1
|
Knecht DA, Zeziulia M, Bhavsar MB, Puchkov D, Maier H, Jentsch TJ. LRRC8/VRAC volume-regulated anion channels are crucial for hearing. J Biol Chem 2024; 300:107436. [PMID: 38838775 PMCID: PMC11260850 DOI: 10.1016/j.jbc.2024.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Hearing crucially depends on cochlear ion homeostasis as evident from deafness elicited by mutations in various genes encoding cation or anion channels and transporters. Ablation of ClC‑K/barttin chloride channels causes deafness by interfering with the positive electrical potential of the endolymph, but roles of other anion channels in the inner ear have not been studied. Here we report the intracochlear distribution of all five LRRC8 subunits of VRAC, a volume-regulated anion channel that transports chloride, metabolites, and drugs such as the ototoxic anti-cancer drug cisplatin, and explore its physiological role by ablating its subunits. Sensory hair cells express all LRRC8 isoforms, whereas only LRRC8A, D and E were found in the potassium-secreting epithelium of the stria vascularis. Cochlear disruption of the essential LRRC8A subunit, or combined ablation of LRRC8D and E, resulted in cochlear degeneration and congenital deafness of Lrrc8a-/- mice. It was associated with a progressive degeneration of the organ of Corti and its innervating spiral ganglion. Like disruption of ClC-K/barttin, loss of VRAC severely reduced the endocochlear potential. However, the mechanism underlying this reduction seems different. Disruption of VRAC, but not ClC-K/barttin, led to an almost complete loss of Kir4.1 (KCNJ10), a strial K+ channel crucial for the generation of the endocochlear potential. The strong downregulation of Kir4.1 might be secondary to a loss of VRAC-mediated transport of metabolites regulating inner ear redox potential such as glutathione. Our study extends the knowledge of the role of cochlear ion transport in hearing and ototoxicity.
Collapse
Affiliation(s)
- Deborah A Knecht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Mariia Zeziulia
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; Graduate Program of the Freie Universität Berlin, Berlin, Germany
| | - Mit B Bhavsar
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Hannes Maier
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Strimbu CE, Wang Y, Olson ES. Manipulation of the Endocochlear Potential Reveals Two Distinct Types of Cochlear Nonlinearity. Biophys J 2020; 119:2087-2101. [PMID: 33091378 DOI: 10.1016/j.bpj.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022] Open
Abstract
The mammalian hearing organ, the cochlea, contains an active amplifier to boost the vibrational response to low level sounds. Hallmarks of this active process are sharp location-dependent frequency tuning and compressive nonlinearity over a wide stimulus range. The amplifier relies on outer hair cell (OHC)-generated forces driven in part by the endocochlear potential, the ∼+80 mV potential maintained in scala media, generated by the stria vascularis. We transiently eliminated the endocochlear potential in vivo by an intravenous injection of furosemide and measured the vibrations of different layers in the cochlea's organ of Corti using optical coherence tomography. Distortion product otoacoustic emissions were also monitored. After furosemide injection, the vibrations of the basilar membrane lost the best frequency (BF) peak and showed broad tuning similar to a passive cochlea. The intra-organ of Corti vibrations measured in the region of the OHCs lost the BF peak and showed low-pass responses but retained nonlinearity. This strongly suggests that OHC electromotility was operating and being driven by nonlinear OHC current. Thus, although electromotility is presumably necessary to produce a healthy BF peak, the mere presence of electromotility is not sufficient. The BF peak recovered nearly fully within 2 h, along with the recovery of odd-order distortion product otoacoustic emissions. The recovery pattern suggests that physical shifts in operating condition are a critical step in the recovery process.
Collapse
Affiliation(s)
- C Elliott Strimbu
- Columbia University Medical Center, Department of Otolaryngology, New York, New York
| | - Yi Wang
- Columbia University, Department of Biomedical Engineering, New York, New York
| | - Elizabeth S Olson
- Columbia University Medical Center, Department of Otolaryngology, New York, New York; Columbia University, Department of Biomedical Engineering, New York, New York.
| |
Collapse
|
3
|
Abstract
During the detection of sound, hair bundles perform a crucial step by responding to mechanical deflections and converting them into changes in electrical potential that subsequently lead to the release of neurotransmitter. The sensory hair bundle response is characterized by an essential nonlinearity and an energy-consuming amplification of the incoming sound. The active response has been shown to enhance the hair bundle's sensitivity and frequency selectivity of detection. The biological phenomena shown by the bundle have been extensively studied in vitro, allowing comparisons to behaviors observed in vivo. The experimental observations have been well explained by numerical simulations, which describe the cellular mechanisms operant within the bundle, as well as by more sparse theoretical models, based on dynamical systems theory.
Collapse
Affiliation(s)
- Dolores Bozovic
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547.,California NanoSystems Institute, University of California, Los Angeles, California 90095-1547
| |
Collapse
|
4
|
Sellon JB, Ghaffari R, Freeman DM. The Tectorial Membrane: Mechanical Properties and Functions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033514. [PMID: 30348837 DOI: 10.1101/cshperspect.a033514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The tectorial membrane (TM) is widely believed to play a critical role in determining the remarkable sensitivity and frequency selectivity that are hallmarks of mammalian hearing. Recently developed mouse models of human hearing disorders have provided new insights into the molecular, nanomechanical mechanisms that underlie resonance and traveling wave properties of the TM. Herein we review recent experimental and theoretical results detailing TM morphology, local poroelastic and electromechanical interactions, and global spread of excitation via TM traveling waves, with direct implications for cochlear mechanisms.
