1
|
Kaya E, Kotz SA, Henry MJ. A novel method for estimating properties of attentional oscillators reveals an age-related decline in flexibility. eLife 2024; 12:RP90735. [PMID: 38904659 PMCID: PMC11192533 DOI: 10.7554/elife.90735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Dynamic attending theory proposes that the ability to track temporal cues in the auditory environment is governed by entrainment, the synchronization between internal oscillations and regularities in external auditory signals. Here, we focused on two key properties of internal oscillators: their preferred rate, the default rate in the absence of any input; and their flexibility, how they adapt to changes in rhythmic context. We developed methods to estimate oscillator properties (Experiment 1) and compared the estimates across tasks and individuals (Experiment 2). Preferred rates, estimated as the stimulus rates with peak performance, showed a harmonic relationship across measurements and were correlated with individuals' spontaneous motor tempo. Estimates from motor tasks were slower than those from the perceptual task, and the degree of slowing was consistent for each individual. Task performance decreased with trial-to-trial changes in stimulus rate, and responses on individual trials were biased toward the preceding trial's stimulus properties. Flexibility, quantified as an individual's ability to adapt to faster-than-previous rates, decreased with age. These findings show domain-specific rate preferences for the assumed oscillatory system underlying rhythm perception and production, and that this system loses its ability to flexibly adapt to changes in the external rhythmic context during aging.
Collapse
Affiliation(s)
- Ece Kaya
- Max Planck Institute for Empirical AestheticsFrankfurtGermany
- Maastricht UniversityMaastrichtNetherlands
| | - Sonja A Kotz
- Maastricht UniversityMaastrichtNetherlands
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Molly J Henry
- Max Planck Institute for Empirical AestheticsFrankfurtGermany
- Toronto Metropolitan UniversityTorontoCanada
| |
Collapse
|
2
|
Herrmann B, Maess B, Johnsrude IS. Sustained responses and neural synchronization to amplitude and frequency modulation in sound change with age. Hear Res 2023; 428:108677. [PMID: 36580732 DOI: 10.1016/j.heares.2022.108677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Perception of speech requires sensitivity to features, such as amplitude and frequency modulations, that are often temporally regular. Previous work suggests age-related changes in neural responses to temporally regular features, but little work has focused on age differences for different types of modulations. We recorded magnetoencephalography in younger (21-33 years) and older adults (53-73 years) to investigate age differences in neural responses to slow (2-6 Hz sinusoidal and non-sinusoidal) modulations in amplitude, frequency, or combined amplitude and frequency. Audiometric pure-tone average thresholds were elevated in older compared to younger adults, indicating subclinical hearing impairment in the recruited older-adult sample. Neural responses to sound onset (independent of temporal modulations) were increased in magnitude in older compared to younger adults, suggesting hyperresponsivity and a loss of inhibition in the aged auditory system. Analyses of neural activity to modulations revealed greater neural synchronization with amplitude, frequency, and combined amplitude-frequency modulations for older compared to younger adults. This potentiated response generalized across different degrees of temporal regularity (sinusoidal and non-sinusoidal), although neural synchronization was generally lower for non-sinusoidal modulation. Despite greater synchronization, sustained neural activity was reduced in older compared to younger adults for sounds modulated both sinusoidally and non-sinusoidally in frequency. Our results suggest age differences in the sensitivity of the auditory system to features present in speech and other natural sounds.
