1
|
Wang H, Sun R, Xu N, Wang X, Bao M, Li X, Li J, Lin A, Feng J. Untargeted metabolomics of the cochleae from two laryngeally echolocating bats. Front Mol Biosci 2023; 10:1171366. [PMID: 37152899 PMCID: PMC10154556 DOI: 10.3389/fmolb.2023.1171366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
High-frequency hearing is regarded as one of the most functionally important traits in laryngeally echolocating bats. Abundant candidate hearing-related genes have been identified to be the important genetic bases underlying high-frequency hearing for laryngeally echolocating bats, however, extensive metabolites presented in the cochleae have not been studied. In this study, we identified 4,717 annotated metabolites in the cochleae of two typical laryngeally echolocating bats using the liquid chromatography-mass spectroscopy technology, metabolites classified as amino acids, peptides, and fatty acid esters were identified as the most abundant in the cochleae of these two echolocating bat species, Rhinolophus sinicus and Vespertilio sinensis. Furthermore, 357 metabolites were identified as significant differentially accumulated (adjusted p-value <0.05) in the cochleae of these two bat species with distinct echolocating dominant frequencies. Downstream KEGG enrichment analyses indicated that multiple biological processes, including signaling pathways, nervous system, and metabolic process, were putatively different in the cochleae of R. sinicus and V. sinensis. For the first time, this study investigated the extensive metabolites and associated biological pathways in the cochleae of two laryngeal echolocating bats and expanded our knowledge of the metabolic molecular bases underlying high-frequency hearing in the cochleae of echolocating bats.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
- *Correspondence: Hui Wang, ; Jiang Feng,
| | - Ruyi Sun
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Ningning Xu
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xue Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xin Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jiqian Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- *Correspondence: Hui Wang, ; Jiang Feng,
| |
Collapse
|
2
|
Ji L, Lee HJ, Wan G, Wang GP, Zhang L, Sajjakulnukit P, Schacht J, Lyssiotis CA, Corfas G. Auditory metabolomics, an approach to identify acute molecular effects of noise trauma. Sci Rep 2019; 9:9273. [PMID: 31239523 PMCID: PMC6592947 DOI: 10.1038/s41598-019-45385-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/29/2019] [Indexed: 11/26/2022] Open
Abstract
Animal-based studies have provided important insights into the structural and functional consequences of noise exposure on the cochlea. Yet, less is known about the molecular mechanisms by which noise induces cochlear damage, particularly at relatively low exposure levels. While there is ample evidence that noise exposure leads to changes in inner ear metabolism, the specific effects of noise exposure on the cochlear metabolome are poorly understood. In this study we applied liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS)-based metabolomics to analyze the effects of noise on the mouse inner ear. Mice were exposed to noise that induces temporary threshold shifts, synaptopathy and permanent hidden hearing loss. Inner ears were harvested immediately after exposure and analyzed by targeted metabolomics for the relative abundance of 220 metabolites across the major metabolic pathways in central carbon metabolism. We identified 40 metabolites differentially affected by noise. Our approach detected novel noise-modulated metabolites and pathways, as well as some already linked to noise exposure or cochlear function such as neurotransmission and oxidative stress. Furthermore, it showed that metabolic effects of noise on the inner ear depend on the intensity and duration of exposure. Collectively, our results illustrate that metabolomics provides a powerful approach for the characterization of inner ear metabolites affected by auditory trauma. This type of information could lead to the identification of drug targets and novel therapies for noise-induced hearing loss.
Collapse
Affiliation(s)
- Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, 48109, Ann Arbor, USA
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, USA
| | - Guoqiang Wan
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, 48109, Ann Arbor, USA
| | - Guo-Peng Wang
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, 48109, Ann Arbor, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, USA
| | - Jochen Schacht
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, 48109, Ann Arbor, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 48109, Ann Arbor, USA.