Collapse
Affiliation(s)
- Jonathan B Sellon
- Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139
| | - Roozbeh Ghaffari
- Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139
| | - Dennis M Freeman
- Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts 02139
| |
Collapse
|
5
|
Melrose J. Functional Consequences of Keratan Sulfate Sulfation in Electrosensory Tissues and in Neuronal Regulation. ACTA ACUST UNITED AC 2019; 3:e1800327. [PMID: 32627425 DOI: 10.1002/adbi.201800327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Indexed: 12/20/2022]
Abstract
Keratan sulfate (KS) is a functional electrosensory and neuro-instructive molecule. Recent studies have identified novel low sulfation KS in auditory and sensory tissues such as the tectorial membrane of the organ of Corti and the Ampullae of Lorenzini in elasmobranch fish. These are extremely sensitive proton gradient detection systems that send signals to neural interfaces to facilitate audition and electrolocation. High and low sulfation KS have differential functional roles in song learning in the immature male zebra song-finch with high charge density KS in song nuclei promoting brain development and cognitive learning. The conductive properties of KS are relevant to the excitable neural phenotype. High sulfation KS interacts with a large number of guidance and neuroregulatory proteins. The KS proteoglycan microtubule associated protein-1B (MAP1B) stabilizes actin and tubulin cytoskeletal development during neuritogenesis. A second 12 span transmembrane synaptic vesicle associated KS proteoglycan (SV2) provides a smart gel storage matrix for the storage of neurotransmitters. MAP1B and SV2 have prominent roles to play in neuroregulation. Aggrecan and phosphacan have roles in perineuronal net formation and in neuroregulation. A greater understanding of the biology of KS may be insightful as to how neural repair might be improved.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, 2065, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.,Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| |
Collapse
|
6
|
Abstract
A new mechanism that contributes to control of hearing sensitivity is described here. We show that an accessory structure in the hearing organ, the tectorial membrane, affects the function of inner ear sensory cells by storing calcium ions. When the calcium store is depleted, by brief exposure to rock concert-level sounds or by the introduction of calcium chelators, the sound-evoked responses of the sensory cells decrease. Upon restoration of tectorial membrane calcium, sensory cell function returns. This previously unknown mechanism contributes to explaining the temporary numbness in the ear that follows from listening to sounds that are too loud, a phenomenon that most people experience at some point in their lives. When sound stimulates the stereocilia on the sensory cells in the hearing organ, Ca2+ ions flow through mechanically gated ion channels. This Ca2+ influx is thought to be important for ensuring that the mechanically gated channels operate within their most sensitive response region, setting the fraction of channels open at rest, and possibly for the continued maintenance of stereocilia. Since the extracellular Ca2+ concentration will affect the amount of Ca2+ entering during stimulation, it is important to determine the level of the ion close to the sensory cells. Using fluorescence imaging and fluorescence correlation spectroscopy, we measured the Ca2+ concentration near guinea pig stereocilia in situ. Surprisingly, we found that an acellular accessory structure close to the stereocilia, the tectorial membrane, had much higher Ca2+ than the surrounding fluid. Loud sounds depleted Ca2+ from the tectorial membrane, and Ca2+ manipulations had large effects on hair cell function. Hence, the tectorial membrane contributes to control of hearing sensitivity by influencing the ionic environment around the stereocilia.
Collapse
|
7
|
Synchronization of Spontaneous Active Motility of Hair Cell Bundles. PLoS One 2015; 10:e0141764. [PMID: 26540409 PMCID: PMC4634766 DOI: 10.1371/journal.pone.0141764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor.
Collapse
|
8
|
Longitudinal spread of mechanical excitation through tectorial membrane traveling waves. Proc Natl Acad Sci U S A 2015; 112:12968-73. [PMID: 26438861 DOI: 10.1073/pnas.1511620112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian inner ear separates sounds by their frequency content, and this separation underlies important properties of human hearing, including our ability to understand speech in noisy environments. Studies of genetic disorders of hearing have demonstrated a link between frequency selectivity and wave properties of the tectorial membrane (TM). To understand these wave properties better, we developed chemical manipulations that systematically and reversibly alter TM stiffness and viscosity. Using microfabricated shear probes, we show that (i) reducing pH reduces TM stiffness with little change in TM viscosity and (ii) adding PEG increases TM viscosity with little change in TM stiffness. By applying these manipulations in measurements of TM waves, we show that TM wave speed is determined primarily by stiffness at low frequencies and by viscosity at high frequencies. Both TM viscosity and stiffness affect the longitudinal spread of mechanical excitation through the TM over a broad range of frequencies. Increasing TM viscosity or decreasing stiffness reduces longitudinal spread of mechanical excitation, thereby coupling a smaller range of best frequencies and sharpening tuning. In contrast, increasing viscous loss or decreasing stiffness would tend to broaden tuning in resonance-based TM models. Thus, TM wave and resonance mechanisms are fundamentally different in the way they control frequency selectivity.
