1
|
Yokoi Y. Osteoblast-like Cell Proliferation, ALP Activity and Photocatalytic Activity on Sintered Anatase and Rutile Titanium Dioxide. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4414. [PMID: 34442936 PMCID: PMC8401773 DOI: 10.3390/ma14164414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
This study aimed to create a biomaterial from titanium dioxide (TiO2), which has been known to have photocatalytic and bone formation promoting effects. I expected that anatase titanium dioxide-based implants could promote bone augmentation and induce bone formation. Powdery anatase TiO2 was compression molded and sintered at 700, 800, 900, and 1000 °C to prepare sintered compact samples. X-ray diffraction and scanning electron microscopy were used to observe the surface of these samples. Furthermore, mouse osteoblast-like cells (MC3T3-E1 cell line) were seeded on the samples sintered at different temperatures, and cell proliferation was observed to evaluate the cell proliferation of the samples. The sample sintered at 700 °C was composed of anatase TiO2. The samples sintered at 800 °C and 900 °C were confirmed to consist of a mixture of anatase and rutile TiO2 crystalline phases. Moreover, the sample sintered at 700 and 800 °C, which contained anatase TiO2, showed remarkable photocatalytic activity. Those samples sintered at 1000 °C were transformed to the rutile TiO2. The cell proliferation after 7-14-days culturing revealed that cells cultured on the 700 °C sample decreased in number immediately after initiation of culturing. The cells cultured on TiO2 sintered at 900 °C markedly proliferated over time with an increase in the alkaline phosphatase activity, showing good MC3T3-E1 cell compatibility of the samples. The sample sintered at 1000 °C, which is rutile TiO2, showed the highest increase.
Collapse
Affiliation(s)
- Yukiko Yokoi
- Department of Dental Materials, School of Dentistry, Matsumoto Dental University, 1780 Hiro-Oka Gobara, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
2
|
Photopolymerized Microfeatures Guide Adult Spiral Ganglion and Dorsal Root Ganglion Neurite Growth. Otol Neurotol 2018; 39:119-126. [PMID: 29227456 DOI: 10.1097/mao.0000000000001622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HYPOTHESIS Microtopographical patterns generated by photopolymerization of methacrylate polymer systems will direct growth of neurites from adult neurons, including spiral ganglion neurons (SGNs). BACKGROUND Cochlear implants (CIs) provide hearing perception to patients with severe to profound hearing loss. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by spread of the electrical currents in the inner ear. Directing the regrowth of SGN peripheral processes towards stimulating electrodes could help reduce current spread and improve spatial resolution provided by the CI. Previous work has demonstrated that micro- and nano-scale patterned surfaces precisely guide the growth of neurites from a variety of neonatal neurons including SGNs. Here, we sought to determine the extent to which adult neurons likewise respond to these topographical surface features. METHODS Photopolymerization was used to fabricate methacrylate polymer substrates with micropatterned surfaces of varying amplitudes and periodicities. Dissociated adult dorsal root ganglion neurons (DRGNs) and SGNs were cultured on these surfaces and the alignment of the neurite processes to the micropatterns was determined. RESULTS Neurites from both adult DRGNs and SGNs significantly aligned to the patterned surfaces similar to their neonatal counterparts. Further DRGN and SGN neurite alignment increased as the amplitude of the microfeatures increased. Decreased pattern periodicity also improved neurite alignment. CONCLUSION Microscale surface topographic features direct the growth of adult SGN neurites. Topographical features could prove useful for guiding growth of SGN peripheral axons towards a CI electrode array.
Collapse
|
3
|
Krukiewicz K, Chudy M, Vallejo-Giraldo C, Skorupa M, Więcławska D, Turczyn R, Biggs M. Fractal form PEDOT/Au assemblies as thin-film neural interface materials. Biomed Mater 2018; 13:054102. [DOI: 10.1088/1748-605x/aabced] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Völker J, Kohm F, Jürgens L, Scherzad A, Schendzielorz P, Schraven SP, Mlynski R, Radeloff A, Hagen R, Rak K. Patterned semiconductor structures modulate neuronal outgrowth: Implication for the development of a neurobionic interface. J Biomed Mater Res A 2017; 106:65-72. [PMID: 28884492 DOI: 10.1002/jbm.a.36203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022]
Abstract
Auditory implants stimulate the neurons by broad electrical fields, which leads to a low number of spectral channels. A reduction in the distance between the electrode and the neuronal structures might lead to better electrical transduction. The use of microstructured semiconductors offers a large number of contacts, which could attract neurons and stimulate them individually. To investigate the interaction between neurons and semiconductors, differentiated neuronal precursor cells were cultured on silicon wafers. Different structures were added on the wafers by electron beam lithography, and deep reactive ion etching in different depths (2 and 7 µm). Grooved surfaces guided the neurons and resulted in straight oriented axons, but neuronal outgrowth was impaired by the 7 µm grooves. Within the 7 µm structures, the neuronal cell body was totally encased and the nuclei were deformed from a round to an elliptical shape. On both square and cylindrical structures neuronal bridging could be detected in different forms, either between the tops of the structures or between the bottom and the top. Furthermore, neuronal bridges were established on the lateral part of the structures, and change in direction of neuronal growth was induced by the structure. Finally, it could be shown that neuronal growth cones were particularly attracted by the top of the cylinders, which might allow for the stimulation of neurons via this structure. In conclusion, study results indicate that structured semiconductors can modulate neuronal growth and its direction, offering a novel method for the development of new implants with improved neuronal stimulation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 65-72, 2018.
