1
|
Sousa LRD, Amparo TR, de Souza GHB, Ferraz AT, Fonseca KDS, de Azevedo AS, do Nascimento AM, Andrade ÂL, Seibert JB, Valverde TM, Braga SFP, Vieira PMDA, dos Santos VMR. Anti- Trypanosoma cruzi Potential of Vestitol Isolated from Lyophilized Red Propolis. Molecules 2023; 28:7812. [PMID: 38067542 PMCID: PMC10708512 DOI: 10.3390/molecules28237812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Chagas disease (CD) is a worldwide public health problem, and the drugs available for its treatment have severe limitations. Red propolis is a natural extract known for its high content of phenolic compounds and for having activity against T. cruzi. The aim of this study was to investigate the trypanocidal potential of red propolis to isolate, identify, and indicate the mode of action of the bioactive compounds. The results revealed that the total phenolic content was 15.4 mg GAE/g, and flavonoids were 7.2 mg QE/g. The extract was fractionated through liquid-liquid partitioning, and the trypanocidal potential of the samples was evaluated using the epimastigote forms of the Y strain of T. cruzi. In this process, one compound was characterized by MS, 1H, and 13C NMR and identified as vestitol. Cytotoxicity was evaluated employing MRC-5 fibroblasts and H9C2 cardiomyocytes, showing cytotoxic concentrations above 15.62 μg/mL and 31.25 μg/mL, respectively. In silico analyses were applied, and the data suggested that the substance had a membrane-permeation-enhancing effect, which was confirmed through an in vitro assay. Finally, a molecular docking analysis revealed a higher affinity of vestitol with farnesyl diphosphate synthase (FPPS). The identified isoflavan appears to be a promising lead compound for further development to treat Chagas disease.
Collapse
Affiliation(s)
- Lucas Resende Dutra Sousa
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (T.R.A.); (G.H.B.d.S.)
| | - Tatiane Roquete Amparo
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (T.R.A.); (G.H.B.d.S.)
| | - Gustavo Henrique Bianco de Souza
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (T.R.A.); (G.H.B.d.S.)
| | - Aline Tonhela Ferraz
- Morphopathology Laboratory, Center for Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.T.F.); (K.d.S.F.)
| | - Kátia da Silva Fonseca
- Morphopathology Laboratory, Center for Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.T.F.); (K.d.S.F.)
| | - Amanda Scofield de Azevedo
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| | - Andréa Mendes do Nascimento
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| | - Ângela Leão Andrade
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| | - Janaína Brandão Seibert
- Natural Products Laboratory, Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Sao Carlos 13565-905, SP, Brazil;
| | - Thalita Marcolan Valverde
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Saulo Fehelberg Pinto Braga
- Medicinal Chemistry and Bioassays Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil;
| | - Paula Melo de Abreu Vieira
- Morphopathology Laboratory, Center for Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.T.F.); (K.d.S.F.)
| | - Viviane Martins Rebello dos Santos
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| |
Collapse
|
2
|
Alrashada YN, Hassanien HA, Abbas AO, Alkhamis SA, Alkobaby AI. Dietary propolis improves the growth performance, redox status, and immune response of Nile tilapia upon a cold-stress challenge. PLoS One 2023; 18:e0293727. [PMID: 37917758 PMCID: PMC10621851 DOI: 10.1371/journal.pone.0293727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
The purpose of this research was to demonstrate the potential of adding propolis (PR) to the diet of Nile tilapia (Oreochromis niloticus) to mitigate the harmful effect of cold stress (CS) on the growth performance, redox status, and immunological response. Two trials were conducted in this study. First, 210 Nile tilapia fingerlings (28.61±0.20 g) were used in a preliminary trial to determine the appropriate PR level and supplementation period to be applied for the main trial. Fish were assigned into 7 treatment groups (3 aquaria replicates × 10 fish per aquarium in each treatment group) according to the rate of PR supplementation in the fish diets at 0, 2, 4, 6, 8, 10, and 12 g/kg for 6 consecutive weeks. The average body weight and body weight gain were determined weekly. It was found that PR supplementation at 10 g/kg in fish diet for 4 weeks was enough to obtain significant results on the growth performance of Nile tilapia. For the main trial of the present study, 480 Nile tilapia fingerlings (average weight 29.93±0.11 g) were distributed into randomized 2 PR × 2 CS factorial treatment groups (6 replicate aquariums containing 20 fish in each group). Fish of PR groups received a basal diet for a feeding period of 4 weeks, included with 10 g/kg PR (+ PR group) or without PR inclusion (- PR group). Fish of the CS groups were either challenged with cold stress at 18°C (+ CS group) or maintained at a temperature of 26°C during the feeding period (- CS group). The results showed that CS challenge significantly (p < 0.05) impaired the growth indices, redox status, and immune response in the challenged fish compared to the non-challenged fish. On contradictory, the inclusion of PR into fish diets enhanced (p < 0.05) the feed intake, growth indices, antioxidant enzyme activity, and immunological parameters. Moreover, PR treatment alleviated the CS deterioration of fish weights, specific growth rates, feed efficiency, antioxidant enzyme activity, lymphocyte proliferation, and phagocytosis activity and alleviated the elevated mortality, H/L ratio, and malondialdehyde levels by cold stress. It is concluded that the inclusion of propolis at 10 g/kg in the diet of Nile tilapia fish could be approved as a nutritional approach to enhance their performance, especially when stressed by low-temperature conditions.
Collapse
Affiliation(s)
- Yousof N. Alrashada
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
| | - Hesham A. Hassanien
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sami A. Alkhamis
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
| | - Akram I. Alkobaby
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Hassanien HA, Alrashada YN, Abbas AO, Abdelwahab AM. Dietary propolis complementation relieves the physiological and growth deterioration induced by Flavobacterium columnare infection in juveniles of common carp (Cyprinus carpio). PLoS One 2023; 18:e0292976. [PMID: 37831671 PMCID: PMC10575500 DOI: 10.1371/journal.pone.0292976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The current study was proposed to explore the role of dietary propolis (PR) supplementation in alleviating the negative effects of columnaris disease (CD) challenge on the growth performance, plasma biochemicals, antioxidant activity, stress indicators, and immunological reactions of common carp (Cyprinus carpio) fish. Five hundred forty common carp juveniles were evenly placed in thirty-six 100-L tanks and stocked for acclimatization to the lab conditions with a control diet within a started period of 14 days. Fish (average initial weight of 7.11±0.06 g) were randomly distributed into one of six treatment groups (6 replicate tanks × 15 fish per tank in each treatment group). Fish in the first group was assigned as a negative control without CD challenge or PR supplementation. Fish in the other five groups were challenged with CD by immersion of fish for 60 min into a 10-L water bath supplemented with 6×106 CFU/mL (median lethal dose, LD50) of pathogenic F. columnare bacteria. After infection, the fish were restored to their tanks and fed on a basal diet supplemented with PR at 0, 3, 6, 9, or 12 g/kg diet. The experimental period continued for 6 consecutive weeks in which the feed was introduced twice a day (8:00 and 15:00 h) at a rate of 2% of the fish biomass. Ten percent of water was siphoned and renewed after each meal every day, in addition to 50% of water refreshment after cleaning the tank every three days. The tanks were continuously aerated and provided with standard rearing conditions for carp fish (24.0±1.12°C, 7.7±0.22 pH, 6.3±0.16 mg/L O2, and 14L/10D photoperiod). The growth performance traits such as feed intake (FI), weight gain (WG), final weight (FW), specific growth rate (SGR), feed efficiency (FE), and cumulative mortality rates (CM) were recorded during the experimental period. At the end of the trial, blood samples were obtained from the fish to evaluate some plasma biochemicals, including aspartate aminotransaminase (AST), alanine aminotransferase (ALT), creatinine (CRE), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), antioxidant biomarkers, including total antioxidant capacity (TAOC), total superoxide dismutase (TSOD), reduced glutathione (rGSH), and catalase (CAT), stress indicators, including heterophil to lymphocyte (H/L) ratio, cortisol (COR), malondialdehyde (MDA), and myeloperoxidase (MPO), and immunological reactions, including peripheral blood leukocyte proliferation (PBLP), phagocytosis activity (PHG), lysozyme activity (LYS), alternative complement hemolytic action (ACH50), and total immunoglobulin concentration (TIG). In addition, samples of infected fish gills were taken to quantify the number of F. columnare in the PR-supplemented groups using the quantitative real-time polymerase chain reaction (qPCR) technique. The results showed that incorporating PR into the dietary ingredients of common carp has a protective effect against the challenge with F. columnare infection. There were linear and quadratic positive trends (P < 0.05) in most parameters of growth performance, plasma biochemicals, antioxidant activity, stress indicators, and immunological reactions with the increased PR-supplemented levels in the diet of infected fish. The best results were obtained when using PR at 9 g/kg in the diet, while higher levels (12 g/kg PR) showed an adverse trend in the evaluated parameters. The FI, WG, FW, SGR, and FE were improved by approximately 37, 104, 34, 73, and 49% in the fish treated with 9 g/kg PR compared to none-PR-infected fish. In addition, adding PR at the 9 g/kg diet level was the best dose that reduced the H/L ratio, COR, MDA, and MPO by about 14, 52, 48, and 29%, respectively, in the infected fish. Furthermore, the mortality rate was reduced by 94%, and the number of pathogenic bacteria cells adherent to the fish gills was lowered by 96% in the infected fish treated with 9 g/kg PR compared to none-PR infected fish. Our results concluded that dietary supplementation with 9 g/kg PR could be a promising nutritional approach for improving the growth performance, physiological profile, and health status of common carp fish, particularly when challenged with F. columnare or similar bacterial infections.