Collapse
|
9
|
Jones GP, Elliott SJ, Russell IJ, Lukashkin AN. Modified protein expression in the tectorial membrane of the cochlea reveals roles for the striated sheet matrix. Biophys J 2015; 108:203-10. [PMID: 25564867 PMCID: PMC4286592 DOI: 10.1016/j.bpj.2014.11.1854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 11/28/2022] Open
Abstract
The tectorial membrane (TM) of the mammalian cochlea is a complex extracellular matrix which, in response to acoustic stimulation, displaces the hair bundles of outer hair cells (OHCs), thereby initiating sensory transduction and amplification. Here, using TM segments from the basal, high-frequency region of the cochleae of genetically modified mice (including models of human hereditary deafness) with missing or modified TM proteins, we demonstrate that frequency-dependent stiffening is associated with the striated sheet matrix (SSM). Frequency-dependent stiffening largely disappeared in all three TM mutations studied where the SSM was absent either entirely or at least from the stiffest part of the TM overlying the OHCs. In all three TM mutations, dissipation of energy is decreased at low (<8 kHz) and increased at high (>8 kHz) stimulus frequencies. The SSM is composed of polypeptides carrying fixed charges, and electrostatic interaction between them may account for frequency-dependent stiffness changes in the material properties of the TM. Through comparison with previous in vivo measurements, it is proposed that implementation of frequency-dependent stiffening of the TM in the OHC attachment region facilitates interaction among tones, backward transmission of energy, and amplification in the cochlea.
Collapse
Affiliation(s)
- Gareth P Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Stephen J Elliott
- Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
| | - Ian J Russell
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom.
| | - Andrei N Lukashkin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
10
|
Sellon JB, Ghaffari R, Farrahi S, Richardson GP, Freeman DM. Porosity controls spread of excitation in tectorial membrane traveling waves. Biophys J 2014; 106:1406-13. [PMID: 24655516 DOI: 10.1016/j.bpj.2014.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/18/2022] Open
Abstract
Cochlear frequency selectivity plays a key role in our ability to understand speech, and is widely believed to be associated with cochlear amplification. However, genetic studies targeting the tectorial membrane (TM) have demonstrated both sharper and broader tuning with no obvious changes in hair bundle or somatic motility mechanisms. For example, cochlear tuning of Tectb(-/-) mice is significantly sharper than that of Tecta(Y1870C/+) mice, even though TM stiffnesses are similarly reduced relative to wild-type TMs. Here we show that differences in TM viscosity can account for these differences in tuning. In the basal cochlear turn, nanoscale pores of Tecta(Y1870C/+) TMs are significantly larger than those of Tectb(-/-) TMs. The larger pore size reduces shear viscosity (by ∼70%), thereby reducing traveling wave speed and increasing spread of excitation. These results demonstrate the previously unrecognized importance of TM porosity in cochlear and neural tuning.
Collapse
Affiliation(s)
- Jonathan B Sellon
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Roozbeh Ghaffari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shirin Farrahi
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Dennis M Freeman
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
11
|
Teudt IU, Richter CP. Basilar membrane and tectorial membrane stiffness in the CBA/CaJ mouse. J Assoc Res Otolaryngol 2014; 15:675-94. [PMID: 24865766 PMCID: PMC4164692 DOI: 10.1007/s10162-014-0463-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/07/2014] [Indexed: 10/25/2022] Open
Abstract
The mouse has become an important animal model in understanding cochlear function. Structures, such as the tectorial membrane or hair cells, have been changed by gene manipulation, and the resulting effect on cochlear function has been studied. To contrast those findings, physical properties of the basilar membrane (BM) and tectorial membrane (TM) in mice without gene mutation are of great importance. Using the hemicochlea of CBA/CaJ mice, we have demonstrated that tectorial membrane (TM) and basilar membrane (BM) revealed a stiffness gradient along the cochlea. While a simple spring mass resonator predicts the change in the characteristic frequency of the BM, the spring mass model does not predict the frequency change along the TM. Plateau stiffness values of the TM were 0.6 ± 0.5, 0.2 ± 0.1, and 0.09 ± 0.09 N/m for the basal, middle, and upper turns, respectively. The BM plateau stiffness values were 3.7 ± 2.2, 1.2 ± 1.2, and 0.5 ± 0.5 N/m for the basal, middle, and upper turns, respectively. Estimations of the TM Young's modulus (in kPa) revealed 24.3 ± 25.2 for the basal turns, 5.1 ± 4.5 for the middle turns, and 1.9 ± 1.6 for the apical turns. Young's modulus determined at the BM pectinate zone was 76.8 ± 72, 23.9 ± 30.6, and 9.4 ± 6.2 kPa for the basal, middle, and apical turns, respectively. The reported stiffness values of the CBA/CaJ mouse TM and BM provide basic data for the physical properties of its organ of Corti.