Collapse
Affiliation(s)
- Johannes Völker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Fabian Kohm
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Lukas Jürgens
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Sebastian P Schraven
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, Rostock, Germany
| | - Andreas Radeloff
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University of Oldenburg, Oldenburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Würzburg, Germany
| |
Collapse
|
5
|
Frick C, Müller M, Wank U, Tropitzsch A, Kramer B, Senn P, Rask-Andersen H, Wiesmüller KH, Löwenheim H. Biofunctionalized peptide-based hydrogels provide permissive scaffolds to attract neurite outgrowth from spiral ganglion neurons. Colloids Surf B Biointerfaces 2016; 149:105-114. [PMID: 27736723 DOI: 10.1016/j.colsurfb.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/03/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022]
Abstract
Cochlear implants (CI) allow for hearing rehabilitation in patients with sensorineural hearing loss or deafness. Restricted CI performance results from the spatial gap between spiral ganglion neurons and the CI, causing current spread that limits spatially restricted stimulation and impairs frequency resolution. This may be substantially improved by guiding peripheral processes of spiral ganglion neurons towards and onto the CI electrode contacts. An injectable, peptide-based hydrogel was developed which may provide a permissive scaffold to facilitate neurite growth towards the CI. To test hydrogel capacity to attract spiral ganglion neurites, neurite outgrowth was quantified in an in vitro model using a custom-designed hydrogel scaffold and PuraMatrix®. Neurite attachment to native hydrogels is poor, but significantly improved by incorporation of brain-derived neurotrophic factor (BDNF), covalent coupling of the bioactive laminin epitope IKVAV and the incorporation a full length laminin to hydrogel scaffolds. Incorporation of full length laminin protein into a novel custom-designed biofunctionalized hydrogel (IKVAV-GGG-SIINFEKL) allows for neurite outgrowth into the hydrogel scaffold. The study demonstrates that peptide-based hydrogels can be specifically biofunctionalized to provide a permissive scaffold to attract neurite outgrowth from spiral ganglion neurons. Such biomaterials appear suitable to bridge the spatial gap between neurons and the CI.
Collapse
Affiliation(s)
- Claudia Frick
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, DE-72076 Tübingen, Germany.
| | - Marcus Müller
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, DE-72076 Tübingen, Germany.
| | - Ute Wank
- EMC microcollections GmbH, DE-72070 Tübingen, Germany.
| | - Anke Tropitzsch
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, DE-72076 Tübingen, Germany.
| | - Benedikt Kramer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, DE-72076 Tübingen, Germany.
| | - Pascal Senn
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head & Neck Surgery, HUG, University Hospital of Geneva, CH-1211 Genève 14, Switzerland.
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Departments of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.
| | | | - Hubert Löwenheim
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, DE-72076 Tübingen, Germany.
| |
Collapse
|
6
|
Schwieger J, Esser KH, Lenarz T, Scheper V. Establishment of a long-term spiral ganglion neuron culture with reduced glial cell number: Effects of AraC on cell composition and neurons. J Neurosci Methods 2016; 268:106-16. [DOI: 10.1016/j.jneumeth.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/13/2023]
|
7
|
Cervantes B, López-Huerta F, Vega R, Hernández-Torres J, García-González L, Salceda E, Herrera-May AL, Soto E. Cytotoxicity Evaluation of Anatase and Rutile TiO₂ Thin Films on CHO-K1 Cells in Vitro. MATERIALS 2016; 9:ma9080619. [PMID: 28773740 PMCID: PMC5509025 DOI: 10.3390/ma9080619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/10/2023]
Abstract
Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science.
Collapse
Affiliation(s)
- Blanca Cervantes
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 sur 6301, Col. San Manuel, 72570 Puebla, Mexico.
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain.
| | - Francisco López-Huerta
- Facultad de Ingeniería, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, 94294 Veracruz, Mexico.
| | - Rosario Vega
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 sur 6301, Col. San Manuel, 72570 Puebla, Mexico.
| | - Julián Hernández-Torres
- Centro de Investigación en Micro y Nanotecnología, Calzada Ruiz Cortines 455, Boca del Río, 94294 Veracruz, Mexico.
| | - Leandro García-González
- Centro de Investigación en Micro y Nanotecnología, Calzada Ruiz Cortines 455, Boca del Río, 94294 Veracruz, Mexico.
| | - Emilio Salceda
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 sur 6301, Col. San Manuel, 72570 Puebla, Mexico.
| | - Agustín L Herrera-May
- Centro de Investigación en Micro y Nanotecnología, Calzada Ruiz Cortines 455, Boca del Río, 94294 Veracruz, Mexico.
| | - Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 sur 6301, Col. San Manuel, 72570 Puebla, Mexico.
| |
Collapse
|
8
|
Kwiatkowska M, Reinhard J, Roll L, Kraft N, Dazert S, Faissner A, Volkenstein S. The expression pattern and inhibitory influence of Tenascin-C on the growth of spiral ganglion neurons suggest a regulatory role as boundary formation molecule in the postnatal mouse inner ear. Neuroscience 2016; 319:46-58. [PMID: 26812032 DOI: 10.1016/j.neuroscience.2016.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/08/2015] [Accepted: 01/15/2016] [Indexed: 02/02/2023]
Abstract
Sensorineural hearing loss, as a consequence of acoustic trauma, aging, genetic defects or ototoxic drugs, is highly associated with irreversible damage of cochlear hair cells (HCs) and secondary degeneration of spiral ganglion (SG) cells. Cochlear implants (CIs), which bypass the lost HC function by direct electrical stimulation of the remaining auditory neurons, offer an effective therapy option. Several studies imply that components of the extracellular matrix (ECM) have a great impact on the adhesion and growth of spiral ganglion neurons (SGNs) during development. Based on these findings, ECM proteins might act as bioactive CI substrates to optimize the electrode-nerve interface and to improve efficacy of these implants. In the present study, we focused on the ECM glycoproteins Tenascin-C (TN-C), Laminin (LN), and Fibronectin (FN), which show a prominent expression along the growth route of SGNs and the niche around HCs during murine postnatal development in vivo. We compared their influence on adhesion, neurite length, and neurite number of SGNs in vitro. Moreover, we studied the expression of the chondroitin sulfate proteoglycan (CSPG) dermatan sulfate-dependent proteoglycan-1 (DSD-1-PG), an interaction partner of TN-C. In sum, our in vitro data suggest that TN-C acts as an anti-adhesive and inhibitory factor for the growth of SGNs. The DSD-1 carbohydrate epitope is specifically localized to HC stereocilia and SG fibers. Interestingly, TN-C and the DSD-1-PG exhibit a mutually exclusive expression pattern, with the exception of a very restricted region beneath the habenula perforata, where SG neurites grow through the basilar membrane (BM) toward the HCs. The complementary expression of TN-C, LN, FN, and the DSD-1 epitope suggests that TN-C may act as an important boundary formation molecule in the developing postnatal mouse inner ear, which makes it a promising candidate to regulate neurite outgrowth in the light of CIs.