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, 48109, Ann Arbor, USA.
| |
Collapse
|
3
|
Ye R, Liu J, Jia Z, Wang H, Wang Y, Sun W, Wu X, Zhao Z, Niu B, Li X, Dai G, Li J. Adenosine Triphosphate (ATP) Inhibits Voltage-Sensitive Potassium Currents in Isolated Hensen's Cells and Nifedipine Protects Against Noise-Induced Hearing Loss in Guinea Pigs. Med Sci Monit 2016; 22:2006-12. [PMID: 27292522 PMCID: PMC4913814 DOI: 10.12659/msm.898150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background There is increasing evidence that adenosine triphosphate (ATP), a well-known neurotransmitter and neuromodulator in the central nervous system, plays an important role as an extracellular chemical messenger in the cochlea. Material/Methods Using a whole-cell recording technique, we studied the effects of ATP on isolated Hensen’s cells, which are supporting cells in the cochlea, to determine if they are involved in the transduction of ions with hair cells. Results ATP (0.1–10 μM) reduced the potassium current (IK+) in the majority of the recorded Hensen’s cells (21 out of 25 cells). An inward current was also induced by high concentrations of ATP (100 μM to 10 mM), which was reversibly blocked by 100 μM suramin (a purinergic antagonist) and blocked by nifedipine (an L-type calcium channel blocker). After the cochleas were perfused with artificial perilymph solutions containing nifedipine and exposed to noise, the amplitude increase in the compound action potential (CAP) threshold and the reduction in cochlear microphonics was lower than when they were exposed to noise alone. Conclusions Our results suggest that ATP can block IK+ channels at a low concentration and induce an inward Ca2+ current at high concentrations, which is reversed by purinergic receptors. Nifedipine may have a partially protective effect on noise-induced hearing loss (NIHL).
Collapse
Affiliation(s)
- Rui Ye
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Jun Liu
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Zhiying Jia
- , Xinjiang Cancer Hospital, Urumqi, Xinjiang, China (mainland)
| | - Hongyang Wang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - YongAn Wang
- , Academy of Military Medical Sciences, Beijing, China (mainland)
| | - Wei Sun
- Center for Hearing & Deafness, State University of New York (SUNY) at Buffalo, Buffalo, NY, American Samoa
| | - Xuan Wu
- Department of Radiation Oncology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan, China (mainland)
| | - Zhifei Zhao
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Baolong Niu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Xingqi Li
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Guanghai Dai
- Department of Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Jianxiong Li
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
4
|
Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Sci Rep 2015; 5:10762. [PMID: 26035172 PMCID: PMC4451810 DOI: 10.1038/srep10762] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/28/2015] [Indexed: 01/04/2023] Open
Abstract
Pannexin1 (Panx1) is a gap junction gene in vertebrates whose proteins mainly function as non-junctional channels on the cell surface. Panx1 channels can release ATP under physiological conditions and play critical roles in many physiological and pathological processes. Here, we report that Panx1 deficiency can reduce ATP release and endocochlear potential (EP) generation in the cochlea inducing hearing loss. Panx1 extensively expresses in the cochlea, including the cochlear lateral wall. We found that deletion of Panx1 in the cochlear lateral wall almost abolished ATP release under physiological conditions. Positive EP is a driving force for current through hair cells to produce auditory receptor potential. EP generation requires ATP. In the Panx1 deficient mice, EP and auditory receptor potential as measured by cochlear microphonics (CM) were significantly reduced. However, no apparent hair cell loss was detected. Moreover, defect of connexin hemichannels by deletion of connexin26 (Cx26) and Cx30, which are predominant connexin isoforms in the cochlea, did not reduce ATP release under physiological conditions. These data demonstrate that Panx1 channels dominate ATP release in the cochlea ensuring EP and auditory receptor potential generation and hearing. Panx1 deficiency can reduce ATP release and EP generation causing hearing loss.
