular to the flavin ring by flipping Tyr224 in a ligand-dependent manner. We investigated the ability of the initial fragment hit, 3-hydroxy-pyridine-2(1H)-one, to fill this subpocket with the aid of complex structure information. 3-Hydroxy-5-(2-phenylethyl)pyridine-2(1H)-one exhibited the predicted binding mode and demonstrated high inhibitory activity for human DAAO in enzyme- and cell-based assays. We further designed and synthesized 4-hydroxypyridazin-3(2H)-one derivatives, which are equivalent to the 3-hydroxy-pyridine-2(1H)-one series but lack cell toxicity. 6-[2-(3,5-Difluorophenyl)ethyl]-4-hydroxypyridazin-3(2H)-one was found to be effective against MK-801-induced cognitive deficit in the Y-maze.
Collapse
Affiliation(s)
- Takeshi Hondo
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM. D-serine and schizophrenia: an update. Expert Rev Neurother 2012; 12:801-12. [PMID: 22853788 DOI: 10.1586/ern.12.65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Considering the lengthy history of pharmacological treatment of schizophrenia, the development of novel antipsychotic agents targeting the glutamatergic system is relatively new. A glutamatergic deficit has been proposed to underlie many of the symptoms typically observed in schizophrenia, particularly the negative and cognitive symptoms (which are less likely to respond to current treatments). D-serine is an important coagonist of the glutamate NMDA receptor, and accumulating evidence suggests that D-serine levels and/or activity may be dysfunctional in schizophrenia and that facilitation of D-serine transmission could provide a significant therapeutic breakthrough, especially where conventional treatments have fallen short. A summary of the relevant animal data, as well as genetic studies and clinical trials examining D-serine as an adjunct to standard antipsychotic therapy, is provided in this article. Together, the evidence suggests that research on the next generation of antipsychotic agents should include studies on increasing brain levels of D-serine or mimicking its action on the NMDA receptor.
Collapse
Affiliation(s)
- Emerson A Nunes
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|