1
|
Rashmi SH, Disha KS, Sudheesh N, Karunakaran J, Joseph A, Jagadesh A, Mudgal PP. Repurposing of approved antivirals against dengue virus serotypes: an in silico and in vitro mechanistic study. Mol Divers 2023:10.1007/s11030-023-10716-5. [PMID: 37632595 DOI: 10.1007/s11030-023-10716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Dengue is an emerging, mosquito-borne viral disease of international public health concern. Dengue is endemic in more than 100 countries across the world. However, there are no clinically approved antivirals for its cure. Drug repurposing proves to be an efficient alternative to conventional drug discovery approaches in this regard, as approved drugs with an established safety profile are tested for new indications, which circumvents several time-consuming experiments. In the present study, eight approved RNA-dependent RNA polymerase inhibitors of Hepatitis C virus were virtually screened against the Dengue virus polymerase protein, and their antiviral activity was assessed in vitro. Schrödinger software was used for in silico screening, where the compounds were passed through several hierarchical filters. Among the eight compounds, dasabuvir was finally selected for in vitro cytotoxicity and antiviral screening. Cytotoxicity profiling of dasabuvir in Vero cells revealed changes in cellular morphology, cell aggregation, and detachment at 50 μM. Based on these results, four noncytotoxic concentrations of dasabuvir (0.1, 0.25, 0.5, and 1 µM) were selected for antiviral screening against DENV-2 under three experimental conditions: pre-infection, co-infection, and post-infection treatment, by plaque reduction assay. Viral plaques were reduced significantly (p < 0.05) in the co-infection and post-infection treatment regimens; however, no reduction was observed in the pretreatment group. This indicated a possible interference of dasabuvir with NS5 RdRp, as seen from in silico interaction studies, translating into a reduction in virus plaques. Such studies reiterate the usefulness of drug repurposing as a viable strategy in antiviral drug discovery. In this drug repurposing study, dasabuvir, a known anti-hepatitis C drug, was selected through virtual screening and assessed for its anti-dengue activity.
Collapse
Affiliation(s)
- S H Rashmi
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - K Sai Disha
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - N Sudheesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Joseph Karunakaran
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anitha Jagadesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - P P Mudgal
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
2
|
Sharma R, Chen KT, Sharma R. Emerging evidence on Monkeypox: resurgence, global burden, molecular insights, genomics and possible management. Front Cell Infect Microbiol 2023; 13:1134712. [PMID: 37153147 PMCID: PMC10154632 DOI: 10.3389/fcimb.2023.1134712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 05/09/2023] Open
Abstract
An outbreak of monkeypox (encoded enveloped double stranded DNA), resurgence and expansion has emerged in early 2022, posing a new threat to global health. Even though, many reports are available on monkeypox, still a comprehensive updated review is needed. Present updated review is focused to fill the research gaps pertaining to the monkeypox, and an extensive search was conducted in a number of databases, including Google Scholar, Scopus, Web of Science, and Science Direct. Although the disease usually progresses self-limiting, some patients require admission for kidney injury, pharyngitis, myocarditis, and soft tissue super infections. There is no well-known treatment available yet; still there has been a push for the use of antiviral therapy and tecovirimat as a promising option when dealing with co-morbidities. In this study, we mapped and discussed the updates and scientific developments surrounding monkeypox, including its potential molecular mechanisms, genomics, transmission, risk factors, diagnosis, prevention, vaccines, treatment, possible plant-based treatment along with their proposed mechanisms. Each day, a growing number of monkeypox cases are reported, and more cases are expected in the near future. As of now, monkeypox does not have a well-established and proven treatment, and several investigations are underway to find the best possible treatment from natural or synthetic drug sources. Multiple molecular mechanisms on pathophysiological cascades of monkeypox virus infection are discussed here along with updates on genomics, and possible preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Cock IE, Baghtchedjian L, Cordon ME, Dumont E. Phytochemistry, Medicinal Properties, Bioactive Compounds, and Therapeutic Potential of the Genus Eremophila (Scrophulariaceae). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227734. [PMID: 36431834 PMCID: PMC9697388 DOI: 10.3390/molecules27227734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
The genus Eremophila (family Scrophulariaceae) consists of approximately 200 species that are widely distributed in the semi-arid and arid regions of Australia. Multiple Eremophila spp. are used as traditional medicines by the First Australians in the areas in which they grow. They are used for their antibacterial, antifungal, antiviral, antioxidant, anti-diabetic, anti-inflammatory, and cardiac properties. Many species of this genus are beneficial against several diseases and ailments. The antibacterial properties of the genus have been relatively well studied, with several important compounds identified and their mechanisms studied. In particular, Eremophila spp. are rich in terpenoids, and the antimicrobial bioactivities of many of these compounds have already been confirmed. The therapeutic properties of Eremophila spp. preparations and purified compounds have received substantially less attention, and much study is required to validate the traditional uses and to highlight species that warrant further investigation as drug leads. The aim of this study is to review and summarise the research into the medicinal properties, therapeutic mechanisms, and phytochemistry of Eremophila spp., with the aim of focussing future studies into the therapeutic potential of this important genus.
Collapse
Affiliation(s)
- Ian Edwin Cock
- Centre for Planetary Health and Food Security, Griffith University, Brisbane 4127, Australia
- Correspondence: ; Tel.: +61-7-3735-7637
| | | | | | | |
Collapse
|
4
|
Chen YC, Su SH, Huang JC, Chao CY, Sung PJ, Chen YF, Ko HH, Kuo YH. Tyrosinase Inhibitors Derived from Chemical Constituents of Dianella ensifolia. PLANTS (BASEL, SWITZERLAND) 2022; 11:2142. [PMID: 36015447 PMCID: PMC9414913 DOI: 10.3390/plants11162142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Dianella ensifolia is a perennial herb with thickened rhizome and is widely distributed in tropical and subtropical regions of Asia, Australia, and the Pacific islands. This plant has the potential to be used as a source of herbal medicine. This study investigated further phytochemistry and tyrosinase inhibitory effect of some constituents isolated from D. ensifolia. Four new flavans, (2S)-4’-hydroxy-6,7-dimethoxyflavan (1), (2S)-3’,4’-dihydroxy-7-methoxy-8-methylflavan (2), (2S)-2’-hydroxy-7-methoxyflavan (3), and (2S,1′S)-4-hydroxy-4-(7-methoxy-8-methylchroman-2-yl)-cyclohex-2-enone (4), together with 67 known compounds, including 10 flavans (5−14), 5 flavanones (15−19), 3 flavone (20−22), 5 chalcones (23−27), 3 chromones (28−30), 15 aromatics (31−45), 7 phenylpropanoids (46−52), one lignan (53), 7 steroids (54−60), one monoterpene (61), one diterpene (62), 4 triterpenes (63−66), a carotenoid (67), 2 alkaloids (68 and 69), and 2 fatty acids (70 and 71) were isolated from D. ensifolia. Their structures were elucidated on the basis of physical and spectroscopic data analyses. Moreover, compounds 1−4, 8, 10−15, 20, 21, and 41 were evaluated for their mushroom tyrosinase inhibitory effect. Compounds 11 and 14 strongly inhibited mushroom tyrosinase activity with IC50 values of 8.6 and 14.5 μM, respectively.
Collapse
Affiliation(s)
- Yu-Chang Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sheng-Han Su
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jheng-Cian Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Che-Yi Chao
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
5
|
Recent Developments in Methicillin-Resistant Staphylococcus aureus (MRSA) Treatment: A Review. Antibiotics (Basel) 2022; 11:antibiotics11050606. [PMID: 35625250 PMCID: PMC9137690 DOI: 10.3390/antibiotics11050606] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that may cause life-threatening diseases and some minor infections in living organisms. However, it shows notorious effects when it becomes resistant to antibiotics. Strain variants of bacteria, viruses, fungi, and parasites that have become resistant to existing multiple antimicrobials are termed as superbugs. Methicillin is a semisynthetic antibiotic drug that was used to inhibit staphylococci pathogens. The S. aureus resistant to methicillin is known as methicillin-resistant Staphylococcus aureus (MRSA), which became a superbug due to its defiant activity against the antibiotics and medications most commonly used to treat major and minor infections. Successful MRSA infection management involves rapid identification of the infected site, culture and susceptibility tests, evidence-based treatment, and appropriate preventive protocols. This review describes the clinical management of MRSA pathogenesis, recent developments in rapid diagnosis, and antimicrobial treatment choices for MRSA.
Collapse
|
6
|
Petersen MJ, Liang C, Kjaerulff L, Ndi C, Semple S, Buirchell B, Coriani S, Møller BL, Staerk D. Serrulatane diterpenoids from the leaves of Eremophila glabra and their potential as antihyperglycemic drug leads. PHYTOCHEMISTRY 2022; 196:113072. [PMID: 34973506 DOI: 10.1016/j.phytochem.2021.113072] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Eremophila (Scrophulariaceae) is a genus of Australian desert plants, which have been used by Australian Aboriginal people for various medicinal purposes. Crude extracts of the leaf resin of Eremophila glabra (R.Br.) Ostenf. showed α-glucosidase and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with IC50 values of 19.3 ± 1.2 μg/mL and 11.8 ± 2.1 μg/mL, respectively. Dual α-glucosidase/PTP1B high-resolution inhibition profiling combined with HPLC-PDA-HRMS and NMR were used to isolate and identify the compounds providing these activities. This resulted in isolation of seven undescribed serrulatane diterpenoids, eremoglabrane A-G, together with nine previously identified serrulatane diterpenoids and flavonoids. Three of the serrulatane diterpenoids showed PTP1B inhibitory activities with IC50 values from 63.8 ± 5.8 μM to 104.5 ± 25.9 μM.