Collapse
Affiliation(s)
- Hesham A. Hassanien
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Yousof N. Alrashada
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
| | - Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdelwahab M. Abdelwahab
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Department of Animal Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
4
|
Bölükbaşı Ş, Ürüşan H, Apaydın Yıldırım B. The effect of propolis addition to the laying-hen diet on performance, serum lipid profile and liver fat rate. Arch Anim Breed 2023; 66:225-232. [PMID: 37779600 PMCID: PMC10539770 DOI: 10.5194/aab-66-225-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
The aim of this study was to evaluate the effect of propolis (P) on performance, egg quality parameters, serum lipid profile, some liver enzymes and liver fat ratio. One-hundred-and-twenty Lohmann (LSL) laying hens were divided into five groups, and each group consisted of six subgroups. The control group was fed basal diet. The other groups were fed high-energy (HE) diets to induce fatty liver syndrome, and 0, 100, 200 and 300 mg kg- 1 of propolis were supplemented with high-energy feeds. During the 8-week trial, feed and water were given ad libitum. It was determined that egg production and feed conversion ratio were decreased in the high-energy feed group without the addition of propolis. The highest egg production was found in HE + 100 and HE + 200 mg kg- 1 of P groups. It was found that liver fat ratios were higher in the group fed with HE + 0 mg kg- 1 of P feed (P < 0.01 ) than other groups. But the addition of P decreased the liver fat rate significantly. The highest very low density lipoprotein (VLDL), triglyceride (TG) and low-density lipoprotein (LDL) values were found for the HE + 0 mg kg- 1 of P group. The addition of 200 mg kg- 1 of P to high-energy feed increased glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) values. In conclusion, high-energy feed adversely affected egg production and liver fat ratio, but the addition of 100 or 200 mg kg- 1 of propolis improved egg production and decreased liver fat ratio.
Collapse
Affiliation(s)
- Şaziye Canan Bölükbaşı
- Department of Animal Science, Faculty of Agriculture, Atatürk
University, Erzurum, Türkiye
| | - Hilal Ürüşan
- Plant and Animal Production
Department, Technical Sciences Vocational School, Erzurum, Türkiye
| | | |
Collapse
|
5
|
Hegazi AG, Shanawany EEE, El-Houssiny AS, Hassan SE, Desouky HM, El-Metenawy TM, Abdel-Rahman EH. Attenuation of pathogenesis of Eimeria stiedae sporulated oocysts using Egyptian alginate propolis nanoparticles. BMC Vet Res 2023; 19:127. [PMID: 37596608 PMCID: PMC10436411 DOI: 10.1186/s12917-023-03689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Coccidiosis is a costly and widespread infectious disease that affects mammals and causes huge losses for the global rabbit meat industry. This study evaluated the potency of Egyptian alginate propolis nanoparticles (NPs) in attenuating the infectivity of Eimeria stiedae sporulated oocysts. The gelification method was used to prepare alginate propolis NPs, which were then characterized using a transmission electron microscope and zeta potential analysis. RESULTS The results revealed that the zeta potential of the prepared alginate propolis NPs increased from - 60.60 ± 9.10 mV to -72.26 ± 6.04 mV. The sporulated oocysts were treated with 50 mg/mL of the alginate propolis NPs. Thereafter, the treated oocysts were tested for their ability to infect rabbits. The rabbits were divided into three groups: the healthy control (G1) group, the infected control (G2) group, and the treated oocyst-infected (G3) group. The rabbits were sacrificed 43 days post-infection (dpi). The infectivity of the oocysts was assessed. The treated oocyst-infected rabbits exhibited slight abdominal distension and dullness symptoms. The G3 group had no oocyst output, with a 100% reduction from 41 dpi until the end of the experiment. Immunologically, the IgG level of the G2 group gradually increased (p ≤ 0.05) much more than that of the G3 group. The IL-12 level in the G3 group significantly increased from 16 dpi until the end of the experiment, nearly reaching the level in healthy animals. Decreased CD4+ and CD8+ immunolabelling was observed in the liver sections of the group infected with the alginate propolis NP-treated oocysts, and there was a remarkable improvement in the histopathological parameters. CONCLUSIONS These data indicate that Alg propolis NPs are sufficient to reduce the infectivity of E. stiedae oocysts.
Collapse
Affiliation(s)
- Ahmed G Hegazi
- Zoonotic Diseases Department, Veterinary Research Institute, National Research Centre, Dokki-Giza, Egypt
| | - Eman E El Shanawany
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Asmaa S El-Houssiny
- Microwave Physics and Dielectric Department, National Research Centre, Dokki-Giza, Egypt
| | - Soad E Hassan
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Hassan M Desouky
- Animal Reproduction and Artificial Insemination Department, National Research Centre, Dokki-Giza, Egypt
| | - T M El-Metenawy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Eman H Abdel-Rahman
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
6
|
AL-Kahtani SN, Alaqil AA, Abbas AO. Modulation of Antioxidant Defense, Immune Response, and Growth Performance by Inclusion of Propolis and Bee Pollen into Broiler Diets. Animals (Basel) 2022; 12:ani12131658. [PMID: 35804557 PMCID: PMC9264778 DOI: 10.3390/ani12131658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Propolis and bee pollen have natural bioactive compounds that may support the performance and immunological response of broilers. (2) Methods: The study included 300 1 d old Cobb-500 broiler chicks. Starting from 22−42 d of age, chicks were divided according to a 2 × 2 factorial design into one of the four treatment groups (5 replicates × 15 chicks per replicate); a basal diet without supplementation (CONT) or supplemented with 1 g/kg of propolis (PR) or bee pollen (BP) separately or in an even combination (PR + BP). (3) Results: A significant (p < 0.05) increase was obtained in the body-weight gain of broilers treated with PR, BP, and PR + BP compared to the CONT. The total antioxidant capacity and superoxide dismutase were highly (p < 0.05) activated in all treated groups compared to the CONT. Immunological parameters, especially the leukocyte cell viability, T- and B-lymphocyte proliferation, immunoglobulins (IgA and IgM), antibody titers, and wattle-swelling test were significantly (p < 0.05) enhanced in the treated broilers with PR and/or BP compared to the CONT. (4) Conclusions: The dietary supplementation of PR and/or BP could be beneficial for broiler growth through maximizing the antioxidant- and immune-system defenses.
Collapse
Affiliation(s)
- Saad N. AL-Kahtani
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
| | - Abdulaziz A. Alaqil
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (A.A.A.); (A.O.A.)
| | - Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Department of Animal Production, Faculty of Agriculture, Cairo University, 7 Gamma St., Giza 12613, Egypt
- Correspondence: (A.A.A.); (A.O.A.)
| |
Collapse
|
7
|
Santos Silva J, França Ferreira ÉL, Maciel Lima A, de Farias RRS, Quirino Araújo B, Quilles Junior JC, Lima Santos RR, de Amorim Carvalho FA, Rai M, Vieira Júnior GM, Chaves MH. Four new cycloartane-type triterpenoids from the leaves of Combretum mellifluum Eichler: assessment of their antioxidant and antileishmanial activities. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:364-375. [PMID: 34933666 DOI: 10.1080/15287394.2021.2015030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The beneficial pharmacological actions including antioxidant effects as an antileishmanial, antibacterial, antifungal, antidiabetic, anti-inflammatory, antitumor, antiviral, and analgesic of compounds isolated from Combretum mellifluum Eichler (Combretaceae) are well established. The aim of the present study was to determine the phytochemistry as well as assess the antioxidant and antileishmanial activities of the leaves from Combretum mellifluum Eichler (Combretaceae). Analysis of ethanolic extract resulted in isolation and identification of two epimeric mixtures of four previously unknown cycloartane-type triterpenoids, methyl quadrangularate M and methyl 24-epiquadrangularate M, and 2α,3β,24β-trihydroxy-cycloart-25-ene and 2α, 3β, 24α-trihydroxy-cycloart-25-ene, and eight known compounds. Their structures were using one-dimensional nuclear magnetic resonance (1D NMR), 2D NMR and high-resolution electrospray ionization mass spectroscopy (HRESIMS) analysis. Further, the extract and fractions were tested for antioxidant potential. The ethyl acetate and aqueous fractions demonstrated the highest antioxidant activity against 2,2-dipheny-1-picrylhydrazl (DPPH) free radicals, which correlated directly with total flavonoid content. All extracts and fractions from C. mellifluum Eichler were assessed for antileishmanial activity. The supernatant fraction exhibited highest potential, inhibiting the growth of Leishmania amazonensis with IC50 value 31.29 μg/ml. Our findings provide information on the chemical composition of C. mellifluum and the potential beneficial therapeutic usefulness as an antioxidant agent in various diseases.