Collapse
Affiliation(s)
- Björn Herrmann
- Rotman Research Institute, Baycrest, North York, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Unit, Leipzig 04103, Germany
| | - Ingrid S Johnsrude
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada; School of Communication Sciences & Disorders, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
Mertes IB, Potocki ME. Contralateral noise effects on otoacoustic emissions and electrophysiologic responses in normal-hearing adults. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2255. [PMID: 35364945 DOI: 10.1121/10.0009910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Contralateral noise inhibits the amplitudes of cochlear and neural responses. These measures may hold potential diagnostic utility. The medial olivocochlear (MOC) reflex underlies the inhibition of cochlear responses but the extent to which it contributes to inhibition of neural responses remains unclear. Mertes and Leek [J. Acoust. Soc. Am. 140, 2027-2038 (2016)] recently examined contralateral inhibition of cochlear responses [transient-evoked otoacoustic emissions (TEOAEs)] and neural responses [auditory steady-state responses (ASSRs)] in humans and found that the two measures were not correlated, but potential confounds of older age and hearing loss were present. The current study controlled for these confounds by examining a group of young, normal-hearing adults. Additionally, measurements of the auditory brainstem response (ABR) were obtained. Responses were elicited using clicks with and without contralateral broadband noise. Changes in TEOAE and ASSR magnitude as well as ABR wave V latency were examined. Results indicated that contralateral inhibition of ASSRs was significantly larger than that of TEOAEs and that the two measures were uncorrelated. Additionally, there was no significant change in wave V latency. Results suggest that further work is needed to understand the mechanism underlying contralateral inhibition of the ASSR.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| | - Morgan E Potocki
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| |
Collapse
|
4
|
Green HL, Edgar JC, Matsuzaki J, Roberts TPL. Magnetoencephalography Research in Pediatric Autism Spectrum Disorder. Neuroimaging Clin N Am 2020; 30:193-203. [PMID: 32336406 PMCID: PMC7216756 DOI: 10.1016/j.nic.2020.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Magnetoencephalography (MEG) research indicates differences in neural brain measures in children with autism spectrum disorder (ASD) compared to typically developing (TD) children. As reviewed here, resting-state MEG exams are of interest as well as MEG paradigms that assess neural function across domains (e.g., auditory, resting state). To date, MEG research has primarily focused on group-level differences. Research is needed to explore whether MEG measures can predict, at the individual level, ASD diagnosis, prognosis (future severity), and response to therapy.
Collapse
Affiliation(s)
- Heather L Green
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - J Christopher Edgar
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Junko Matsuzaki
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Timothy P L Roberts
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Ross B, Tremblay KL, Alain C. Simultaneous EEG and MEG recordings reveal vocal pitch elicited cortical gamma oscillations in young and older adults. Neuroimage 2019; 204:116253. [PMID: 31600592 DOI: 10.1016/j.neuroimage.2019.116253] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/13/2019] [Accepted: 10/06/2019] [Indexed: 10/25/2022] Open
Abstract
The frequency-following response with origin in the auditory brainstem represents the pitch contour of voice and can be recorded with electrodes from the scalp. MEG studies also revealed a cortical contribution to the high gamma oscillations at the fundamental frequency (f0) of a vowel stimulus. Therefore, studying the cortical component of the frequency-following response could provide insights into how pitch information is encoded at the cortical level. Comparing how aging affects the different responses may help to uncover the neural mechanisms underlying speech understanding deficits in older age. We simultaneously recorded EEG and MEG responses to the syllable /ba/. MEG beamformer analysis localized sources in bilateral auditory cortices and the midbrain. Time-frequency analysis showed a faithful representation of the pitch contour between 106 Hz and 138 Hz in the cortical activity. A cross-correlation revealed a latency of 20 ms. Furthermore, stimulus onsets elicited cortical 40-Hz responses. Both the 40-Hz and the f0 response amplitudes increased in older age and were larger in the right hemisphere. The effects of aging and laterality of the f0 response were evident in the MEG only, suggesting that both effects were characteristics of the cortical response. After comparing f0 and N1 responses in EEG and MEG, we estimated that approximately one-third of the scalp-recorded f0 response could be cortical in origin. We attributed the significance of the cortical f0 response to the precise timing of cortical neurons that serve as a time-sensitive code for pitch.
Collapse
Affiliation(s)
- Bernhard Ross
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada; Department for Medical Biophysics, University of Toronto, Ontario, Canada.