Collapse
|
5
|
Jagger DJ, Forge A. The enigmatic root cell – Emerging roles contributing to fluid homeostasis within the cochlear outer sulcus. Hear Res 2013; 303:1-11. [DOI: 10.1016/j.heares.2012.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 12/20/2022]
|
6
|
Jacobs PG, Konrad-Martin D, McMillan GP, McDermott D, Fausti SA, Kagen D, Wan EA. Influence of acute hyperglycemia on otoacoustic emissions and the medial olivocochlear reflex. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:1296-1306. [PMID: 22352503 PMCID: PMC3292605 DOI: 10.1121/1.3676609] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 05/29/2023]
Abstract
Stimulus-frequency (SF) otoacoustic emission (OAE) amplitude and the amplitude of medial olivocochlear (MOC) inhibition of SF OAEs for ipsilateral, contralateral and bilateral MOC reflex elicitors were recorded in six subjects with type 2 diabetes during a glucose tolerance test (GTT). Five of the six subjects were tested twice for a total of 11 trials and three subjects were tested in a control experiment. During the GTT experiment, the subjects' blood glucose was elevated from a euglycemic level below 150 mg/dL to a hyperglycemic level above 160 mg/dL following the consumption of a bolus of 80 g of sugar. A subset of three subjects were tested in a control experiment during which SF OAE and MOC reflex measurements were made while blood sugar levels remained constant within the euglycemic region. Mean SF OAE amplitudes were elevated following glucose consumption. A statistically significant increase in MOC inhibition amplitude was observed during elevated sugar levels for the 11 GTT trials. Maximum inhibition occurred about an hour after glucose consumption when blood glucose levels peaked. Results indicate that acute hyperglycemia influences efferent control of the cochlea in people with type 2 diabetes.
Collapse
Affiliation(s)
- Peter G Jacobs
- VA RR&D National Center for Rehabilitative Auditory Research, Portland VA Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
P2X receptors are membrane cation channels gated by extracellular ATP. Seven P2X receptor subunits (P2X(1-7)) are widely distributed in excitable and nonexcitable cells of vertebrates. They play key roles in inter alia afferent signaling (including pain), regulation of renal blood flow, vascular endothelium, and inflammatory responses. We summarize the evidence for these and other roles, emphasizing experimental work with selective receptor antagonists or with knockout mice. The receptors are trimeric membrane proteins: Studies of the biophysical properties of mutated subunits expressed in heterologous cells have indicated parts of the subunits involved in ATP binding, ion permeation (including calcium permeability), and membrane trafficking. We review our current understanding of the molecular properties of P2X receptors, including how this understanding is informed by the identification of distantly related P2X receptors in simple eukaryotes.
Collapse
Affiliation(s)
- Annmarie Surprenant
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | |
Collapse
|
8
|
Ohlemiller KK. Recent findings and emerging questions in cochlear noise injury. Hear Res 2008; 245:5-17. [PMID: 18790034 PMCID: PMC2610263 DOI: 10.1016/j.heares.2008.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/12/2008] [Accepted: 08/19/2008] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin K Ohlemiller
- Fay and Carl Simons Center for the Biology of Hearing and Deafness, Central Institute for the Deaf at Washington University, Department of Otolaryngology, Washington University Medical School, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
ATP activates P2x receptors and requires extracellular Ca(++) participation to modify outer hair cell nonlinear capacitance. Pflugers Arch 2008; 457:453-61. [PMID: 18491132 DOI: 10.1007/s00424-008-0522-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 04/18/2008] [Indexed: 01/22/2023]
Abstract
Intracochlear ATP is an important mediator in regulating hearing function. ATP can activate ionotropic purinergic (P2x) and metabotropic purinergic (P2y) receptors to influence cell functions. In this paper, we report that ATP can activate P2x receptors directly to modify outer hair cell (OHC) electromotility, which is an active cochlear amplifier determining hearing sensitivity and frequency selectivity in mammals. We found that ATP, but not UTP, a P2y receptor agonist, reduced the OHC electromotility-associated nonlinear capacitance (NLC) and shifted its voltage dependence to the right (depolarizing) direction. Blockage of the activation of P2x receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, and 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) could block the ATP effect. This modification also required extracellular Ca(++) participation. Removal of extracellular Ca(++) abolished the ATP effect. However, chelation of intracellular Ca(++) concentration by a fast calcium-chelating reagent 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, 10 mM) did not affect the effect of ATP on NLC. The effect is also independent of K(+) ions. Substitution of Cs(+) for intracellular or extracellular K(+) did not affect the ATP effect. Our findings indicate that ATP activates P2x receptors instead of P2y receptors to modify OHC electromotility. Extracellular Ca(++) is required for this modification.