Collapse
Affiliation(s)
- Jaelson Santos Silva
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| | - Éverton Leandro França Ferreira
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
- Universidade Federal do Vale do São Francisco, Campus Serra da Capivara, São Raimundo Nonato, Brazil
| | - Amanda Maciel Lima
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| | | | - Bruno Quirino Araújo
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| | - José Carlos Quilles Junior
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School (FMRP), Universidade de São Paulo (USP), Brazil
| | - Rodolfo Ritchelle Lima Santos
- Department of Biochemistry and Pharmacology, Medicinal Plants Research Center, NPPM, Universidade Federal do Piauí, Teresina, Brasil
| | - Fernando Aécio de Amorim Carvalho
- Department of Biochemistry and Pharmacology, Medicinal Plants Research Center, NPPM, Universidade Federal do Piauí, Teresina, Brasil
| | - Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, India
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| | | | - Mariana Helena Chaves
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| |
Collapse
|
8
|
|
9
|
Kasote D, Bankova V, Viljoen AM. Propolis: chemical diversity and challenges in quality control. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1887-1911. [PMID: 35645656 PMCID: PMC9128321 DOI: 10.1007/s11101-022-09816-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/08/2022] [Indexed: 05/09/2023]
Abstract
UNLABELLED Propolis is a resinous natural product produced by honeybees using beeswax and plant exudates. The chemical composition of propolis is highly complex, and varies with region and season. This inherent chemical variability presents several challenges to its standardisation and quality control. The present review was aimed at highlighting marker compounds for different types of propolis, produced by the species Apis mellifera, from different geographical origins and that display different biological activities, and to discuss strategies for quality control. Over 800 compounds have been reported in the different propolises such as temperate, tropical, birch, Mediterranean, and Pacific propolis; these mainly include alcohols, acids and their esters, benzofuranes, benzopyranes, chalcones, flavonoids and their esters, glycosides (flavonoid and diterpene), glycerol and its esters, lignans, phenylpropanoids, steroids, terpenes and terpenoids. Among these, flavonoids (> 140), terpenes and terpenoids (> 160) were major components. A broad range of biological activities, such as anti-oxidant, antimicrobial, anti-inflammatory, immunomodulatory, and anticancer activities, have been ascribed to propolis constituents, as well as the potential of these compounds to be biomarkers. Several analytical techniques, including non-separation and separation methods have been described in the literature for the quality control assessment of propolis. Mass spectrometry coupled with separation methods, followed by chemometric analysis of the data, was found to be a valuable tool for the profiling and classification of propolis samples, including (bio)marker identification. Due to the rampant chemotypic variability, a multiple-marker assessment strategy considering geographical and biological activity marker(s) with chemometric analysis may be a promising approach for propolis quality assessment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09816-1.
Collapse
Affiliation(s)
- Deepak Kasote
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alvaro M. Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
- SAMRC Herbal Drugs Research Unit, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| |
Collapse
|
10
|
Makinde TO, Adewole DI. Can feed additives be used to promote positive behaviour in laying hens? A review. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.2003171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Taiwo O. Makinde
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Deborah I. Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
11
|
Antimicrobial Activities of Propolis in Poloxamer Based Topical Gels. Pharmaceutics 2021; 13:pharmaceutics13122021. [PMID: 34959303 PMCID: PMC8706605 DOI: 10.3390/pharmaceutics13122021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Propolis contains a group of compounds with various activities. However, their low solubility is a drawback for the development of pharmaceutical formulations. In this study, poloxamers as a solubilizer and gelling agent were evaluated to develop a topical antimicrobial formulation of propolis. The effects of poloxamer type and concentration on the propolis solubility, release rate, and antimicrobial activities were investigated. Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were the representative bacteria and fungi, respectively. At 5%, poloxamer 407 (P407) and poloxamer 188 (P188) enhanced the propolis solubility by 2.86 and 2.06 folds, respectively; at 10%, they were 2.81 and 2.59 folds, respectively. The micelle size in the P188 formulation increased in the presence of propolis, whereas there was no change in the P407 formulation. Release rates of propolis decreased with the P188 concentration increase, which was attributed to viscosity increase. Both P188 and P407 formulations showed antimicrobial activity against S. aureus in a time-kill kinetics assay. However, only the P188 formulation reduced the cell's numbers significantly against C. albicans, compared to the control. We speculate that P188 mixed micelles were more effective in releasing free active compounds to exhibit anti-microbial activity compared to the P407 micelles encapsulating the hydrophobic compounds in their cores. Propolis in P188 formulation is proposed as a potential topical antimicrobial agent based on its activity against both S. aureus and C. albicans.
Collapse
|
12
|
Alotaibi A, Ebiloma GU, Williams R, Alfayez IA, Natto MJ, Alenezi S, Siheri W, AlQarni M, Igoli JO, Fearnley J, De Koning HP, Watson DG. Activity of Compounds from Temperate Propolis against Trypanosoma brucei and Leishmania mexicana. Molecules 2021; 26:molecules26133912. [PMID: 34206940 PMCID: PMC8272135 DOI: 10.3390/molecules26133912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Ethanolic extracts of samples of temperate zone propolis, four from the UK and one from Poland, were tested against three Trypanosoma brucei strains and displayed EC50 values < 20 µg/mL. The extracts were fractionated, from which 12 compounds and one two-component mixture were isolated, and characterized by NMR and high-resolution mass spectrometry, as 3-acetoxypinobanksin, tectochrysin, kaempferol, pinocembrin, 4′-methoxykaempferol, galangin, chrysin, apigenin, pinostrobin, cinnamic acid, coumaric acid, cinnamyl ester/coumaric acid benzyl ester (mixture), 4′,7-dimethoxykaempferol, and naringenin 4′,7-dimethyl ether. The isolated compounds were tested against drug-sensitive and drug-resistant strains of T. brucei and Leishmania mexicana, with the highest activities ≤ 15 µM. The most active compounds against T. brucei were naringenin 4′,7 dimethyl ether and 4′methoxy kaempferol with activity of 15–20 µM against the three T. brucei strains. The most active compounds against L. mexicana were 4′,7-dimethoxykaempferol and the coumaric acid ester mixture, with EC50 values of 12.9 ± 3.7 µM and 13.1 ± 1.0 µM. No loss of activity was found with the diamidine- and arsenical-resistant or phenanthridine-resistant T. brucei strains, or the miltefosine-resistant L. mexicana strain; no clear structure activity relationship was observed for the isolated compounds. Temperate propolis yields multiple compounds with anti-kinetoplastid activity.
Collapse
Affiliation(s)
- Adullah Alotaibi
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (A.A.); (S.A.); (J.O.I.)
| | - Godwin U. Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (I.A.A.); (M.J.N.)
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
| | - Roderick Williams
- IBEHR, School of Health and Life Science, University of the West of Scotland, High Street, Paisley PA1 2BE, UK;
| | - Ibrahim A. Alfayez
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (I.A.A.); (M.J.N.)
- Qassim Health Cluster, Ministry of Health, Buraydah 52367, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Manal J. Natto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (I.A.A.); (M.J.N.)
| | - Sameah Alenezi
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (A.A.); (S.A.); (J.O.I.)
| | - Weam Siheri
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, University of Tripoli, Tripoli 50676, Libya;
| | - Malik AlQarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - John O. Igoli
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (A.A.); (S.A.); (J.O.I.)
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (I.A.A.); (M.J.N.)
- Department of Chemistry, University of Agriculture, Makurdi PMB 2373, Nigeria
| | | | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (I.A.A.); (M.J.N.)
- Correspondence: (H.P.D.K.); (D.G.W.)
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (A.A.); (S.A.); (J.O.I.)
- Correspondence: (H.P.D.K.); (D.G.W.)
| |
Collapse
|
13
|
Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Reyes-Reali J, Mendoza-Ramos MI, Méndez-Cruz AR, Nieto-Yañez O. Effects of Propolis on Infectious Diseases of Medical Relevance. BIOLOGY 2021; 10:428. [PMID: 34065939 PMCID: PMC8151468 DOI: 10.3390/biology10050428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Infectious diseases are a significant problem affecting the public health and economic stability of societies all over the world. Treatment is available for most of these diseases; however, many pathogens have developed resistance to drugs, necessitating the development of new therapies with chemical agents, which can have serious side effects and high toxicity. In addition, the severity and aggressiveness of emerging and re-emerging diseases, such as pandemics caused by viral agents, have led to the priority of investigating new therapies to complement the treatment of different infectious diseases. Alternative and complementary medicine is widely used throughout the world due to its low cost and easy access and has been shown to provide a wide repertoire of options for the treatment of various conditions. In this work, we address the relevance of the effects of propolis on the causal pathogens of the main infectious diseases with medical relevance; the existing compiled information shows that propolis has effects on Gram-positive and Gram-negative bacteria, fungi, protozoan parasites and helminths, and viruses; however, challenges remain, such as the assessment of their effects in clinical studies for adequate and safe use.
