1
|
Feunaing RT, Tamfu AN, Gbaweng AJY, Kucukaydin S, Tchamgoue J, Lannang AM, Lenta BN, Kouam SF, Duru ME, Anouar EH, Talla E, Dinica RM. In Vitro and Molecular Docking Evaluation of the Anticholinesterase and Antidiabetic Effects of Compounds from Terminalia macroptera Guill. & Perr. (Combretaceae). Molecules 2024; 29:2456. [PMID: 38893333 PMCID: PMC11174011 DOI: 10.3390/molecules29112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) and diabetes are non-communicable diseases with global impacts. Inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are suitable therapies for AD, while α-amylase and α-glucosidase inhibitors are employed as antidiabetic agents. Compounds were isolated from the medicinal plant Terminalia macroptera and evaluated for their AChE, BChE, α-amylase, and α-glucosidase inhibitions. From 1H and 13C NMR data, the compounds were identified as 3,3'-di-O-methyl ellagic acid (1), 3,3',4'-tri-O-methyl ellagic acid-4-O-β-D-xylopyranoside (2), 3,3',4'-tri-O-methyl ellagic acid-4-O-β-D-glucopyranoside (3), 3,3'-di-O-methyl ellagic acid-4-O-β-D-glucopyranoside (4), myricetin-3-O-rhamnoside (5), shikimic acid (6), arjungenin (7), terminolic acid (8), 24-deoxysericoside (9), arjunglucoside I (10), and chebuloside II (11). The derivatives of ellagic acid (1-4) showed moderate to good inhibition of cholinesterases, with the most potent being 3,3'-di-O-methyl ellagic acid, with IC50 values of 46.77 ± 0.90 µg/mL and 50.48 ± 1.10 µg/mL against AChE and BChE, respectively. The compounds exhibited potential inhibition of α-amylase and α-glucosidase, especially the phenolic compounds (1-5). Myricetin-3-O-rhamnoside had the highest α-amylase inhibition with an IC50 value of 65.17 ± 0.43 µg/mL compared to acarbose with an IC50 value of 32.25 ± 0.36 µg/mL. Two compounds, 3,3'-di-O-methyl ellagic acid (IC50 = 74.18 ± 0.29 µg/mL) and myricetin-3-O-rhamnoside (IC50 = 69.02 ± 0.65 µg/mL), were more active than the standard acarbose (IC50 = 87.70 ± 0.68 µg/mL) in the α-glucosidase assay. For α-glucosidase and α-amylase, the molecular docking results for 1-11 reveal that these compounds may fit well into the binding sites of the target enzymes, establishing stable complexes with negative binding energies in the range of -4.03 to -10.20 kcalmol-1. Though not all the compounds showed binding affinities with cholinesterases, some had negative binding energies, indicating that the inhibition was thermodynamically favorable.
Collapse
Affiliation(s)
- Romeo Toko Feunaing
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, 48800 Mugla, Turkey
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, ‘Dunarea de Jos University’, 47 Domneasca Str., 800008 Galati, Romania
| | - Abel Joel Yaya Gbaweng
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, 48800 Mugla, Turkey
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - Joseph Tchamgoue
- Department of Chemistry, Higher Teacher Training College, The University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon
- Department of Organic Chemistry, Faculty of Science, University of Yaounde 1, Yaoundé P.O. Box 812, Cameroon
| | - Alain Meli Lannang
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
| | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, The University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon
| | - Simeon Fogue Kouam
- Department of Chemistry, Higher Teacher Training College, The University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Ab-dulaziz University, Al-Kharj P.O. Box 83, Saudi Arabia
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, ‘Dunarea de Jos University’, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
2
|
Evaluation of Terminalia macroptera (Combretaceae) Guill. & Perr stem bark extract incorporated into an emulgel for the potential management of rheumatoid arthritis. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
3
|
Chandra G, Mukherjee D, Ray AS, Chatterjee S, Bhattacharjee I. Phytoextracts as Antibacterials: A Review. Curr Drug Discov Technol 2021; 17:523-533. [PMID: 31702527 DOI: 10.2174/1570163816666191106103730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 08/29/2019] [Indexed: 11/22/2022]
Abstract
Botanicals have been cultured to flavour food, to treat health disorders and to put a stop to diseases caused by various microorganisms. The awareness of curative features of different medicinal plants has been spread among human communities. The application of herbal products as antimicrobial agents may be a better choice for the extensive and imprudent use of synthetic antibiotics. World Health Organization recommended traditional medicines as the safest remedies for the treatment of diseases of microbial origin. The plant extracts are generally nonhazardous, available in plenty at reasonable prices, biodegradable, eco-friendly and sometimes show broad-spectrum activities against different microorganisms. The current knowledge on plant extracts, phytochemicals and their antibacterial activity, target specific mechanism of action, solvents deployed during extraction, properties of an active ingredient isolated may help in biological control of bacteria. Antimicrobial properties of different plant parts, which act in a low dose, have been organised separately for easy understanding.
Collapse
Affiliation(s)
- Goutam Chandra
- Mosquito Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India
| | - Devaleena Mukherjee
- Mosquito Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India
| | - Anushree Singha Ray
- Mosquito Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India
| | - Soroj Chatterjee
- Mosquito Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India
| | - Indranil Bhattacharjee
- Mosquito Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India
| |
Collapse
|
4
|
Salimikia I, Bahmani M, Abbaszadeh S, Rafieian-Kopaei M, Nazer MR. Campylobacter: A Review of New Promising Remedies with Medicinal Plants and Natural Antioxidants. Mini Rev Med Chem 2021; 20:1462-1474. [PMID: 31965943 DOI: 10.2174/1389557520666200117141641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Campylobacter (curved bacteria) is considered one of the most important and common zoonotic bacteria and the three leading bacterial causes of gastroenteritis and diarrhea. Antibacterial resistance is growing and expanding. The aim of this review article is to report anti-Campylobacter medicinal plants. For this purpose, the search terms consisting of Campylobacter, medicinal plants, essential oil, extract, and traditional medicine were used to retrieve the relevant articles published in the journals indexed in Information Sciences Institute, Web of Science, PubMed, Scopus, Google Scholar, and Scientific Information Databases. Then, the findings of eligible articles were analyzed. According to the analysis, 71 medicinal plants were found to exert anti-Campylobacter effect. The active compounds of these plants are possibly nature-based antibiotic agents that are effective on Campylobacter. If these compounds are isolated, purified, and studied in pharmaceutical investigations, they can be used to produce nature-based, anti-Campylobacter antibiotics.
Collapse
Affiliation(s)
- Iraj Salimikia
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Bahmani
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saber Abbaszadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Reza Nazer
- Department of Infectious Diseases, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
5
|
Potential Role of Plant Extracts and Phytochemicals Against Foodborne Pathogens. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134597] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Foodborne diseases are one of the major causes of morbidity and mortality, especially in low-income countries with poor sanitation and inadequate healthcare facilities. The foremost bacterial pathogens responsible for global outbreaks include Salmonella species, Campylobacter jejuni, Escherichia coli, Shigella sp., Vibrio, Listeria monocytogenes and Clostridium botulinum. Among the viral and parasitic pathogens, norovirus, hepatitis A virus, Giardia lamblia, Trichinella spiralis, Toxoplasma and Entamoeba histolytica are commonly associated with foodborne diseases. The toxins produced by Staphylococcus aureus, Bacillus cereus and Clostridium perfringens also cause these infections. The currently available therapies for these infections are associated with various limited efficacy, high cost and side-effects. There is an urgent need for effective alternative therapies for the prevention and treatment of foodborne diseases. Several plant extracts and phytochemicals were found to be highly effective to control the growth of these pathogens causing foodborne infections in in vitro systems. The present review attempts to provide comprehensive scientific information on major foodborne pathogens and the potential role of phytochemicals in the prevention and treatment of these infections. Further detailed studies are necessary to evaluate the activities of these extracts and phytochemicals along with their mechanism of action using in vivo models.