Collapse
|
10
|
Lee JH, Marcus DC. Purinergic signaling in the inner ear. Hear Res 2007; 235:1-7. [PMID: 17980525 DOI: 10.1016/j.heares.2007.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/17/2007] [Accepted: 09/22/2007] [Indexed: 10/22/2022]
Abstract
Epithelial cells of the inner ear coordinate their ion transport activity through a number of mechanisms. One important mechanism is the autocrine and paracrine signaling among neighboring cells in the ear via nucleotides, such as adenosine, ATP and UTP. This review summarizes observations on the release, detection and degradation of nucleotides by epithelial cells of the inner ear. Purinergic signaling is thought to be important for endolymph ion homeostasis and for protection from acoustic over-stimulation.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Chongro-gu, Seoul 110-744, Republic of Korea.
| | | |
Collapse
|
11
|
Lee JH, Heo JH, Kim CH, Chang SO, Kim CS, Oh SH. Changes in P2Y4 receptor expression in rat cochlear outer sulcus cells during development. Hear Res 2007; 228:201-11. [PMID: 17433586 DOI: 10.1016/j.heares.2007.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 01/24/2007] [Accepted: 02/26/2007] [Indexed: 11/29/2022]
Abstract
Extracellular adenosine triphosphate (ATP) released from cellular sources plays an important role in variety of the cochlear physiologic processes. The primary purinergic receptor subtype in the cochlea is the P2X2 receptor, which is a subtype of P2X receptor. This receptor appears to mediate a protective decrease in the electrical driving force in response to acoustic overstimulation. Outer sulcus cells (OSCs) in the cochlear lateral wall appear to maintain an adequate K+ concentration in the cochlear endolymph in response to varying intensities of auditory stimulation. However, little is known about developing OSCs. The purpose of this study was to investigate subtypes of purinergic receptors in developing rat OSCs using a voltage-sensitive vibrating probe. Results showed that only two P2 receptors (P2Y4 and P2X2) contributed to the regulation of short circuit currents in neonatal OSCs. ATP increased cation absorption via apical nonselective cation channels after activating P2Y4 receptors in early neonatal OSCs. P2Y4 expression rapidly declined postnatally and reached near adult levels on postnatal day 14. P2X2 was co-expressed with P2Y4 in early neonatal OSCs. Temporal changes in P2Y4 during OSC development might be involved in the establishment of the endolymphatic ion composition needed for normal auditory transduction and/or specific cellular differentiation.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yeongon-dong, Chongro-gu, Seoul 110-744, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The effects of ATP (adenosine 5' triphosphate) analogs on gross cochlear potentials and single primary afferent discharge properties were studied by intracochlear perfusion in anesthetized guinea pigs. ATP-gamma-S was most potent, with betagammamethylene-ATP and Bz-ATP being significantly less effective. These data are consistent with the notion that purinergic receptors activated by scala tympani perfusion contain subunits of the P2X(2) variant. The relative ineffectiveness of Bz-ATP (a P2X(7) agonist) suggests that while this variant has been reported to be expressed in the cochlea, it may not play a major functional role under normal conditions. Changes in the threshold of the gross DC receptor potential (summating potential, SP) and the compound action potential (CAP) were consistent with a combination of effects on both early and final stages of the transduction process, as reported by previous workers. Effects of ATP-gamma-S on single-neuron spontaneous firing rates varied according to the initial spontaneous rate of each primary afferent. Effects on single-neuron tuning curves were consistent with an action mainly on the outer hair cell transduction with betagammamethylene-ATP (elevation of tuning curve tips), but with ATP-gamma-S changes in sensitivity across the full extent of the tuning curve indicated an additional action on inner hair cell-afferent neurotransmission. In agreement with previous reports on ATP-gamma-S, it was found that all ATP analogs produced significant increases in the DC potential in scala media (endocochlear potential, EP). However, the relationship between changes in EP (a major component of the driving force on ions through hair cells) and the alterations in gross and single unit measures of cochlear activity was not clear.