Collapse
Affiliation(s)
- Malene J Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Chao Liang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Chi Ndi
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Susan Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Bevan Buirchell
- Wise Owl Consulting, Como, Western Australia, 6152, Australia
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800, Kongens Lyngby, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environment Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
7
|
Brief survey on phytochemicals to prevent COVID-19. J INDIAN CHEM SOC 2022. [PMCID: PMC8573676 DOI: 10.1016/j.jics.2021.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Reversal of ABCG2/BCRP-Mediated Multidrug Resistance by 5,3',5'-Trihydroxy-3,6,7,4'-Tetramethoxyflavone Isolated from the Australian Desert Plant Eremophila galeata Chinnock. Biomolecules 2021; 11:biom11101534. [PMID: 34680166 PMCID: PMC8534154 DOI: 10.3390/biom11101534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance (MDR) is a major challenge in cancer treatment, and the breast cancer resistance protein (BCRP) is an important target in the search for new MDR-reversing drugs. With the aim of discovering new potential BCRP inhibitors, the crude extract of leaves of Eremophila galeata, a plant endemic to Australia, was investigated for inhibitory activity of parental (HT29par) as well as BCRP-overexpressing HT29 colon cancer cells resistant to the chemotherapeutic SN-38 (i.e., HT29SN38 cells). This identified a fraction, eluted with 40% acetonitrile on a solid-phase extraction column, which showed weak growth-inhibitory activity on HT29SN38 cells when administered alone, but exhibited concentration-dependent growth inhibition when administered in combination with SN-38. The major constituent in this fraction was isolated and found to be 5,3′,5′-trihydroxy-3,6,7,4′-tetramethoxyflavone (2), which at a concentration of 25 μg/mL potentiated the growth-inhibitory activity of SN-38 to a degree comparable to that of the known BCRP inhibitor Ko143 at 1 μM. A dye accumulation experiment suggested that 2 inhibits BCRP, and docking studies showed that 2 binds to the same BCRP site as SN-38. These results indicate that 2 acts synergistically with SN-38, with 2 being a BCRP efflux pump inhibitor while SN-38 inhibits topoisomerase-1.
Collapse
|
9
|
Gericke O, Fowler RM, Heskes AM, Bayly MJ, Semple SJ, Ndi CP, Stærk D, Løland CJ, Murphy DJ, Buirchell BJ, Møller BL. Navigating through chemical space and evolutionary time across the Australian continent in plant genus Eremophila. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:555-578. [PMID: 34324744 PMCID: PMC9292440 DOI: 10.1111/tpj.15448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/07/2021] [Accepted: 07/22/2021] [Indexed: 05/13/2023]
Abstract
Eremophila is the largest genus in the plant tribe Myoporeae (Scrophulariaceae) and exhibits incredible morphological diversity across the Australian continent. The Australian Aboriginal Peoples recognize many Eremophila species as important sources of traditional medicine, the most frequently used plant parts being the leaves. Recent phylogenetic studies have revealed complex evolutionary relationships between Eremophila and related genera in the tribe. Unique and structurally diverse metabolites, particularly diterpenoids, are also a feature of plants in this group. To assess the full dimension of the chemical space of the tribe Myoporeae, we investigated the metabolite diversity in a chemo-evolutionary framework applying a combination of molecular phylogenetic and state-of-the-art computational metabolomics tools to build a dataset involving leaf samples from a total of 291 specimens of Eremophila and allied genera. The chemo-evolutionary relationships are expounded into a systematic context by integration of information about leaf morphology (resin and hairiness), environmental factors (pollination and geographical distribution), and medicinal properties (traditional medicinal uses and antibacterial studies), augmenting our understanding of complex interactions in biological systems.
Collapse
Affiliation(s)
- Oliver Gericke
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| | - Rachael M. Fowler
- School of BioSciencesThe University of MelbourneParkvilleVic.3010Australia
| | - Allison M. Heskes
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| | - Michael J. Bayly
- School of BioSciencesThe University of MelbourneParkvilleVic.3010Australia
| | - Susan J. Semple
- Quality Use of Medicines and Pharmacy Research CentreSchool of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSA5000Australia
| | - Chi P. Ndi
- Quality Use of Medicines and Pharmacy Research CentreSchool of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSA5000Australia
| | - Dan Stærk
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | - Claus J. Løland
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | | | | | - Birger Lindberg Møller
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| |
Collapse
|
10
|
Hmimid F, Lahlou FA, Guenaou I, Nait Irahal I, Errami A, Fahde S, Bourhim N. Purification and characterization of aldose reductase from jerboa (Jaculus orientalis) and evaluation of its inhibitory activity by Euphorbia regis-jubae (Webb & Berth) extracts. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109001. [PMID: 33610817 DOI: 10.1016/j.cbpc.2021.109001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
This study aimed, for the first time, to assess the purification of aldose reductase (AR) in Jaculus orientalis (Dipodidae family) kidney and to evaluate the in vitro aldose reductase inhibitory (ARI) effects of Euphorbia regis-jubae (Euphorbiaceae family) aqueous and hydroethanolic extracts. Initial screening assay of the enzymatic AR activity in different jerboa states (euthermic, prehibernating and hibernating) and tissues (brain, brown adipose tissue, liver and kidneys) was assessed. Then, AR has been purified to homogeneity from the kidneys of prehibernating jerboas by a series of chromatographic technics. Furthermore, the in vitro and in silico ARI effects of E. regis-jubae (Webb & Berth) extracts, characterized by hight performance liquid chromatography (HPLC) on the purified enzyme were evaluated. Our results showed that the highest enzyme activity was detected in the kidneys, followed by white adipose tissue and the lungs of pre-hibernating jerboa. The enzyme was purified to homogeneity from jerboa kidneys during prehibernating state with a purification factor of 53.4-fold and a yield of about 6%. AR is monomeric, active in D(+)-glyceraldehyde substrate and in disodium phosphate buffer. The pH and temperature for AR were determined to be 6.5-7.5 and 35 °C, respectively. Results of the in vitro ARI activity was strongest with both the hydroethanolic extract (IC50 = 96.45 μg/mL) and aqueous extract (IC50 = 140 μg/mL). Molecular docking study indicated that catechin might be the main component in both aqueous and hydroethanolic extracts to inhibited AR. This study provides new evidence on the ARI effect of E. regis-jubae (Webb & Berth), which may be related to its phenolic constituents.
Collapse
Affiliation(s)
- Fouzia Hmimid
- Equipe De Biotechnologie, Environnement Et Santé, Faculté Des Sciences El Jadida, Université Chouaïb Doukkali, El Jadida, Morocco; Laboratoire Santé Et Environnement, Faculté Des Sciences, Université Hassan II-Ain Chock, Casablanca, Morocco.
| | - Fatima Azzahra Lahlou
- Laboratoire National De Référence, Université Mohammed VI Des Sciences De La Santé Faculté De Médecine, Casablanca, Morocco
| | - Ismail Guenaou
- Laboratoire Santé Et Environnement, Faculté Des Sciences, Université Hassan II-Ain Chock, Casablanca, Morocco
| | - Imane Nait Irahal
- Laboratoire Santé Et Environnement, Faculté Des Sciences, Université Hassan II-Ain Chock, Casablanca, Morocco
| | - Ahmed Errami
- Laboratoire d'Ingénierie Des Procédés Et D'Environnement, École Supérieure De Technologie, Université Hassan II, Casablanca, Morocco
| | - Sirine Fahde
- Laboratoire Santé Et Environnement, Faculté Des Sciences, Université Hassan II-Ain Chock, Casablanca, Morocco
| | - Noureddine Bourhim
- Laboratoire Santé Et Environnement, Faculté Des Sciences, Université Hassan II-Ain Chock, Casablanca, Morocco
| |
Collapse
|
11
|
Alam S, Sarker MMR, Afrin S, Richi FT, Zhao C, Zhou JR, Mohamed IN. Traditional Herbal Medicines, Bioactive Metabolites, and Plant Products Against COVID-19: Update on Clinical Trials and Mechanism of Actions. Front Pharmacol 2021; 12:671498. [PMID: 34122096 PMCID: PMC8194295 DOI: 10.3389/fphar.2021.671498] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 is the latest worldwide pandemic declared by the World Health Organization and there is no established anti-COVID-19 drug to combat this notorious situation except some recently approved vaccines. By affecting the global public health sector, this viral infection has created a disastrous situation associated with high morbidity and mortality rates along with remarkable cases of hospitalization because of its tendency to be high infective. These challenges forced researchers and leading pharmaceutical companies to find and develop cures for this novel strain of coronavirus. Besides, plants have a proven history of being notable wellsprings of potential drugs, including antiviral, antibacterial, and anticancer therapies. As a continuation of this approach, plant-based preparations and bioactive metabolites along with a notable number of traditional medicines, bioactive phytochemicals, traditional Chinese medicines, nutraceuticals, Ayurvedic preparations, and other plant-based products are being explored as possible therapeutics against COVID-19. Moreover, the unavailability of effective medicines against COVID-19 has driven researchers and members of the pharmaceutical, herbal, and related industries to conduct extensive investigations of plant-based products, especially those that have already shown antiviral properties. Even the recent invention of several vaccines has not eliminated doubts about safety and efficacy. As a consequence, many limited, unregulated clinical trials involving conventional mono- and poly-herbal therapies are being conducted in various areas of the world. Of the many clinical trials to establish such agents as credentialed sources of anti-COVID-19 medications, only a few have reached the landmark of completion. In this review, we have highlighted and focused on plant-based anti-COVID-19 clinical trials found in several scientific and authenticated databases. The aim is to allow researchers and innovators to identify promising and prospective anti-COVID-19 agents in clinical trials (either completed or recruiting) to establish them as novel therapies to address this unwanted pandemic.