Collapse
Affiliation(s)
- I. U. Teudt
- />Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Searle Building 12-561; 303 East Chicago Avenue, 60611-3008 Chicago, IL USA
- />Department of Otolaryngology—Head and Neck Surgery, University Clinic Hamburg-Eppendorf, Hamburg, Germany
- />Department of Otolaryngology—Head and Neck Surgery, Asklepios Clinic Altona, Hamburg, Germany
| | - C. P. Richter
- />Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Searle Building 12-561; 303 East Chicago Avenue, 60611-3008 Chicago, IL USA
- />Department of Biomedical Engineering, Northwestern University, Evanston, IL USA
- />Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL USA
| |
Collapse
|
12
|
Dunlap MD, Grant JW. Experimental measurement of utricle system dynamic response to inertial stimulus. J Assoc Res Otolaryngol 2014; 15:511-28. [PMID: 24845403 DOI: 10.1007/s10162-014-0456-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 04/21/2014] [Indexed: 10/25/2022] Open
Abstract
The membranous utricle sac of the red-eared turtle was mounted in a piezoelectric actuated platform mounted on the stage of a light microscope. The piezoelectric actuator oscillated the base of the neuroepithelium along a linear axis. Displacements were in the plane of the utricle and consisted of a linear sinusoidal-sweep signal starting at 0 and increasing to 500 Hz over 5 s. This inertial stimulus caused measurable shear displacement of the otoconial layer's dorsal surface, resulting in shear deformation of the gelatinous and column filament layers. Displacements of the otoconial layer and a reference point on the neuroepithelium were filmed at 2,000 frames/s with a high-speed video camera during oscillations. Image registration was performed on the video to track displacements with a resolution better than 15 nm. The displacement waveforms were then matched to a linear second-order model of the dynamic system. The model match identified two system mechanical parameters-the natural circular frequency ω n and the damping ratio ζ-that characterized the utricle dynamic response. The median values found for the medial-lateral axis on 20 utricles with 95 % confidence intervals in parenthesis were as follows: ω n = 374 (353, 396) Hz and ζ = 0.50 (0.47, 0.53). The anterior-posterior axis values were not significantly different: ω n = 409 (390, 430) Hz and ζ = 0.53 (0.48, 0.57). The results have two relevant and significant dynamic system findings: (1) a higher than expected natural frequency and (2) significant under damping. Previous to this study, utricular systems were treated as overdamped and with natural frequencies much lower that measured here. Both of these system performance findings result in excellent utricle time response to acceleration stimuli and a broad frequency bandwidth up to 100 Hz. This study is the first to establish the upper end of this mechanical system frequency response of the utricle in any animal.
Collapse
Affiliation(s)
- M D Dunlap
- Department of Biomedical Engineering, College of Engineering, VA Tech, 495 Old Turner Street (MC 0219), VA Tech, Blacksburg, VA, 24061, USA
| | | |
Collapse
|
13
|
Jones GP, Lukashkina VA, Russell IJ, Elliott SJ, Lukashkin AN. Frequency-dependent properties of the tectorial membrane facilitate energy transmission and amplification in the cochlea. Biophys J 2013; 104:1357-66. [PMID: 23528095 DOI: 10.1016/j.bpj.2013.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/29/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022] Open
Abstract
The remarkable sensitivity, frequency selectivity, and dynamic range of the mammalian cochlea relies on longitudinal transmission of minuscule amounts of energy as passive, pressure-driven, basilar membrane (BM) traveling waves. These waves are actively amplified at frequency-specific locations by a mechanism that involves interaction between the BM and another extracellular matrix, the tectorial membrane (TM). From mechanical measurements of isolated segments of the TM, we made the important new (to our knowledge) discovery that the stiffness of the TM is reduced when it is mechanically stimulated at physiologically relevant magnitudes and at frequencies below their frequency place in the cochlea. The reduction in stiffness functionally uncouples the TM from the organ of Corti, thereby minimizing energy losses during passive traveling-wave propagation. Stiffening and decreased viscosity of the TM at high stimulus frequencies can potentially facilitate active amplification, especially in the high-frequency, basal turn, where energy loss due to internal friction within the TM is less than in the apex. This prediction is confirmed by neural recordings from several frequency regions of the cochlea.
Collapse
Affiliation(s)
- G P Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Abstract
The tectorial membrane (TM) clearly plays a mechanical role in stimulating cochlear sensory receptors, but the presence of fixed charge in TM constituents suggests that electromechanical properties also may be important. Here, we measure the fixed charge density of the TM and show that this density of fixed charge is sufficient to affect mechanical properties and to generate electrokinetic motions. In particular, alternating currents applied to the middle and marginal zones of isolated TM segments evoke motions at audio frequencies (1-1,000 Hz). Electrically evoked motions are nanometer scaled (∼5-900 nm), decrease with increasing stimulus frequency, and scale linearly over a broad range of electric field amplitudes (0.05-20 kV/m). These findings show that the mammalian TM is highly charged and suggest the importance of a unique TM electrokinetic mechanism.
Collapse
|
15
|
Dierkes K, Jülicher F, Lindner B. A mean-field approach to elastically coupled hair bundles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:37. [PMID: 22623035 DOI: 10.1140/epje/i2012-12037-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/28/2012] [Accepted: 04/24/2012] [Indexed: 06/01/2023]
Abstract
We study the dynamics of oscillatory hair bundles which are coupled elastically in their deflection variable and are subject to noise. We present a stochastic description capturing the dynamics of the hair bundles' mean field. In particular, the presented derivation elucidates the origin of the previously described noise reduction by coupling. By comparison of simulations of the approximate dynamics and the full system, we verify our results. Furthermore, we demonstrate that the specific type of coupling considered implies coupling-induced changes in the dynamics beyond mere noise reduction.
Collapse
Affiliation(s)
- K Dierkes
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | | | | |
Collapse
|
16
|
Strimbu CE, Fredrickson-Hemsing L, Bozovic D. Coupling and elastic loading affect the active response by the inner ear hair cell bundles. PLoS One 2012; 7:e33862. [PMID: 22479461 PMCID: PMC3313926 DOI: 10.1371/journal.pone.0033862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/18/2012] [Indexed: 11/19/2022] Open
Abstract
Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures.