Collapse
Affiliation(s)
- M Kwiatkowska
- Department of Otorhinolaryngology, Head & Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital, Bleichstrasse 15, 44787 Bochum, Germany
| | - J Reinhard
- Department of Cell Morphology & Molecular Neurobiology, Ruhr-University Bochum, Faculty of Biology & Biotechnology, Universitätsstrasse 150, 44801 Bochum, Germany
| | - L Roll
- Department of Cell Morphology & Molecular Neurobiology, Ruhr-University Bochum, Faculty of Biology & Biotechnology, Universitätsstrasse 150, 44801 Bochum, Germany
| | - N Kraft
- Department of Otorhinolaryngology, Head & Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital, Bleichstrasse 15, 44787 Bochum, Germany
| | - S Dazert
- Department of Otorhinolaryngology, Head & Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital, Bleichstrasse 15, 44787 Bochum, Germany
| | - A Faissner
- Department of Cell Morphology & Molecular Neurobiology, Ruhr-University Bochum, Faculty of Biology & Biotechnology, Universitätsstrasse 150, 44801 Bochum, Germany
| | - S Volkenstein
- Department of Otorhinolaryngology, Head & Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital, Bleichstrasse 15, 44787 Bochum, Germany.
| |
Collapse
|
9
|
Astolfi L, Simoni E, Martini A. OC-k3 cells, anin vitromodel for cochlear implant biocompatibility. HEARING BALANCE AND COMMUNICATION 2015. [DOI: 10.3109/21695717.2015.1063232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Edin F, Liu W, Li H, Atturo F, Magnusson PU, Rask-Andersen H. 3-D gel culture and time-lapse video microscopy of the human vestibular nerve. Acta Otolaryngol 2014; 134:1211-8. [PMID: 25399879 DOI: 10.3109/00016489.2014.946536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CONCLUSIONS Human inner ear neurons have an innate regenerative capacity and can be cultured in vitro in a 3-D gel. The culture technique is valuable for experimental investigations of human inner ear neuron signaling and regeneration. OBJECTIVES To establish a new in vitro model to study human inner ear nerve signaling and regeneration. METHODS Human superior vestibular ganglion (SVG) was harvested during translabyrinthine surgery for removal of vestibular schwannoma. After dissection tissue explants were embedded and cultured in a laminin-based 3-D matrix (Matrigel™). 3-D growth cone (GC) expansion was analyzed using time-lapse video microscopy (TLVM). Neural marker expression was appraised using immunocytochemistry with fluorescence and laser confocal microscopy. RESULTS Tissue explants from adult human SVG could be cultured in 3-D in a gel, indicating an innate potential for regeneration. Cultured GCs were found to expand dynamically in the gel. Growth cone expansion and axonal Schwann cell alignment were documented using TLVM. Neurons were identified morphologically and through immunohistochemical staining.
Collapse
Affiliation(s)
- Fredrik Edin
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital , Uppsala , Sweden
| | | | | | | | | | | |
Collapse
|
11
|
Tuft BW, Xu L, White SP, Seline AE, Erwood AM, Hansen MR, Guymon CA. Neural pathfinding on uni- and multidirectional photopolymerized micropatterns. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11265-76. [PMID: 24911660 PMCID: PMC4215840 DOI: 10.1021/am501622a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/09/2014] [Indexed: 05/22/2023]
Abstract
Overcoming signal resolution barriers of neural prostheses, such as the commercially available cochlear impant (CI) or the developing retinal implant, will likely require spatial control of regenerative neural elements. To rationally design materials that direct nerve growth, it is first necessary to determine pathfinding behavior of de novo neurite growth from prosthesis-relevant cells such as spiral ganglion neurons (SGNs) in the inner ear. Accordingly, in this work, repeating 90° turns were fabricated as multidirectional micropatterns to determine SGN neurite turning capability and pathfinding. Unidirectional micropatterns and unpatterned substrates are used as comparisons. Spiral ganglion Schwann cell alignment (SGSC) is also examined on each surface type. Micropatterns are fabricated using the spatial reaction control inherent to photopolymerization with photomasks that have either parallel line spacing gratings for unidirectional patterns or repeating 90° angle steps for multidirectional patterns. Feature depth is controlled by modulating UV exposure time by shuttering the light source at given time increments. Substrate topography is characterized by white light interferometry and scanning electron microscopy (SEM). Both pattern types exhibit features that are 25 μm in width and 7.4 ± 0.7 μm in depth. SGN neurites orient randomly on unpatterned photopolymer controls, align and consistently track unidirectional patterns, and are substantially influenced by, but do not consistently track, multidirectional turning cues. Neurite lengths are 20% shorter on multidirectional substrates compared to unidirectional patterns while neurite branching and microfeature crossing events are significantly higher. For both pattern types, the majority of the neurite length is located in depressed surface features. Developing methods to understand neural pathfinding and to guide de novo neurite growth to specific stimulatory elements will enable design of innovative biomaterials that improve functional outcomes of devices that interface with the nervous system.
Collapse
Affiliation(s)
- Bradley W. Tuft
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
| | - Linjing Xu
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Scott P. White
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
| | - Alison E. Seline
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Andrew M. Erwood
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - Marlan R. Hansen
- Department
of Otolaryngology, University of Iowa Hospitals
and Clinics, Iowa City, Iowa 52242, United States, United States
| | - C. Allan Guymon
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242,
United States, United States
- Tel.:(319)335-5015
| |
Collapse
|
12
|
Sung M, Wei E, Chavez E, Jain N, Levano S, Binkert L, Ramseier A, Setz C, Bodmer D, Ryan AF, Brand Y. Inhibition of MMP-2 but not MMP-9 influences inner ear spiral ganglion neurons in vitro. Cell Mol Neurobiol 2014; 34:1011-21. [PMID: 24935409 DOI: 10.1007/s10571-014-0077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
Matrix metalloproteinases (MMPs) play an important role in modeling of the extracellular matrix. There is increasing evidence that these proteases are important in neurite elongation and axonal guidance during development in the central nervous system and retina. Moreover, they are also expressed after acute injury and can be the key mediators of pathogenesis. However, the role of MMPs in the inner ear is largely unknown. Our group recently demonstrated that general inhibition of MMPs resulted in auditory hair cell loss in vitro. In the present study, we investigated the role of MMPs in inner ear spiral ganglion neuron (SGN) survival, neuritogenesis and neurite extension by blocking MMPs known to be involved in axonal guidance, neurite elongation, and apoptosis in other neuronal systems. Spiral ganglion (SG) explants from 5-day-old Wistar rats were treated with different concentrations of the general MMP inhibitor GM6001, a specific MMP-2 inhibitor, and a specific MMP-9 inhibitor, in vitro. The general inhibitor of MMPs and the specific inhibition of MMP-2 significantly reduced both the number of neurites that extended from SG explants, as well as the length of individual neurites. However, neither the general inhibitor of MMPs nor the specific inhibition of MMP-2 influenced SGN survival. Inhibition of MMP-9 had no influence on SGNs. The data suggest that MMPs, and more specifically MMP-2, influence the growth of developing afferent neurites in the mammalian inner ear in vivo.