Collapse
|
6
|
A Systematic Review of In Vitro Activity of Medicinal Plants from Sub-Saharan Africa against Campylobacter spp. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9485364. [PMID: 32508957 PMCID: PMC7245682 DOI: 10.1155/2020/9485364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/22/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Introduction Campylobacter spp. are zoonotic bacteria that cause gastroenteritis in humans and may cause extraintestinal infections such as Guillain-Barré syndrome, reactive arthritis, and bacteremia. Resistance to antibiotics is an increasing concern in the Sub-Saharan Africa; thus, search for alternatives such as plant-based active ingredients is important in order to develop new drugs. Objectives To present a systematic review of in vitro and in vivo studies of the antibacterial activity of medicinal plants from Sub-Saharan Africa against Campylobacter spp. Methodology. Studies published until March 2020 on medicinal plants used against Campylobacter spp. from each country of Sub-Saharan Africa were searched on PubMed, Science Direct, AJOL, and Google Scholar. Articles were selected based on the existence of information regarding in vitro and in vivo activity of medicinal plants against Campylobacter spp. Results A total of 47 medicinal plants belonging to 28 families were studied for in vitro activity against Campylobacter spp. No plant was studied in vivo. Plants from Fabaceae family were the most commonly studied. The plants with the strongest antimicrobial activities were Cryptolepis sanguinolenta and Terminalia macroptera. The root extracts from these plants were effective, and both had a minimal inhibitory concentration (MIC) of 25 μg/ml. Seven pure compounds were isolated and analyzed for activity against Campylobacter spp. The compound cryptolepine from C. sanguinolenta was the most effective with MIC values ranging between 6.25 and 25 μg/ml. Conclusion Several native plants from the Sub-Saharan Africa region were studied for in vitro activity against Campylobacter spp. Some plants seemed very effective against the bacteria. Chemical compounds from three plants have been isolated and analyzed, but further studies are needed in order to produce new and effective drugs.
Collapse
|
7
|
Li JC, Wang RX, Sun Y, Zhu JK, Hu GF, Wang YL, Zhou R, Zhao ZM, Liu YQ, Peng JW, Yan YF, Shang XF. Design, synthesis and antifungal activity evaluation of isocryptolepine derivatives. Bioorg Chem 2019; 92:103266. [DOI: 10.1016/j.bioorg.2019.103266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 12/21/2022]
|
8
|
Smaoui S, Hlima HB, Mtibaa AC, Fourati M, Sellem I, Elhadef K, Ennouri K, Mellouli L. Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products. Meat Sci 2019; 158:107914. [PMID: 31437671 DOI: 10.1016/j.meatsci.2019.107914] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022]
Abstract
The growing demand for natural food preservatives has promoted investigations on their application for preserving perishable foods. Consequently, the meat market is demanding natural antioxidants, free of synthetic additives and able to diminish the oxidation processes in high-fat meat and meat products. In this context, the present review discuss the development of healthier and shelf stable meat products by the successful use of pomegranate peel extracts containing phenolics as natural preservative agent in meat and meat products. This paper carries out an exhaustive review of the scientific literature on the main active phenolic compounds of pomegranate peel identified and quantified by advances in the separation sciences and spectrometry, and its biological activities evaluation. Moreover, the impact of pomegranate peel use on the quality and oxidative stability of meat products is also evaluated. As natural preservative, pomegranate peel phenolics could improve stored meat products quality, namely instrumental color retaining, limitaion of microflora growth, retardation of lipid and protein oxidation.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia.
| | - Hajer Ben Hlima
- Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Mariam Fourati
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Imen Sellem
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Karim Ennouri
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, University of Sfax, Tunisia
| |
Collapse
|
9
|
Prigione V, Trocini B, Spina F, Poli A, Romanisio D, Giovando S, Varese GC. Fungi from industrial tannins: potential application in biotransformation and bioremediation of tannery wastewaters. Appl Microbiol Biotechnol 2018; 102:4203-4216. [DOI: 10.1007/s00253-018-8876-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/23/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
|
10
|
Haidara M, Haddad M, Denou A, Marti G, Bourgeade-Delmas S, Sanogo R, Bourdy G, Aubouy A. In vivo validation of anti-malarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant. Malar J 2018; 17:68. [PMID: 29402267 PMCID: PMC5800286 DOI: 10.1186/s12936-018-2223-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/31/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is still one of the most deadly pathology worldwide. Efficient treatment is jeopardized by parasite resistance to artemisinin and its derivatives, and by poor access to treatment in endemic regions. Anti-malarial traditional remedies still offer new tracks for identifying promising antiplasmodial molecules, and a way to ensure that all people have access to care. The present study aims to validate the traditional use of Terminalia macroptera, a Malian plant used in traditional medicine. METHODS Terminalia macroptera was collected in Mali. Leaves (TML) and roots ethanolic extracts (TMR) were prepared and tested at 2000 mg/kg for in vivo acute toxicity in Albino Swiss mice. Antiplasmodial activity of the extracts was assessed against a chloroquine resistant strain P. falciparum (FcB1) in vitro. In vivo, anti-malarial efficacy was assessed by a 4-day suppressive test at 100 mg/kg in two malaria murine models of uncomplicated malaria (Plasmodium chabaudi chabaudi infection) and cerebral malaria (Plasmodium berghei strain ANKA infection). Constituents of TMR were characterized by ultra-high-performance liquid chromatography coupled to high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation pattern. RESULTS Lethal dose of TML and TMR were greater than 2000 mg/kg in Albino Swiss mice. According to the OECD's Globally Harmonized System of Classification, both extracts are non-toxic orally. Antiplasmodial activity of T. macroptera extracts was confirmed in vitro against P. falciparum FcB1 strain with IC50 values of 1.2 and 1.6 µg/mL for TML and TMR, respectively. In vivo, oral administration of TML and TMR induced significant reduction of parasitaemia (37.2 and 46.4% respectively) in P. chabaudi chabaudi infected mice at the 7th day of infection compared to untreated mice. In the cerebral malaria experimental model, mice treated with TMR and TML presented respectively 50 and 66.7% survival rates at day 9 post-infection when all untreated mice died. Eleven major compounds were found in TMR. Among them, several molecules already known could be responsible for the antiplasmodial activity of the roots extract of T. macroptera. CONCLUSIONS This study confirms both safety and anti-malarial activity of T. macroptera, thus validating its traditional use.
Collapse
Affiliation(s)
- Mahamane Haidara
- UMR 152 PHARMA-DEV, IRD, UPS, Université de Toulouse, Toulouse, France
- Faculté de Pharmacie, Université des Sciences des Techniques et des Technologies de Bamako (USTTB), BP 1805, Bamako, Mali
| | - Mohamed Haddad
- UMR 152 PHARMA-DEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | - Adama Denou
- Faculté de Pharmacie, Université des Sciences des Techniques et des Technologies de Bamako (USTTB), BP 1805, Bamako, Mali
| | - Guillaume Marti
- UMR 152 PHARMA-DEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | | | - Rokia Sanogo
- Faculté de Pharmacie, Université des Sciences des Techniques et des Technologies de Bamako (USTTB), BP 1805, Bamako, Mali
- Département de Médecine Traditionnelle de l'Institut National de Recherche en Santé, BP 1746, Bamako, Mali
| | - Geneviève Bourdy
- UMR 152 PHARMA-DEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | - Agnès Aubouy
- UMR 152 PHARMA-DEV, IRD, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
11
|
Martos GG, Mamani A, Filippone MP, Abate PO, Katz NE, Castagnaro AP, Díaz Ricci JC. Ellagitannin HeT obtained from strawberry leaves is oxidized by bacterial membranes and inhibits the respiratory chain. FEBS Open Bio 2018; 8:211-218. [PMID: 29435411 PMCID: PMC5794468 DOI: 10.1002/2211-5463.12361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/15/2023] Open
Abstract
Plant secondary metabolism produces a variety of tannins that have a wide range of biological activities, including activation of plant defenses and antimicrobial, anti‐inflammatory and antitumoral effects. The ellagitannin HeT (1‐O‐galloyl‐2,3;4,6‐bis‐hexahydroxydiphenoyl‐β‐d‐glucopyranose) from strawberry leaves elicits a strong plant defense response, and exhibits antimicrobial activity associated to the inhibition of the oxygen consumption, but its mechanism of action is unknown. In this paper we investigate the influence of HeT on bacterial cell membrane integrity and its effect on respiration. A β‐galactosidase unmasking experiment showed that HeT does not disrupt membrane integrity. Raman spectroscopy analysis revealed that HeT strongly interacts with the cell membrane. Spectrochemical analysis indicated that HeT is oxidized in contact with bacterial cell membranes, and functional studies showed that HeT inhibits oxygen consumption, NADH and MTT reduction. These results provide evidence that HeT inhibits the respiratory chain.