| | - Kelly L Tremblay
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Claude Alain
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Ontario, Canada
| |
Collapse
|
6
|
|
7
|
Yao JD, Sanes DH. Developmental deprivation-induced perceptual and cortical processing deficits in awake-behaving animals. eLife 2018; 7:33891. [PMID: 29873632 PMCID: PMC6005681 DOI: 10.7554/elife.33891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 01/02/2023] Open
Abstract
Sensory deprivation during development induces lifelong changes to central nervous system function that are associated with perceptual impairments. However, the relationship between neural and behavioral deficits is uncertain due to a lack of simultaneous measurements during task performance. Therefore, we telemetrically recorded from auditory cortex neurons in gerbils reared with developmental conductive hearing loss as they performed an auditory task in which rapid fluctuations in amplitude are detected. These data were compared to a measure of auditory brainstem temporal processing from each animal. We found that developmental HL diminished behavioral performance, but did not alter brainstem temporal processing. However, the simultaneous assessment of neural and behavioral processing revealed that perceptual deficits were associated with a degraded cortical population code that could be explained by greater trial-to-trial response variability. Our findings suggest that the perceptual limitations that attend early hearing loss are best explained by an encoding deficit in auditory cortex.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, United States
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, United States.,Department of Psychology, New York University, New York, United States.,Department of Biology, New York University, New York, United States.,Neuroscience Institute, NYU Langone Medical Center, New York, United States
| |
Collapse
|
8
|
Neural Signatures of the Processing of Temporal Patterns in Sound. J Neurosci 2018; 38:5466-5477. [PMID: 29773757 DOI: 10.1523/jneurosci.0346-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 05/06/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to detect regularities in sound (i.e., recurring structure) is critical for effective perception, enabling, for example, change detection and prediction. Two seemingly unconnected lines of research concern the neural operations involved in processing regularities: one investigates how neural activity synchronizes with temporal regularities (e.g., frequency modulation; FM) in sounds, whereas the other focuses on increases in sustained activity during stimulation with repeating tone-frequency patterns. In three electroencephalography studies with male and female human participants, we investigated whether neural synchronization and sustained neural activity are dissociable, or whether they are functionally interdependent. Experiment I demonstrated that neural activity synchronizes with temporal regularity (FM) in sounds, and that sustained activity increases concomitantly. In Experiment II, phase coherence of FM in sounds was parametrically varied. Although neural synchronization was more sensitive to changes in FM coherence, such changes led to a systematic modulation of both neural synchronization and sustained activity, with magnitude increasing as coherence increased. In Experiment III, participants either performed a duration categorization task on the sounds, or a visual object tracking task to distract attention. Neural synchronization was observed regardless of task, whereas the sustained response was observed only when attention was on the auditory task, not under (visual) distraction. The results suggest that neural synchronization and sustained activity levels are functionally linked: both are sensitive to regularities in sounds. However, neural synchronization might reflect a more sensory-driven response to regularity, compared with sustained activity which may be influenced by attentional, contextual, or other experiential factors.SIGNIFICANCE STATEMENT Optimal perception requires that the auditory system detects regularities in sounds. Synchronized neural activity and increases in sustained neural activity both appear to index the detection of a regularity, but the functional interrelation of these two neural signatures is unknown. In three electroencephalography experiments, we measured both signatures concomitantly while listeners were presented with sounds containing frequency modulations that differed in their regularity. We observed that both neural signatures are sensitive to temporal regularity in sounds, although they functionally decouple when a listener is distracted by a demanding visual task. Our data suggest that neural synchronization reflects a more automatic response to regularity compared with sustained activity, which may be influenced by attentional, contextual, or other experiential factors.
Collapse
|
9
|
Aging affects the balance of neural entrainment and top-down neural modulation in the listening brain. Nat Commun 2017; 8:15801. [PMID: 28654081 PMCID: PMC5490185 DOI: 10.1038/ncomms15801] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/04/2017] [Indexed: 12/02/2022] Open
Abstract
Healthy aging is accompanied by listening difficulties, including decreased speech comprehension, that stem from an ill-understood combination of sensory and cognitive changes. Here, we use electroencephalography to demonstrate that auditory neural oscillations of older adults entrain less firmly and less flexibly to speech-paced (∼3 Hz) rhythms than younger adults’ during attentive listening. These neural entrainment effects are distinct in magnitude and origin from the neural response to sound per se. Non-entrained parieto-occipital alpha (8–12 Hz) oscillations are enhanced in young adults, but suppressed in older participants, during attentive listening. Entrained neural phase and task-induced alpha amplitude exert opposite, complementary effects on listening performance: higher alpha amplitude is associated with reduced entrainment-driven behavioural performance modulation. Thus, alpha amplitude as a task-driven, neuro-modulatory signal can counteract the behavioural corollaries of neural entrainment. Balancing these two neural strategies may present new paths for intervention in age-related listening difficulties. The changes that accompany age-related decreases in speech comprehension are not yet understood. Here, authors show that older adults are less able to entrain to speech-paced auditory rhythms and that the behavioural consequences can be counteracted by top-down neural modulation.