Collapse
Affiliation(s)
- Michael Sung
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Noga BR, Pinzon A. Spontaneous and electrically-evoked catecholamine secretion from long-term cultures of bovine adrenal chromaffin cells. Brain Res 2013; 1529:209-22. [PMID: 23891791 DOI: 10.1016/j.brainres.2013.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/03/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022]
Abstract
Catecholamine release was measured from bovine adrenal medullary chromaffin cell (CC) cultures maintained over a period of three months. Cells were plated over simple biocompatible cell platforms with electrical stimulation capability and at specified times transferred to an acrylic superfusion chamber designed to allow controlled flow of superfusate over the culture. Catecholamine release was measured from the superfusates using fast cyclic voltammetry before, during and after electrical stimulation of the cells. Immunocytochemical staining of CC cultures revealed that they were composed of epinephrine (EP) and/or norepinephrine (NE) type cells. Both spontaneous and evoked-release of catecholamines from CCs were observed throughout the testing period. EP predominated during spontaneous release, whereas NE was more prevalent during electrically-evoked release. Electrical stimulation for 20 s, increased total catecholamine release by 60-130% (measured over a period of 500 s) compared to that observed for an equivalent 20 s period of spontaneous release. Stimulus intensity was correlated with the amount of evoked release, up to a plateau which was observed near the highest intensities. Shorter intervals between stimulation trials did not significantly affect the initial amount of release, and the amount of evoked release was relatively stable over time and did not decrease significantly with age of the culture. The present study demonstrates long-term survival of CC cultures in vitro and describes a technique useful for rapid assessment of cell functionality and release properties of cultured monoaminergic cell types that later can be transplanted for neurotransmitter replacement following injury or disease.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | |
Collapse
|
14
|
Khalifa SAM, Björk P, Vieider C, Ulfendahl M, Scarfone E. Neuronal polarity mediated by micro-scale protein patterns and Schwann cells in vitro. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-013-1084-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
15
|
Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth. Biomaterials 2012; 34:42-54. [PMID: 23069708 DOI: 10.1016/j.biomaterials.2012.09.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/23/2012] [Indexed: 12/15/2022]
Abstract
Cochlear implants (CIs) provide auditory perception to individuals with severe hearing impairment. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by electrical current spread in the inner ear. Directing nerve cell processes towards target electrodes may reduce the problematic current spread and improve stimulatory specificity. In this work, photopolymerization was used to fabricate micro- and nano-patterned methacrylate polymers to probe the extent of spiral ganglion neuron (SGN) neurite and Schwann cell (SGSC) contact guidance based on variations in substrate topographical cues. Micropatterned substrates are formed in a rapid, single-step reaction by selectively blocking light with photomasks which have parallel line-space gratings with periodicities of 10-100 μm. Channel amplitudes of 250 nm-10 μm are generated by modulating UV exposure time, light intensity, and photoinitiator concentration. Gradual transitions are observed between ridges and grooves using scanning electron and atomic force microscopy. The transitions stand in contrast to vertical features generated via etching lithographic techniques. Alignment of neural elements increases significantly with increasing feature amplitude and constant periodicity, as well as with decreasing periodicity and constant amplitude. SGN neurite alignment strongly correlates (r = 0.93) with maximum feature slope. Multiple neuronal and glial types orient to the patterns with varying degrees of alignment. This work presents a method to fabricate gradually-sloping micropatterns for cellular contact guidance studies and demonstrates spatial control of inner ear neural elements in response to micro- and nano-scale surface topography.
Collapse
|
16
|
Mikulewicz M, Chojnacka K. Cytocompatibility of medical biomaterials containing nickel by osteoblasts: a systematic literature review. Biol Trace Elem Res 2011; 142:865-89. [PMID: 20703824 PMCID: PMC3152710 DOI: 10.1007/s12011-010-8798-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 07/29/2010] [Indexed: 12/12/2022]
Abstract
The present review is based on a survey of 21 studies on the cytocompatibility of medical biomaterials containing nickel, as assessed by cell culture of human and animal osteoblasts or osteoblast-like cells. Among the biomaterials evaluated were stainless steel, NiTi alloys, pure Ni, Ti, and other pure metals. The materials were either commercially available, prepared by the authors, or implanted by various techniques to generate a protective layer of oxides, nitrides, acetylides. The observation that the layers significantly reduced the initial release of metal ions and increased cytocompatibility was confirmed in cell culture experiments. Physical and chemical characterization of the materials was performed. This included, e.g., surface characterization (roughness, wettability, corrosion behavior, quantity of released ions, microhardness, and characterization of passivation layer). Cytocompatibility tests of the materials were conducted in the cultures of human or animal osteoblasts and osteoblast-like cells. The following assays were carried out: cell proliferation and viability test, adhesion test, morphology (by fluorescent microscopy or SEM). Also phenotypic and genotypic markers were investigated. In the majority of works, it was found that the most cytocompatible materials were stainless steel and NiTi alloy. Pure Ni was rendered and less cytocompatible. All the papers confirmed that the consequence of the formation of protective layers was in significant increase of cytocompatibility of the materials. This indicates the possible further modifications of the manufacturing process (formation of the passivation layer).