Collapse
Affiliation(s)
- Gustavo G Martos
- INSIBIO (CONICET-UNT) and Instituto de Química Biológica San Miguel de Tucuman Argentina
| | - Alicia Mamani
- INSIBIO (CONICET-UNT) and Instituto de Química Biológica San Miguel de Tucuman Argentina
| | - María P Filippone
- Sección Biotecnología de la Estación Experimental Agroindustrial Obispo Colombres (EEAOC) Tucumán Argentina
| | - Pedro O Abate
- INQUINOA (UNT-CONICET) Facultad de Bioquímica Química y Farmacia Universidad Nacional de Tucumán Argentina
| | - Néstor E Katz
- INQUINOA (UNT-CONICET) Facultad de Bioquímica Química y Farmacia Universidad Nacional de Tucumán Argentina
| | - Atilio P Castagnaro
- Sección Biotecnología de la Estación Experimental Agroindustrial Obispo Colombres (EEAOC) Tucumán Argentina
| | - Juan C Díaz Ricci
- INSIBIO (CONICET-UNT) and Instituto de Química Biológica San Miguel de Tucuman Argentina
| |
Collapse
|
12
|
Salih EYA, Fyhrquist P, Abdalla AMA, Abdelgadir AY, Kanninen M, Sipi M, Luukkanen O, Fahmi MKM, Elamin MH, Ali HA. LC-MS/MS Tandem Mass Spectrometry for Analysis of Phenolic Compounds and Pentacyclic Triterpenes in Antifungal Extracts of Terminalia brownii (Fresen). Antibiotics (Basel) 2017; 6:E37. [PMID: 29236070 PMCID: PMC5745480 DOI: 10.3390/antibiotics6040037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/29/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Decoctions and macerations of the stem bark and wood of Terminalia brownii Fresen. are used in traditional medicine for fungal infections and as fungicides on field crops and in traditional granaries in Sudan. In addition, T. brownii water extracts are commonly used as sprays for protecting wooden houses and furniture. Therefore, using agar disc diffusion and macrodilution methods, eight extracts of various polarities from the stem wood and bark were screened for their growth-inhibitory effects against filamentous fungi commonly causing fruit, vegetable, grain and wood decay, as well as infections in the immunocompromised host. Ethyl acetate extracts of the stem wood and bark gave the best antifungal activities, with MIC values of 250 µg/mL against Nattrassia mangiferae and Fusarium verticillioides, and 500 µg/mL against Aspergillus niger and Aspergillus flavus. Aqueous extracts gave almost as potent effects as the ethyl acetate extracts against the Aspergillus and Fusarium strains, and were slightly more active than the ethyl acetate extracts against Nattrassiamangiferae. Thin layer chromatography, RP-HPLC-DAD and tandem mass spectrometry (LC-MS/MS), were employed to identify the chemical constituents in the ethyl acetate fractions of the stem bark and wood. The stem bark and wood were found to have a similar qualitative composition of polyphenols and triterpenoids, but differed quantitatively from each other. The stilbene derivatives, cis- (3) and trans- resveratrol-3-O-β-galloylglucoside (4), were identified for the first time in T. brownii. Moreover, methyl-(S)-flavogallonate (5), quercetin-7-β-O-di-glucoside (8), quercetin-7-O-galloyl-glucoside (10), naringenin-4'-methoxy-7-pyranoside (7), 5,6-dihydroxy-3',4',7-tri-methoxy flavone (12), gallagic acid dilactone (terminalin) (6), a corilagin derivative (9) and two oleanane type triterpenoids (1) and (2) were characterized. The flavonoids, a corilagin derivative and terminalin, have not been identified before in T. brownii. We reported earlier on the occurrence of methyl-S-flavogallonate and its isomer in the roots of T. brownii, but this is the first report on their occurrence in the stem wood as well. Our results justify the traditional uses of macerations and decoctions of T. brownii stem wood and bark for crop and wood protection and demonstrate that standardized extracts could have uses for the eco-friendly control of plant pathogenic fungi in African agroforestry systems. Likewise, our results justify the traditional uses of these preparations for the treatment of skin infections caused by filamentous fungi.
Collapse
Affiliation(s)
- Enass Y A Salih
- Department of Forest Products and Industries, Faculty of Forestry, PO Box 13314, University of Khartoum, Khartoum 11111, Sudan.
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, PO Box 56, University of Helsinki, FIN-00014 Helsinki, Finland.
- Viikki Tropical Resources Institute (VITRI), Department of Forest Sciences, PO Box 27, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Pia Fyhrquist
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, PO Box 56, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Ashraf M A Abdalla
- Department of Forest Products and Industries, Faculty of Forestry, PO Box 13314, University of Khartoum, Khartoum 11111, Sudan.
| | - Abdelazim Y Abdelgadir
- Department of Forest Products and Industries, Faculty of Forestry, PO Box 13314, University of Khartoum, Khartoum 11111, Sudan.
| | - Markku Kanninen
- Viikki Tropical Resources Institute (VITRI), Department of Forest Sciences, PO Box 27, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Marketta Sipi
- Viikki Tropical Resources Institute (VITRI), Department of Forest Sciences, PO Box 27, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Olavi Luukkanen
- Viikki Tropical Resources Institute (VITRI), Department of Forest Sciences, PO Box 27, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Mustafa K M Fahmi
- Department of Forest Products and Industries, Faculty of Forestry, PO Box 13314, University of Khartoum, Khartoum 11111, Sudan.
- Viikki Tropical Resources Institute (VITRI), Department of Forest Sciences, PO Box 27, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Mai H Elamin
- Department of Phytochemistry, Faculty of Pharmacy, PO Box 477, University of Sciences and Technology, Omdurman, Sudan.
| | - Hiba A Ali
- Commission for Biotechnology and Genetic Engineering, PO Box 2404, National Centre for Research, Khartoum, Sudan.
| |
Collapse
|
13
|
Ethnopharmacology, Chemistry and Biological Properties of Four Malian Medicinal Plants. PLANTS 2017; 6:plants6010011. [PMID: 28230801 PMCID: PMC5371770 DOI: 10.3390/plants6010011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022]
Abstract
The ethnopharmacology, chemistry and pharmacology of four Malian medicinal plants, Biophytum umbraculum, Burkea africana, Lannea velutina and Terminalia macroptera are reviewed. These plants are used by traditional healers against numerous ailments: malaria, gastrointestinal diseases, wounds, sexually transmitted diseases, insect bites and snake bites, etc. The scientific evidence for these uses is, however, limited. From the chemical and pharmacological evidence presented here, it seems possible that the use in traditional medicine of these plants may have a rational basis, although more clinical studies are needed.