Collapse
Affiliation(s)
- T Sueta
- Department of Otorhinolaryngology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | |
Collapse
|
13
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
14
|
Thorne PR, Muñoz DJB, Housley GD. Purinergic modulation of cochlear partition resistance and its effect on the endocochlear potential in the Guinea pig. J Assoc Res Otolaryngol 2003; 5:58-65. [PMID: 14976588 PMCID: PMC2538371 DOI: 10.1007/s10162-003-4003-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Accepted: 08/08/2003] [Indexed: 10/26/2022] Open
Abstract
Introduction of adenosine 5'-triphosphate (ATP) into the endolymphatic compartment of the guinea-pig cochlea decreases the endocochlear potential (EP). To determine if this is due to an ATP-induced change in compartment resistance, the cochlear partition resistance (CoPR) was measured using constant current injections into scala media before, during, and after microinjection of ATP into the same compartment. The CoPR (mean = 3.13 +/- 0.13 kOmega) decreased with ATP in a dose-dependent manner (25.1 +/- 3.0% decrease in relation to baseline values) and this was linearly correlated ( R(2) = 0.91) to the magnitude of the ATP-induced decline in EP (41.6 +/- 7.0% decline in relation to the baseline). Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, a P2X receptor antagonist) injected prior to ATP application blocked this ATP-induced reduction in EP and CoPR. This indicates that ATP-gated ion channels (P2X receptors) provide a latent shunt capable of regulating the majority of the electrical potential across the luminal surface of the sensory hair cells, which is necessary for sound transduction. The results suggest a novel sound transduction regulatory mechanism, which, via extracellular ATP, has the capability of adjusting hearing sensitivity.
Collapse
Affiliation(s)
- Peter R Thorne
- Discipline of Audiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
15
|
Schwiebert EM, Zsembery A. Extracellular ATP as a signaling molecule for epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:7-32. [PMID: 12948585 DOI: 10.1016/s0005-2736(03)00210-4] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The charge of this invited review is to present a convincing case for the fact that cells release their ATP for physiological reasons. Many of our "purinergic" colleagues as well as ourselves have experienced resistance to this concept, because it is teleologically counter-intuitive. This review serves to integrate the three main tenets of extracellular ATP signaling: ATP release from cells, ATP receptors on cells, and ATP receptor-driven signaling within cells to affect cell or tissue physiology. First principles will be discussed in the Introduction concerning extracellular ATP signaling. All possible cellular mechanisms of ATP release will then be presented. Use of nucleotide and nucleoside scavengers as well as broad-specificity purinergic receptor antagonists will be presented as a method of detecting endogenous ATP release affecting a biological endpoint. Innovative methods of detecting released ATP by adapting luciferase detection reagents or by using "biosensors" will be presented. Because our laboratory has been primarily interested in epithelial cell physiology and pathophysiology for several years, the role of extracellular ATP in regulation of epithelial cell function will be the focus of this review. For ATP release to be physiologically relevant, receptors for ATP are required at the cell surface. The families of P2Y G protein-coupled receptors and ATP-gated P2X receptor channels will be introduced. Particular attention will be paid to P2X receptor channels that mediate the fast actions of extracellular ATP signaling, much like neurotransmitter-gated channels versus metabotropic heptahelical neurotransmitter receptors that couple to G proteins. Finally, fascinating biological paradigms in which extracellular ATP signaling has been implicated will be highlighted. It is the goal of this review to convert and attract new scientists into the exploding field of extracellular nucleotide signaling and to convince the reader that extracellular ATP is indeed a signaling molecule.