Collapse
Affiliation(s)
- Marcin Mikulewicz
- Department of Dentofacial Orthopedics and Orthodontics, Medical University of Wrocław, Wrocław, Poland.
| | | |
Collapse
|
17
|
Clarke JC, Tuft BW, Clinger JD, Levine R, Figueroa LS, Guymon CA, Hansen MR. Micropatterned methacrylate polymers direct spiral ganglion neurite and Schwann cell growth. Hear Res 2011; 278:96-105. [PMID: 21616131 DOI: 10.1016/j.heares.2011.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/27/2011] [Accepted: 05/03/2011] [Indexed: 01/17/2023]
Abstract
Significant advances in the functional outcomes achieved with cochlear implantation will likely require tissue-engineering approaches to improve the neural prosthesis interface. One strategy is to direct spiral ganglion neuron (SGN) axon growth in a highly organized fashion to approximate or contact stimulating electrodes. Here we assessed the ability of micropatterns induced by photopolymerization in methacrylate (MA) polymer systems to direct cultured neonatal rat SGN neurite growth and alignment of SG Schwann cells (SGSCs). SGN survival and neurite length were comparable among various polymer compositions. Remarkably, there was no significant difference in SGN survival or neurite length between laminin and non-laminin coated MA polymer substrates, suggesting high biocompatibility with SG tissue. Micropatterning with photopolymerization generated microchannels with a ridge periodicity of 50 μm and channel depths of 0.6-1.0 μm. SGN neurites grew within the grooves of the microchannels. These topographies strongly induced alignment of dissociated SGN neurites and SGSCs to parallel the pattern. By contrast, fibroblasts failed to align with the micropattern suggesting cell specific responses to topographical cues. SGN neurites extending from explants turned to parallel the pattern as they encountered the microchannels. The extent of turning was significantly correlated with angle at which the neurite initially encountered the pattern. These results indicate that SGN neurites respond to microtopographical features and that these features can be used to direct neurite growth in a highly organized fashion.
Collapse
Affiliation(s)
- Joseph C Clarke
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, 2PFP, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Stöver T, Lenarz T. Biomaterials in cochlear implants. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 8:Doc10. [PMID: 22073103 PMCID: PMC3199815 DOI: 10.3205/cto000062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development.
Collapse
Affiliation(s)
- Timo Stöver
- Department of Otolaryngology, Goethe University Frankfurt, Frankfurt a.M., Germany
| | | |
Collapse
|
19
|
Rak K, Wasielewski N, Radeloff A, Scherzed A, Jablonka S, Hagen R, Mlynski R. Growth behavior of cochlear nucleus neuronal cells on semiconductor substrates. J Biomed Mater Res A 2011; 97:158-66. [PMID: 21370446 DOI: 10.1002/jbm.a.33042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 10/11/2010] [Accepted: 12/17/2010] [Indexed: 11/09/2022]
Abstract
Auditory brainstem implants provide sound information by direct stimulation of the cochlear nucleus to patients with dysfunctional or absent cranial nerve VIII. In contrast to patients with cochlear implants, the use of the auditory brainstem implants is less successful. This cannot be fully explained by the difference location of stimulation but a rather unspecific neuronal stimulation. The aim of this study was to further examine neuronal cells of the cochlear nucleus and to test their interactions with semiconductor substrates as a potential electrode material for improved auditory brainstem implants. The cochlear nuclei of postnatal day 7 rats were microsurgically dissected. The tissue was dissociated enzymatically and plated on coverslips as control and on the semiconductor substrates silicon or silicon nitride. After 4 days in culture the morphology and growth of dissociated cells was determined by fluorescence and scanning electron microscopy. Dissociated cells of the cochlear nucleus showed reduced cell growth on semiconductor substrates compared with controls. SEM analysis demonstrated close contact of neurons with supporting cells in culture and good adherence of neuronal growth cones on the used materials. These findings present basic knowledge for the development of neuron-electrode interfaces for future auditory brainstem implants.
Collapse
Affiliation(s)
- Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Comprehensive Hearing Center, Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Schlie S, Fadeeva E, Koch J, Ngezahayo A, Chichkov BN. Femtosecond laser fabricated spike structures for selective control of cellular behavior. J Biomater Appl 2009; 25:217-33. [PMID: 19773322 DOI: 10.1177/0885328209345553] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study we investigate the potential of femtosecond laser generated micrometer sized spike structures as functional surfaces for selective cell controlling. The spike dimensions as well as the average spike to spike distance can be easily tuned by varying the process parameters. Moreover, negative replications in soft materials such as silicone elastomer can be produced. This allows tailoring of wetting properties of the spike structures and their negative replicas representing a reduced surface contact area. Furthermore, we investigated material effects on cellular behavior. By comparing human fibroblasts and SH-SY5Y neuroblastoma cells we found that the influence of the material was cell specific. The cells not only changed their morphology, but also the cell growth was affected. Whereas, neuroblastoma cells proliferated at the same rate on the spike structures as on the control surfaces, the proliferation of fibroblasts was reduced by the spike structures. These effects can result from the cell specific adhesion patterns as shown in this work. These findings show a possibility to design defined surface microstructures, which could control cellular behavior in a cell specific manner.
Collapse
Affiliation(s)
- Sabrina Schlie
- Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany.
| | | | | | | | | |
Collapse
|
21
|
[Growth behavior of spiral ganglion explants on cochlear implant electrodes and their materials]. HNO 2009; 57:358-63. [PMID: 19247626 DOI: 10.1007/s00106-008-1843-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND With the increasing use of cochlear implants (CIs), the insertion of alloplastic material into the inner ear is nowadays an established treatment for severe to profound hearing loss in children and adults. Beyond its widespread use, the biocompatibility of the CI electrode and its interaction with the neural structures of the cochlea is not yet established. METHODS To investigate the survival and growth behavior of spiral ganglion neurons on different CI materials, spiral ganglion explants from newborn rats were cultured on silicone and platinum, on a surface combination of silicone and platinum, and, finally, on a CI electrode. RESULTS The results of this study indicate that the growth of spiral ganglion neurons in vitro is strongly influenced by the different materials and their arrangement, with platinum exhibiting the highest degree of biocompatibility with respect to neurite extension. Level differences in the surface structure between silicone and platinum lead to inhibition of neurite outgrowth. Furthermore, the culturing of spiral ganglion explants on a CI electrode leads to neurite sprouting toward the electrodes made of platinum. CONCLUSION The biocompatibility of CI materials with spiral ganglion neurons was shown in this study, but it differs with different CI materials. Besides the material itself, the arrangement of the materials can affect the neurite extension.