Collapse
|
14
|
Catarino L, Havik PJ, Romeiras MM. Medicinal plants of Guinea-Bissau: Therapeutic applications, ethnic diversity and knowledge transfer. JOURNAL OF ETHNOPHARMACOLOGY 2016; 183:71-94. [PMID: 26923540 DOI: 10.1016/j.jep.2016.02.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rich flora of Guinea-Bissau, and the widespread use of medicinal plants for the treatment of various diseases, constitutes an important local healthcare resource with significant potential for research and development of phytomedicines. The goal of this study is to prepare a comprehensive documentation of Guinea-Bissau's medicinal plants, including their distribution, local vernacular names and their therapeutic and other applications, based upon local notions of disease and illness. MATERIALS AND METHODS Ethnobotanical data was collected by means of field research in Guinea-Bissau, study of herbarium specimens, and a comprehensive review of published works. Relevant data were included from open interviews conducted with healers and from observations in the field during the last two decades. RESULTS A total of 218 medicinal plants were documented, belonging to 63 families, of which 195 are native. Over half of these species are found in all regions of the country. The medicinal plants are used to treat 18 major diseases categories; the greatest number of species are used to treat intestinal disorders (67 species). More than thirty ethnic groups were identified within the Guinea-Bissau population; 40% of the medicinal plants have been recorded in the country's principal ethnic languages (i.e. Fula and Balanta). CONCLUSIONS This multi-disciplinary, country-wide study identifies a great diversity of plants used by indigenous communities as medicinal, which constitute an important common reservoir of botanical species and therapeutic knowledge. The regional overlap of many indigenous species, the consensual nature of disease groups based upon local perceptions of health conditions, and the relevance of local vernacular including Guinean Creole are key factors specific to the country which enhance the potential for the circulation and transmission of ethno-botanical and therapeutic knowledge.
Collapse
Affiliation(s)
- Luís Catarino
- University of Lisbon, Faculty of Sciences, Centre for Ecology, Evolution and Environmental Changes (Ce3C), Lisbon, Portugal
| | - Philip J Havik
- Universidade NOVA de Lisboa, Instituto de Higiene e Medicina Tropical, Global Health and Tropical Medicine, Rua da Junqueira no. 100, 1349-008 Lisbon, Portugal.
| | - Maria M Romeiras
- University of Lisbon, Faculty of Sciences, Centre for Ecology, Evolution and Environmental Changes (Ce3C), Lisbon, Portugal; University of Lisbon, Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Lisbon, Portugal.
| |
Collapse
|
15
|
Schulenburg K, Feller A, Hoffmann T, Schecker JH, Martens S, Schwab W. Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2299-308. [PMID: 26884604 PMCID: PMC4809288 DOI: 10.1093/jxb/erw036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been associated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F. × ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-β-D-glucopyranose (β-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site-directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. Green immature strawberry fruits were identified as the main source of gallic acid, β-glucogallin, and ellagic acid in accordance with the highest GT2 gene expression levels. Injection of isotopically labeled gallic acid into green fruits of stable transgenic antisense FaGT2 strawberry plants clearly confirmed the in planta function. Our results indicate that GT2 enzymes might contribute to the production of ellagic acid/ellagitannins in strawberry and raspberry, and are useful to develop strawberry fruit with additional health benefits and for the biotechnological production of bioactive polyphenols.
Collapse
Affiliation(s)
- Katja Schulenburg
- Biotechnology of Natural Products, Technische Univeristät München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| | - Antje Feller
- Department of Food Quality and Nutrition, IASMA Research and Innovation Center, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, (TN), Italy
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Univeristät München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| | - Johannes H Schecker
- Biotechnology of Natural Products, Technische Univeristät München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| | - Stefan Martens
- Department of Food Quality and Nutrition, IASMA Research and Innovation Center, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, (TN), Italy
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Univeristät München, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| |
Collapse
|
16
|
Sahar Traoré M, Baldé MA, Camara A, Baldé ES, Diané S, Diallo MST, Keita A, Cos P, Maes L, Pieters L, Mamadou Baldé A. The malaria co-infection challenge: An investigation into the antimicrobial activity of selected Guinean medicinal plants. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:576-581. [PMID: 25773488 DOI: 10.1016/j.jep.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In sub-Saharan Africa, concomitant occurrence of malaria and invasive infections with micro-organisms such as Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli and yeasts or fungi such as Candida albicans and Aspergillus fumigatus is common. Non-tuberculous mycobacteriosis caused by Mycobacterium chelonae has been recognized as a pulmonary pathogen with increasing frequency without effective therapy. Although less important, the high incidence of Trichophyton rubrum infections along with its ability to evade host defense mechanisms, accounts for the high prevalence of infections with this dermatophyte. Considering the treatment cost of both malaria and microbial infections, along with the level of poverty, most affected African countries are unable to cope with the burden of these diseases. In sub-Saharan Africa, many plant species are widely used in the treatment of these diseases which are traditionally diagnosed through the common symptom of fever. Therefore it is of interest to evaluate the antimicrobial activities of medicinal plants reported for their use against malaria/fever. MATERIALS AND METHODS Based on an ethnobotanical survey, 34 Guinean plant species widely used in the traditional treatment of fever and/or malaria have been collected and evaluated for their antimicrobial activities. Plants extracts were tested against Candida albicans, Trichophyton rubrum, Aspergillus fumigatus, Mycobacterium chelonae, Staphylococcus aureus and Escherichia coli. RESULTS The most interesting activities against Candida albicans were obtained for the polar extracts of Pseudospondias microcarpa and Ximenia americana with IC50 values of 6.99 and 8.12 µg/ml, respectively. The most pronounced activity against Trichophyton rubrum was obtained for the ethanol extract of Terminalia macroptera (IC50 5.59 µg/ml). Only 7 of the 51 tested extracts were active against Staphylococcus aureus. From these, the methanolic extracts of the leaves and stem bark of Alchornea cordifolia were the most active with IC50 values of 2.81 and 7.47 µg/ml, respectively. Only Terminalia albida and Lawsonia inermis showed activity against Mycobacterium chelonae. None of the tested extracts was active against Escherichia coli. CONCLUSION A number of traditional Guinean plant species used against malaria/fever showed, in addition to their antiplasmodial properties and antimicrobial activity. The fact that some plant species are involved in the traditional treatment of malaria/fever without any antiplasmodial evidence may be justified by their antimicrobial activities.
Collapse
Affiliation(s)
- Mohamed Sahar Traoré
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Guinea; Research and Valorization Center on Medicinal Plants, Dubreka, Guinea; Laboratoire Pharmaceutique AMB-Pharma, Guinea
| | - Mamadou Aliou Baldé
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Guinea; Research and Valorization Center on Medicinal Plants, Dubreka, Guinea; Laboratoire Pharmaceutique AMB-Pharma, Guinea
| | - Aïssata Camara
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Guinea; Research and Valorization Center on Medicinal Plants, Dubreka, Guinea; Laboratoire Pharmaceutique AMB-Pharma, Guinea
| | | | - Sere Diané
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Guinea
| | - Mamadou Saliou Telly Diallo
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Guinea; Research and Valorization Center on Medicinal Plants, Dubreka, Guinea
| | - Abdoulaye Keita
- Research and Valorization Center on Medicinal Plants, Dubreka, Guinea
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Aliou Mamadou Baldé
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Guinea; Research and Valorization Center on Medicinal Plants, Dubreka, Guinea; Laboratoire Pharmaceutique AMB-Pharma, Guinea.