Collapse
Affiliation(s)
- Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
| | - C. Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Claudia F. Méndez-Catalá
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Julia Reyes-Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - María I. Mendoza-Ramos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Adolfo R. Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
| |
Collapse
|
14
|
Asfaram S, Fakhar M, Keighobadi M, Akhtari J. Promising Anti-Protozoan Activities of Propolis (Bee Glue) as Natural Product: A Review. Acta Parasitol 2021; 66:1-12. [PMID: 32691360 DOI: 10.1007/s11686-020-00254-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Propolis (bee glue) is a resinous mixture of different plant exudates that possesses a wide range of biological and antimicrobial activities and has been used as a food supplement and in complementary medicine for centuries. Some researchers have proposed that propolis could be a potential curative compound against microbial agents such as protozoan parasitic infections by different and occasionally unknown mechanisms due to the immunoregulatory function and antioxidant capacity of this natural product. METHODS In this review, we concentrate on in vitro and in vivo anti-protozoan activities of propolis extracts/fractions in the published literature. RESULTS In Leishmania, propolis inhibits the proliferation of promastigotes and produces an anti-inflammatory effect via the inhibition of nitric oxide (NO) production. In addition, it increases macrophage activation, TLR-2, TNF-α, IL-4, IL-17 production, and downregulation of IL-12. In Plasmodium and Trypanosoma, propolis inhibits the parasitemia, improving anemia and increasing the IFN-γ, TNF-α, and GM-CSF cytokines levels, most likely due to its strong immunomodulatory activity. Moreover, propolis extract arrests proliferation of T. cruzi, because it has aromatic acids and flavonoids. In toxoplasmosis, propolis increases the specific IgM and IgG titers via decreasing the serum IFN-γ, IL-1, and IL-6 cytokines levels in the rats infected with T. gondii. In Cryptosporidium and Giardia, it decreases oocysts shedding due to phytochemical constituents, particularly phenolic compounds, and increases the number of goblet cells. Propolis inhibits the growth of Blastocystis, possibly by apoptotic mechanisms like metronidazole. Unfortunately, the mechanism action of propolis' anti-Trichomonas and anti-Acanthamoeba is not well-known yet. CONCLUSION Reviewing the related literature could highlight promising antimicrobial activities of propolis against intracellular and extracellular protozoan parasites; this could shed light on the exploration of more effective drugs for the treatment of protozoan parasitic infections in the near future.
Collapse
Affiliation(s)
- Shabnam Asfaram
- Research Center for Zoonoses, Parasitic and Microbial Diseases, Ardabil University of Medical Sciences, Ardabil, Iran
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Masoud Keighobadi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Ebiloma GU, Ichoron N, Siheri W, Watson DG, Igoli JO, De Koning HP. The Strong Anti-Kinetoplastid Properties of Bee Propolis: Composition and Identification of the Active Agents and Their Biochemical Targets. Molecules 2020; 25:E5155. [PMID: 33167520 PMCID: PMC7663965 DOI: 10.3390/molecules25215155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The kinetoplastids are protozoa characterized by the presence of a distinctive organelle, called the kinetoplast, which contains a large amount of DNA (kinetoplast DNA (kDNA)) inside their single mitochondrion. Kinetoplastids of medical and veterinary importance include Trypanosoma spp. (the causative agents of human and animal African Trypanosomiasis and of Chagas disease) and Leishmania spp. (the causative agents of the various forms of leishmaniasis). These neglected diseases affect millions of people across the globe, but drug treatment is hampered by the challenges of toxicity and drug resistance, among others. Propolis (a natural product made by bees) and compounds isolated from it are now being investigated as novel treatments of kinetoplastid infections. The anti-kinetoplastid efficacy of propolis is probably a consequence of its reported activity against kinetoplastid parasites of bees. This article presents a review of the reported anti-kinetoplastid potential of propolis, highlighting its anti-kinetoplastid activity in vitro and in vivo regardless of geographical origin. The mode of action of propolis depends on the organism it is acting on and includes growth inhibition, immunomodulation, macrophage activation, perturbation of the cell membrane architecture, phospholipid disturbances, and mitochondrial targets. This gives ample scope for further investigations toward the rational development of sustainable anti-kinetoplastid drugs.
Collapse
Affiliation(s)
- Godwin U. Ebiloma
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Nahandoo Ichoron
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria; (N.I.) (J.O.I.)
| | - Weam Siheri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - John O. Igoli
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria; (N.I.) (J.O.I.)
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
16
|
Biological control of yeast contamination of industrial foods by propolis. Saudi J Biol Sci 2020; 27:935-946. [PMID: 32127773 PMCID: PMC7042623 DOI: 10.1016/j.sjbs.2020.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/26/2022] Open
Abstract
Bee glue (Propolis, PR), mixture of beeswax and resin is collected from honeybee (Apis mellifera) of different plant parts. The antimicrobial potential of PR against food borne yeast was reported. The experiment was designed to examine the way of antimicrobial impact of PR on food borne yeasts (Cryptococcus laurentii and Candida famata) and its usage use as biological strategy for the preservation of soft foods against microbial spoilage. The study also highlights, the ability of ethanol and water- PR extracts, discouraged growth of tested yeast. Antifungal properties were also determined using electron microscope while biochemical analysis was determined using free and proteinic amino acid technique and oxidative enzymes were determined using HPLC analysis. Antioxidant enzymes were determined using ELISA assay. The highest effect was recorded on C. laurentii however, the lowest effect shows on C. famata. The electron microscopic studies clearly disclosed the effect of water PR distillate on the external shape and internal organs of some tested yeast e.g. C. laurentii and C. famata. The result indicated some differences on concentrations of bio-chemical analyses for these tested yeasts treated with 70% water- PR extracts of different food materials. Moreover, biochemical analysis results also reported that the treated yeast indicated natural preservative to food products and considered as best alternative to the (chemical) preservatives currently employed.
Collapse
|
17
|
Memon S, Kamboh A, Leghari I, Leghari R. Effect of in ovo and post-hatch administration of honey on the immunity and intestinal microflora of growing chickens. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/114139/2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Soltani Z, Torki M, Mohammadi H. Single or combined effects of dietary supplemental vitamin C and ethanol extracts of propolis on productive traits, egg quality and some blood biochemical parameters of laying hens. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1620242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zhila Soltani
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Mehran Torki
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Hamed Mohammadi
- Department of Agriculture, Payame Noor University, Tehran, Iran
| |
Collapse
|
19
|
Mehaisen GMK, Desoky AA, Sakr OG, Sallam W, Abass AO. Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail. PLoS One 2019; 14:e0214839. [PMID: 30964896 PMCID: PMC6456181 DOI: 10.1371/journal.pone.0214839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
The present work was carried out to investigate the effects of dietary propolis supplementation to laying Japanese quail (Coturnix coturnix japonica) on egg production, egg quality, physiological and immunological aspects under heat stress conditions. A total of 200, 21-day-old, Japanese quail females were distributed equally into standard wired cages in two identical environmentally-controlled rooms (10 cages per room, 10 birds per cage). From 29–70 d of age, the quail birds in the first room remained at a normal temperature of 24°C (C group), whereas the quail birds in the second room were kept under heat stress at 35°C (HS group). Each group was further assigned to 2 propolis subgroups (5 cages per subgroup); one of them received a basal diet without propolis supplementation (-PR subgroup), while, the other received 1 g propolis/ kg basal diet (+PR subgroup). In the present study, performance and egg production of laying quail were significantly (P<0.001) impaired by HS treatment and improved by the PR treatment. Similarly, the negative and positive effects of HS and PR, respectively, were appeared on the egg shell thickness and yolk index. Stress indicators in laying quail were significantly (P<0.001) increased by HS, while, PR significantly (P<0.05) moderated these levels in the HS+PR group when compared to the HS-PR quail group. In addition to the positive impact of PR on the plasma levels of calcium, phosphorus, and albumin, it also normalized the plasma levels of alanine aminotransferase and cholesterol in the heat-stressed quail birds. Moreover, the quail birds in the HS groups expressed lower immunological aspects than those in the C group, while, the addition of propolis to the diets enhanced the immune status of laying quail birds under HS conditions. These results strongly suggest that dietary propolis supplementation could be a successful attempt to maintain the performance and egg production of laying Japanese quail at convenient levels under heat stress conditions.
Collapse
Affiliation(s)
- Gamal M. K. Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Poultry Cellular and Molecular Physiology Laboratory, Faculty of Agriculture, Cairo University, Giza, Egypt
- * E-mail:
| | - Adel A. Desoky
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Osama G. Sakr
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Walid Sallam
- Agricultural Economics Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed O. Abass
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Poultry Cellular and Molecular Physiology Laboratory, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Biomarkers as predictive tools to test the in vivo anti-sarcoptic mange activity of propolis in naturally infested rabbits. Biosci Rep 2018; 38:BSR20180874. [PMID: 30291217 PMCID: PMC6435546 DOI: 10.1042/bsr20180874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to investigate the use of specific biomarkers, such as albumin, serum total protein, aspartate amino transferase (AST), globulin, alanine amino transferase (ALT), serum cortisol and alkaline phosphatase (ALP), as predictive tools for sarcoptic mange in rabbits. A total of 40 naturally infested rabbits were equally divided into four groups.Thirty infested rabbits were administered with three different treatments (propolis,ivermectin, and propolis with ivermectin) and were compared to10 infested un-treated rabbits. The impact of treatment was assessed via microscopic examination of skin scrapings, clinical signs, and blood measurements relating to the liver. The present study demonstrated that topical application of 10% propolis ointment resulted in complete recovery from clinical signs and complete absence of mites based on microscopic examination after 10-15 days of treatment. Moreover, AST, ALP, ALT, and cortisol were determined to be acceptable biomarkers to track the response of diseased rabbits to the therapeutic use of propolis.