Collapse
|
22
|
Carballo-Vila M, Moreno-Burriel B, Chinarro E, Jurado JR, Casañ-Pastor N, Collazos-Castro JE. Titanium oxide as substrate for neural cell growth. J Biomed Mater Res A 2009; 90:94-105. [DOI: 10.1002/jbm.a.32058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Volkenstein S, Brors D, Hansen S, Minovi A, Laub M, Jennissen HP, Dazert S, Neumann A. Influence of bone morphogenetic protein-2 on spiral ganglion neurite growth in vitro. Eur Arch Otorhinolaryngol 2009; 266:1381-9. [DOI: 10.1007/s00405-009-0930-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 02/17/2009] [Indexed: 11/28/2022]
|
24
|
Furze A, Kralick D, Vakharia A, Jaben K, Graves R, Adil E, Eshraghi AA, Balkany TJ, Van de Water TR. Dexamethasone and methylprednisolone do not inhibit neuritic outgrowth while inhibiting outgrowth of fibroblasts from spiral ganglion explants. Acta Otolaryngol 2008; 128:122-7. [PMID: 17851911 DOI: 10.1080/00016480701390128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSION Dexamethasone and methylprednisolone do not inhibit neuritic outgrowth while inhibiting fibroblastic outgrowth from spiral ganglion micro-explants. OBJECTIVES To demonstrate reduced fibroblastic outgrowth while maintaining neurite outgrowth for several corticosteroids using an in vitro test system of neonatal rat spiral ganglion micro-explants. MATERIALS AND METHODS The in vitro test system comprised 3-day-old rat spiral ganglion micro-explants. Dexamethasone, methylprednisolone, triamcinolone acetonide, and human recombinant brain-derived neurotrophic factor (hrBDNF) were tested in vitro. The control was ganglion micro-explants in supplemented Dulbecco's modified Eagle's medium. Areas of the ganglion explant, neurite and fibroblast outgrowth of ganglion explants after 10 days in vitro were imaged, digitized, and analyzed using Image Tool 3.00 on a PC workstation. Areas of neurite and fibroblast outgrowth from the experimental explants were compared against values obtained from control explants. RESULTS Dexamethasone gave the best result of the three corticosteroids tested for inhibiting fibroblast outgrowth while not inhibiting neurite outgrowth from the ganglion micro-explants. Media containing hrBDNF (10 ng/ml) stimulated significantly greater neurite outgrowth than outgrowth from control explants (p < 0.001). Ganglion micro-explants treated with dexamethasone (0.02 mg/ml) and methylprednisolone (0.5 mg/ml) provided the greatest inhibition of fibroblast outgrowth compared with control explants (p < 0.001).
Collapse
Affiliation(s)
- Alexis Furze
- Department of Otolaryngology, University of Miami Ear Institute, Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Steinbach S, Lutz J. Glutamate induces apoptosis in cultured spiral ganglion explants. Biochem Biophys Res Commun 2007; 357:14-9. [PMID: 17418815 DOI: 10.1016/j.bbrc.2007.03.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Traumatic sound exposure, aminoglycoside antibiotics, cochlea ischemia or traumatic stress leads to an excessive release of glutamate from inner hair cells into the synaptic cleft. The high glutamate concentration can cause a swelling and destruction of the dendrites of spiral ganglion neurons of type I as well as a reduction in the number of neurons. This may be a cause of hearing loss. The mechanism causing the reduction of neurons is still not known. Apoptosis, also called programmed cell death, could be involved. In this study, cultured spiral ganglion explants were incubated with glutamate in high concentrations. Neurite outgrowth was determined and additionally a new method was established for studying the morphology of single spiral ganglion neurons. For the first time it was shown that glutamate induces apoptosis of spiral ganglion neurons, which could be blocked selectively by a caspase-3 inhibitor. This could offer a new therapeutic strategy for hearing disorders.
Collapse
Affiliation(s)
- Silke Steinbach
- Department of Otolaryngology-Head and Neck Surgery, Technical University of Munich, Germany.
| | | |
Collapse
|
26
|
Greenwood D, Jagger DJ, Huang LC, Hoya N, Thorne PR, Wildman SS, King BF, Pak K, Ryan AF, Housley GD. P2X receptor signaling inhibits BDNF-mediated spiral ganglion neuron development in the neonatal rat cochlea. Development 2007; 134:1407-17. [PMID: 17329369 DOI: 10.1242/dev.002279] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type I and type II spiral ganglion neurons (SGN) innervate the inner and outer hair cells of the cochlea, respectively. This neural system is established by reorganization of promiscuous innervation of the hair cells, immediately before hearing is established. The mechanism for this synaptic reorganization is unresolved but probably includes regulation of trophic support between the hair cells and the neurons. We provide evidence that P2X receptors (ATP-gated ion channels) contribute such a mechanism in the neonatal rat cochlea. Single-cell quantitative RT-PCR identified the differential expression of two P2X receptor subunits, splice variant P2X(2)(-3) and P2X(3), in a 1:2 transcript ratio. Downregulation of this P2X(2-3/3) receptor coincided with maturation of the SGN innervation of the hair cells. When the P2X(2-3) and P2X(3) subunits were co-expressed in Xenopus oocytes, the resultant P2X receptor properties corresponded to the SGN phenotype. This included enhanced sensitivity to ATP and extended agonist action. In P4 spiral ganglion explants, activation of the P2X receptor signaling pathway by ATPgammaS or alpha,betaMeATP inhibited BDNF-induced neurite outgrowth and branching. These findings indicate that P2X receptor signaling provides a mechanism for inhibiting neurotrophin support of SGN neurites when synaptic reorganization is occurring in the cochlea.
Collapse
Affiliation(s)
- Denise Greenwood
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Richardson RT, Thompson B, Moulton S, Newbold C, Lum MG, Cameron A, Wallace G, Kapsa R, Clark G, O'Leary S. The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials 2007; 28:513-23. [PMID: 17007922 DOI: 10.1016/j.biomaterials.2006.09.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 09/08/2006] [Indexed: 12/20/2022]
Abstract
This research aims to improve the nerve-electrode interface of the cochlear implant using polymer technology to encourage neuron survival, elongation and adhesion to the electrodes. Polypyrrole (Ppy) doped with p-toluene sulphonate (pTS) is an electroactive polymer into which neurotrophin-3 (NT3) can be incorporated. Ppy/pTS+/-NT3 was synthesised over gold electrodes and used as a surface for auditory neuron explant culture. Neurite outgrowth from explants grown on Ppy/pTS was equivalent to tissue culture plastic but improved with the incorporation of NT3 (Ppy/pTS/NT3). Electrical stimulation of Ppy/pTS/NT3 with a biphasic current pulse, as used in cochlear implants, significantly improved neurite outgrowth from explants. Using (125)I-NT3, it was shown that low levels of NT3 passively diffused from Ppy/pTS/NT3 during normal incubation and that electrical stimulation enhanced the release of biologically active NT3 in quantities adequate for neuron survival. Furthermore, Ppy/pTS/NT3 and its constituents were not toxic to auditory neurons and the Ppy/pTS/NT3 coating on gold electrodes did not alter impedance. If applied to the cochlear implant, Ppy/pTS/NT3 will provide a biocompatible, low-impedance substrate for storage and release of NT3 to help protect auditory neurons from degradation after sensorineural hearing loss and encourage neurite outgrowth towards the electrodes.