Collapse
Affiliation(s)
- Safaet Alam
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
- Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Sadia Afrin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahmida Tasnim Richi
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Isa Naina Mohamed
- Pharmacology Department, Medical Faculty, Universiti Kebangsaan Malaysia (The National University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
K SD, Puranik R, N S, K K, Fathima F, K R A, Joseph A, J A, Arunkumar G, Mudgal PP. Structure-based identification of small molecules against influenza A virus endonuclease: an in silico and in vitro approach. Pathog Dis 2021; 78:5866476. [PMID: 32614388 DOI: 10.1093/femspd/ftaa032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/30/2020] [Indexed: 11/14/2022] Open
Abstract
Influenza viruses are known to cause acute respiratory illness, sometimes leading to high mortality rates. Though there are approved influenza antivirals available, their efficacy has reduced over time, due to the drug resistance crisis. There is a perpetual need for newer and better drugs. Drug screening based on the interaction dynamics with different viral target proteins has been a preferred approach in the antiviral drug discovery process. In this study, the FDA approved drug database was virtually screened with the help of Schrödinger software, to select small molecules exhibiting best interactions with the influenza A virus endonuclease protein. A detailed cytotoxicity profiling was carried out for the two selected compounds, cefepime and dolutegravir, followed by in vitro anti-influenza screening using plaque reduction assay. Cefepime showed no cytotoxicity up to 200 μM, while dolutegravir was non-toxic up to 100 μM in Madin-Darby canine kidney cells. The compounds did not show any reduction in viral plaque numbers indicating no anti-influenza activity. An inefficiency in the translation of the molecular interactions into antiviral activity does not necessarily mean that the molecules were inactive. Nevertheless, testing the molecules for endonuclease inhibition per se can be considered a worthwhile approach.
Collapse
Affiliation(s)
- Sai Disha K
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rashmi Puranik
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sudheesh N
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Kavitha K
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Fajeelath Fathima
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anu K R
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anitha J
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - G Arunkumar
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Piya Paul Mudgal
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
13
|
Singh R, Singh PK, Kumar R, Kabir MT, Kamal MA, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM, Uddin MS. Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Front Pharmacol 2021; 12:652335. [PMID: 34054532 PMCID: PMC8149611 DOI: 10.3389/fphar.2021.652335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has a disastrous effect on mankind due to the contagious and rapid nature of its spread. Although vaccines for SARS-CoV-2 have been successfully developed, the proven, effective, and specific therapeutic molecules are yet to be identified for the treatment. The repurposing of existing drugs and recognition of new medicines are continuously in progress. Efforts are being made to single out plant-based novel therapeutic compounds. As a result, some of these biomolecules are in their testing phase. During these efforts, the whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics systems and approaches to overcome this unprecedented health challenge globally. Genome, proteome, and metagenome sequence analyses have helped identify virus nature, thereby assisting in understanding the molecular mechanism, structural understanding, and disease propagation. The multi-omics approaches offer various tools and strategies for identifying potential therapeutic biomolecules for COVID-19 and exploring the plants producing biomolecules that can be used as biopharmaceutical products. This review explores the available multi-omics approaches and their scope to investigate the therapeutic promises of plant-based biomolecules in treating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pradhyumna Kumar Singh
- Plant Molecular Biology and Biotechnology Division, Council of Scientific and Industrial Research- National Botanical Research Institute (CSIR-NBRI), Lucknow, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
14
|
Agatonovic-Kustrin S, Gegechkori V, Morton DW. The effect of extractive lacto-fermentation on the bioactivity and natural products content of Pittosporum angustifolium (gumbi gumbi) extracts. J Chromatogr A 2021; 1647:462153. [PMID: 33957349 DOI: 10.1016/j.chroma.2021.462153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Pittosporum angustifolium, known as gumbi gumbi, is a native Australian plant, which has traditionally been used as an Aboriginal medicine. This study investigates the effect of different solvents and extractive fermentation on the content and natural products composition of Pittosporum angustifolium extracts, and compares their antioxidant activity, in vitro α-amylase inhibition, and anti-inflammatory properties. Anti-inflammatory activity of the extracts was determined by measuring the inhibition of nitric oxide (NO) production. Extracts were characterised with FTIR-ATR spectroscopy, and screened for antioxidant activities and α-amylase inhibitory activity via High-performance thin-layer chromatography (HPTLC)-Effect-directed analysis (EDA) with direct bioautography. HPTLC combined with chemical derivatization and bioassays was used for EDA screening. The results show that lactic acid fermentation of gumbi gumbi leaves boosts the antioxidant activity in extracts by increasing the total phenolic content, but does not affect (increase or decrease) α-amylase inhibitory activity or nitrogen scavenging/anti-inflammatory activity. Analysis of the ATR-FTIR spectra from the band at RF = 0.85 that inhibits α-amylase, suggests that fatty acid esters are responsible for the enzyme inhibition; both saturated fatty acid esters in unfermented extracts and unsaturated fatty acid esters in fermented extracts. The ATR-FTIR spectra of the polyphenolics in fermented extracts (RF = 0.15-0.20) suggests the presence of soluble lignin fragments (i.e. lignins depolymerized into monomers and oligomers during the fermentation process).
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
15
|
Nguyen KQ, Scarlett CJ, Vuong QV. Assessment and comparison of phytochemicals and antioxidant properties from various parts of the Australian maroon bush ( Scaevola spinescens). Heliyon 2021; 7:e06810. [PMID: 33981883 PMCID: PMC8082193 DOI: 10.1016/j.heliyon.2021.e06810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Scaevola spinescens is endemic to Australia and traditionally used as a medicinal plant. While its bioactive compounds have been studied, their concentrations in different parts of the plant have not been reported. This study compared total phenolic content (TPC), flavonoids, saponins and antioxidant properties, as well as major individual phytochemical compounds in the whole root, root bark, root wood, whole stem, stem bark, stem wood, and leaf of S. spinescens. The results showed the leaf had significantly highest concentrations of TPC followed by the root bark and stem bark (47.34, 12.24 and 10.20 mg GAE/g, respectively). Flavonoids concentrations were also significantly higher in the leaf compared to the root bark and stem bark (20.95, 6.22 and 4.19 mg CE/g, respectively). For saponins, the root bark contained significantly highest concentrations (112.58 mg EE/g). Luteolin 7-glucoside was isolated and identified in the leaf of S. spinescens. Eight major compounds were identified with the leaf displaying the highest diversity of major compounds, and in higher concentrations, compared to the other plant constituents. As the leaf and root bark contained the highest concentrations of phytochemicals, these plant parts are recommended as starting material for future studies, to further isolate and identify the major compounds from S. spinescens and investigate their biological properties for use in pharmaceutical and food applications.
Collapse
|
16
|
Mani JS, Johnson JB, Hosking H, Ashwath N, Walsh KB, Neilsen PM, Broszczak DA, Naiker M. Antioxidative and therapeutic potential of selected Australian plants: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113580. [PMID: 33189842 DOI: 10.1016/j.jep.2020.113580] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous common pharmaceuticals, including anti-cancer, antiviral and antidiabetic drugs, are derived from traditional plant-derived medicines. With approximately 25,000 species of flora occurring in Australia that are adapted to the harsh environment, there is a plethora of novel compounds awaiting research in the context of their medicinal properties. Anecdotal accounts of plant-based medicines used by the Australian Aboriginal and Torres Strait Islander peoples clearly illustrates high therapeutic activity. AIM This review aims to demonstrate the medicinal potentials of selected native Australian plants based on scientific data. Furthermore, it is anticipated that work presented here will contribute towards enhancing our knowledge of native plants from Australia, particularly in the prevention and potential treatment of disease types such as cancer, microbial and viral infections, and diabetes. This is not meant to be a comprehensive study, rather it is meant as an overview to stimulate future research in this field. METHODS The EBSCOhost platform which included PubMed, SciFinder, Web of Knowledge, Scopus, and ScienceDirect databases were searched for papers using the keywords: medicinal plants, antioxidative, antimicrobial, antibacterial, anticancer, anti-tumor, antiviral or antidiabetic, as well as Australian, native, traditional and plants. The selection criteria for including studies were restricted to articles on plants used in traditional remedies which showed antioxidative potential and therapeutic properties such as anticancer, antimicrobial, antiviral and antidiabetic activity. RESULTS Some plants identified in this review which showed high Total Phenolic Content (TPC) and antioxidative capacity, and hence prominent bioactivity, included Tasmannia lanceolata (Poir.) A.C. Sm., Terminalia ferdinandiana Exell, Eucalyptus species, Syzygium species, Backhousia citriodora F.Muell., Petalostigma species, Acacia species, Melaleuca alternifolia (Maiden & Betche) Cheel, Eremophila species, Prostanthera rotundifolia R.Br., Scaevola spinescens R. Br. and Pittosporum angustifolium Lodd. The majority of studies found polar compounds such as caffeic acid, coumaric acid, chlorogenic acid, quercetin, anthocyanins, hesperidin, kaempferol, catechin, ellagic acid and saponins to be the active components responsible for the therapeutic effects. Additionally, mid to non-polar volatile organic compounds such as meroterpenes (serrulatanes and nerol cinnamates), monoterpenes (1,8-cineole and myodesert-1-ene), sesquiterpenes, diterpenes and triterpenes, that are known only in Australian plants, have also shown therapeutic properties related to traditional medicine. CONCLUSION Australian plants express a diverse range of previously undescribed metabolites that have not been given full in vitro assessment for human health potential. This review has included a limited number of plant species of ethnomedicinal significance; hundreds of plants remain in need of exploration and detailed study. Future more elaborate studies are therefore required to screen out and purify lead bioactive compounds against numerous other disease types. This will not only improve our knowledge on the phytochemistry of Australian native flora, but also provide a platform to understand their health-promoting and bioactive effects for pharmaceutical interventions, nutraceuticals, cosmetics, and as functional foods. Finally, plant-derived natural compounds (phytochemicals), as well as plant-based traditional remedies, are significant sources for latent and novel drugs against diseases. Extensive investigation of native medicinal plants may well hold the key to novel drug discoveries.