Collapse
|
10
|
Herrmann B, Parthasarathy A, Bartlett EL. Ageing affects dual encoding of periodicity and envelope shape in rat inferior colliculus neurons. Eur J Neurosci 2017; 45:299-311. [PMID: 27813207 PMCID: PMC5247336 DOI: 10.1111/ejn.13463] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 11/27/2022]
Abstract
Extracting temporal periodicities and envelope shapes of sounds is important for listening within complex auditory scenes but declines behaviorally with age. Here, we recorded local field potentials (LFPs) and spikes to investigate how ageing affects the neural representations of different modulation rates and envelope shapes in the inferior colliculus of rats. We specifically aimed to explore the input-output (LFP-spike) response transformations of inferior colliculus neurons. Our results show that envelope shapes up to 256-Hz modulation rates are represented in the neural synchronisation phase lags in younger and older animals. Critically, ageing was associated with (i) an enhanced gain in onset response magnitude from LFPs to spikes; (ii) an enhanced gain in neural synchronisation strength from LFPs to spikes for a low modulation rate (45 Hz); (iii) a decrease in LFP synchronisation strength for higher modulation rates (128 and 256 Hz) and (iv) changes in neural synchronisation strength to different envelope shapes. The current age-related changes are discussed in the context of an altered excitation-inhibition balance accompanying ageing.
Collapse
Affiliation(s)
- Björn Herrmann
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Aravindakshan Parthasarathy
- Depts. of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, USA
- Dept. of Otology and Laryngology, Harvard Medical School, and Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
| | - Edward L. Bartlett
- Depts. of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
11
|
Ross B, Fujioka T. 40-Hz oscillations underlying perceptual binding in young and older adults. Psychophysiology 2016; 53:974-90. [PMID: 27080577 DOI: 10.1111/psyp.12654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2016] [Accepted: 03/13/2016] [Indexed: 11/29/2022]
Abstract
Auditory object perception requires binding of elementary features of complex stimuli. Synchronization of high-frequency oscillation in neural networks has been proposed as an effective alternative to binding via hard-wired connections because binding in an oscillatory network can be dynamically adjusted to the ever-changing sensory environment. Previously, we demonstrated in young adults that gamma oscillations are critical for sensory integration and found that they were affected by concurrent noise. Here, we aimed to support the hypothesis that stimulus evoked auditory 40-Hz responses are a component of thalamocortical gamma oscillations and examined whether this oscillatory system may become less effective in aging. In young and older adults, we recorded neuromagnetic 40-Hz oscillations, elicited by monaural amplitude-modulated sound. Comparing responses in quiet and under contralateral masking with multitalker babble noise revealed two functionally distinct components of auditory 40-Hz responses. The first component followed changes in the auditory input with high fidelity and was of similar amplitude in young and older adults. The second, significantly smaller in older adults, showed a 200-ms interval of amplitude and phase rebound and was strongly attenuated by contralateral noise. The amplitude of the second component was correlated with behavioral speech-in-noise performance. Concurrent noise also reduced the P2 wave of auditory evoked responses at 200-ms latency, but not the earlier N1 wave. P2 modulation was reduced in older adults. The results support the model of sensory binding through thalamocortical gamma oscillations. Limitation of neural resources for this process in older adults may contribute to their speech-in-noise understanding deficits.
Collapse
Affiliation(s)
- Bernhard Ross
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Takako Fujioka
- Center for Computer Research in Music and Acoustics, Department of Music, Stanford University, Stanford, California, USA.,Neurosciences Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Parthasarathy A, Bartlett E. Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing. Hear Res 2012; 289:52-62. [PMID: 22560961 PMCID: PMC3371184 DOI: 10.1016/j.heares.2012.04.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions.