Collapse
Affiliation(s)
- Erik M Schwiebert
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 35294-0005, USA.
| | | |
Collapse
|
16
|
Wang JCC, Raybould NP, Luo L, Ryan AF, Cannell MB, Thorne PR, Housley GD. Noise induces up-regulation of P2X2 receptor subunit of ATP-gated ion channels in the rat cochlea. Neuroreport 2003; 14:817-23. [PMID: 12858039 DOI: 10.1097/00001756-200305060-00008] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Regulation of P2X(2) receptor (P2X(2)R) expression in the rat cochlea in response to noise was analysed. Sustained loud sound (90-120 dB white noise, > 6 h), increased P2X(2)R mRNA and protein levels in rat organ of Corti and spiral ganglion (primary auditory neurones). P2X(2)R expression by the type I spiral ganglion neurones, which innervate the inner hair cells via the inner spiral plexus, was confirmed by confocal immunofluorescence. This also revealed increased P2X(2)R labelling of outer hair cell (OHC) stereocilia and cuticular plates, reflecting trafficking of greater numbers of ATP-gated ion channels assembled with P2X(2)R subunits to the transducer site. Whole-cell voltage clamp of OHC confirmed the noise-induced up-regulation of ATP-gated inward currents. These data indicate that regulation of P2X(2) receptor gene expression in the cochlea is adaptive, with sustained loud sound promoting increased transcription and translation specifically at sites regulating hearing sensitivity and auditory neurotrans-mission.
Collapse
Affiliation(s)
- Julie C-C Wang
- Department of Physiology, University of Auckland, Private Bag 92019, New Zealand
| | | | | | | | | | | | | |
Collapse
|
17
|
Epithelial Purinergic Receptors and Signaling in Health and Disease. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01007-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Boyce AT, Schwiebert EM. Extracellular ATP-Gated P2X Purinergic Receptor Channels. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Vlajkovic SM, Thorne PR, Sévigny J, Robson SC, Housley GD. Distribution of ectonucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Hear Res 2002; 170:127-38. [PMID: 12208547 DOI: 10.1016/s0378-5955(02)00460-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Extracellular ATP and other extracellular nucleotides acting via P2 receptors in the inner ear initiate a wide variety of signalling pathways important for regulation of hearing and balance. Ectonucleotidases are extracellular nucleotide-metabolising enzymes that modulate purinergic signalling in most tissues. Major ectonucleotidases in the cochlea are likely members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family. In this study, we provide a detailed description of NTPDase1 and NTPDase2 distribution in cochlear tissues using immunocytochemistry. E-NTPDase immunoreactivity was not equally distributed in the tissues bordering scala media. It was observed in the organ of Corti, including sensory and supporting cells, but was notably absent from Reissner's membrane and most of the marginal cells of the stria vascularis. NTPDase1 expression was most prominent in the cochlear vasculature and cell bodies of the spiral ganglion neurones, whereas considerable NTPDase2 immunoreactivity was detected in the stria vascularis. Both E-NTPDases were expressed in the cuticular plates of the sensory hair cells and nerve fibres projecting from the synaptic area underneath the inner and outer hair cells. E-NTPDase localisation corresponds to the reported distribution of some P2X receptor subunits (P2X(2) in particular) in sensory, supporting and neural cells and also P2Y receptor distribution in the vasculature and secretory tissues of the lateral wall. The role for E-NTPDases in purinergic signalling is most likely to regulate extracellular nucleoside triphosphate and diphosphate levels and thus provide termination for extracellular ATP signalling that has been linked to control of cochlear blood flow, electrochemical regulation of sound transduction and to neurotransmission in the cochlea.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Division of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
20
|
Kirk DL. Interaction between adenosine triphosphate and mechanically induced modulation of electrically evoked otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2002; 111:2749-2758. [PMID: 12083210 DOI: 10.1121/1.1448315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It was shown previously that electrically evoked otoacoustic emissions (EEOAEs) can be amplitude modulated by low-frequency bias tones and enhanced by application of adenosine triphosphate (ATP) to scala media. These effects were attributed, respectively, to the mechano-electrical transduction (MET) channels and ATP-gated ion channels on outer hair cell (OHC) stereocilia, two conductance pathways that appear to be functionally independent and additive in their effects on ionic current through the OHC. In the experiments described here, the separate influences of ATP and MET channel bias on EEOAEs did not combine linearly. Modulated EEOAEs increased in amplitude, but lost modulation at the phase and frequency of the bias tone (except at very high sound levels) after application of ATP to scala media, even though spectral components at the modulation sideband frequencies were still present. Some sidebands underwent phase shifts after ATP. In EEOAEs modulated by tones at lower sound levels, substitution of the original phase values restored modulation to the waveform, which then resembled a linear summation of the separate effects of ATP and low-frequency bias. While the physiological meaning of this procedure is not clear, the result raises the possibility that a secondary effect of ATP on one or more nonlinear stages in the transduction process, which may have caused the phase shifts, obscured linear summation at lower sound levels. In addition, "acoustic enhancement" of the EEOAE may have introduced nonlinear interaction at higher levels of the bias tones.