Collapse
Affiliation(s)
- Janice S Mani
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia; Institute of Future Farming Systems, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia.
| | - Joel B Johnson
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia; Institute of Future Farming Systems, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| | - Holly Hosking
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| | - Nanjappa Ashwath
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia; Institute of Future Farming Systems, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| | - Kerry B Walsh
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia; Institute of Future Farming Systems, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| | - Paul M Neilsen
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| | - Daniel A Broszczak
- Institute of Health & Biomedical Innovation (Q-Block), Queensland University of Technology, Kelvin Grove Campus, QLD, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia; Institute of Future Farming Systems, CQUniversity, Bruce Hwy, North Rockhampton, Qld 4701, Australia
| |
Collapse
|
17
|
Nguyen KQ, Scarlett CJ, Vuong QV. Ethnopharmacology, Biological Activity and Phytochemistry of Scaevola spinescens. Chem Biodivers 2021; 18:e2001050. [PMID: 33719150 DOI: 10.1002/cbdv.202001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Scaevola spinescens is endemic to Australia and has traditionally been used by Aboriginal and Torres Strait Islander communities to treat a variety of conditions including colds, flu, fever, stomach pain, urinary disorders, sores, tinea, leprosy, and cancer. Extracts prepared from S. spinescens are non-toxic and have been linked with various medicinal properties including antiviral, antibacterial, anti-inflammatory, and anticancer activities. These studies support the ethnopharmacological use of S. spinescens by Indigenous peoples of Australia and highlight the need for further investigations on the plant for potential use in pharmaceutical and food applications. This review provides a comprehensive, up-to-date review of the literature on S. spinescens focusing on the traditional use, medicinal properties, phytochemicals, and factors that affect their composition during pre-treatment and extraction, as well as providing a framework for future studies of the plant.
Collapse
Affiliation(s)
- Kien Q Nguyen
- School of Environmental and Life Sciences, University of Newcastle, Brush Rd., Ourimbah, NSW 2258, Australia
| | - Christopher J Scarlett
- School of Environmental and Life Sciences, University of Newcastle, Brush Rd., Ourimbah, NSW 2258, Australia
| | - Quan V Vuong
- School of Environmental and Life Sciences, University of Newcastle, Brush Rd., Ourimbah, NSW 2258, Australia
| |
Collapse
|
18
|
Komolafe K, Komolafe TR, Fatoki TH, Akinmoladun AC, Brai BIC, Olaleye MT, Akindahunsi AA. Coronavirus Disease 2019 and Herbal Therapy: Pertinent Issues Relating to Toxicity and Standardization of Phytopharmaceuticals. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 31:142-161. [PMID: 33727754 PMCID: PMC7951132 DOI: 10.1007/s43450-021-00132-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a virulent viral disease that has now become a public health emergency of global significance and still without an approved treatment regimen or cure. In the absence of curative drugs and with vaccines development still in progress, alternative approaches to stem the tide of the pandemic are being considered. The potential of a phytotherapeutic approach in the management of the dreaded disease has gained attention, especially in developing countries, with several claims of the development of anti-COVID-19 herbal formulations. This is a plausible approach especially with the increasing acceptance of herbal medicine in both alternative and orthodox medical practices worldwide. Also, the established efficacy of herbal remedies in the treatment of numerous viral diseases including those caused by coronaviruses, as well as diseases with symptoms associated with COVID-19, presents a valid case for serious consideration of herbal medicine in the treatment of COVID-19. However, there are legitimate concerns and daunting challenges with the use of herbs and herbal products. These include issues of quality control, unethical production practice, inadequate information on the composition, use and mechanisms, weak regulatory policies, herb-drug interactions and adverse reactions, and the tendency for abuse. This review discusses the feasibility of intervention with herbal medicine in the COVID-19 pandemic and the need to take proactive measures to protect public health by improving the quality and safety of herbal medicine deployed to combat the disease. Graphical abstract. Supplementary Information The online version contains supplementary material available at 10.1007/s43450-021-00132-x.
Collapse
Affiliation(s)
- Kayode Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
| | - Titilope Ruth Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Toluwase Hezekiah Fatoki
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Afolabi Clement Akinmoladun
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Bartholomew I. C. Brai
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
| | - Mary Tolulope Olaleye
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | | |
Collapse
|
19
|
Singh R, Singh PK, Kumar R, Kabir MT, Kamal MA, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM, Uddin MS. Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Front Pharmacol 2021. [PMID: 34054532 DOI: 10.3389/fphar2021652335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has a disastrous effect on mankind due to the contagious and rapid nature of its spread. Although vaccines for SARS-CoV-2 have been successfully developed, the proven, effective, and specific therapeutic molecules are yet to be identified for the treatment. The repurposing of existing drugs and recognition of new medicines are continuously in progress. Efforts are being made to single out plant-based novel therapeutic compounds. As a result, some of these biomolecules are in their testing phase. During these efforts, the whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics systems and approaches to overcome this unprecedented health challenge globally. Genome, proteome, and metagenome sequence analyses have helped identify virus nature, thereby assisting in understanding the molecular mechanism, structural understanding, and disease propagation. The multi-omics approaches offer various tools and strategies for identifying potential therapeutic biomolecules for COVID-19 and exploring the plants producing biomolecules that can be used as biopharmaceutical products. This review explores the available multi-omics approaches and their scope to investigate the therapeutic promises of plant-based biomolecules in treating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pradhyumna Kumar Singh
- Plant Molecular Biology and Biotechnology Division, Council of Scientific and Industrial Research- National Botanical Research Institute (CSIR-NBRI), Lucknow, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
20
|
Abstract
COVID-19 has been the most devastating pandemic in human history. Despite the highest scientific efforts and investments, a reliable and certified medication has yet to be developed regarding to immune or cure this virus. However, while synthetic medications are gaining the focus of attentions, it appears from a significant number of recent studies that plant-based substances could also be potential candidates for developing effective and secure remedies against this novel disease. Citing such recent works, this review primarily demonstrates the antiviral potentials of medicinal plants for inhibiting human coronaviruses. It also shows the importance of antiviral plants substances, particularly in the development of a broad spectrum medication for coronaviruses including SARS-CoV-2 responsible for COVID-19.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Ahmet Onay
- Department of Biology, Faculty of Science, Dicle University, Diyarbakır Turkey
| |
Collapse
|
21
|
Pedersen HA, Ndi C, Semple SJ, Buirchell B, Møller BL, Staerk D. PTP1B-Inhibiting Branched-Chain Fatty Acid Dimers from Eremophila oppositifolia subsp. angustifolia Identified by High-Resolution PTP1B Inhibition Profiling and HPLC-PDA-HRMS-SPE-NMR Analysis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1598-1610. [PMID: 32255628 DOI: 10.1021/acs.jnatprod.0c00070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ten new branched-chain fatty acid (BCFA) dimers with a substituted cyclohexene structure, five new monomers, and two known monomers, (2E,4Z,6E)-5-(acetoxymethyl)tetradeca-2,4,6-trienoic acid and its 5-hydroxymethyl analogue, were identified in the leaf extract of Eremophila oppositifolia subsp. angustifolia using a combination of HPLC-PDA-HRMS-SPE-NMR analysis and semipreparative-scale HPLC. The dimers could be classified as three types of Diels-Alder reaction products formed between monomers at two different sites of unsaturation of the dienophile. Two of the monomers represent potential biosynthetic intermediates of branched-chain fatty acids. Several compounds were found by high-resolution bioactivity profiling to inhibit PTP1B and were purified subsequently by semipreparative-scale HPLC. The dimers were generally more potent than the monomers with IC50 values ranging from 2 to 66 μM, compared to 38-484 μM for the monomers. The ten fatty acid dimers represent both a novel class of compounds and a novel class of PTP1B inhibitors.
Collapse
Affiliation(s)
- Hans Albert Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Chi Ndi
- School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Susan J Semple
- School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Bevan Buirchell
- Wise Owl Consulting, Gardner Street, Como, Western Australia 6983, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Gericke O, Hansen NL, Pedersen GB, Kjaerulff L, Luo D, Staerk D, Møller BL, Pateraki I, Heskes AM. Nerylneryl diphosphate is the precursor of serrulatane, viscidane and cembrane-type diterpenoids in Eremophila species. BMC PLANT BIOLOGY 2020; 20:91. [PMID: 32111159 PMCID: PMC7049213 DOI: 10.1186/s12870-020-2293-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Eremophila R.Br. (Scrophulariaceae) is a diverse genus of plants with species distributed across semi-arid and arid Australia. It is an ecologically important genus that also holds cultural significance for many Indigenous Australians who traditionally use several species as sources of medicines. Structurally unusual diterpenoids, particularly serrulatane and viscidane-types, feature prominently in the chemical profile of many species and recent studies indicate that these compounds are responsible for much of the reported bioactivity. We have investigated the biosynthesis of diterpenoids in three species: Eremophila lucida, Eremophila drummondii and Eremophila denticulata subsp. trisulcata. RESULTS In all studied species diterpenoids were localised to the leaf surface and associated with the occurrence of glandular trichomes. Trichome-enriched transcriptome databases were generated and mined for candidate terpene synthases (TPS). Four TPSs with diterpene biosynthesis activity were identified: ElTPS31 and ElTPS3 from E. lucida were found to produce (3Z,7Z,11Z)-cembratrien-15-ol and 5-hydroxyviscidane, respectively, and EdTPS22 and EdtTPS4, from E. drummondii and E. denticulata subsp. trisulcata, respectively, were found to produce 8,9-dihydroserrulat-14-ene which readily aromatized to serrulat-14-ene. In all cases, the identified TPSs used the cisoid substrate, nerylneryl diphosphate (NNPP), to form the observed products. Subsequently, cis-prenyl transferases (CPTs) capable of making NNPP were identified in each species. CONCLUSIONS We have elucidated two biosynthetic steps towards three of the major diterpene backbones found in this genus. Serrulatane and viscidane-type diterpenoids are promising candidates for new drug leads. The identification of an enzymatic route to their synthesis opens up the possibility of biotechnological production, making accessible a ready source of scaffolds for further modification and bioactivity testing.