Collapse
|
21
|
Khoshnood S, Heidary M, Asadi A, Soleimani S, Motahar M, Savari M, Saki M, Abdi M. A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus. Biomed Pharmacother 2018; 109:1809-1818. [PMID: 30551435 DOI: 10.1016/j.biopha.2018.10.131] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Mupirocin (MUP), bactroban, or pseudomonic acid is a natural crotonic acid derivative drug extracted from Pseudomonas fluorescens which is produced by modular polyketide synthases. This antibiotic has a unique chemical structure and mechanism of action. It is a mixture of A-D pseudomonic acids and inhibits protein synthesis through binding to bacterial isoleucyl-tRNA synthetase. MUP is often prescribed to prevent skin and soft tissue infections caused by S. aureus isolates and where the MRSA isolates are epidemic, MUP may be used as a choice drug for nasal decolonization. It is also used for prevention of recurring infections and control the outbreaks. The emergence of MUP resistance has been increasing particularly among methicillin-resistant Staphylococcus aureus (MRSA) isolates in many parts of the world and such resistance is often related with MUP widespread uses. Although both low-level and high-level MUP resistance were reported among MRSA isolates, the rate of resistance is different in various geographic areas. In this review, we will report the global prevalence of MUP resistance, discuss synergism and mechanism of action of MUP, and provide new insights into the clinical use of this antibiotic.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Heidary
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saleh Soleimani
- Department of Biology, Payame Noor University, Isfahan, Iran
| | - Moloudsadat Motahar
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Savari
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahtab Abdi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Attia YA, Al-Khalaifah H, Ibrahim MS, Al-Hamid AEA, Al-Harthi MA, El-Naggar A. Blood Hematological and Biochemical Constituents, Antioxidant Enzymes, Immunity and Lymphoid Organs of Broiler Chicks Supplemented with Propolis, Bee Pollen and Mannan Oligosaccharides Continuously or Intermittently. Poult Sci 2018; 96:4182-4192. [PMID: 29053876 DOI: 10.3382/ps/pex173] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
This study investigate the effect of bee pollen (BP) and/or propolis (Pro) as an alternative to Mannan oligosaccharides (Bio-MOS, a hydrolyzed yeast with natural and artificial flavors Alltech Inc) when given continuously or intermittently on antioxidant enzymes, immunity, weight and morphology of lymphoid organs of broilers. Thus, 324 unsexed one-day-old Arbor Acres broilers were randomly distributed into nine treatment groups, each replicated 6 times of 6 birds per replicate. The chicks were kept in wire cages and fed the same basal diet and were submitted to the following treatments: control without supplementation (control) or supplemented with BP at 300 mg, Pro at 300 mg, BP+Pro at 300 mg each and Bio-MOS at 0.5 g/kg diet. Each supplemented group was subdivided into two subgroups in which the additives were supplied continuously or intermittently. In the continuously supplemented groups, supplementations were given from one till 36 days of age, and in the intermittently supplemented groups, the administration was only three days before, on the day of and day after vaccination. The BP and Pro supplied continuously or intermittently was equally potent for improving immunity, antioxidant enzymes similar to Bio-MOS. All supplements supplied either continuously or intermittently resulted a significantly higher thymus (P < .04) and bursa weights (P < .001) than the control group. Combining BP with Pro resulted in a further increase in thymus weights and small follicle diameter compared to the control group. In addition, thymus percentage in the group received BP+Pro showed a further increase compared to the control and Pro supplemented intermittently. Bio-MOS, when supplied continuously or intermittently, resulted in the greatest response in splenic lymphoblasts. Supplementation with either BP or Pro intermittently, is adequate to promote health and immune response of broiler chicks, with 40% saving of supplementation costs.
Collapse
Affiliation(s)
- Y A Attia
- Arid Land Agriculture Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia.,Department of Animal and Poultry Production, Faculty of Agriculture- Damanhour, University, Egypt
| | - H Al-Khalaifah
- Environment and Lifesciences Research Center, Kuwait Institute for Scientific Research P.O. Box: 2488513109 Safat-Kuwait
| | - M S Ibrahim
- Department of Microbiology, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - A E Abd Al-Hamid
- Department of Animal and Poultry Production, Faculty of Agriculture- Damanhour, University, Egypt
| | - M A Al-Harthi
- Arid Land Agriculture Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - A El-Naggar
- Department of Animal and Poultry Production, Faculty of Agriculture- Damanhour, University, Egypt
| |
Collapse
|
23
|
Tatli Seven P, Seven I, Gul Baykalir B, Iflazoglu Mutlu S, Salem AZM. Nanotechnology and nano-propolis in animal production and health: an overview. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1448726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Pinar Tatli Seven
- Department of Animal Nutrition and Nutritional Diseases, University of Firat, Elazig, Turkey
| | - Ismail Seven
- Vocational School of Sivrice, Department of Plant and Animal Production, University of Firat, Elazig, Turkey
| | | | - Seda Iflazoglu Mutlu
- Department of Animal Nutrition and Nutritional Diseases, University of Firat, Elazig, Turkey
| | | |
Collapse
|
24
|
Mehaisen GMK, Ibrahim RM, Desoky AA, Safaa HM, El-Sayed OA, Abass AO. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks. PLoS One 2017; 12:e0186907. [PMID: 29053741 PMCID: PMC5650467 DOI: 10.1371/journal.pone.0186907] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/22/2017] [Indexed: 01/14/2023] Open
Abstract
Heat stress is one of the most detrimental confrontations in tropical and subtropical regions of the world, causing considerable economic losses in poultry production. Propolis, a resinous product of worker honeybees, possesses several biological activities that could be used to alleviate the deleterious effects of high environmental temperature on poultry production. The current study was aimed at evaluating the effects of propolis supplementation to Japanese quail (Coturnix coturnix japonica) diets on the production performance, intestinal histomorphology, relative physiological and immunological parameters, and selected gene expression under heat stress conditions. Three hundred one-day-old Japanese quail chicks were randomly distributed into 20 wired-cages. At 28 d of age, the birds were divided into 2 temperature treatment groups; a normal at 24°C (C group) and a heat stress at 35°C (HS group). The birds in each group were further assigned to 2 subgroups; one of them was fed on a basal diet without propolis supplementation (-Pr subgroup) while the other was supplemented with propolis (+Pr subgroup). Production performance including body weight gain, feed intake and feed conversion ratio were measured. The intestinal histomorphological measurements were also performed for all treatment groups. Relative physiological parameters including body temperature, corticosterone hormone level, malondialdehyde (MDA) and free triiodothyronine hormone (fT3), as well as the relative immunological parameters including the total white blood cells count (TWBC’s), heterophil/lymphocyte (H/L) ratio and lymphocyte proliferation index, were also measured. Furthermore, the mRNA expression for toll like receptor 5 (TLR5), cysteine-aspartic protease-6 (CASP6) and heat shock proteins 70 and 90 (Hsp70 and Hsp90) genes was quantified in this study. The quail production performance was significantly (P<0.05) impaired by HS treatment, while Pr treatment significantly improved the quail production performance. The villus width and area were significantly (P<0.05) lower in the HS compared to the C group, while Pr treatment significantly increased crypts depth of quail. A negative impact of HS treatment was observed on the physiological status of quail; however, propolis significantly alleviated this negative effect. Moreover, quail of the HS group expressed lower immunological parameters than C group, while propolis enhanced the immune status of the quail. The relative mRNA expression of TLR5 gene was down-regulated by HS treatment while it was up-regulated by the Pr treatment. Furthermore, the positive effects of propolis in HS-quail were evidenced by normalizing the high expressions of CASP6 and Hsp70 genes when compared to the C group. Based on these results, the addition of propolis to quail diets as a potential nutritional strategy in order to improve their performance, especially under heat stress conditions, is recommended.
Collapse
Affiliation(s)
- Gamal M. K. Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Poultry Cellular and Molecular Physiology Laboratory, Faculty of Agriculture, Cairo University, Giza, Egypt
- * E-mail:
| | - Rania M. Ibrahim
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Adel A. Desoky
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hosam M. Safaa
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Osama A. El-Sayed
- Poultry Breeding Department, Animal Production Research Institute, Dokki, Giza, Egypt
| | - Ahmed O. Abass
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Poultry Cellular and Molecular Physiology Laboratory, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
25
|
Alvarez-Suarez JM. The Chemical and Biological Properties of Propolis. BEE PRODUCTS - CHEMICAL AND BIOLOGICAL PROPERTIES 2017. [PMCID: PMC7123330 DOI: 10.1007/978-3-319-59689-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Abstract
There is now good evidence that cytokines and growth factors are key factors in tissue repair and often exert anti-infective activities. However, engineering such factors for global use, even in the most remote places, is not realistic. Instead, we propose to examine how such factors work and to evaluate the reparative tools generously provided by 'nature.' We used two approaches to address these objectives. The first approach was to reappraise the internal capacity of the factors contributing the most to healing in the body, i.e., blood platelets. The second was to revisit natural agents such as whey proteins, (honey) bee venom and propolis. The platelet approach elucidates the inflammation spectrum from physiology to pathology, whereas milk and honey derivatives accelerate diabetic wound healing. Thus, this review aims at offering a fresh view of how wound healing can be addressed by natural means.