Collapse
Affiliation(s)
- Rachael T Richardson
- The Bionic Ear Institute, 384 Albert Street, East Melbourne, Vic. 3002, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Anselme K, Bigerelle M. Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:471-9. [PMID: 16688588 DOI: 10.1007/s10856-006-8475-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 08/18/2005] [Indexed: 05/09/2023]
Abstract
The effects of material composition, surface chemistry or surface topography on cell attachment (short-term adhesion) have been largely studied on bone-derived cells. However, no statistical demonstration of these effects has been performed until now. With this objective, we quantified the attachment after 24 hours of human osteoblasts on pure titanium, titanium alloy and stainless steel substrates presenting 6 different surface morphologies and 2 different roughness amplitude obtained by sand-blasting, electro-erosion, acid etching, polishing and machine-tooling. The coating by a gold-palladium layer of these surfaces allowed determining the relative effect of the surface roughness and of the surface chemistry. By multiple analysis of variance, we demonstrated that neither material composition nor surface roughness amplitude influenced cell attachment except on sandblasted pure titanium substrates. On the contrary, a high significant influence of the process used to produce the surface was observed meaning that the main influent factor on cell attachment could be either the surface morphology or the surface chemistry induced by the process. As the coating of surfaces by a gold-palladium layer decreased significantly the attachment of cells on the majority of substrates, we concluded that attachment is rather influenced by surface chemistry than by surface topography.
Collapse
Affiliation(s)
- K Anselme
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies, Université du Littoral Côte d'Opale, 52 rue du Dr Calot, 62608, Berck sur mer cedex, France.
| | | |
Collapse
|
29
|
Ryan AF, Wittig J, Evans A, Dazert S, Mullen L. Environmental Micropatterning for the Study of Spiral Ganglion Neurite Guidance. ACTA ACUST UNITED AC 2006; 11:134-43. [PMID: 16439836 DOI: 10.1159/000090686] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The projection of neuronal processes is guided by a variety of soluble and insoluble factors, which are sensed by a fiber's growth cone. It is the differential distribution of such guidance cues that determine the direction in which neurites grow. The growth cone senses these cues on a fine scale, using extensible filopodia that range from a few to tens of mum in length. In order to study the effects of guidance cues on spiral ganglion (SG) neurites, we have used methods for distributing both soluble and insoluble cues on a scale appropriate for sensing by growth filopodia. The scale of these methods are at the micro, rather than nano, level to match the sensing range of the growth cone. Microfluidics and transfected cells were used to spatially localize tropic factors within the fluid environment of extending neurites. Micro-patterning was used to present neurites with stripes of insoluble factors. The results indicate that differentially distributed permissive, repulsive and stop signals can control the projection of SG neurites. Implications for future micro-patterning studies, for SG development and for the growth of deafferented SG dendrites toward a cochlear implant are discussed.
Collapse
Affiliation(s)
- Allen F Ryan
- Department of Surgery/Otolaryngology, UCSD School of Medicine, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
30
|
Shepherd RK, Coco A, Epp SB, Crook JM. Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. J Comp Neurol 2005; 486:145-58. [PMID: 15844207 PMCID: PMC1831822 DOI: 10.1002/cne.20564] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development and maintenance of spiral ganglion neurons (SGNs) appears to be supported by both neural activity and neurotrophins. Removal of this support leads to their gradual degeneration. Here, we examined whether the exogenous delivery of the neurotrophin brain-derived neurotrophic factor (BDNF) in concert with electrical stimulation (ES) provides a greater protective effect than delivery of BDNF alone in vivo. The left cochlea of profoundly deafened guinea pigs was implanted with an electrode array and drug-delivery system. BDNF or artificial perilymph (AP) was delivered continuously for 28 days. ES induced neural activity in two cohorts (BDNF/ES and AP/ES), and control animals received BDNF or AP without ES (BDNF/- and AP/-). The right cochleae of the animals served as deafened untreated controls. Electrically evoked auditory brainstem responses (EABRs) were recorded immediately following surgery and at completion of the drug-delivery period. AP/ES and AP/- cohorts showed an increase in EABR threshold over the implantation period, whereas both BDNF cohorts exhibited a reduction in threshold (P < 0.001, t-test). Changes in neural sensitivity were complemented by significant differences in both SGN survival and soma area. BDNF cohorts demonstrated a significant trophic or survival advantage and larger soma area compared with AP-treated and deafened control cochleae; this advantage was greatest in the base of the cochlea. ES significantly enhanced the survival effects of BDNF throughout the majority of the cochlea (P < 0.05, Bonferroni's t-test), although there was no evidence of trophic support provided by ES alone. Cotreatment of SGNs with BDNF and ES provides a substantial functional and trophic advantage; this treatment may have important implications for neural prostheses.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/pharmacology
- Brain-Derived Neurotrophic Factor/therapeutic use
- Cell Survival/drug effects
- Cell Survival/physiology
- Cochlea/drug effects
- Cochlea/physiology
- Cochlear Implants/standards
- Cochlear Implants/trends
- Disease Models, Animal
- Electric Stimulation Therapy/instrumentation
- Electric Stimulation Therapy/methods
- Electrodes, Implanted
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Guinea Pigs
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/therapy
- Membrane Potentials/physiology
- Nerve Degeneration/drug therapy
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Organ of Corti/injuries
- Organ of Corti/physiopathology
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Spiral Ganglion/drug effects
- Spiral Ganglion/physiology
- Treatment Outcome
Collapse
Affiliation(s)
- Robert K Shepherd
- The Bionic Ear Institute, Department of Otolaryngology, University of Melbourne, East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
31
|
Wittig JH, Ryan AF, Asbeck PM. A reusable microfluidic plate with alternate-choice architecture for assessing growth preference in tissue culture. J Neurosci Methods 2005; 144:79-89. [PMID: 15848242 DOI: 10.1016/j.jneumeth.2004.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 10/15/2004] [Accepted: 10/15/2004] [Indexed: 11/30/2022]
Abstract
We present the design of a chamber to evaluate in vitro how species and concentrations of soluble molecules control features of cell growth-potentially including cell proliferation, cell motility, process extension, and process termination. We have created a reusable cell culture plate that integrates a microfluidic media delivery network with standard cell culture environment. The microfluidic network delivers a stream of cell culture media with a step-like concentration gradient down a 50-100 microm wide microchannel called the presentation region. Migrating cells or growing cell processes freely choose between the two distinct chemical environments in the presentation region, but they are forced to exclusively choose either one environment or the other when they grow past a physical barrier acting as a decision point. Our fabrication technique requires little specialized equipment, and can be carried out in approximately 4 days per plate. We demonstrate the effectiveness of our plates as neurites from spiral ganglion explants preferentially grow in media containing neurotrophin-3 (NT-3) as opposed to media without NT-3. Our design could be used without modification to study dissociated cell responses to soluble growth cues, and for behavioral screening of small motile organisms.