Collapse
Affiliation(s)
- Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Nikolaj Lervad Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Gustav Blichfeldt Pedersen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Dan Luo
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Allison Maree Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
23
|
Yadav P, Choudhury S, Barua S, Khandelwal N, Kumar N, Shukla A, Garg SK. Polyalthia longifolia leaves methanolic extract targets entry and budding of viruses-an in vitro experimental study against paramyxoviruses. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112279. [PMID: 31600562 DOI: 10.1016/j.jep.2019.112279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/04/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Synthetic antiviral drugs have several limitations including high cost. Thus research on antiviral property of medicinal plants is continuously gaining importance. Polyalthia longifolia possesses several medicinal properties and has been used in traditional ayurvedic medicine for treatment of dermatological ailments as kushta, visarpa/herpes virus infection and also to treat pyrexia of unknown origin as mentioned in Visarpa Chikitsa. AIM OF THE STUDY Keeping in view the cytotoxic, anti-cancer activity and antiviral efficacy of Polyalthia longifolia against herpes, present study was undertaken to evaluate the in vitro antiviral activity of methanolic extract of Polyalthia longifolia leaves, if any, and to unravel the possible target(s)/mechanism of action. MATERIAL AND METHODS Antiviral activity of Polyalthia longifolia methanolic extract was studied using Vero cell lines against paramyxoviruses, namely-peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV). Cytotoxicity of the test extract was evaluated employing MTT assay. Virucidal activity, and viral-attachment, virus entry and release assays were determined in Vero cells using standard experimental protocols. The viral RNA in the virus-infected cells was quantified by qRT-PCR. RESULTS At non-cytotoxic concentration, methanolic extract of Polyalthia longifolia leaves was found to inhibit the replication of PPRV and NDV at viral entry and budding level, whereas other steps of viral life cycle such as attachment and RNA synthesis remained unaffected. CONCLUSIONS Polyalthia longifolia leaves extract possesses promising antiviral activity against paramyxoviruses and acts by inhibiting the entry and budding of viruses; and this plant extract evidently possesses excellent and promising potential for development of effective herbal antiviral drug.
Collapse
Affiliation(s)
- Prashant Yadav
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, India.
| | - Soumen Choudhury
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, India.
| | - Sanjay Barua
- National Centre for Veterinary Type Culture Collections (NCVTCC), ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Nitin Khandelwal
- National Centre for Veterinary Type Culture Collections (NCVTCC), ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Naveen Kumar
- National Centre for Veterinary Type Culture Collections (NCVTCC), ICAR-National Research Centre on Equines, Hisar, Haryana, India; Division of Goat Health, ICAR-Central Institute for Research on Goats, Makhdoom, Mathura, India.
| | - Amit Shukla
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, India.
| | - Satish K Garg
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, India.
| |
Collapse
|
24
|
Nguyen KQ, Vuong QV, Nguyen MH, Roach PD. The effects of drying conditions on bioactive compounds and antioxidant activity of the Australian maroon bush,
Scaevola spinescens. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kien Q. Nguyen
- School of Environment and Life Sciences University of Newcastle Ourimbah New South Wales Australia
| | - Quan V. Vuong
- School of Environment and Life Sciences University of Newcastle Ourimbah New South Wales Australia
| | - Minh H. Nguyen
- School of Environment and Life Sciences University of Newcastle Ourimbah New South Wales Australia
- School of Science and Health Western Sydney University Penrith New South Wales Australia
| | - Paul D. Roach
- School of Environment and Life Sciences University of Newcastle Ourimbah New South Wales Australia
| |
Collapse
|
25
|
Medeiros-Neves B, Teixeira HF, von Poser GL. The genus Pterocaulon (Asteraceae) - A review on traditional medicinal uses, chemical constituents and biological properties. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:451-464. [PMID: 29913300 DOI: 10.1016/j.jep.2018.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of the genus Pterocaulon (Asteraceae) are used in different parts of the world for treating skin and liver diseases, as well as disorders of the respiratory system, among others. AIM OF THE STUDY This review aims to discuss the present state of the art concerning the ethnobotanical uses, secondary metabolites and biological effects of Pterocaulon species and their chemical components. MATERIALS AND METHODS The available information on the genus Pterocaulon was gathered from scientific databases (Web of Science, Pubmed, ScienceDirect, Scopus, ChemSpider, SciFinder ACS Publications, Wiley Online Library). Information was also obtained from local publications, M.Sc. and Ph.D. dissertations. All studies on the ethnobotany, phytochemistry, pharmacology and toxicology of the plants until December 2017 were included in this review. RESULTS Approximately 40 coumarins and 30 flavonoids have been isolated from Pterocaulon species. Coumarins have been considered the chemotaxonomic markers in the genus and the most active components. Pharmacological studies carried out with extracts and isolated compounds revealed in vitro bioactivities that include antifungal, antiviral, and cytotoxicity. Most of the pharmacological investigations were not correlated with traditional uses of the plants. CONCLUSIONS Pterocaulon species, a rich source of coumarins, have great ethnomedical potential. Nevertheless, further studies into the pharmacological activities are necessary since none of the purported effects of these plants was fully assessed. In-depth research regarding the toxicity are also required to ensure the safety of these medicinal plants.
Collapse
Affiliation(s)
- Bruna Medeiros-Neves
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752 Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752 Porto Alegre, RS, Brazil
| | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752 Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Ralambondrainy M, Belarbi E, Viranaicken W, Baranauskienė R, Venskutonis PR, Desprès P, Roques P, El Kalamouni C, Sélambarom J. In vitro comparison of three common essential oils mosquito repellents as inhibitors of the Ross River virus. PLoS One 2018; 13:e0196757. [PMID: 29771946 PMCID: PMC5957362 DOI: 10.1371/journal.pone.0196757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/19/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The essential oils of Cymbopogon citratus (CC), Pelargonium graveolens (PG) and Vetiveria zizanioides (VZ) are commonly used topically to prevent mosquito bites and thus the risk of infection by their vectored pathogens such as arboviruses. However, since mosquito bites are not fully prevented, the effect of these products on the level of viral infection remains unknown. OBJECTIVES To evaluate in vitro the essentials oils from Reunion Island against one archetypal arbovirus, the Ross River virus (RRV), and investigate the viral cycle step that was impaired by these oils. METHODS The essential oils were extracted by hydrodistillation and analyzed by a combination of GC-FID and GC×GC-TOF MS techniques. In vitro studies were performed on HEK293T cells to determine their cytotoxicity, their cytoprotective and virucidal capacities on RRV-T48 strain, and the level of their inhibitory effect on the viral replication and residual infectivity prior, during or following viral adsorption using the reporter virus RRV-renLuc. RESULTS Each essential oil was characterized by an accurate quantification of their terpenoid content. PG yielded the least-toxic extract (CC50 > 1000 μg.mL-1). For the RRV-T48 strain, the monoterpene-rich CC and PG essential oils reduced the cytopathic effect but did not display virucidal activity. The time-of-addition assay using the gene reporter RRV-renLuc showed that the CC and PG essential oils significantly reduced viral replication and infectivity when applied prior, during and early after viral adsorption. Overall, no significant effect was observed for the low monoterpene-containing VZ essential oil. CONCLUSION The inhibitory profiles of the three essential oils suggest the high value of the monoterpene-rich essential oils from CC and PG against RRV infection. Combined with their repellent activity, the antiviral activity of the essential oils of CC and PG may provide a new option to control arboviral infection.
Collapse
Affiliation(s)
- Miora Ralambondrainy
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249, Plateforme Technologique CYROI, Sainte Clotilde, France
| | - Essia Belarbi
- Université Paris-Sud, INSERM U1184, CEA, Immunology of Viral Infections and Autoimmune Diseases, Institut de Biologie François Jacob, Fontenay-aux-Roses, France
| | - Wildriss Viranaicken
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249, Plateforme Technologique CYROI, Sainte Clotilde, France
| | - Renata Baranauskienė
- Kaunas University of Technology, Department of Food Science and Technology, Kaunas, Lithuania
| | | | - Philippe Desprès
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249, Plateforme Technologique CYROI, Sainte Clotilde, France
| | - Pierre Roques
- Université Paris-Sud, INSERM U1184, CEA, Immunology of Viral Infections and Autoimmune Diseases, Institut de Biologie François Jacob, Fontenay-aux-Roses, France
- * E-mail: (PR); (CEK); (JS)
| | - Chaker El Kalamouni
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249, Plateforme Technologique CYROI, Sainte Clotilde, France
- * E-mail: (PR); (CEK); (JS)
| | - Jimmy Sélambarom
- Université de la Réunion, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR9192, IRD UMR249, Plateforme Technologique CYROI, Sainte Clotilde, France
- * E-mail: (PR); (CEK); (JS)
| |
Collapse
|
27
|
Ghout A, Zellagui A, Gherraf N, Demirtas I, Ayse Sahin Y, Boukhenaf M, Lahouel M, Nieto G, Akkal S. Antiproliferative and Antioxidant Activities of Two Extracts of the Plant Species Euphorbia dendroides L. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E36. [PMID: 29677109 PMCID: PMC6023373 DOI: 10.3390/medicines5020036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
Background: These days, the desire for naturally occurring antioxidants has significantly increased, especially for use in foodstuffs, cosmetics, and pharmaceutical products, to replace synthetic antioxidants that are regularly constrained due to their carcinogenicity. Methods: The study in hand aimed to appraise the antioxidant effect of two Euphorbia dendroides extracts using reducing power, anti-peroxidation, and DPPH (1,1 Diphenyl 2 Pycril Hydrazil) scavenging essays, in addition to the anticancer activity against two tumor cell lines, namely C6 (rat brain tumor)cells, and Hela (human uterus carcinoma)cell lines. Results: The results indicated that the ethyl acetate extract exhibited antiradical activity of 29.49%, higher than that of n-butanol extract (18.06%) at 100 µg/mL but much lower than that of gallic acid (78.21%).The ethyl acetate extract exhibits better reducing capacity and lipid peroxidation inhibitory activity compared to n-butanol extract but less than all tested standards. Moreover, the ethyl acetate extract was found to have an antiproliferative activity of more than 5-FU (5-fluoro-Uracil) against C6 cells at 250 µg/mL with IC50 and IC75 of 113.97, 119.49 µg/mL, respectively, and good cytotoxic activity against the Hela cell lines at the same concentration. The HPLC-TOF-MS (high performance liquid chromatography-Time-of-flight-Mass Spectrometry) analyses exposed the presence of various compounds, among which Gallic and Chlorogenic acids functioned as major compounds. Conclusions: The two extracts exhibited moderate anticancer abilities and behaved somewhat as average antioxidant agents. Based on the total phenolics and flavonoids contents, as well as HPLC results, it could be concluded that antiproliferative and antioxidant activities depend upon the content of different phenolics and flavonoids.