Collapse
Affiliation(s)
- Olivier Garraud
- GIMAP-EA3064, Faculty of medicine of Saint-Etienne, University of Lyon, 42023, Saint-Etienne, France.
- National Institute for Blood Transfusion, 75015, Paris, France.
| | - Wael N Hozzein
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Botany Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Badr
- Laboratory of Immunology and Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| |
Collapse
|
27
|
Dantas Silva RP, Machado BAS, Barreto GDA, Costa SS, Andrade LN, Amaral RG, Carvalho AA, Padilha FF, Barbosa JDV, Umsza-Guez MA. Antioxidant, antimicrobial, antiparasitic, and cytotoxic properties of various Brazilian propolis extracts. PLoS One 2017; 12:e0172585. [PMID: 28358806 PMCID: PMC5373518 DOI: 10.1371/journal.pone.0172585] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
Propolis is known for its biological properties and its preparations have been continuously investigated in an attempt to solve the problem of their standardization, an issue that limits the use of propolis in food and pharmaceutical industries. The aim of this study was to evaluate in vitro antioxidant, antimicrobial, antiparasitic, and cytotoxic effects of extracts of red, green, and brown propolis from different regions of Brazil, obtained by ethanolic and supercritical extraction methods. We found that propolis extracts obtained by both these methods showed concentration-dependent antioxidant activity. The extracts obtained by ethanolic extraction showed higher antioxidant activity than that shown by the extracts obtained by supercritical extraction. Ethanolic extracts of red propolis exhibited up to 98% of the maximum antioxidant activity at the highest extract concentration. Red propolis extracts obtained by ethanolic and supercritical methods showed the highest levels of antimicrobial activity against several bacteria. Most extracts demonstrated antimicrobial activity against Staphylococcus aureus. None of the extracts analyzed showed activity against Escherichia coli or Candida albicans. An inhibitory effect of all tested ethanolic extracts on the growth of Trypanosoma cruzi Y strain epimastigotes was observed in the first 24 h. However, after 96 h, a persistent inhibitory effect was detected only for red propolis samples. Only ethanolic extracts of red propolis samples R01Et.B2 and R02Et.B2 showed a cytotoxic effect against all four cancer cell lines tested (HL-60, HCT-116, OVCAR-8, and SF-295), indicating that red propolis extracts have great cytotoxic potential. The biological effects of ethanolic extracts of red propolis revealed in the present study suggest that red propolis can be a potential alternative therapeutic treatment against Chagas disease and some types of cancer, although high activity of red propolis in vitro needs to be confirmed by future in vivo investigations.
Collapse
Affiliation(s)
- Rejane Pina Dantas Silva
- Department of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
- Department of Biotechnology and Food, Faculty of Technology, SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Salvador, Bahia, Brazil
| | - Bruna Aparecida Souza Machado
- Department of Biotechnology and Food, Faculty of Technology, SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Salvador, Bahia, Brazil
- Institute of Technology in Health, Faculty of Technology, SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Salvador, Bahia, Brazil
| | - Gabriele de Abreu Barreto
- Department of Biotechnology and Food, Faculty of Technology, SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Salvador, Bahia, Brazil
| | | | | | | | | | | | - Josiane Dantas Viana Barbosa
- Institute of Technology in Health, Faculty of Technology, SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Salvador, Bahia, Brazil
| | | |
Collapse
|
28
|
Sur Arslan A, Tatlı Seven P. The effects of propolis on serum malondialdehyde, fatty acids and some blood parameters in Japanese quail (Coturnix coturnix japonica) under high stocking density. JOURNAL OF APPLIED ANIMAL RESEARCH 2016. [DOI: 10.1080/09712119.2016.1206901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Pınar Tatlı Seven
- Faculty of Veterinary Medicine, Animal Nutrition and Nutritional Disease Department, University of Firat, Elazig, Turkey
| |
Collapse
|
29
|
Behavioral changes and feathering score in heat stressed broiler chickens fed diets containing different levels of propolis. Appl Anim Behav Sci 2015. [DOI: 10.1016/j.applanim.2015.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Haščík P, Elimam IO, Kročko M, Bobko M, Kačániová M, Garlík J, Šimko M, Saleh AA. The Influence of Propolis as Supplement Diet on Broiler Meat Growth Performance, Carcass Body Weight, Chemical Composition and Lipid Oxidation Stability. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2015. [DOI: 10.11118/actaun201563020411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Khacha-ananda S, Tragoolpua K, Chantawannakul P, Tragoolpua Y. Antioxidant and anti-cancer cell proliferation activity of propolis extracts from two extraction methods. Asian Pac J Cancer Prev 2014; 14:6991-5. [PMID: 24377638 DOI: 10.7314/apjcp.2013.14.11.6991] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Antioxidant activity, total phenolic, total flavonoid compounds and cytotoxicity to cancer cell lines of propolis extracts from two extraction methods were investigated in this study. Propolis was collected from Phayao province and extracted with 70% ethanol using maceration and sonication techniques. The antioxidant activity was evaluated by DPPH assay. Total phenolic and flavonoid compounds were also determined. Moreover, the cytotoxicity of propolis was evaluated using MTT assay. The percentage propolis yield after extraction using maceration (18.1%) was higher than using sonication (15.7%). Nevertheless, antioxidant and flavonoid compounds of the sonication propolis extract were significant greater than using maceration. Propolis extract from sonication showed antioxidant activity by 3.30 ± 0.15 mg gallic acid equivalents/g extract. Total phenolic compound was 18.3 ± 3.30 mg gallic acid equivalents/g extract and flavonoid compound was 20.49 ± 0.62 mg quercetin/g extract. Additionally, propolis extracts from two extraction methods demonstrated the inhibitory effect on proliferation of A549 and HeLa cancer cell lines at 24, 48 and 72 hours in a dose-dependent manner. These results are of interest for the selection of the most appropriate method for preparation of propolis extracts as potential antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Supakit Khacha-ananda
- Biotechnology, The Graduate School, Chiang Mai University, Chiang Mai, Thailand E-mail : ,
| | | | | | | |
Collapse
|
32
|
Propolis: a review of properties, applications, chemical composition, contact allergy, and other adverse effects. Dermatitis 2014; 24:263-82. [PMID: 24201459 DOI: 10.1097/der.0000000000000011] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Propolis (bee glue) is the resinous substance that bees collect from living plants for the construction and adaptation of their nests. It has antibacterial, antifungal, and antiviral properties and may have a wide range of other beneficial biological activities. Propolis is available as a dietary supplement, in products for the protection of health and prevention of diseases, in biopharmaceuticals, and as a constituent of (bio)cosmetics. In this article, the following aspects of propolis are reviewed: the nature and chemical composition, its biological properties and applications, contact allergy and allergic contact dermatitis (sensitizing potential, products causing contact allergy, clinical picture, frequency of sensitization, coreactivity and cross-reactivity, the allergens in propolis), and other adverse effects.
Collapse
|
33
|
Jerz G, Elnakady YA, Braun A, Jäckel K, Sasse F, Al Ghamdi AA, Omar MOM, Winterhalter P. Preparative mass-spectrometry profiling of bioactive metabolites in Saudi-Arabian propolis fractionated by high-speed countercurrent chromatography and off-line atmospheric pressure chemical ionization mass-spectrometry injection. J Chromatogr A 2014; 1347:17-29. [PMID: 24831423 DOI: 10.1016/j.chroma.2014.04.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 11/27/2022]
Abstract
Propolis is a glue material collected by honeybees which is used to seal cracks in beehives and to protect the bee population from infections. Propolis resins have a long history in medicinal use as a natural remedy. The multiple biological properties are related to variations in their chemical compositions. Geographical settings and availability of plant sources are important factors for the occurrence of specific natural products in propolis. A propolis ethylacetate extract (800mg) from Saudi Arabia (Al-Baha region) was separated by preparative scale high-speed countercurrent chromatography (HSCCC) using a non-aqueous solvent system n-hexane-ACN (1:1, v/v). For multiple metabolite detection, the resulting HSCCC-fractions were sequentially injected off-line into an atmospheric pressure chemical ionization mass-spectrometry (APCI-MS/MS) device, and a reconstituted mass spectrometry profile of the preparative run was visualized by selected ion traces. Best ion-intensities for detected compounds were obtained in the negative APCI mode and monitored occurring co-elution effects. HSCCC and successive purification steps resulted in the isolation and characterization of various bioactive natural products such as (12E)- and (12Z)-communic acid, sandaracopimaric acid, (+)-ferruginol, (+)-totarol, and 3β-acetoxy-19(29)-taraxasten-20a-ol using EI-, APCI-MS and 1D/2D-NMR. Cycloartenol-derivatives and triterpene acetates were isolated in mixtures and elucidated by EI-MS and 1D-NMR. Free fatty acids, and two labdane fatty acid esters were identified by APCI-MS/MS. In total 19 metabolites have been identified. The novel combination of HSCCC fractionation, and APCI-MS-target-guided molecular mass profiling improve efficiency of lead-structure identification.