| |
Collapse
|
17
|
Immunomodulating pectins from root bark, stem bark, and leaves of the Malian medicinal tree Terminalia macroptera, structure activity relations. Carbohydr Res 2015; 403:167-73. [DOI: 10.1016/j.carres.2014.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 12/26/2022]
|
18
|
Zou YF, Ho GTT, Malterud KE, Le NHT, Inngjerdingen KT, Barsett H, Diallo D, Michaelsen TE, Paulsen BS. Enzyme inhibition, antioxidant and immunomodulatory activities, and brine shrimp toxicity of extracts from the root bark, stem bark and leaves of Terminalia macroptera. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1219-1226. [PMID: 25017373 DOI: 10.1016/j.jep.2014.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/05/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root bark, stem bark and leaves of Terminalia macroptera have been traditionally used against a variety of ailments such as wounds, hepatitis, malaria, fever, cough, and diarrhea as well as tuberculosis and skin diseases in African folk medicine. Boiling water extracts of Terminalia macroptera, administered orally, are the most common preparations of this plant used by the traditional healers in Mali. This study aimed to investigate the inhibition of the activities of α-glucosidase, 15-lipoxygenase and xanthine oxidase, DPPH scavenging activity, complement fixation activity and brine shrimp toxicity of different extracts obtained by boiling water extraction (BWE) and by ASE (accelerated solvent extraction) with ethanol, ethanol-water and water as extractants from different plant parts of Terminalia macroptera. MATERIALS AND METHODS 27 different crude extracts were obtained by BWE and ASE from root bark, stem bark and leaves of Terminalia macroptera. The total phenolic and carbohydrate contents, enzyme inhibition activities (α-glucosidase, 15-lipoxygenase and xanthine oxidase), DPPH scavenging activity, complement fixation activity and brine shrimp toxicity of these extracts were evaluated. Principal component analysis (PCA) was applied for total biological activities evaluation. RESULTS Several of the extracts from root bark, stem bark and leaves of Terminalia macroptera obtained by BWE and ASE showed potent enzyme inhibition activities, radical-scavenging properties and complement fixation activities. None of the extracts are toxic against brine shrimp larvae in the test concentration. Based on the results from PCA, the ASE ethanol extracts of root bark and stem bark and the low molecular weight fraction of the 50% ethanol-water extract of leaves showed the highest total biological activities. The boiling water extracts were less active, but the bark extracts showed activity as α-glucosidase inhibitors and radical scavengers, the leaf extract being less active. CONCLUSION The observed enzyme inhibition activities, radical scavenging properties and complement fixation activities may explain some of the traditional uses of this medicinal tree, such as in wound healing and against diabetes.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Giang Thanh Thi Ho
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Karl Egil Malterud
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Nhat Hao Tran Le
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Hilde Barsett
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Drissa Diallo
- Department of Traditional Medicine, BP 1746, Bamako, Mali
| | - Terje Einar Michaelsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Berit Smestad Paulsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
19
|
Zou YF, Zhang BZ, Inngjerdingen KT, Barsett H, Diallo D, Michaelsen TE, Paulsen BS. Complement activity of polysaccharides from three different plant parts of Terminalia macroptera extracted as healers do. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:672-678. [PMID: 24933222 DOI: 10.1016/j.jep.2014.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Water decoctions of the root bark, stem bark and leaves of Terminalia macroptera are used by traditional healers in Mali to cure a wide range of illnesses, such as wounds, hepatitis, malaria, fever, cough and diarrhea as well as tuberculosis. Plant polysaccharides isolated from crude water extracts have previously shown effects related to the immune system. The aims of this study are comparing the properties of the polysaccharides among different plant parts, as well as relationship between chemical characteristics and complement fixation activities when the plant material has been extracted as the traditional healers do, with boiling water directly. MATERIALS AND METHODS Root bark, stem bark and leaves of Terminalia macroptera were extracted by boiling water, and five purified polysaccharide fractions were obtained by anion exchange chromatography and gel filtration. Chemical compositions were determined by GC of the TMS derivatives of the methyl-glycosides and the linkage determined after permethylation and GC-MS of the derived partly methylated alditol acetates. The bioactivity was determined by the complement fixation assay of the crude extracts and purified fractions. RESULTS The acidic fraction TRBD-I-I isolated from the root bark was the most active of the fractions isolated. Structural studies showed that all purified fractions are of pectic nature, containing rhamnogalacturonan type I backbone. Arabinogalactan type II side chains were present in all fractions except TRBD-I-II. The observed differences in complement fixation activities among the five purified polysaccharide fractions are probably due to differences in monosaccharide compositions, linkage types and molecular sizes. CONCLUSION The crude extracts from root bark and stem bark have similar total activities, both higher than those from leaves. The root bark, leaves and stem bark are all good sources for fractions containing bioactive polysaccharides. But due to sustainability, it is prefer to use leaves rather than the other two plant parts, and then the dosage by weight must be higher when using leaves.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Bing-Zhao Zhang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway; GIAT-HKU joint Center for Synthetic Biology Engineering Research (CSynBER), Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Nansha, Guangzhou 511458, PR China
| | - Kari Tvete Inngjerdingen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Hilde Barsett
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Drissa Diallo
- Department of Traditional Medicine, BP 1746, Bamako, Mali
| | - Terje Einar Michaelsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Berit Smestad Paulsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
20
|
Zou YF, Zhang BZ, Barsett H, Inngjerdingen KT, Diallo D, Michaelsen TE, Paulsen BS. Complement fixing polysaccharides from Terminalia macroptera root bark, stem bark and leaves. Molecules 2014; 19:7440-58. [PMID: 24914893 PMCID: PMC6270672 DOI: 10.3390/molecules19067440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/26/2022] Open
Abstract
The root bark, stem bark and leaves of Terminalia macroptera were sequentially extracted with ethanol, 50% ethanol-water, and 50 °C and 100 °C water using an accelerated solvent extractor. Ten bioactive purified polysaccharide fractions were obtained from those crude extracts after anion exchange chromatography and gel filtration. The polysaccharides and their native extracts were characterized with respect to molecular weight, chemical compositions and effects in the complement assay. The chemical compositions showed that the polysaccharides are of pectic nature. The results indicated that there was no great difference of the complement fixation activities in the crude extracts from the different plant parts when extracting with the accelerated solvent extraction system. The purified polysaccharide fractions 100WTSBH-I-I and 100WTRBH-I-I isolated from the 100 °C water extracts of stem and root bark respectively, showed the highest complement fixation activities. These two fractions have rhamnogalacturonan type I backbone, but only 100WTSBH-I-I contains side chains of both arabinogalactan type I and II. Based on the yield and activities of the fractions studied those from the root bark gave highest results, followed by those from leaves and stem bark. But in total, all plant materials are good sources for fractions containing bioactive polysaccharides.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Bing-Zhao Zhang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Hilde Barsett
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Drissa Diallo
- Department of Traditional Medicine, BP 1746, Bamako, Mali
| | - Terje Einar Michaelsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Berit Smestad Paulsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
21
|
Lifongo LL, Simoben CV, Ntie-Kang F, Babiaka SB, Judson PN. A bioactivity versus ethnobotanical survey of medicinal plants from Nigeria, west Africa. NATURAL PRODUCTS AND BIOPROSPECTING 2014; 4:1-19. [PMID: 24660132 PMCID: PMC3956980 DOI: 10.1007/s13659-014-0005-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/10/2014] [Indexed: 05/11/2023]
Abstract
Traditional medicinal practices play a key role in health care systems in countries with developing economies. The aim of this survey was to validate the use of traditional medicine within local Nigerian communities. In this review, we examine the ethnobotanical uses of selected plant species from the Nigerian flora and attempt to correlate the activities of the isolated bioactive principles with known uses of the plant species in African traditional medicine. Thirty-three (33) plant species were identified and about 100 out of the 120 compounds identified with these plants matched with the ethnobotanical uses of the plants.
Collapse
Affiliation(s)
- Lydia L. Lifongo
- Chemical and Bioactivity Information Centre, Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Conrad V. Simoben
- Chemical and Bioactivity Information Centre, Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Fidele Ntie-Kang
- Chemical and Bioactivity Information Centre, Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Smith B. Babiaka
- Chemical and Bioactivity Information Centre, Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Philip N. Judson
- Chemical and Bioactivity Information Centre, 22-23 Blenheim Terrace, Woodhouse Lane, Leeds, LS2 9HD UK
- Chemical and Bioactivity Information Centre, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PY UK
| |
Collapse
|
22
|
Simoben CV, Ntie-Kang F, Lifongo LL, Babiaka SB, Sippl W, Mbaze LM. The uniqueness and therapeutic value of natural products from West African medicinal plants, part III: least abundant compound classes. RSC Adv 2014. [DOI: 10.1039/c4ra05376a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this review, a continuation of our in-depth coverage of natural products derived from West African medicinal plants with diverse biological activities has been given.