Collapse
Affiliation(s)
- Agena Ghout
- Laboratory of Biomolecules and Plant Breeding, Life Science and Nature Department, Faculty of Exact Science and Life Science and Nature, University of Larbi Ben Mhidi, Oum El Bouaghi 04000, Algeria.
| | - Amar Zellagui
- Laboratory of Biomolecules and Plant Breeding, Life Science and Nature Department, Faculty of Exact Science and Life Science and Nature, University of Larbi Ben Mhidi, Oum El Bouaghi 04000, Algeria.
| | - Noureddine Gherraf
- Department of Chemistry, Faculty of Exact Science and Life Science and Nature, University of Larbi Ben, Mhidi Oum El Bouaghi 04000, Algeria.
| | - Ibrahim Demirtas
- Laboratory of Plant Research, Department of Chemistry, Faculty of Science, Uluyazi Campus, Cankiri Karatekin University, Cankiri 18100, Turkey.
| | - Yaglioglu Ayse Sahin
- Laboratory of Plant Research, Department of Chemistry, Faculty of Science, Uluyazi Campus, Cankiri Karatekin University, Cankiri 18100, Turkey.
| | - Meriem Boukhenaf
- Department of Pathological Anatomy, University Hospital Center of Constantine, Constantine 25000, Algeria.
| | - Mesbah Lahouel
- Laboratory of Molecular Toxicology, University of Jijel, Jijel 18000, Algeria.
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Faculty of Veterinary Sciences, University of Murcia, Campus de Espinardo, Espinardo, Murcia 30100, Spain.
| | - Salah Akkal
- Laboratoire de Phytochimie et Analyses Physico-Chimiques et Biologiques, Université Mentouri de Constantine, Route de Aïn El Bey, Constantine 25000, Algeria.
| |
Collapse
|
28
|
Furofuran lignans from the Simpson Desert species Eremophila macdonnellii. Fitoterapia 2018; 126:93-97. [DOI: 10.1016/j.fitote.2017.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/01/2017] [Accepted: 06/04/2017] [Indexed: 11/23/2022]
|
29
|
Siddiqui MH, Alamri SA, Al-Whaibi MH, Hussain Z, Ali HM, El-Zaidy ME. A mini-review of anti-hepatitis B virus activity of medicinal plants. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1240593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud A. Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed H. Al-Whaibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Hussain
- Centre of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed E. El-Zaidy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Metabolomic profiling of antiviral Scaevola spinescens extracts by high resolution tandem mass spectrometry. ACTA ACUST UNITED AC 2016. [DOI: 10.17660/actahortic.2016.1125.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Tucci J, Wilkens S. A brief review of the application and pharmacology of ethnomedicines of Indigenous Australians. Aust J Rural Health 2015; 24:156-69. [PMID: 26439911 DOI: 10.1111/ajr.12256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Indigenous Australians suffer higher mortality and have statistically worse outcomes for many chronic disease states than the non-Indigenous population. Although many of these people are prescribed pharmaceutical drugs for their illnesses, some still use medicines that were traditional to their culture. This report reviews some of the traditional medicines used for ailments seen in Indigenous Australian communities. DESIGN A literature search was conducted, with the period between the publication of an 'Aboriginal Pharmacopoeia' in 1988 and 'current' our target interval for searching. The ethics of publishing knowledge belonging to Aboriginal people is briefly discussed in this context. RESULTS Ailments were grouped into communicable diseases, pain and inflammation, skin disorders and gastrointestinal disorders. Although cancer is regarded as a disease of the 'white man', it is briefly discussed in the context that several traditional medicines and foods may have provided some protective effects. Where known, the ethnopharmacology of these medicines is discussed, as well as a brief description of their preparation and application. CONCLUSION Some Indigenous Australians continue to use traditional medicines. We have tabulated these according to ailment, and have listed pharmacological actions where known. What is not known, however, is their potential to interact with pharmaceutical drugs. Further study in this area is needed to optimise health outcomes for Indigenous Australians, especially those in remote communities.
Collapse
Affiliation(s)
- Joseph Tucci
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Sabine Wilkens
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| |
Collapse
|
32
|
The Effect of Hydrocotyle sibthorpioides Lam. Extracts on In Vitro Dengue Replication. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:596109. [PMID: 25767554 PMCID: PMC4342073 DOI: 10.1155/2015/596109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 11/29/2022]
Abstract
Objective. To investigate the potential effect of Hydrocotyle sibthorpioides Lam. (H. sibthorpioides) extracts against in vitro dengue viral replication. Methods. The cytotoxicity of H. sibthorpioides was evaluated using a cell viability assay. Cells were pre- and posttreated with water and methanol extracts of H. sibthorpioides, and the viral inhibitory effect was investigated by observing the morphological changes, which were further confirmed by plaque assay. Results. The methanolic extract cytotoxicity was higher in Vero and C6/36 cells than the cytotoxicity of the water extract. Preincubation of the cells with H. sibthorpioides extract showed nonexistent to mild prophylactic effects. The posttreatment of Vero cells with H. sibthorpioides methanolic extract presented higher antidengue activities when compared with the water extract. Surprisingly, posttreatment of C6/36 cells resulted in an enhancement of viral replication. Conclusion. H. sibthorpioides had variable effects on dengue viral replication, depending on the treatment, cell lines, and solvent types. This study provides important novel insights on the phytomedicinal properties of H. sibthorpioides extracts on dengue virus.
Collapse
|
33
|
Youssef FS, Hamoud R, Ashour ML, Singab AN, Wink M. Volatile oils from the aerial parts of Eremophila maculata and their antimicrobial activity. Chem Biodivers 2015; 11:831-41. [PMID: 24827695 DOI: 10.1002/cbdv.201300366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Indexed: 01/14/2023]
Abstract
The essential oils isolated from the fresh flowers, fresh leaves, and both fresh and air-dried stems of Eremophila maculata (Scrophulariaceae) were characterized by GC-FID and GC/MS analyses. Sabinene was the major component in most of the oils, followed by limonene, α-pinene, benzaldehyde, (Z)-β-ocimene, and spathulenol. The leaf and flower essential oils showed antibacterial and antifungal activity against five Gram-positive and four Gram-negative bacterial strains, multi-resistant clinical isolates from patients, i.e., methicillin-resistant Staphylococcus aureus (MRSA), as well as two yeasts. Minimum inhibitory concentrations (MICs) and minimum microbicidal concentrations (MMCs) were between 0.25 and 4 mg/ml.
Collapse
Affiliation(s)
- Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566-Cairo, Egypt
| | | | | | | | | |
Collapse
|
34
|
Bäcker C, Jenett-Siems K, Bodtke A, Lindequist U. Polyphenolic compounds from the leaves of Pittosporum angustifolium. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Kalt FR, Cock IE. Gas chromatography-mass spectroscopy analysis of bioactive petalostigma extracts: Toxicity, antibacterial and antiviral activities. Pharmacogn Mag 2014; 10:S37-49. [PMID: 24914307 PMCID: PMC4047571 DOI: 10.4103/0973-1296.127338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/01/2013] [Accepted: 02/21/2014] [Indexed: 11/16/2022] Open
Abstract
Background: Petalostigma pubescens and Petalostigma triloculare were common components of pharmacopeia's of multiple Australian Aboriginal tribal groupings which traditionally inhabited the areas in which they grow. Among these groups, they had a myriad of medicinal uses in treating a wide variety of bacterial, fungal and viral infections. This study was undertaken to test P. pubescens and P. triloculare leaf and fruit extracts for the ability to inhibit bacterial and viral growth and thus validate Australian Aboriginal usage of these plants in treating bacterial and fungal diseases. Materials and Methods: P. pubescens, and P. triloculare leaves and fruit were extracted and tested for antimicrobial, antiviral activity and toxicity. The bioactive extracts were further examined by RP-HPLC and GC-MS to identify the component compounds. Results: The methanol, water and ethyl acetate leaf and fruit extracts of displayed potent antibacterial activity. The methanol and ethyl acetate extracts displayed the broadest specificity, inhibiting the growth of 10 of the 14 bacteria tested (71%) for the leaf extract and 9 of the 14 bacteria tested (64%) for the fruit extracts. The water extracts also had broad spectrum antibacterial activity, inhibiting the growth of 8 (57%) and 7 (50%) of the 14 bacteria tested, respectively. All antibacterial extracts were approximately equally effective against Gram-positive and Gram-negative bacteria, inhibiting the growth of 50-75% of the bacteria tested. The methanol, water and ethyl acetate extracts also displayed antiviral activity in the MS2 plaque reduction assay. The methanol and water extracts inhibited 26.6-49.0% and 85.4-97.2% of MS2 plaque formation, respectively, with the fruit extracts being more potent inhibitors. All ethyl acetate extracts inhibited 100% of MS2 plaque formation. All extracts were also non-toxic or of low toxicity. Analysis of these extracts by RP-HPLC showed that the P. triloculare ethyl acetate fruit extract was the least complex of the bioactive extracts. Subsequent analysis of this extract by GC-MS revealed that it contained 9 main compounds: acetic acid; 2,2-dimethoxybutane; 4-methyl-1,3-dioxane; decane; unadecane; 2-furanmethanol; 1,2-benzenediol; 1,2,3-benzenetriol; and benzoic acid. Conclusion: These studies validate Australian Aboriginal therapeutic usage of Petalostigma species and indicate their medicinal potential.