Collapse
Affiliation(s)
- Gerold Jerz
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany.
| | - Yasser A Elnakady
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia; Helmholtz Centre for Infection Research, Chemical Biology, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| | - André Braun
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany
| | - Kristin Jäckel
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany
| | - Florenz Sasse
- Helmholtz Centre for Infection Research, Chemical Biology, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Ahmad A Al Ghamdi
- King Saud University, Chair of Engineer Abdullah Baqshan for Bee Research, College of Food and Agriculture Sciences, Riyadh, Saudi Arabia
| | - Mohamed O M Omar
- King Saud University, Chair of Engineer Abdullah Baqshan for Bee Research, College of Food and Agriculture Sciences, Riyadh, Saudi Arabia
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany
| |
Collapse
|
34
|
Bankova V, Atanassov A, Denev R, Shishinjova M. Bulgarian Bee Products and their Health Promoting Potential. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Draganova-Filipova M, Nikolova M, Mihova A, Peychev L, Sarafian V. A Pilot Study on the Immunomodulatory Effect of Bulgarian Propolis. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2010.10817824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
36
|
Polyphenols as key players for the antileukaemic effects of propolis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:371730. [PMID: 24772179 PMCID: PMC3977507 DOI: 10.1155/2014/371730] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/24/2014] [Accepted: 02/05/2014] [Indexed: 12/15/2022]
Abstract
Propolis (a bee product) which has a long history of medicinal use by humans has attracted a great deal of research interest in the recent time; this is due to its widely reported biological activities such as antiviral, antifungal, antibacterial, anti-inflammatory, antioxidant, and anticarcinogenic properties. Crude form of propolis and its phenolic contents have both been reported to exhibit antileukaemic effects in various leukaemia cell lines. The ability of the polyphenols found in propolis to arrest cell cycle and induce apoptosis and differentiation in addition to inhibition of cell growth and proliferation makes them promising antileukaemic agents, and hence, they are believed to be a key to the antileukaemic effects of propolis in different types of leukaemia. This paper reviews the molecular bases of antileukaemic activity of both crude propolis and individual polyphenols on various leukaemia cell lines, and it indicates that propolis has the potential to be used in both treatment and prevention of leukaemia. This however needs further evaluation by in vitro, in vivo, and epidemiological studies as well as clinical trials.
Collapse
|
37
|
Šulcerová H, Mihok M, Jůzl M, Haščík P. Effect of addition of pollen and propolis to feeding mixtures during the production of broiler chickens ROSS 308 to the colour of thigh and breast muscle and pH determination. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun201159060359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Selamoglu Talas Z. Propolis reduces oxidative stress in l-NAME-induced hypertension rats. Cell Biochem Funct 2014; 32:150-154. [PMID: 23788129 DOI: 10.1002/cbf.2986] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/19/2013] [Accepted: 05/15/2013] [Indexed: 08/14/2024]
Abstract
The inhibition in the synthesis or bioavailability of nitric oxide (NO) has an important role in progress of hypertension. The blocking of nitric oxide synthase activity may cause vasoconstriction with the formation of reactive oxygen species (ROS). Propolis is a resinous substance collected by honey bees from various plants. Propolis has biological and pharmacological properties. The aim of this study was to examine the effect of propolis on catalase (CAT) activity, malondialdehyde (MDA) and NO levels in the testis tissues of hypertensive rats by Nω-nitro-l-arginine methyl ester (l-NAME). Rats have received nitric oxide synthase inhibitor (l-NAME, 40 mg kg(-1) , intraperitoneally) for 15 days to produce hypertension and propolis (200 mg kg(-1) , by gavage) during the last 5 days. MDA level in l-NAME-treated group significantly increased compared with control group (P < 0.01). MDA level of l-NAME + propolis-treated rats significantly reduced (P < 0.01) compared with l-NAME-treated group. CAT activity and NO level significantly reduced (P < 0.01) in l-NAME group compared with control group. There were no statistically significant increases in the CAT activity and NO level of the l-NAME + propolis group compared with the l-NAME-treated group (P > 0.01). These results suggest that propolis changes CAT activity, NO and MDA levels in testis of l-NAME-treated animals, and so it may modulate the antioxidant system.
Collapse
|
39
|
Netíková L, Bogusch P, Heneberg P. Czech Ethanol-Free Propolis Extract Displays Inhibitory Activity against a Broad Spectrum of Bacterial and Fungal Pathogens. J Food Sci 2013; 78:M1421-9. [DOI: 10.1111/1750-3841.12230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/24/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Ladislava Netíková
- Faculty of Science, Univ. of Hradec Králové; Rokitanského 62; CZ-500 03 Hradec Králové; Czech Republic
| | - Petr Bogusch
- Faculty of Science, Univ. of Hradec Králové; Rokitanského 62; CZ-500 03 Hradec Králové; Czech Republic
| | - Petr Heneberg
- Third Faculty of Medicine, Charles Univ. in Prague; Ruská 87; CZ-100 00 Prague; Czech Republic
| |
Collapse
|
40
|
Falcão SI, Vale N, Cos P, Gomes P, Freire C, Maes L, Vilas-Boas M. In vitro evaluation of Portuguese propolis and floral sources for antiprotozoal, antibacterial and antifungal activity. Phytother Res 2013; 28:437-43. [PMID: 23722631 DOI: 10.1002/ptr.5013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/18/2013] [Accepted: 05/04/2013] [Indexed: 01/18/2023]
Abstract
Propolis is a beehive product with a very complex chemical composition, used since ancient times in several therapeutic treatments. As a contribution to the improvement of drugs against several tropical diseases caused by protozoa, we screened Portuguese propolis and its potential floral sources Populus x Canadensis and Cistus ladanifer against Plasmodium falciparum, Leishmania infantum, Trypanosoma brucei and Trypanosoma cruzi. The toxicity against MRC-5 fibroblast cells was evaluated to assess selectivity. The in vitro assays were performed following the recommendations of WHO Special Programme for Research and Training in Tropical Diseases (TDR) and revealed moderate activity, with the propolis extracts presenting the relatively highest inhibitory effect against T. brucei. Additionally, the antimicrobial activity against Staphylococcus aureus, Candida albicans, Trichophyton rubrum and Aspergillus fumigatus was also verified with the better results observed against T. rubrum. The quality of the extracts was controlled by evaluating the phenolic content and antioxidant activity. The observed biological activity variations are associated with the variable chemical composition of the propolis and the potential floral sources under study.
Collapse
Affiliation(s)
- Soraia I Falcão
- CIMO - Escola Superior Agrária, Instituto Politécnico de Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal; REQUIMTE - Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
41
|
Salomão K, Pereira PRS, Campos LC, Borba CM, Cabello PH, Marcucci MC, de Castro SL. Brazilian propolis: correlation between chemical composition and antimicrobial activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 5:317-24. [PMID: 18830454 PMCID: PMC2529390 DOI: 10.1093/ecam/nem058] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 04/12/2007] [Indexed: 11/13/2022]
Abstract
The chemical composition of ethanol extracts from samples of Brazilian propolis (EEPs) determined by HPLC and their activity against Trypanosoma cruzi, Staphylococcus aureus, Streptococcus pneumoniae, Klebisiella pneumoniae, Candida albicans, Sporothrix schenckii and Paracoccidioides brasiliensis were determined. Based on the predominant botanical origin in the region of samples' collection, the 10 extracts were separated into three groups: A (B. dracunculifolia + Auraucaria spp), B (B. dracunculifolia) and C (Araucaria spp). Analysis by the multiple regression of all the extracts together showed a positive correlation, higher concentrations leading to higher biological effect, of S. aureus with p-coumaric acid (PCUM) and 3-(4-hydroxy-3-(oxo-butenyl)-phenylacrylic acid (DHCA1) and of trypomastigotes of T. cruzi with 3,5-diprenyl-4-hydroxycinnamic acid derivative 4 (DHCA4) and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (DCBEN). When the same approach was employed for each group, due to the small number of observations, the statistical test gave unreliable results. However, an overall analysis revealed for group A an association of S. aureus with caffeic acid (CAF) and dicaffeoylquinic acid 3 (CAFQ3), of S. pneumoniae with CAFQ3 and monocaffeoylquinic acid 2 (CAFQ2) and of T. cruzi also with CAFQ3. For group B, a higher activity against S. pneumoniae was associated DCBEN and for T. cruzi with CAF. For group C no association was observed between the anitmicrobial effect and any component of the extracts. The present study reinforces the relevance of PCUM and derivatives, especially prenylated ones and also of caffeolyquinic acids, on the biological activity of Brazilian propolis.