Collapse
Affiliation(s)
- Conrad V. Simoben
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Fidele Ntie-Kang
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Lydia L. Lifongo
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Smith B. Babiaka
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Wolfgang Sippl
- Department of Pharmaceutical Sciences
- Martin-Luther University of Halle-Wittenberg
- Halle, Saale 06120, Germany
| | - Luc Meva'a Mbaze
- Department of Chemistry
- Faculty of Science
- University of Douala
- Douala, Cameroon
| |
Collapse
|
23
|
Ntie-Kang F, Lifongo LL, Simoben CV, Babiaka SB, Sippl W, Mbaze LM. The uniqueness and therapeutic value of natural products from West African medicinal plants. Part I: uniqueness and chemotaxonomy. RSC Adv 2014. [DOI: 10.1039/c4ra03038a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review gives an in depth coverage of the natural products derived from West African medicinal plants with diverse biological activities.
Collapse
Affiliation(s)
- Fidele Ntie-Kang
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Lydia L. Lifongo
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Conrad V. Simoben
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Smith B. Babiaka
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Wolfgang Sippl
- Department of Pharmaceutical Sciences
- Martin-Luther University of Halle-Wittenberg
- Halle, Germany
| | - Luc Meva'a Mbaze
- Department of Chemistry
- Faculty of Science
- University of Douala
- Douala, Cameroon
| |
Collapse
|
24
|
Ntie-Kang F, Lifongo LL, Simoben CV, Babiaka SB, Sippl W, Mbaze LM. The uniqueness and therapeutic value of natural products from West African medicinal plants, part II: terpenoids, geographical distribution and drug discovery. RSC Adv 2014. [DOI: 10.1039/c4ra04543b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review series, an attempt has been made to give indepth coverage of natural products derived from West African medicinal plants with diverse biological activities.
Collapse
Affiliation(s)
- Fidele Ntie-Kang
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Lydia L. Lifongo
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Conrad V. Simoben
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Smith B. Babiaka
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Wolfgang Sippl
- Department of Pharmaceutical Sciences
- Martin-Luther University of Halle-Wittenberg
- Halle, Germany
| | - Luc Meva'a Mbaze
- Department of Chemistry
- Faculty of Science
- University of Douala
- Douala, Cameroon
| |
Collapse
|
25
|
Samie A, Obi CL, Lall N, Meyer JJM. In-vitro cytotoxicity and antimicrobial activities, against clinical isolates ofCampylobacterspecies andEntamoeba histolytica, of local medicinal plants from the Venda region, in South Africa. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2013; 103:159-70. [DOI: 10.1179/136485909x384992] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
Karou SD, Tchacondo T, Tchibozo MAD, Anani K, Ouattara L, Simpore J, de Souza C. Screening Togolese medicinal plants for few pharmacological properties. Pharmacognosy Res 2012; 4:116-22. [PMID: 22518084 PMCID: PMC3326758 DOI: 10.4103/0974-8490.94737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 07/29/2011] [Accepted: 04/07/2012] [Indexed: 11/22/2022] Open
Abstract
Background: Terminalia macroptera Guill. et Perr. (Combretaceae), Sida alba L. (Malvaceae), Prosopis africana Guill et Perr. Taub. (Mimosaceae), Bridelia ferruginea Benth. (Euphorbiaceae), and Vetiveria nigritana Stapf. (Asteraceae) are traditionally used in Togolese folk medicine to treat several diseases including microbial infections. Objective: This study aimed to investigate the antimicrobial, antioxidant, and hemolytic properties of the crude extracts of the above-mentioned plants. Materials and Methods: The antimicrobial and the antioxidant activities were assayed using the NCCLS microdilution method and the DPPH free radical scavenging, respectively. Human A+ red blood cells were used to perform the hemolytic assay. Phenolics were further quantified in the extracts using spectrophotometric methods. Results: Minimal inhibitory concentrations in the range of 230-1800 μg/ml were recorded in the NCCLS broth microdilution for both bacterial and fungal strains with methanol extracts. The DPPH radical scavenging assay yielded interesting antioxidant activities of the extracts of P. africana and T. macroptera (IC50 values of 0.003 ± 0.00 μg/ml and 0.05 ± 0.03 μg/ml, respectively). These activities were positively correlated with the total phenolic contents and negatively correlated with the proanthocyanidin content of the extracts. The hemolytic assay revealed that great hemolysis occurred with the methanol extracts of T. macroptera, S. longepedunculata, and B. ferruginea. Conclusion: These results support in part the use of the selected plants in the treatment of microbial infections. In addition, the plant showed an interesting antioxidant activity that could be useful in the management of oxidative stress.
Collapse
Affiliation(s)
- Simplice D Karou
- Centre de Recherche et de Formation sur les Plantes Médicinales (CERFOPLAM), Université de Lomé, BP 1515, Lomé, Togo
| | | | | | | | | | | | | |
Collapse
|
27
|
Silva O, Viegas S, de Mello-Sampayo C, Costa MJP, Serrano R, Cabrita J, Gomes ET. Anti-Helicobacter pylori activity of Terminalia macroptera root. Fitoterapia 2012; 83:872-6. [PMID: 22465506 DOI: 10.1016/j.fitote.2012.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 12/17/2022]
Abstract
The root of Terminalia macroptera Guill. & Perr. (Combretaceae) is widely used in African traditional medicine to treat various infectious diseases, including stomach-associated diseases. This study investigates the in vitro activity of T. macroptera root extract against reference strains and clinical isolates of H. pylori and attempts to localize the extract bioactivity. T. macroptera hydroethanol (80% V/V) root extract (Tmr) activity was tested against three standard strains and sixty two clinical strains of H. pylori. Tmr liquid-liquid partition fractions were screened against twenty H. pylori strains. Qualitative analysis of Tmr and its fractions was performed by HPLC-UV/DAD. The antibiotic characterization of the H. pylori strains revealed that 20% of the tested clinical isolates were resistant to at least two of the three antibiotics belonging to the main groups of antibiotics used in multi-therapy to eradicate H. pylori infections. In contrast, Tmr showed anti-H. pylori activity against the majority (92%) of the tested strains (MIC(50) and MIC(90)=200 μg/ml). The Tmr water liquid-liquid fraction (Tmr-3) and the precipitate obtained from this fraction (Tmr-5) were the most active tested samples, showing a MIC(50) of 100 μg/ml. The present work proves the in vitro activity of T. macroptera against H. pylori, thus confirming the utility of this traditional medicinal plant to treat stomach complaints due to H. pylori infection. The main compounds of Tmr and of Tmr-3 were the ellagitannins terchebulin and punicalagin. These compounds can be considered as markers of T. macroptera root active extracts against H. pylori.