Collapse
Affiliation(s)
- John H Wittig
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407, USA.
| | | | | |
Collapse
|
32
|
Khraiche ML, Zhou A, Muthuswamy J. Acoustic sensor for monitoring adhesion of Neuro-2A cells in real-time. J Neurosci Methods 2005; 144:1-10. [PMID: 15848233 DOI: 10.1016/j.jneumeth.2004.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 07/07/2004] [Accepted: 09/24/2004] [Indexed: 10/25/2022]
Abstract
Neuronal adhesion plays a fundamental role in growth, migration, regeneration and plasticity of neurons. However, current methods for studying neuronal adhesion cannot monitor this phenomenon quantitatively in real-time. In this work, we demonstrate the use of an acoustic sensor to measure adhesion of neuro-blastoma cells (Neuro-2A) in real-time. An acoustic sensor consisting of a quartz crystal sandwiched between gold electrodes was placed in a flow cell and filled with 600 microl of phosphate buffered saline (PBS). Two sets of in vitro experiments were performed using sensors that had uncoated gold electrodes and sensors that were coated with a known neuronal adhesion promoter (poly-l-lysine or PLL). The instantaneous resonant frequency and the equivalent motional resistance of the acoustic sensor were monitored every second. Cell Tracker was used to confirm neuronal adhesion to the surface. Addition of 10 microl of media and Neuro-2A cells into the above set-up elicited exponential changes in the resonant frequency and motional resistance of the quartz crystal with time to reach steady state in the range of 2-11 h. The steady-state change in resonant frequency in response to addition of neurons was linearly related to the number of Neuro-2A cells added (R2=0.94). Acoustic sensors coated with the adhesion promoter, PLL showed a much higher change in resonant frequency for approximately the same number of neurons. We conclude that the acoustic sensor has sufficient sensitivity to monitor neuronal adhesion in real-time. This has potential applications in the study of mechanisms of neuron-substrate interactions and the effect of molecular modulators in the extra cellular matrix.
Collapse
Affiliation(s)
- Massoud Louis Khraiche
- Harrington Department of Bioengineering, ECG 334, College of Engineering and Applied Science, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9709, USA
| | | | | |
Collapse
|
33
|
Walboomers XF, Habraken WJEM, Feddes B, Winter LC, Bumgardner JD, Jansen JA. Stretch-mediated responses of osteoblast-like cells cultured on titanium-coated substratesin vitro. ACTA ACUST UNITED AC 2004; 69:131-9. [PMID: 14999760 DOI: 10.1002/jbm.a.20127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclic stretching experiments on osteoblast-like cells have proven to be a useful tool in understanding the underlying mechanisms of load transduction at the bone-implant surface. However, most experimental setups use silicone rubber substrates, which are atypical for orthopedic and dental implant materials. Therefore, we investigated the responses of osteoblast-like cells to loading on titanium (Ti)-coated versus plain silicone substrates. Ti-coated substrates were made by a radio-frequency magnetron sputtering process, and characterized using Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy, and contact-angle measurements. Osteoblast-like cells cultured from rat bone marrow were seeded on both types of substrates and stretched for 1 h continuously. Subsequently, cell proliferation, alkaline phosphatase activity, and calcium content were measured for up to 24 days after seeding. In addition light-, scanning electron-, and confocal laser scanning micrographs were made. The results showed that our Ti coating had a thickness of 50 nm and contained Ti/oxygen as 1:1. However, further characterization proved that the silicone material had a tendency to resurface through the coating. Osteoblast-like cells proliferated faster on the Ti-coated substrates, but differentiation was slower compared with the silicone substrates. It was concluded that that there was a definitive influence of the substrate material in mechanical stress models. Therefore, extrapolation of results obtained using silicone substrates cannot be translated directly toward the situation of metallic implant materials.
Collapse
Affiliation(s)
- X F Walboomers
- Department of Biomaterials, University Medical Center, College of Dental Science, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Bigerelle M, Anselme K. Statistical correlation between cell adhesion and proliferation on biocompatible metallic materials. ACTA ACUST UNITED AC 2004; 72:36-46. [PMID: 15558592 DOI: 10.1002/jbm.a.30212] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our ambition for several years is to appreciate and quantify the long-term adhesion of cells on materials at times where the interface between cells and substrate becomes more complex, more closed to the cell/matrix/substrate interface existing in vivo. With this objective, we quantified the long-term adhesion and proliferation of human osteoblasts cultured from 24 h to 21 days on pure titanium, titanium alloy, and stainless-steel substrates presenting six different surface morphologies and two different roughness amplitude. Hence, we did proceed to the statistical correlation of cell adhesion and cell proliferation on 30 different substrates. Additionally, we described surface topography not only by the roughness amplitude but also by the roughness morphology using new specific parameters. By multiple analysis of variance, we demonstrated that nor material composition nor surface roughness amplitude did influence cell proliferation, whereas a very significant influence of the process used to produce the surface was observed meaning that the main influent factor on cell proliferation was the surface morphology. The long-term adhesion and proliferation capacity of cells were positively correlated on 23 types of substrates on 30, this positive correlation being statistically asserted on 13 types of substrates on 23. This study is the first demonstration of the existence of a statistical correlation between long-term adhesion and proliferation capacity of human bone cells on substrates with various chemical composition, surface chemistry, and surface topography.
Collapse
Affiliation(s)
- M Bigerelle
- Laboratoire Roberval, FRE 2833, UTC/CNRS, Centre de Recherches de Royallieu BP 20529, 60205 Compiègne, France
| | | |
Collapse
|