Collapse
Affiliation(s)
| | - Edward Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
13
|
Parthasarathy A, Bartlett EL. Age-related auditory deficits in temporal processing in F-344 rats. Neuroscience 2011; 192:619-30. [PMID: 21723376 DOI: 10.1016/j.neuroscience.2011.06.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/12/2011] [Accepted: 06/14/2011] [Indexed: 11/30/2022]
Abstract
Older human listeners demonstrate perceptual deficits in temporal processing even when audibility has been controlled. These age-related auditory deficits in temporal processing are thought to originate in the central auditory pathway. Precise temporal processing is necessary to detect and discriminate auditory cues such as modulation frequency, modulation depth and envelope shape which are critical for perception of speech and environmental sounds. This study aims to further understanding of temporal processing in aging using non-invasive electrophysiological measurements. Amplitude modulation following responses (AMFRs) and frequency modulation following responses (FMFRs) were recorded from aged (92-95-weeks old) and young (9-12-weeks old) Fischer-344 (F-344) rats for sinusoidally amplitude modulated (sAM) tones, sinusoidally frequency modulated (sFM) tones and ramped and damped amplitude modulation (AM) stimuli which differ in their envelope shapes. The modulation depth for the sAM and sFM stimuli and envelope shape for the ramped and damped stimuli were systematically varied. There was a monotonic decrease in AMFR and FMFR amplitudes with decreases in modulation depth across age for sAM and sFM stimuli. There was no significant difference between the response amplitudes of the young and aged animals for the largest modulation depths. However, a reduction in modulation depth resulted in a significant decrease in the response amplitudes and higher modulation detection thresholds for sAM and sFM stimuli with age. The aged animals showed significantly lower response amplitudes for ramped stimuli but not for damped stimuli. Cross correlating the responses with the ramped, symmetric, or damped stimulus envelopes revealed a decreased fidelity in encoding envelope shapes with age. These results indicate that age related temporal processing deficits become apparent only with reduced modulation depths or when discriminating envelope shapes. This has implications for psychophysical or diagnostic testing as well as for constraining potential cellular and network mechanisms responsible for these deficits.
Collapse
Affiliation(s)
- A Parthasarathy
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
14
|
Harris KC, Mills JH, He NJ, Dubno JR. Age-related differences in sensitivity to small changes in frequency assessed with cortical evoked potentials. Hear Res 2008; 243:47-56. [PMID: 18597958 DOI: 10.1016/j.heares.2008.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 04/08/2008] [Accepted: 05/10/2008] [Indexed: 10/22/2022]
Abstract
As part of an ongoing study of age-related changes in auditory processing, sensitivity to small changes in frequency were assessed using the cortical auditory evoked potential, P1-N1-P2, in younger and older adults with normal hearing. Behavioral measures have shown age-related differences in intensity and frequency discrimination that are larger at lower than higher frequencies. However, substantial individual differences and equivocal results among studies have been reported. This variability may reflect differences in tasks and procedures, as well as subject variables, such as hearing sensitivity and level of attention. To minimize these subject variables, the P1-N1-P2 response was investigated using a passive listening paradigm. Subjects were 10 younger and 10 older adults. The P1-N1-P2 was elicited by a 150-ms change in frequency in otherwise continuous 500-Hz and 3000-Hz pure tones presented at 70 dB SPL. P1-N1-P2 threshold was defined as the smallest change in frequency needed to evoke a P1-N1-P2 response. Furthermore, a frequency-dependent aging effect was observed for P1-N1-P2 thresholds, such that older subjects were significantly less sensitive to the frequency change than younger subjects, with significantly larger age-related differences at 500 Hz than at 3000 Hz. Age-related changes in response latencies and amplitude of the P1-N1-P2 response were also evident at 500 and 3000 Hz. These results are consistent with age-related changes in the central auditory system and suggest that changes in frequency discrimination abilities of older adults may be, in part, related to changes in preattentive levels of auditory processing.