Collapse
Affiliation(s)
- Kelly Salomão
- Departamento de Ultra-estrutura e Biologia Celular, Departamento de Bacteriologia, Departamento de Micologia, Departamento de Genética, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro and Pós-graduação em Farmácia, Núcleo de Pós-graduação, Pesquisa e Extensão, Universidade Bandeirante de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
The effects of propolis and vitamin C supplemented feed on performance, nutrient utilization and carcass characteristics in broilers exposed to lead. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Mavri A, Abramovič H, Polak T, Bertoncelj J, Jamnik P, Smole Možina S, Jeršek B. Chemical Properties and Antioxidant and Antimicrobial Activities of Slovenian Propolis. Chem Biodivers 2012; 9:1545-58. [DOI: 10.1002/cbdv.201100337] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Gogebakan A, Talas ZS, Ozdemir I, Sahna E. Role of Propolis on Tyrosine Hydroxylase Activity and Blood Pressure in Nitric Oxide Synthase-Inhibited Hypertensive Rats. Clin Exp Hypertens 2012; 34:424-8. [PMID: 22471835 DOI: 10.3109/10641963.2012.665542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Gressler LT, Da Silva AS, Machado G, Dalla Rosa L, Dorneles F, Gressler LT, Oliveira MS, Zanette RA, de Vargas ACP, Monteiro SG. Susceptibility of Trypanosoma evansi to propolis extract in vitro and in experimentally infected rats. Res Vet Sci 2012; 93:1314-7. [PMID: 22405907 DOI: 10.1016/j.rvsc.2012.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/02/2012] [Accepted: 02/12/2012] [Indexed: 12/29/2022]
Abstract
Current therapy of Trypanosoma evansi infections is not effective for the vast majority of animals with relapsing parasitemia and clinical signs. Recently, attention is being focused on the antiparasitic activity of propolis. This study evaluated the susceptibility of T. evansi to propolis extract in vitro and in vivo. A dose-dependent trypanocidal activity of propolis extract was observed in vitro. All trypomastigotes were killed 1 h after incubation with 10 μg mL(-1) of the extract. In vivo, the concentrations of 100, 200, 300 and 400 mg kg(-1) administered orally for 10 consecutive days showed no curative effect, and the rats died from the disease. However, rats treated with the two highest concentrations of propolis extract showed higher longevity than the other groups. Based on these data, we concluded that T. evansi is susceptible to propolis in vitro. Despite the lack of curative efficacy observed in vivo at the concentrations tested, the propolis extract can prolong life in rats infected with the protozoan.
Collapse
Affiliation(s)
- Lucas T Gressler
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Haščík P, Elimam IOE, Garlík J, Kačániová M, Bobko M, Kňazovická V, Vavrišinová K, Arpášová H, Bučko O. Chemical composition of muscle after pollen application in nutrition of broiler chickens. POTRAVINARSTVO 2012. [DOI: 10.5219/190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Principle purpose of this study was to monitor the chemical composition of breast and thigh muscular part of chickens of hybrid combination Ross 308 and to verify the differences due to use of pollen extract in feed mixture at a dose of 400 and 800 mg.kg-1 during the feeding of 42 days. We did not find significant differences (P≥0.05) in followed chemical compounds of thigh muscle with the skin and subcutaneous fat between the groups with and without application of pollen extract: in contents of water (68.49-70.12 g.100g-1), protein (18.82-18.98 g.100g-1), fat (9.96-11.53 g.100g-1) and in energy value (692.20-752.36 kJ.100g-1). Significant differences (P≤0.05) were found only in protein content of breast muscle between the control group (23.96 g.100g-1) and experimental group I (23.28 g.100g-1). Values of water content (73.97-74.32 g.100g-1), fat content (1.07-1.40 g.100g-1) and energy (441.65-446.64 kJ.100g-1) in breast muscle between the evaluated groups were balanced (P≥0.05). The results show that pollen extract at the concentration used in feed mixture did not effect basic chemical composition of the most valuable parts of the chicken Ross 308 carcass and we can apply it in their nutrition. Application at a dose of 800 mg.kg-1 seems to be more positive.
Collapse
|
47
|
Haščík P, Garlík ml. J, Kačániová M, Čuboň J, Mellen M, Mihok M, Eliman IOE. Sensory evaluation of meat chickens Ross 308 after application of propolis in their nutrition. POTRAVINARSTVO 2012. [DOI: 10.5219/158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of the experiment was to verify the effect of propolis extract in Ross 308 broiler on the sensory quality of breast and thigh muscle modified by baking at temperature 200 ºC for 60 minutes and finish baking for a period of 10-15 minutes. In the experiment were used 180 chickens divided into 2 groups (control and experimental group) with 90 chickens (45 ♂ and 45 ♀). Fattening lasted 40 days. The chickens were fed ad libitum with the same starter feed mixtures to 21 days and from 22 days of age through 40 days of age with the grower feed mixtures in the both followed groups. Feed mixtures were made without antibiotics and coccidiostatics. The feed mixtures used in experimental group were enriched with the feed extract of propolis in a dose of 0.2 g.kg-1. After heat treatment of breast and thigh muscle 60 pieces chickens (30 pieces ♀, ♂ 30 pieces) of each group samples were sensory analyzed (smell, taste, juiciness, softness). Statistically significant differences were found by sex (P≤0.05 to 0.001) in aroma and taste of cocks in the thigh muscle (+0.290 points, +0.300 points) and hens (P≤0.01) in flavor (+0.250 points) and softness (+0.372 points) in breast muscle. Sensory assessment of the individual characters of either gender had significant differences (P≤0.05 to 0.001) in favor of the experimental group achieved only in the evaluation of the smell in the breast (+0.207 points) as well as thigh muscle (+0.207 points). In the final evaluation the most valuable parts of Ross 308 chickens carcass were found a positive effect of propolis extract on their sensory properties, but significant differences (P≤0.01) were observed only in chickens in the breast muscle (+0.917 points) compared with control group. The results have confirmed that propolis extract in a dose of 0.2 g.kg-1 feed mixture can be applied in the diet of chickens, as it positively affects the sensory quality of Ross 308 chickens meat, which is one of the most important parts of chicken meat for use in human food chain.
Collapse
|
48
|
Bonvehí JS, Gutiérrez AL. The antimicrobial effects of propolis collected in different regions in the Basque Country (Northern Spain). World J Microbiol Biotechnol 2011; 28:1351-8. [PMID: 22805915 DOI: 10.1007/s11274-011-0932-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/25/2011] [Indexed: 11/30/2022]
Abstract
The antimicrobial activity of 19 propolis extracts prepared in different solvents (ethanol and propylene glycol) (EEP/PEP), was evaluated against some bacterial and fungal isolates using the agar-well diffusion method. It was verified that all the samples tested showed antimicrobial activity, although results varied considerably between samples. Results revealed that both types of propolis extracts showed highly sensitive antimicrobial action against Gram-positive bacteria and fungi at a concentration of 20% (Staphylococcus aureus, Streptococcus mutans, Candida albicans and Saccharomyces cerevisae) with a minimal inhibitory concentration (MIC) ranging from 0.5 to 1.5 mg/ml, with a moderate effect against Streptococcus pyogenes (MIC from 17 to 26 mg/ml). To our knowledge, this is the first study showing elevated antimicrobial activity against Gram-negative bacteria [Salmonella enterica (MIC from 0.6 to 1.4 mg/ml)] and lesser activity against Helicobacter pylori (MIC from 6 to 14 mg/ml), while Escherichia coli was resistant. This concluded that the Basque propolis had a strong and dose-dependent activity against most of the microbial strains tested, while database comparison revealed that phenolic substances were responsible for this inhibition, regardless of their geographical origin and the solvent employed for extraction. Statistical analysis showed no significant differences (P ≤ 0.05) between EEP and PEP extracts.
Collapse
Affiliation(s)
- Josep Serra Bonvehí
- Research and Development of Nederland Co., P.O. Box 34, 08890, Viladecans, Spain.
| | | |
Collapse
|
49
|
Sawadogo WR, Le Douaron G, Maciuk A, Bories C, Loiseau PM, Figadère B, Guissou IP, Nacoulma OG. In vitro antileishmanial and antitrypanosomal activities of five medicinal plants from Burkina Faso. Parasitol Res 2011; 110:1779-83. [PMID: 22037827 DOI: 10.1007/s00436-011-2699-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 10/12/2011] [Indexed: 01/26/2023]
Abstract
After ethnobotanical surveys in central and western regions of Burkina Faso, five plants namely Lantana ukambensis (Verbenaceae), Xeoderris sthulmannii (Fabaceae), Parinari curatellifollia (Chrysobalanaceae), Ozoroa insignis (Anacardiaceae), and Ficus platyphylla (Moraceae) were selected for their traditional use in the treatment of parasitic diseases and cancer. Our previous studies have focused on the phytochemical, genotoxicity, antioxidant, and antiproliferative activities of these plants. In this study, the methanol extract of each plant was tested to reveal probable antileishmanial and antitrypanosomal activities. Colorimetric and spectrophotometric methods were used for the detection of antileishmanial and antitrypanosomal activities. Leishmania donovani (LV9 WT) and Trypanosoma brucei brucei GVR 35 were used to test the antileishmanial and antitrypanosomal activities, respectively. All extracts of tested plants showed a significant antitrypanosomal activity with minimum lethal concentrations between 1.5 and 25 μg/ml, the L. ukambensis extract being the most active. In the antileishmanial test, only the extract from L. ukambensis showed significant activity with an inhibitory concentration (IC(50)) of 6.9 μg/ml. The results of this study contribute to the promotion of traditional medicine products and are preliminary for the isolation of new natural molecules for the treatment of leishmaniasis and trypanosomiasis.
Collapse
Affiliation(s)
- W R Sawadogo
- Institut de Recherche en Sciences de la Santé (IRSS/CNRST), 03 BP 7192, Ouagadougou 03, Burkina Faso.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sârbu C, Moţ AC. Ecosystem discrimination and fingerprinting of Romanian propolis by hierarchical fuzzy clustering and image analysis of TLC patterns. Talanta 2011; 85:1112-7. [DOI: 10.1016/j.talanta.2011.05.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 05/06/2011] [Accepted: 05/17/2011] [Indexed: 11/25/2022]
|