Collapse
Affiliation(s)
- Clark Elliott Strimbu
- Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lea Fredrickson-Hemsing
- Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dolores Bozovic
- Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Nowotny M, Gummer AW. Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:3852-3872. [PMID: 22225042 DOI: 10.1121/1.3651822] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Coupling of somatic electromechanical force from the outer hair cells (OHCs) into the organ of Corti is investigated by measuring transverse vibration patterns of the organ of Cori and tectorial membrane (TM) in response to intracochlear electrical stimulation. Measurement places at the organ of Corti extend from the inner sulcus cells to Hensen's cells and at the lower (and upper) surface of the TM from the inner sulcus to the OHC region. These locations are in the neighborhood of where electromechanical force is coupled into (1) the mechanoelectrical transducers of the stereocilia and (2) fluids of the organ of Corti. Experiments are conducted in the first, second, and third cochlear turns of an in vitro preparation of the adult guinea pig cochlea. Vibration measurements are made at functionally relevant stimulus frequencies (0.48-68 kHz) and response amplitudes (<15 nm). The experiments provide phase relations between the different structures, which, dependent on frequency range and longitudinal cochlear position, include in-phase transverse motions of the TM, counterphasic transverse motions between the inner hair cell and OHCs, as well as traveling-wave motion of Hensen's cells in the radial direction. Mechanics of sound processing in the cochlea are discussed based on these phase relationships.
Collapse
Affiliation(s)
- Manuela Nowotny
- Faculty of Medicine, Section of Physiological Acoustics and Communication, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
| | | |
Collapse
|
18
|
Abstract
This composite article is intended to give the experts in the field of cochlear mechanics an opportunity to voice their personal opinion on the one mechanism they believe dominates cochlear amplification in mammals. A collection of these ideas are presented here for the auditory community and others interested in the cochlear amplifier. Each expert has given their own personal view on the topic and at the end of their commentary they have suggested several experiments that would be required for the decisive mechanism underlying the cochlear amplifier. These experiments are presently lacking but if successfully performed would have an enormous impact on our understanding of the cochlear amplifier.
Collapse
|
19
|
Strimbu C, Ramunno-Johnson D, Fredrickson L, Arisaka K, Bozovic D. Correlated movement of hair bundles coupled to the otolithic membrane in the bullfrog sacculus. Hear Res 2009; 256:58-63. [DOI: 10.1016/j.heares.2009.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/17/2009] [Accepted: 06/24/2009] [Indexed: 11/30/2022]
|
20
|
Masaki K, Gu JW, Ghaffari R, Chan G, Smith RJ, Freeman DM, Aranyosi A. Col11a2 deletion reveals the molecular basis for tectorial membrane mechanical anisotropy. Biophys J 2009; 96:4717-24. [PMID: 19486694 PMCID: PMC2711449 DOI: 10.1016/j.bpj.2009.02.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/28/2009] [Accepted: 02/13/2009] [Indexed: 10/20/2022] Open
Abstract
The tectorial membrane (TM) has a significantly larger stiffness in the radial direction than other directions, a prominent mechanical anisotropy that is believed to be critical for the proper functioning of the cochlea. To determine the molecular basis of this anisotropy, we measured material properties of TMs from mice with a targeted deletion of Col11a2, which encodes for collagen XI. In light micrographs, the density of TM radial collagen fibers was lower in Col11a2 -/- mice than wild-types. Tone-evoked distortion product otoacoustic emission and auditory brainstem response measurements in Col11a2 -/- mice were reduced by 30-50 dB independent of frequency as compared with wild-types, showing that the sensitivity loss is cochlear in origin. Stress-strain measurements made using osmotic pressure revealed no significant dependence of TM bulk compressibility on the presence of collagen XI. Charge measurements made by placing the TM as an electrical conduit between two baths revealed no change in the density of charge affixed to the TM matrix in Col11a2 -/- mice. Measurements of mechanical shear impedance revealed a 5.5 +/- 0.8 dB decrease in radial shear impedance and a 3.3 +/- 0.3 dB decrease in longitudinal shear impedance resulting from the Col11a2 deletion. The ratio of radial to longitudinal shear impedance fell from 1.8 +/- 0.7 for TMs from wild-type mice to 1.0 +/- 0.1 for those from Col11a2 -/- mice. These results show that the organization of collagen into radial fibrils is responsible for the mechanical anisotropy of the TM. This anisotropy can be attributed to increased mechanical coupling provided by the collagen fibrils. Mechanisms by which changes in TM material properties may contribute to the threshold elevation in Col11a2 -/- mice are discussed.