Collapse
Affiliation(s)
- Desmond L Kirk
- Department of Physiology, The University of Western Australia, Crawley, Australia
| |
Collapse
|
21
|
Robertson D, Paki B. A role for purinergic receptors at the inner hair cell-afferent synapse? Audiol Neurootol 2002; 7:62-7. [PMID: 11914529 DOI: 10.1159/000046866] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previously published evidence is reviewed for a functional role of ATP and its receptors at the chemical synapse between the mammalian inner hair cell and the primary afferent dendrites of the VIIIth nerve. New findings are also presented, both from gross cochlear potentials and single neurone recordings during intracochlear perfusion of ATP-receptor antagonists and agonists. Both the previous and present results are consistent with the notion that endogenous ATP may act to regulate the excitability of the primary afferent dendrite, possibly acting on P2X2 receptors.
Collapse
Affiliation(s)
- Donald Robertson
- The Auditory Laboratory, Department of Physiology, The University of Western Australia, Crawley, WA, Australia.
| | | |
Collapse
|
22
|
Lagostena L, Ashmore JF, Kachar B, Mammano F. Purinergic control of intercellular communication between Hensen's cells of the guinea-pig cochlea. J Physiol 2001; 531:693-706. [PMID: 11251051 PMCID: PMC2278490 DOI: 10.1111/j.1469-7793.2001.0693h.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. Hensen's cells in the isolated cochlea were stimulated by extracellular adenosine 5'-triphosphate (ATP) applied to their endolymphatic surface while changes in membrane current and intracellular calcium concentration ([Ca2+]i) were measured simultaneously. The response consisted of (i) an initial rapid inward current accompanied by elevation of the [Ca2+]i, (ii) a more slowly rising inward current accompanied by a rise of the [Ca2+]i and (iii) a slowly developing reduction of input conductance. 2. The slower responses were maintained in the absence of extracellular Ca2+. Similar responses were produced by increasing the [Ca2+]i via UV flash photolysis of intracellular D-myo-inositol 1,4,5-trisphosphate, P4(5)-(1-(2-nitrophenyl)ethyl) ester (caged InsP3) loaded at pipette concentrations of 8-16 microM. 3. The slow inward current, reversing around 0 mV, was blocked by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). 4. Bath application of U-73122 (1 microM), a phospholipase C inhibitor, eliminated the slow Ca2+-release component of the response to ATP. It is proposed that the effects of ATP are mediated by the co-activation of ionotropic P2X and metabotropic P2Y receptors. 5. Immunohistochemistry using light and electron microscopy revealed that inositol 1,4,5-trisphosphate (InsP3) receptors delineate a network within the cells. 6. The coupling ratio (CR) between cell pairs measured in dual patch-clamp recordings was 0.356 +/- 0.024. The coupling reversibly decreased to 51 % of the control within 2 min of applying 100 microM ATP. Flash photolysis of 32 microM intracellular caged InsP3 and 1 mM caged Ca2+ reduced CR to 42 and 62 % of the control, respectively. 7. We propose that endolymphatic ATP via P2X and P2Y receptors can control intercellular communication amongst Hensen's cells by reducing gap junction conductance in a Ca2+- and InsP3-dependent manner.