Collapse
Affiliation(s)
- Kelly C Harris
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425-5500, USA.
| | | | | | | |
Collapse
|
15
|
Wilson TW, Rojas DC, Reite ML, Teale PD, Rogers SJ. Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biol Psychiatry 2007; 62:192-7. [PMID: 16950225 PMCID: PMC2692734 DOI: 10.1016/j.biopsych.2006.07.002] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Revised: 06/21/2006] [Accepted: 07/03/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recent neuroimaging studies of autism have indicated reduced functional connectivity during both cognitive tasks and rest. These data suggest long-range connectivity may be compromised in this disorder, and current neurological theories of autism contend disrupted inter-regional interactions may be an underlying mechanism explaining behavioral symptomatology. However, it is unclear whether deficient neuronal communication is attributable to fewer long-range tracts or more of a local deficit in neural circuitry. This study examines the integrity of local circuitry by focusing on gamma band activity in auditory cortices of children and adolescents with autism. METHODS Ten children and adolescents with autism and 10 matched controls participated. Both groups listened to 500 ms duration monaural click trains with a 25 ms inter-click interval, as magnetoencephalography was acquired from the contralateral hemisphere. To estimate 40 Hz spectral power density, we performed time-frequency decomposition of the single-trial magnetic steady-state response data using complex demodulation. RESULTS Children and adolescents with autism exhibited significantly reduced left hemispheric 40 Hz power from 200-500 ms post-stimulus onset. In contrast, no significant between group differences were observed for right hemispheric cortices. CONCLUSIONS The production and/or maintenance of left hemispheric gamma oscillations appeared abnormal in participants with autism. We interpret these data as indicating that in autism, particular brain regions may be unable to generate the high-frequency activity likely necessary for binding and other forms of inter-regional interactions. These findings augment connectivity theories of autism with novel evidence that aberrations in local circuitry could underlie putative deficiencies in long-range neural communication.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Psychiatry, Neuromagnetic Imaging Center, University of Colorado, Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
16
|
He NJ, Mills JH, Dubno JR. Frequency modulation detection: effects of age, psychophysical method, and modulation waveform. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:467-77. [PMID: 17614504 DOI: 10.1121/1.2741208] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
As part of an ongoing study of auditory aging, detection of sinusoidal and quasitrapezoidal frequency modulation (FM) was measured with a 5-Hz modulation frequency and 500- and 4000-Hz carriers in two experiments. In Experiment 1, psychometric functions for FM detection were measured with several modulation waveform time patterns in younger adults with normal hearing. Detection of a three-cycle modulated signal improved when its duration was extended by a preceding unmodulated cycle, an effect similar to adding a modulated cycle. In Experiment 2, FM detection was measured for younger and older adults with normal hearing using two psychophysical methods. Similar to frequency discrimination, FM detection was poorer in older than younger subjects and age-related differences were larger at 500 Hz than at 4000 Hz, suggesting that FM detection with low modulation frequencies and frequency discrimination may share common underlying mechanisms. One mechanism is likely related to temporal information coded by neural phase locking which is strong at low frequencies and decreases with increasing frequency, as observed in animals. The frequency-dependent aging effect suggests that this temporal mechanism may be affected by age. The effect of psychophysical method was sizable and frequency dependent, whereas the effect of modulation waveform was minimal.
Collapse
Affiliation(s)
- Ning-ji He
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
17
|
Wilson TW, Hernandez OO, Asherin RM, Teale PD, Reite ML, Rojas DC. Cortical gamma generators suggest abnormal auditory circuitry in early-onset psychosis. Cereb Cortex 2007; 18:371-8. [PMID: 17557901 PMCID: PMC2648842 DOI: 10.1093/cercor/bhm062] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurobiological theories of schizophrenia and related psychoses have increasingly emphasized impaired neuronal coordination (i.e., dysfunctional connectivity) as central to the pathophysiology. Although neuroimaging evidence has mostly corroborated these accounts, the basic mechanism(s) of reduced functional connectivity remains elusive. In this study, we examine the developmental trajectory and underlying mechanism(s) of dysfunctional connectivity by using gamma oscillatory power as an index of local and long-range circuit integrity. An early-onset psychosis group and a matched cohort of typically developing adolescents listened to monaurally presented click-trains, as whole-head magnetoencephalography data were acquired. Consistent with previous work, gamma-band power was significantly higher in right auditory cortices across groups and conditions. However, patients exhibited significantly reduced overall gamma power relative to controls, and showed a reduced ear-of-stimulation effect indicating that ipsi- versus contralateral presentation had less impact on hemispheric power. Gamma-frequency oscillations are thought to be dependent on gamma-aminobutyric acidergic interneuronal networks, thus these patients' impairment in generating and/or maintaining such activity may indicate that local circuit integrity is at least partially compromised early in the disease process. In addition, patients also showed abnormality in long-range networks (i.e., ear-of-stimulation effects) potentially suggesting that multiple stages along auditory pathways contribute to connectivity aberrations found in patients with psychosis.