Collapse
Affiliation(s)
- Kinuko Masaki
- Harvard-MIT Division of Health Sciences and Technology and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Jianwen Wendy Gu
- Harvard-MIT Division of Health Sciences and Technology and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Roozbeh Ghaffari
- Harvard-MIT Division of Health Sciences and Technology and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Gary Chan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Richard J.H. Smith
- Department of Otolaryngology—Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Dennis M. Freeman
- Harvard-MIT Division of Health Sciences and Technology and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - A.J. Aranyosi
- Harvard-MIT Division of Health Sciences and Technology and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
21
|
Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles. Proc Natl Acad Sci U S A 2008; 105:18669-74. [PMID: 19015514 DOI: 10.1073/pnas.0805752105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vertebrate inner ear possesses an active process that provides nonlinear amplification of mechanical stimuli. A candidate for this process is active hair bundle mechanics observed, for instance, for hair cells of the bullfrog's sacculus. Hair bundles in various inner ear organs are coupled by overlying membranes. Using a stochastic description of active hair bundle dynamics, we study the consequences of an elastic coupling on the properties of amplification. We report that collective effects in arrays of hair bundles can enhance the amplification gain and the sharpness of frequency tuning as compared with the performance of an isolated hair bundle. We also discuss the transient response elicited by the sudden onset of a periodic stimulus and its relation to temporal integration curves. Simulations of systems with a gradient of intrinsic frequencies show an enhanced amplification gain while preserving a frequency gradient, provided the coupling strength is similar to the hair bundle stiffness. We relate our findings to the situation in the bullfrog's sacculus and the mammalian cochlea.
Collapse
|
22
|
Theoretical conditions for high-frequency hair bundle oscillations in auditory hair cells. Biophys J 2008; 95:4948-62. [PMID: 18676646 DOI: 10.1529/biophysj.108.138560] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substantial evidence exists for spontaneous oscillations of hair cell stereociliary bundles in the lower vertebrate inner ear. Since the oscillations are larger than expected from Brownian motion, they must result from an active process in the stereociliary bundle suggested to underlie amplification of the sensory input as well as spontaneous otoacoustic emissions. However, their low frequency (<100 Hz) makes them unsuitable for amplification in birds and mammals that hear up to 5 kHz or higher. To examine the possibility of high-frequency oscillations, we used a finite-element model of the outer hair cell bundle incorporating previously measured mechanical parameters. Bundle motion was assumed to activate mechanotransducer channels according to the gating spring hypothesis, and the channels were regulated adaptively by Ca(2+) binding. The model generated oscillations of freestanding bundles at 4 kHz whose sharpness of tuning depended on the mechanotransducer channel number and location, and the Ca(2+) concentration. Entrainment of the oscillations by external stimuli was used to demonstrate nonlinear amplification. The oscillation frequency depended on channel parameters and was increased to 23 kHz principally by accelerating Ca(2+) binding kinetics. Spontaneous oscillations persisted, becoming very narrow-band, when the hair bundle was loaded with a tectorial membrane mass.
Collapse
|
23
|
Abstract
Microscale mechanical probes were designed and bulk-fabricated for applying shearing forces to biological tissues. These probes were used to measure shear impedance of the tectorial membrane (TM) in two dimensions. Forces were applied in the radial and longitudinal directions at frequencies ranging from 0.01-9 kHz and amplitudes from 0.02-4 microN. The force applied was determined by measuring the deflection of the probes' cantilever arms. TM impedance in the radial direction had a magnitude of 63 +/- 28 mN x s/m at 10 Hz and fell with frequency by 16 +/- 0.4 dB/decade, with a constant phase of -72 +/- 6 degrees . In the longitudinal direction, impedance was 36 +/- 9 mN x s/m at 10 Hz and fell by 19 +/- 0.4 dB/decade, with a constant phase of -78 +/- 4 degrees . Impedance was nearly constant as a function of force except at the highest forces, for which it fell slightly. These results show that the viscoelastic properties of the TM extend over a significant range of audio frequencies, consistent with a poroelastic interpretation of TM mechanics. The shear modulus G' determined from these measurements was 17-50 kPa, which is larger than in species with a lower auditory frequency range. This value suggests that hair bundles cannot globally shear the TM, but most likely cause bulk TM motion.
Collapse
|
24
|
Mechanics of the exceptional anuran ear. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:417-28. [PMID: 18386018 PMCID: PMC2323032 DOI: 10.1007/s00359-008-0327-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 03/11/2008] [Accepted: 03/14/2008] [Indexed: 11/24/2022]
Abstract
The anuran ear is frequently used for studying fundamental properties of vertebrate auditory systems. This is due to its unique anatomical features, most prominently the lack of a basilar membrane and the presence of two dedicated acoustic end organs, the basilar papilla and the amphibian papilla. Our current anatomical and functional knowledge implies that three distinct regions can be identified within these two organs. The basilar papilla functions as a single auditory filter. The low-frequency portion of the amphibian papilla is an electrically tuned, tonotopically organized auditory end organ. The high-frequency portion of the amphibian papilla is mechanically tuned and tonotopically organized, and it emits spontaneous otoacoustic emissions. This high-frequency portion of the amphibian papilla shows a remarkable, functional resemblance to the mammalian cochlea.