Collapse
Affiliation(s)
- Olga Silva
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hariprasath L, Raman J, Nanjian R. Gastroprotective effect of Senecio candicans DC on experimental ulcer models. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:145-150. [PMID: 22245753 DOI: 10.1016/j.jep.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/29/2011] [Accepted: 01/02/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Senecio candicans DC (Asteraceae) is used as a remedy for gastric ulcer and stomach pain in the Nilgiris district, Tamil Nadu for which no scientific evidence exists. AIM OF THE STUDY The present study was performed to evaluate the gastroprotective effects and acute oral toxicity of aqueous leaf extract of Senecio candicans (AESC) in experimental models. MATERIALS AND METHODS The antiulcerogenic activity of AESC was performed in two different ulcer models viz., pylorus-ligated model and ethanol-induced model using Wistar albino rats. Acute toxicity study was also performed to get information on the admissible dose for treatment of ulcer. Preliminary phytochemical screening of AESC was performed to find the active principles present, which are thus responsible for the antiulcerogenic activity. DPPH assay was performed to confirm the antioxidant activity of AESC. RESULTS The acute toxicity study did not show any mortality up to 2500mg/kg b.w. of AESC. Both the ulcer models showed gastroprotective effect comparable to that of the standard Omeprazole. The results of antioxidant enzymes, histopathology sections, ATPase and mucus content of gastric secretion showed that several mechanisms are involved in the gastroprotective effect. The preliminary phytochemical screening revealed the presence of alkaloids, flavonoids and steroids in AESC. The DPPH assay confirmed the antioxidant activity of AESC. CONCLUSION The traditional consumption of AESC for the treatment of gastric ulcer is thus true, the antioxidant constituents present in the extract plays a major role in the gastroprotective activity, but since Senecio species are known for the presence of pyrrolizidine alkaloids, a detailed study in future is required to describe the safe dose for a prolonged period.
Collapse
Affiliation(s)
- Lakshmanan Hariprasath
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India.
| | | | | |
Collapse
|
29
|
Patra AK. An Overview of Antimicrobial Properties of Different Classes of Phytochemicals. DIETARY PHYTOCHEMICALS AND MICROBES 2012. [PMCID: PMC7121617 DOI: 10.1007/978-94-007-3926-0_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants produce a great diversity of phytochemicals, the beneficial properties of which have been used by humans for centuries since the advent of human civilization. With the discovery of effective and potent antimicrobial compounds, these synthetic antimicrobial compounds are widely used to prevent and cure microbial diseases. However, the development of antibiotic resistant strains of bacteria, reduced efficacy and safety of antimicrobials and the search of new antimicrobials against emerging incurable diseases by conventional antimicrobial agents have revived to explore phytochemicals as an alternative to synthetic antimicrobial compounds. Although numerous studies have been conducted in vitro and in vivo in the recent years on the efficacy of plant phytochemicals as antimicrobial agents, this chapter provides an overview of the antimicrobial properties of some major group of phytochemicals, namely, different phenolic compounds, alkaloids, saponins, iridoids and secoiridoids, polyacetylenes, glucosinolates, terpenoids, sulfinate, limonoids (tetranortepenoids) and anthranoids against pathogenic bacteria, fungi, viruses and commensal bacteria in the intestinal tracts of humans and animals. This chapter also discusses their antimicrobial mechanisms of action, the efficiency of different groups of phytochemicals against multiple-drug resistant bacteria, the effect of active dietary phytometabolites on the beneficial and pathogenic microbes of the gastrointestinal tracts and the outcomes of combination of phytofactors and drugs interactions.
Collapse
Affiliation(s)
- Amlan K. Patra
- of Animal and Fishery Sciences, Department of Animal Nutrition, West Bengal University, Kshudiram Bose Sarani 37, Belgachia, Kolkata, 700 037 India
| |
Collapse
|
30
|
Landete J. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.04.027] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Prophylactic effect of Andrographis paniculata extracts against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). J Biosci Bioeng 2009; 107:579-82. [PMID: 19393561 DOI: 10.1016/j.jbiosc.2009.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 01/13/2009] [Indexed: 11/23/2022]
Abstract
Six herbs were assessed for their antimicrobial activity against Streptococcus agalactiae, a major fish pathogen causing streptococcosis. Each herb was extracted with 3 solvents: water, 95% ethanol, and methanol. Using swab paper disc assays, aqueous extracts of Andrographis paniculata and Allium sativum produced the largest (27.5 mm) and smallest (10.3 mm) inhibition zones, respectively. Determination of minimal inhibitory concentration (MIC) of herb extracts against S. agalactiae showed that the aqueous extract of A. paniculata had the lowest MIC value (31.25 microg/mL). Aqueous extract of A. sativum was the only herb extract with a MIC > 500 microg/mL. Based on mortalities in 2 weeks after intraperitoneal S. agalactiae injection, the median lethal dose (LD(50)) of S. agalactiae for Nile tilapia (Oreochromis niloticus) was 3.79 x 10(5) CFU/mL. In vivo experiments showed that fish feed supplemented with either A. paniculata leaf powder or dried matter of A. paniculata aqueous extract reduced mortality of S. agalactiae infected Nile tilapia. In addition, no mortality was found in fish receiving dried matter of A. paniculata aqueous extract supplemented feeds at ratios (w/w) of 4:36 and 5:35. During 2 weeks of feeding with A. paniculata supplemented feeds, no adverse effects on appearance, behavior, or feeding responses were observed.
Collapse
|
32
|
Aguilera-Carbo A, Augur C, Prado-Barragan LA, Favela-Torres E, Aguilar CN. Microbial production of ellagic acid and biodegradation of ellagitannins. Appl Microbiol Biotechnol 2008; 78:189-99. [DOI: 10.1007/s00253-007-1276-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
|
33
|
Batawila K, Kokou K, Koumaglo K, Gbéassor M, de Foucault B, Bouchet P, Akpagana K. Antifungal activities of five Combretaceae used in Togolese traditional medicine. Fitoterapia 2005; 76:264-8. [PMID: 15752646 DOI: 10.1016/j.fitote.2004.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 12/15/2004] [Indexed: 11/17/2022]
Abstract
Five species of Combretaceae growing in Togo were investigated for their antifungal activity against 20 pathogenic fungi (10 yeast and 10 filamentous fungi). The five hydroethanolic extracts of Terminalia glaucescens and Anogeissus leiocarpus appeared to be the most active, their MICs ranging from 0.25 mg/ml to 4 mg/ml. The results confirm the traditional therapeutic properties of these plants.
Collapse
Affiliation(s)
- K Batawila
- Laboratory of Botany and Plant Ecology, Research and Education Centre for Medicinal Plants, University of Lomé, P.O. Box 1515, Lomé, Togo.
| | | | | | | | | | | | | |
Collapse
|
34
|
Steenkamp V, Mathivha E, Gouws MC, van Rensburg CEJ. Studies on antibacterial, antioxidant and fibroblast growth stimulation of wound healing remedies from South Africa. JOURNAL OF ETHNOPHARMACOLOGY 2004; 95:353-7. [PMID: 15507359 DOI: 10.1016/j.jep.2004.08.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/27/2004] [Accepted: 08/09/2004] [Indexed: 05/14/2023]
Abstract
Aqueous and methanol extracts of Urtica urens, Capparis tomentosa, Dicoma anomala, Leonotis leonorus, Xysmalobium undulatum, Helichrysum foetidum, Pterocarpus angolensis, Terminalia sericea and Gunnera perpensa, plants documented as being used for topical wound healing in the literature, were tested for antibacterial activity against Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli and Pseudomonas aeruginosa. Methanol and water extracts of two of these plants, Terminalia sericea and Gunnera perpensa, were more active compared to the other extracts against Streptococcus pyogenes and Staphylococcus aureus. The effects of the latter plants on fibroblast growth as well as oxidant production by N-formyl-methionyl-leucyl-phenylalanine were also studied. The water and methanol extracts of Terminalia sericea and Gunnera perpensa significantly decreased luciginin enhanced chemiluminescence at concentrations of 100 microg/ml and higher. However, the extracts had no effect on the growth of primary human fibroblasts.