Collapse
Affiliation(s)
- F R Kalt
- Biomolecular and Physical Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| | - I E Cock
- Biomolecular and Physical Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia ; Environmental Futures Centre, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
36
|
Barnes EC, Kavanagh AM, Ramu S, Blaskovich MA, Cooper MA, Davis RA. Antibacterial serrulatane diterpenes from the Australian native plant Eremophila microtheca. PHYTOCHEMISTRY 2013; 93:162-9. [PMID: 23602054 DOI: 10.1016/j.phytochem.2013.02.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/22/2013] [Accepted: 02/28/2013] [Indexed: 05/22/2023]
Abstract
Chemical investigations of the aerial parts of the Australian plant Eremophila microtheca resulted in the isolation of three serrulatane diterpenoids, 3-acetoxy-7,8-dihydroxyserrulat-14-en-19-oic acid (1), 3,7,8-trihydroxyserrulat-14-en-19-oic acid (2) and 3,19-diacetoxy-8-hydroxyserrulat-14-ene (3) as well as the previously reported compounds verbascoside (4) and jaceosidin (5). Acetylation and methylation of the major serrulatane diterpenoid 2 afforded 3,8-diacetoxy-7-hydroxyserrulat-14-en-19-oic acid (6) and 3,7,8-trihydroxyserrulat-14-en-19-oic acid methyl ester (7), respectively. The antibacterial activity of 1-7 was assessed against a panel of Gram-positive and Gram-negative bacterial isolates. All of the serrulatane compounds exhibited moderate activity against Streptococcus pyogenes (ATCC 12344) with minimum inhibitory concentrations (MICs) ranging from 64-128 μg/mL. Serrulatane 1 demonstrated activity against all Gram-positive bacterial strains (MICs 64-128 μg/mL) except for Enterococcus faecalis and Enterococcus faecium. This is the first report of natural products from E. microtheca.
Collapse
Affiliation(s)
- Emma C Barnes
- Eskitis Institute, Griffith University, Nathan, Qld 4111, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Payne S, Kotze A, Durmic Z, Vercoe P. Australian plants show anthelmintic activity toward equine cyathostomins in vitro. Vet Parasitol 2013; 196:153-60. [DOI: 10.1016/j.vetpar.2013.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 11/26/2022]
|
38
|
Singab AN, Youssef FS, Ashour ML, Wink M. The genus Eremophila (Scrophulariaceae): an ethnobotanical, biological and phytochemical review. J Pharm Pharmacol 2013; 65:1239-79. [DOI: 10.1111/jphp.12092] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
Eremophila (Scrophulariaceae) is an endemic Australian genus with 214 species, which is commonly known as Fuchsia bush, Emu bush or Poverty bush. Plants of this genus played an important role for the Australian Aborigines who used them widely for medicinal and ceremonial purposes. Many studies have been carried out on many species of this genus and have generated immense data about the chemical composition and corresponding biological activity of extracts and isolated secondary metabolites.
Key findings
Thorough phytochemical investigations of different Eremophila species have resulted in the isolation of more than 200 secondary metabolites of different classes with diterpenes as major constituents. Biological studies and traditional clinical practice demonstrated that Eremophila and its bioactive compounds possess various pharmacological properties. Plants were employed especially as a cardiotonic drug and also as potent anti-inflammatory, antimicrobial and antiviral agents.
Summary
Further investigations are required to explore other Eremophila species, to evaluate the different biological activities of either their extracts or the isolated compounds and the possible underlying modes of action.
Collapse
Affiliation(s)
- Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
39
|
Barrett RL. Ecological importance of sedges: a survey of the Australasian Cyperaceae genus Lepidosperma. ANNALS OF BOTANY 2013; 111:499-529. [PMID: 23378523 PMCID: PMC3605947 DOI: 10.1093/aob/mct008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/12/2012] [Indexed: 05/15/2023]
Abstract
BACKGROUND Sedges (Cyperaceae) form an important ecological component of many ecosystems around the world. Sword and rapier sedges (genus Lepidosperma) are common and widespread components of the southern Australian and New Zealand floras, also occurring in New Caledonia, West Papua, Borneo, Malaysia and southern China. Sedge ecology is seldom studied and no comprehensive review of sedge ecology exists. Lepidosperma is unusual in the Cyperaceae with the majority of species occurring in dryland habitats. SCOPE Extensive review of ecological literature and field observations shows Lepidosperma species to be important components of many ecosystems, often dominating understorey and sedge-rich communities. For the first time, a detailed ecological review of a Cyperaceae genus is presented. CONCLUSIONS Lepidosperma species are long-lived perennials with significant abundance and persistence in the landscape. Speciation patterns in the genus are of considerable interest due to complex biogeographical patterns and a high degree of habitat specificity. Potential benefits exist for medicinal products identified from several Lepidosperma species. Over 178 organisms, including 26 mammals, 42 birds, six reptiles, five amphibians, eight arachnids, 75 insects, three crustaceans and 13 fungi, are found to be dependent on, or making use of, Lepidosperma species. A significant relationship exists between Lepidosperma species and the moth genus Elachista. Implications for the conservation and ecology of both sedges and associated species are discussed.
Collapse
Affiliation(s)
- Russell L. Barrett
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, 6005, Western Australia; School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, 6009, Western Australia and c/- Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, 6983, Western Australia
| |
Collapse
|
40
|
Sadgrove NJ, Jones GL. Chemical and biological characterisation of solvent extracts and essential oils from leaves and fruit of two Australian species of Pittosporum (Pittosporaceae) used in aboriginal medicinal practice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:813-21. [PMID: 23274743 DOI: 10.1016/j.jep.2012.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Although no known medicinal use for Pittosporum undulatum Vent. (Pittosporaceae) has been recorded, anecdotal evidence suggests that Australian Aboriginal people used Pittosporum angustifolium Lodd., G. Lodd. & W. Lodd. topically for eczema, pruritis or to induce lactation in mothers following child-birth and internally for coughs, colds or cramps. AIMS OF THE STUDY Essential oil composition and bioactivity as well as differential solvent extract antimicrobial activity from Pittosporum angustifolium are investigated here first, to partially describe the composition of volatiles released in traditional applications of Pittosporum angustifolium for colds or as a lactagogue, and second to investigate antibacterial activity related to topical applications. Essential oils were also investigated from Pittosporum undulatum Vent., first to enhance essential oil data produced in previous studies, and second as a comparison to Pittosporum angustifolium. MATERIALS AND METHODS Essential oils were hydrodistilled from fruit and leaves of both species using a modified approach to lessen the negative (frothing) effect of saponins. This was achieved by floating pumice or pearlite obsidian over the mixture to crush the suds formed while boiling. Essential oil extracts were analysed using GC-MS, quantified using GC-FID then screened for antimicrobial activity using a micro-titre plate broth dilution assay (MIC). Using dichloromethane, methanol, hexane and H(2)O as solvents, extracts were produced from leaves and fruit of Pittosporum angustifolium and screened for antimicrobial activity and qualitative phytochemical character. RESULTS Although the essential oil from leaves and fruit of Pittosporum undulatum demonstrated some component variation, the essential oil from fruits of Pittosporum angustifolium had major constituents that strongly varied according to the geographical location of collection, suggesting the existence of at least two chemotypes; one with high abundance of acetic acid decyl ester. This chemotype had high antimicrobial activity whilst the other chemotype had only moderate antimicrobial activity against the three microbial species investigated here. This result may support the occurrence of geographical specificity with regard to ethnopharmacological use. Antimicrobial activity screening of the solvent extracts from Pittosporum angustifolium revealed the leaves to be superior to fruit, with water being the most suitable extraction solvent. CONCLUSION To the best of our knowledge, this study constitutes the first time essential oils, and solvent extracts from the fruits of Pittosporum angustifolium, have been examined employing comprehensive chemical and biological analysis. The essential oil composition presented in this paper, includes components with structural similarity as chemosemiotic compounds involved in mother-infant identification, which may have significance with regard to traditional applications as a lactagogue.