Collapse
|
25
|
Abstract
The mammalian inner ear processes sound with high sensitivity and fine resolution over a wide frequency range. The underlying mechanism for this remarkable ability is the "cochlear amplifier", which operates by modifying cochlear micromechanics. However, it is largely unknown how the cochlea implements this modification. Although gradual improvements in experimental techniques have yielded ever-better descriptions of gross basilar membrane vibration, the internal workings of the organ of Corti and of the tectorial membrane have resisted exploration. Although measurements of cochlear function in mice with a gene mutation for alpha-tectorin indicate the tectorial membrane's key role in the mechanoelectrical transformation by the inner ear, direct experimental data on the tectorial membrane's physical properties are limited, and only a few direct measurements on tectorial micromechanics are available. Using the hemicochlea, we are able to show that a tectorial membrane stiffness gradient exists along the cochlea, similar to that of the basilar membrane. In artificial perilymph (but with low calcium), the transversal and radial driving point stiffnesses change at a rate of -4.0 dB/mm and -4.9 dB/mm, respectively, along the length of the cochlear spiral. In artificial endolymph, the stiffness gradient for the transversal component was -3.4 dB/mm. Combined with the changes in tectorial membrane dimensions from base to apex, the radial stiffness changes would be able to provide a second frequency-place map in the cochlea. Young's modulus, which was obtained from measurements performed in the transversal direction, decreased by -2.6 dB/mm from base to apex.
Collapse
Affiliation(s)
- Claus-Peter Richter
- Auditory Physiology Laboratory (The Hugh Knowles Center), Department of Communication Sciences and Disorders, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
26
|
Karavitaki KD, Mountain DC. Imaging electrically evoked micromechanical motion within the organ of corti of the excised gerbil cochlea. Biophys J 2007; 92:3294-316. [PMID: 17277194 PMCID: PMC1852364 DOI: 10.1529/biophysj.106.083634] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer hair cell (OHC) of the mammalian inner ear exhibits an unusual form of somatic motility that can follow membrane-potential changes at acoustic frequencies. The cellular forces that produce this motility are believed to amplify the motion of the cochlear partition, thereby playing a key role in increasing hearing sensitivity. To better understand the role of OHC somatic motility in cochlear micromechanics, we developed an excised cochlea preparation to visualize simultaneously the electrically-evoked motion of hundreds of cells within the organ of Corti (OC). The motion was captured using stroboscopic video microscopy and quantified using cross-correlation techniques. The OC motion at approximately 2-6 octaves below the characteristic frequency of the region was complex: OHC, Deiter's cell, and Hensen's cell motion were hundreds of times larger than the tectorial membrane, reticular lamina (RL), and pillar cell motion; the inner rows of OHCs moved antiphasic to the outer row; OHCs pivoted about the RL; and Hensen's cells followed the motion of the outer row of OHCs. Our results suggest that the effective stimulus to the inner hair cell hair bundles results not from a simple OC lever action, as assumed by classical models, but by a complex internal motion coupled to the RL.
Collapse
Affiliation(s)
- K Domenica Karavitaki
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Speech and Hearing Bioscience and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
27
|
Russell IJ, Legan PK, Lukashkina VA, Lukashkin AN, Goodyear RJ, Richardson GP. Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat Neurosci 2007; 10:215-23. [PMID: 17220887 PMCID: PMC3388746 DOI: 10.1038/nn1828] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 12/12/2006] [Indexed: 11/09/2022]
Abstract
Frequency tuning in the cochlea is determined by the passive mechanical properties of the basilar membrane and active feedback from the outer hair cells, sensory-effector cells that detect and amplify sound-induced basilar membrane motions. The sensory hair bundles of the outer hair cells are imbedded in the tectorial membrane, a sheet of extracellular matrix that overlies the cochlea's sensory epithelium. The tectorial membrane contains radially organized collagen fibrils that are imbedded in an unusual striated-sheet matrix formed by two glycoproteins, alpha-tectorin (Tecta) and beta-tectorin (Tectb). In Tectb(-/-) mice the structure of the striated-sheet matrix is disrupted. Although these mice have a low-frequency hearing loss, basilar-membrane and neural tuning are both significantly enhanced in the high-frequency regions of the cochlea, with little loss in sensitivity. These findings can be attributed to a reduction in the acting mass of the tectorial membrane and reveal a new function for this structure in controlling interactions along the cochlea.
Collapse
MESH Headings
- Animals
- Basilar Membrane/abnormalities
- Basilar Membrane/metabolism
- Basilar Membrane/ultrastructure
- Cells, Cultured
- Chimera
- Cochlea/abnormalities
- Cochlea/metabolism
- Cochlea/ultrastructure
- Collagen/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix Proteins/genetics
- GPI-Linked Proteins
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/metabolism
- Hearing/genetics
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/physiopathology
- Membrane Glycoproteins/genetics
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation/genetics
- Pitch Perception
- Tectorial Membrane/abnormalities
- Tectorial Membrane/metabolism
- Tectorial Membrane/ultrastructure
Collapse
Affiliation(s)
- Ian J. Russell
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - P. Kevin Legan
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | | - Andrei N. Lukashkin
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Richard J. Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Guy. P Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| |
Collapse
|
28
|
Masaki K, Weiss TF, Freeman DM. Poroelastic bulk properties of the tectorial membrane measured with osmotic stress. Biophys J 2006; 91:2356-70. [PMID: 16815909 PMCID: PMC1557543 DOI: 10.1529/biophysj.105.078121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Accepted: 06/05/2006] [Indexed: 11/18/2022] Open
Abstract
The equilibrium stress-strain relation and the pore radius of the isolated tectorial membrane (TM) of the mouse were determined. Polyethylene glycol (PEG), with molecular mass (MM) in the range 20-511 kDa, added to the TM bathing solution was used to exert an osmotic pressure. Strain on the TM induced by isosmotic PEG solutions of different molecular masses was approximately the same for MM > or = 200 kDa. However, for MM < or = 100 kDa, the TM strain was appreciably smaller. We infer that for the smaller molecular mass, PEG entered the TM and exerted a smaller effective osmotic pressure. The pore radius of the TM was estimated as 22 nm. The equilibrium stress-strain relation of the TM was measured using PEG with a molecular mass of 511 kDa. This relation was nonlinear and was fit with a power function. In the radial cochlear direction, the transverse stiffness of the TM was 20% stiffer in the inner than in the outer region. TM segments from the basal region had a larger transverse stiffness on average compared to sections from the apical-middle region. These measurements provide a quantitative basis for a poroelastic model of the TM.