Collapse
Affiliation(s)
- Tony W Wilson
- Magnetoencephalography Laboratory, Department of Neurology, Wake Forest University Health Sciences, Winston-Salem, NC 27103, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Purcell DW, John SM, Schneider BA, Picton TW. Human temporal auditory acuity as assessed by envelope following responses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:3581-93. [PMID: 15658709 DOI: 10.1121/1.1798354] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Temporal auditory acuity, the ability to discriminate rapid changes in the envelope of a sound, is essential for speech comprehension. Human envelope following responses (EFRs) recorded from scalp electrodes were evaluated as an objective measurement of temporal processing in the auditory nervous system. The temporal auditory acuity of older and younger participants was measured behaviorally using both gap and modulation detection tasks. These findings were then related to EFRs evoked by white noise that was amplitude modulated (25% modulation depth) with a sweep of modulation frequencies from 20 to 600 Hz. The frequency at which the EFR was no longer detectable was significantly correlated with behavioral measurements of gap detection (r = -0.43), and with the maximum perceptible modulation frequency (r = 0.72). The EFR techniques investigated here might be developed into a clinically useful objective estimate of temporal auditory acuity for subjects who cannot provide reliable behavioral responses.
Collapse
Affiliation(s)
- David W Purcell
- The Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario M6A 2E1, Canada.
| | | | | | | |
Collapse
|
19
|
Dimitrijevic A, John MS, Picton TW. Auditory Steady-State Responses and Word Recognition Scores in Normal-Hearing and Hearing-Impaired Adults. Ear Hear 2004; 25:68-84. [PMID: 14770019 DOI: 10.1097/01.aud.0000111545.71693.48] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The number of steady-state responses evoked by the independent amplitude and frequency modulation (IAFM) of tones has been related to the ability to discriminate speech sounds as measured by word recognition scores (WRS). In the present study IAFM stimulus parameters were adjusted to resemble the acoustic properties of everyday speech to see how well responses to these speech-modeled stimuli were related to WRS. DESIGN We separately measured WRS and IAFM responses at a stimulus intensity of 70 dB SPL in three groups of subjects: young normal-hearing, elderly normal-hearing, and elderly hearing-impaired. We used two series of IAFM stimuli, one with modulation frequencies near 40 Hz and the other with modulation frequencies near 80 Hz. The IAFM stimuli, consisting of four carrier frequencies each independently modulated in frequency and amplitude, could evoke up to eight separate responses in one ear. We recorded IAFM responses and WRS measurements in quiet and in the presence of speech-masking noise at 67 dB SPL or 70 dB SPL. We then evaluated the hearing-impaired subjects with and without their hearing aids to see whether an improvement in WRS would be reflected in an increased number of responses to the IAFM stimulus. RESULTS The correlations between WRS and the number of IAFM responses recognized as significantly different from the background were between 0.70 and 0.81 for the 40 Hz stimuli, between 0.73 and 0.82 for the 80 Hz stimuli, and between 0.76 and 0.85 for the combined assessment of 40 and 80 Hz responses. Response amplitudes at 80 Hz were smaller in the hearing-impaired than in the normal-hearing subjects. Response amplitudes for the 40 Hz stimuli varied with the state of arousal and this effect made it impossible to compare amplitudes across the different groups. Hearing aids increased both the WRS and the number of significant IAFM responses at 40 Hz and 80 Hz. Masking decreased the WRS and the number of significant responses. CONCLUSIONS IAFM responses are significantly correlated with WRS and may provide an objective tool for examining the brain's ability to process the auditory information needed to perceive speech.
Collapse
Affiliation(s)
- Andrew Dimitrijevic
- Rotman Research Institute, Baycrest Centre for Geriatric Care, University of Toronto, Canada.
| | | | | |
Collapse
|