Collapse
Affiliation(s)
- L Lagostena
- Settore di Biofisica e Istituto Nazionale di Fisica della Materia, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34014 Trieste, Italy
| | | | | | | |
Collapse
|
23
|
Abstract
1. Electrochemical homeostasis, sound transduction and auditory neurotransmission in the cochlea are influenced by extracellular purines and pyrimidines. 2. Evidence that ATP and related nucleotides influence inner ear function arises from a considerable number of cellular, molecular and physiological studies in vitro and in vivo. 3. With a full understanding of these processes, which include ionotropic (P2X receptor) and metabotropic (P2Y receptor) signal transduction pathways, signal termination involving ecto-nucleotidases and recycling via nucleoside transporters, exciting possibilities emerge for treating hearing disorders, such as Meniere's disease, tinnitus and sensorineural deafness.
Collapse
Affiliation(s)
- G D Housley
- Department of Physiology, University of Auckland, New Zealand.
| |
Collapse
|
24
|
Housley GD, Thorne PR. Purinergic signalling: an experimental perspective. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:139-45. [PMID: 10869712 DOI: 10.1016/s0165-1838(00)00116-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Investigation of the multiple roles of extracellular nucleotides in the cochlea has developed from analysis of ATP-activated conductances in single sensory hair cells. Molecular probes such as radiolabelled ATP analogues and radiolabelled mRNA for ATP-gated ion channel subunits (P2X receptors) rapidly revealed the extensive nature of ATP signalling in this sensory organ. This has provided a foundation for physiological investigations which put extracellular nucleotides at the centre of homeostatic regulation of the driving force for sound transduction, modulation of mechanical tuning, control of cochlear blood flow and auditory neurotransmission. The purinergic signal transduction pathways associated with these processes have several novel features of significance to the broader field of purinergic neuroscience. In turn, these studies have benefited from the recent experimental advances in the field of purinergic signalling, a significant component of which is associated with the work of Professor Geoffrey Burnstock.
Collapse
Affiliation(s)
- G D Housley
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
25
|
Järlebark LE, Housley GD, Thorne PR. Immunohistochemical localization of adenosine 5'-triphosphate-gated ion channel P2X(2) receptor subunits in adult and developing rat cochlea. J Comp Neurol 2000; 421:289-301. [PMID: 10813788 DOI: 10.1002/(sici)1096-9861(20000605)421:3<289::aid-cne1>3.0.co;2-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Substantial in vitro and in vivo data support a role for extracellular adenosine 5;-triphosphate (ATP) and associated P2 receptors in cochlear function. However, the precise spatiotemporal distribution of the involved receptor protein(s) has not been determined. By using a specific antiserum and immunoperoxidase labeling, the tissue distribution of the P2X(2) subunit of the ATP-gated ion channel was investigated. Here, we describe the first extensive immunohistochemical mapping of P2X(2) receptor subunits in the adult and developing rat cochlea. In the adult, immunoreactivity was observed in most cells bordering on the endolymphatic compartment (scala media), particularly in the supporting cells. Hair cells were not immunostained by the P2X(2) antiserum, except for outer hair cell stereocilia. In addition, weak immunolabeling was observed in some spiral ganglion neurons. P2X(2) receptor subunit protein expression during labyrinthine ontogeny was detected first on embryonic day 19 in the spiral ganglion and in associated nerve fibers extending to the inner hair cells. Immunostaining also was observed underneath outer hair cells, and, by postnatal day 6 (P6), intense immunolabeling was seen in the synaptic regions of both types of hair cell. Supporting cells of the sensory epithelium were labeled at P0. This labeling became most prominent from the onset of cochlear function (P8-P12). Conversely, expression in the vascular stria declined from this time. By P21, the pattern of immunolabeling was similar to that found in the adult. The localization and timing of P2X(2) immunoreactivity suggest involvement of extracellular ATP and associated ATP-gated ion channels in important physiological events, such as inner ear ontogeny, sound transduction, cochlear micromechanics, electrochemical homeostasis, and auditory neurotransmission.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Cochlea/growth & development
- Cochlea/metabolism
- Female
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/growth & development
- Hair Cells, Auditory, Outer/metabolism
- Ion Channels/metabolism
- Pregnancy
- Rats
- Rats, Wistar
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X2
- Spiral Ganglion/growth & development
- Spiral Ganglion/metabolism
Collapse
Affiliation(s)
- L E Järlebark
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|