Collapse
Affiliation(s)
- Kinuko Masaki
- Harvard-MIT Speech and Hearing Sciences Program, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
29
|
Chan DK, Hudspeth AJ. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 2005; 8:149-55. [PMID: 15643426 PMCID: PMC2151387 DOI: 10.1038/nn1385] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 12/13/2004] [Indexed: 11/08/2022]
Abstract
An active process in the inner ear expends energy to enhance the sensitivity and frequency selectivity of hearing. Two mechanisms have been proposed to underlie this process in the mammalian cochlea: receptor potential-based electromotility and Ca(2+)-driven active hair-bundle motility. To link the phenomenology of the cochlear amplifier with these cellular mechanisms, we developed an in vitro cochlear preparation from Meriones unguiculatus that affords optical access to the sensory epithelium while mimicking its in vivo environment. Acoustic and electrical stimulation elicited microphonic potentials and electrically evoked hair-bundle movement, demonstrating intact forward and reverse mechanotransduction. The mechanical responses of hair bundles from inner hair cells revealed a characteristic resonance and a compressive nonlinearity diagnostic of the active process. Blocking transduction with amiloride abolished nonlinear amplification, whereas eliminating all but the Ca(2+) component of the transduction current did not. These results suggest that the Ca(2+) current drives the cochlear active process, and they support the hypothesis that active hair-bundle motility underlies cochlear amplification.
Collapse
Affiliation(s)
- Dylan K Chan
- Laboratory of Sensory Neuroscience and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
30
|
Scherer MP, Gummer AW. Impedance analysis of the organ of corti with magnetically actuated probes. Biophys J 2004; 87:1378-91. [PMID: 15298940 PMCID: PMC1304476 DOI: 10.1529/biophysj.103.037184] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 05/05/2004] [Indexed: 11/18/2022] Open
Abstract
An innovative method is presented to measure the mechanical driving point impedance of biological structures up to at least 40 kHz. The technique employs an atomic force cantilever with a ferromagnetic coating and an external magnetic field to apply a calibrated force to the cantilever. Measurement of the resulting cantilever velocity using a laser Doppler vibrometer yields the impedance. A key feature of the method is that it permits measurements for biological tissue in physiological solutions. The method was applied to measure the point impedance of the organ of Corti in situ, to elucidate the biophysical basis of cochlear amplification. The basilar membrane was mechanically clamped at its tympanic surface and the measurements conducted at different radial positions on the reticular lamina. The tectorial membrane was removed. The impedance was described by a generalized Voigt-Kelvin viscoelastic model, in which the stiffness was real-valued and independent of frequency, but the viscosity was complex-valued with positive real part, which was dependent on frequency and negative imaginary part, which was independent of frequency. There was no evidence for an inertial component. The magnitude of the impedance was greatest at the tunnel of Corti, and decreased monotonically in each of the radial directions. In the absence of inertia, the mechanical load on the outer hair cells causes their electromotile displacement responses to be reduced by only 10-fold over the entire range of auditory frequencies.
Collapse
Affiliation(s)
- Marc P Scherer
- University of Tübingen, Department of Otolaryngology, Hearing Research Centre, Section of Physiological Acoustics and Communication, Tübingen, Germany
| | | |
Collapse
|
31
|
Abstract
Dynamic material properties of the tectorial membrane (TM) have been measured at audio frequencies in TMs excised from the apical portions of mouse cochleae. We review, integrate, and interpret recent findings. The mechanical point impedance of the TM in the radial, longitudinal, and transverse directions is viscoelastic and has a frequency dependence of the form 1/(K(j2pif)(alpha)) for 10<or=f<or=4000 Hz, where f is frequency, K is a constant, j=-1, and alpha approximately 0.66. Comparison with other connective tissues shows that the TM is a relatively lossy viscoelastic material. The median magnitudes of the point impedance at 10 Hz in the radial, longitudinal, and transverse directions are 4.6 x 10(-3) N.s/m, 1.8 x 10(-3) N.s/m, and 2.7 x 10(-3) N.s/m. Consistent with osmotic responses (Freeman et al., 2003), the TM point impedance is anisotropic - the TM is stiffer in the radial than in the longitudinal and transverse directions. The mechanical space constant of the TM is approximately 20 microm. Comparisons reveal that in the apical region of the mouse cochlea, the TM dynamic stiffness at 10 Hz is 10 times larger than the static stiffness of the aggregate hair cells in a mechanical space constant and roughly comparable to the stiffness of the basilar membrane. We conclude that the TM provides a mechanical load on the basilar membrane and that the lability of the TM to changes in endolymph composition may well be reflected in changes in basilar membrane motion.
Collapse
Affiliation(s)
- Dennis M Freeman
- Department of Electrical Engineering and Computer Science, Room 36-889, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|