Collapse
Affiliation(s)
- V Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, School of Medicine, University of Pretoria, P.O. Box 2034, Pretoria 0001, South Africa.
| | | | | | | |
Collapse
|
35
|
PUUPPONEN-PIMIA R, AURA AM, KARPPINEN S, OKSMAN-CALDENTEY KM, POUTANEN K. Interactions between Plant Bioactive Food Ingredients and Intestinal Flora—Effects on Human Health. Biosci Microflora 2004. [DOI: 10.12938/bifidus.23.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
36
|
Singh B, Bhat TK, Singh B. Potential therapeutic applications of some antinutritional plant secondary metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:5579-5597. [PMID: 12952405 DOI: 10.1021/jf021150r] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant-based formulations have been used since ancient times as remedial measures against various human and animal ailments. Over the past 20 years interest in traditional medicines has increased considerably in many parts of the world. Whereas modifications in lifestyles, including diet, have had a profound effect on the increased risks of various diseases, there is considerable scientific evidence, both epidemiological and experimental, regarding vegetables and fruits as key features of diets associated with reduced risks of diseases such as cancers and infections. This has led to the use of a number of phytometabolites as anticarcinogenic and cardioprotective agents, promoting a dramatic increase in their consumption as dietary supplements. There are changing perceptions regarding the therapeutic potential of various plant secondary metabolites (PSMs), some of which have also been known to possess certain antinutritional qualities. The knowledge gained at the cellular and molecular levels, and biological activities of PSMs including tannin-polyphenols, saponins, mimosine, flavonoids, terpenoids, and phytates, would be useful in planning for future epidemiological studies and human cancer prevention trials, especially when a large pure dosage is not the option to deliver the active compounds to many tissues. It is well observed that alteration of cell cycle regulatory gene expression is frequently found in tumor tissues or cancer cell lines, and studies have suggested that the herbal-based or plant-originated cell cycle regulators might represent a new set of potential targets for anticancer drugs. The recent upsurge of interest in this area of research and advances made therein indicate that the impact of a number of diseases affecting humans and animals may be lessened, if not prevented, by simple dietary intake of PSMs with putative therapeutic properties.
Collapse
Affiliation(s)
- Birbal Singh
- Indian Veterinary Research Institute, Regional Station, Palampur 176 061, H. P., India.
| | | | | |
Collapse
|
37
|
Silva O, Ferreira E, Vaz Pato M, Caniça M, Gomes ET. In vitro anti-Neisseria gonorrhoeae activity of Terminalia macroptera leaves. FEMS Microbiol Lett 2002; 217:271-4. [PMID: 12480115 DOI: 10.1111/j.1574-6968.2002.tb11487.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We used the agar dilution method to evaluate the antibacterial effect of Terminalia macroptera leaf (Tml) extract against nine reference and clinical Neisseria gonorrhoeae strains, including penicillin- and tetracycline-resistant and -susceptible strains. Tml possesses anti-N. gonorrhoeae activity against all of the strains and the minimum inhibitory concentrations (MIC) were between 100 and 200 microg ml(-1). We then used a liquid-liquid partition method to divide the Tml extract into five fractions and determined the anti-N. gonorrhoeae activity of each of the fractions. All of the fractions showed antibacterial activity. The most active one was identified as the diethyl ether fraction and had MIC values of between 25 and 50 microg ml(-1) against all of the strains.
Collapse
Affiliation(s)
- Olga Silva
- CECF, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Lisbon, Av das Forças Armadas, 1649-019 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
38
|
Silva O, Ferreira E, Vaz Pato M, Caniça M, Gomes ET. In vitro anti-Neisseria gonorrhoeae activity of Terminalia macroptera leaves. FEMS Microbiol Lett 2002; 211:203-6. [PMID: 12076813 DOI: 10.1111/j.1574-6968.2002.tb11225.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We used the agar dilution method to evaluate the antibacterial effect of Terminalia macroptera leaf (Tml) extract against nine reference and clinical Neisseria gonorrhoeae strains, including penicillin- and tetracycline-resistant and -susceptible strains. Tml possesses anti-N. gonorrhoeae activity against all of the strains and the minimum inhibitory concentrations (MIC) were between 100 and 200 microg ml(-1). We then used a liquid-liquid partition method to divide the Tml extract into five fractions and determined the anti-N. gonorrhoeae activity of each of the fractions. All of the fractions showed antibacterial activity. The most active one was identified as the diethyl ether fraction and had MIC values of between 25 and 50 microg ml(-1) against all of the strains.
Collapse
Affiliation(s)
- Olga Silva
- CECF, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Lisbon, Av. das Forças Armadas, 1649-019, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
39
|
Puupponen-Pimiä R, Aura AM, Oksman-Caldentey KM, Myllärinen P, Saarela M, Mattila-Sandholm T, Poutanen K. Development of functional ingredients for gut health. Trends Food Sci Technol 2002. [DOI: 10.1016/s0924-2244(02)00020-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman-Caldentey KM. Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 2001; 90:494-507. [PMID: 11309059 DOI: 10.1046/j.1365-2672.2001.01271.x] [Citation(s) in RCA: 588] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the antimicrobial properties of phenolic compounds present in Finnish berries against probiotic bacteria and other intestinal bacteria, including pathogenic species. METHODS AND RESULTS Antimicrobial activity of pure phenolic compounds representing flavonoids and phenolic acids, and eight extracts from common Finnish berries, was measured against selected Gram-positive and Gram-negative bacterial species, including probiotic bacteria and the intestinal pathogen Salmonella. Antimicrobial activity was screened by an agar diffusion method and bacterial growth was measured in liquid culture as a more accurate assay. Myricetin inhibited the growth of all lactic acid bacteria derived from the human gastrointestinal tract flora but it did not affect the Salmonella strain. In general, berry extracts inhibited the growth of Gram-negative but not Gram-positive bacteria. These variations may reflect differences in cell surface structures between Gram-negative and Gram-positive bacteria. Cloudberry, raspberry and strawberry extracts were strong inhibitors of Salmonella. Sea buckthorn berry and blackcurrant showed the least activity against Gram-negative bacteria. CONCLUSION Different bacterial species exhibit different sensitivities towards phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY These properties can be utilized in functional food development and in food preservative purposes.
Collapse
Affiliation(s)
- R Puupponen-Pimiä
- VTT Biotechnology, PO Box 1500 (Tietotie 2), FIN-02044 VTT, Finland.
| | | | | | | | | | | | | |
Collapse
|
41
|
Silva O, Gomes ET, Wolfender JL, Marston A, Hostettmann K. Application of high performance liquid chromatography coupled with ultraviolet spectroscopy and electrospray mass spectrometry to the characterisation of ellagitannins from Terminalia macroptera roots. Pharm Res 2000; 17:1396-401. [PMID: 11205733 DOI: 10.1023/a:1007598922712] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Terminalia macroptera roots are used in Guinea-Bissau and other West African countries to treat infectious diseases like gonorrhoea. Previous work showed an ethanol extract of T. macroptera roots (T) to have an in vitro antimicrobial profile against Neisseria gonorrhoae (including resistant strains) and enteropathogenic agents. The most active fractions of this extract were identified as the diethyl ether (T2) and water (T5) fractions. The aim of the present study was the identification of major compounds present in T and simultaneously in T2 or T5. METHODS The T extract and T2 and T5 fractions were analysed by high performance liquid chromatography coupled with ultraviolet photodiode array (LC-UV) spectroscopy and electrospray ionization mass spectrometry (ES-MS). These analyses indicated the presence of ellagitannin derivatives. In order to confirm the identities of the detected compounds, they were isolated from T2 and T5 by preparative chromatographic techniques and identified by spectroscopic methods including tandem mass spectrometry. RESULTS By using LC-UV-ES-MS, four major compounds (ellagic acid, gallic acid, punicalagin, terchebulin) could be identified in the T extract. Three other compounds (3,3'di-O-methylellagic acid, 3,4,3',4'-tetra-O-methylellagic acid, terflavin A) were also isolated and identified. CONCLUSIONS LC-UV-ES-MS is a useful technique for the analysis of mixtures containing ellagitannins.
Collapse
Affiliation(s)
- O Silva
- CECF, Laboratório de Farmacognosia-Faculdade de Farmácia da Universidade de Lisboa, Portugal
| | | | | | | | | |
Collapse
|
42
|
Abstract
The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and "leads" which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations.
Collapse
Affiliation(s)
- M M Cowan
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA.
| |
Collapse
|