Collapse
Affiliation(s)
- Nicholas John Sadgrove
- Pharmaceuticals and Nutraceuticals Group, Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale 2351, Australia.
| | | |
Collapse
|
41
|
Arthanari SK, Vanitha J, Ganesh M, Venkateshwaran K, Clercq D. Evaluation of antiviral and cytotoxic activities of methanolic extract of S. grandiflora (Fabaceae) flowers. Asian Pac J Trop Biomed 2012; 2:S855-S858. [PMID: 32289022 PMCID: PMC7128231 DOI: 10.1016/s2221-1691(12)60323-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/05/2012] [Accepted: 08/27/2012] [Indexed: 12/27/2022] Open
Abstract
Objective To investigate the cytotoxicity and antiviral activity of methanolic extract of S. grandiflora flowers using different cell lines and viruses. Methods The methanolic flower extracts were prepared and evaluated for their antiviral and cytotoxic activities using viruses like herpes simplex-1 and 2, vaccinia, vesicular stomatitis, cox sackie, respiratory syncytical, feline corona, feline herpes, para influenza, reo-1, sindbis and punta toro viruses in different cell lines, like Hel, HeLa, Crandell Reus feline kidney and Vero cell cultures. Results Among the viruses used the extract possessed strongest antiviral activity against herpes simplex 1 and 2, repiratory syncytical, para influenza, reo, sindbis, cox sackie and punta toro viruses that was (EC50=20 μg/mL and 45 μg/mL) and moderate activity for remaining viruses (EC50= 100 μg/mL). The antiviral activities assessed by calculating the selectivity index may be due to the presence of flavonoids in the extracts there by inhibit the virus cell fusion in the early and replication stages. The cytotoxicity effect was evaluated using MTT assay and the results revealed that the extracts exhibited cytotoxicity from the range of 20 to 100 μg/mL. Conclusions Present results confirmed that the S. grandiflora used as a good antimicrobial agent in future.
Collapse
Affiliation(s)
- Saravana Kumar Arthanari
- Department of Pharmaceutical Biotechnology, JJ College of Pharmacy, Maheshwaram, Hyderabad - 501 359, Andhra Pradesh, India
| | - Jayachandran Vanitha
- Department of Pharmaceutical Analysis, The Erode College of Pharmacy, Erode-638 112, Tamilnadu, India
| | - Mani Ganesh
- Department of Chemical Engineering, Hanseo University, 360 Daegok-ri, Haemi-myun, Seosan-si 356 706, Chungcheongnam-do, South Korea
| | - Krishnasamy Venkateshwaran
- Department of Pharmaceutical Technology, Anna University of Technology Tiruchirappalli, Tiruchirappalli- 620 024, Tamilnadu, India
| | - De Clercq
- Rega Institute, Katholieke Universiteit Luven, B- 3000 Luven, Belgium
| |
Collapse
|
42
|
Cock IE, Kukkonen L. An examination of the medicinal potential of Scaevola spinescens: Toxicity, antibacterial, and antiviral activities. Pharmacognosy Res 2011; 3:85-94. [PMID: 21772751 PMCID: PMC3129029 DOI: 10.4103/0974-8490.81955] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/04/2011] [Accepted: 06/08/2011] [Indexed: 11/20/2022] Open
Abstract
Background: Scaevola spinescens is an endemic Australian native plant with a history of use as a medicinal agent by indigenous Australians. Yet the medicinal bioactivities of this plant are poorly studied. Materials and Methods: S. spinescens solvent extracts were tested for antimicrobial activity, antiviral activity and toxicity in vitro. Results: All extracts displayed antibacterial activity in the disc diffusion assay. The methanol extract proved to have the broadest specificity, inhibiting the growth of 7 of the 14 bacteria tested (50%). The water, ethyl acetate, chloroform, and hexane extracts inhibited the growth of 6 (42.9%), 5 (35.7%), 5 (35.7%), and 4 (28.6%) of the 14 bacteria tested, respectively. S. spinescens methanolic extracts were equally effective against Gram-positive (50%) and Gram-negative bacteria (50%). All other extracts were more effective at inhibiting the growth of Gram-negative bacteria. All extracts also displayed antiviral activity in the MS2 plaque reduction assay with the methanol, water, ethyl acetate, chloroform, and hexane extracts inhibiting 95.2 ± 1.8%, 72.3 ± 6.3%, 82.6 ± 4.5%, 100 ± 0% and 47.7 ± 12.9% of plaque formation, respectively. All S. spinescens extracts were nontoxic in the Artemia fransiscana bioassay with no significant increase in mortality induced by any extract at 24 and 48 h. The only increase in mortality was seen for the water extract at 72 h, although even this extract displayed low toxicity, inducing only 41.7 ± 23.3% mortality. Conclusions: The lack of toxicity of the S. spinescens extracts and their inhibitory bioactivity against bacteria and viruses validate the Australian Aboriginal usage of S. spinescens and indicates its medicinal potential.
Collapse
Affiliation(s)
- Ian E Cock
- Department of Biomolecular and Physical Sciences, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan
| | | |
Collapse
|
43
|
Cock I, Kalt FR. A modified MS2 bacteriophage plaque reduction assay for the rapid screening of antiviral plant extracts. Pharmacognosy Res 2011; 2:221-8. [PMID: 21808571 PMCID: PMC3141131 DOI: 10.4103/0974-8490.69108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/24/2010] [Accepted: 09/07/2010] [Indexed: 02/02/2023] Open
Abstract
Introduction: Traditional methods of screening plant extracts and purified components for antiviral activity require up to a week to perform, prompting the need to develop more rapid quantitative methods to measure the ability of plant based preparations to block viral replication. We describe an adaption of an MS2 plaque reduction assay for use in S. aureus. Results: MS2 bacteriophage was capable of infecting and replicating in B. cereus, S. aureus and F + E. coli but not F- E. coli. Indeed, both B. cereus and S. aureus were more sensitive to MS2 induced lysis than F+ E. coli. When MS2 bacteriophage was mixed with Camellia sinensis extract (1 mg/ml), Scaevola spinescens extract (1 mg/ml) or Aloe barbadensis juice and the mixtures inoculated into S. aureus, the formation of plaques was reduced to 8.9 ± 3.8%, 5.4 ± 2.4% and 72.7 ± 20.9% of the untreated MS2 control values respectively. Conclusions: The ability of the MS2 plaque reduction assay to detect antiviral activity in these known antiviral plant preparations indicates its suitability as an antiviral screening tool. An advantage of this assay compared with traditionally used cytopathic effect reduction assays and replicon based assays is the more rapid acquisition of results. Antiviral activity was detected within 24 h of the start of testing. The MS2 assay is also inexpensive and non-pathogenic to humans making it ideal for initial screening studies or as a simulant for pathogenic viruses.
Collapse
Affiliation(s)
- Ian Cock
- Biomolecular and Physical Sciences, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | | |
Collapse
|
44
|
Anakok O, Ndi C, Barton M, Griesser H, Semple S. Antibacterial spectrum and cytotoxic activities of serrulatane compounds from the Australian medicinal plant Eremophila neglecta. J Appl Microbiol 2011; 112:197-204. [DOI: 10.1111/j.1365-2672.2011.05174.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Grice ID, Rogers KL, Griffiths LR. Isolation of Bioactive Compounds That Relate to the Anti-Platelet Activity of Cymbopogon ambiguus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:467134. [PMID: 20047890 PMCID: PMC3135635 DOI: 10.1093/ecam/nep213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 11/19/2009] [Indexed: 11/17/2022]
Abstract
Infusions and decoctions of Cymbopogon ambiguus have been used traditionally in Australia for the treatment of headache, chest infections and muscle cramps. The aim of the present study was to screen and identify bioactive compounds from C. ambiguus that could explain this plant's anti-headache activity. A dichloromethane extract of C. ambiguus was identified as having activity in adenosine-diphosphate-induced human platelet aggregation and serotonin-release inhibition bioassays. Subsequent fractionation of this extract led to the isolation of four phenylpropenoids, eugenol, elemicin, eugenol methylether and trans-isoelemicin. While both eugenol and elemicin exhibited dose-dependent inhibition of ADP-induced human platelet serotonin release, only eugenol displayed potent inhibitory activity with an IC50 value of 46.6 μM, in comparison to aspirin, with an IC50 value of 46.1 μM. These findings provide evidence to support the therapeutic efficacy of C. ambiguus in the non-conventional treatment of headache and inflammatory conditions.
Collapse
Affiliation(s)
- I Darren Grice
- Institute for Glycomics, Gold Coast campus, Griffith University, Queensland, 4222, Australia
| | - Kelly L Rogers
- Plate-forme d'imagerie dynamique, Institut Pasteur, Paris Cedex 15, France; Genomics Research Centre, Gold Coast campus, Griffith University, Queensland, 4222, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Gold Coast campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
46
|
Regner GG, Gianesini J, Von Borowski RG, Silveira F, Semedo JG, Ferraz ADBF, Wiilland E, Von Poser G, Allgayer M, Picada JN, Pereira P. Toxicological evaluation of Pterocaulon polystachyum extract: a medicinal plant with antifungal activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:242-249. [PMID: 21787691 DOI: 10.1016/j.etap.2010.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/26/2010] [Accepted: 11/01/2010] [Indexed: 05/31/2023]
Abstract
Pterocaulon polystachyum DC is a native species to southern Brazil, Paraguay, Uruguay and northeastern Argentina. It is utilized to treat animal problems popularly diagnosed as "mycoses". The antifungal and amebicidal activity of its hexane extract has been previously reported, although there are no studies confirming the safety of this plant for therapeutic purposes to date. Hence, this study investigates the toxic effects of a hexane extract of Pterocaulon polystachyum administered as acute and subacute oral treatments. After acute treatment the extract caused alterations in biochemical parameters, morphological alterations in tissues and was genotoxic, according to the comet assay; neither mortality nor visible signs of lethality were seen in mice. Similarly subacute treatment caused important differences in biochemical parameters and tissues, between control and treated groups. The results also revealed genotoxicity in kidney tissue, though no mutagenicity was detected by the micronucleus test. No animal died during the treatment period.
Collapse
|
47
|
Liu SY, Lo CT, Shibu MA, Leu YL, Jen BY, Peng KC. Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7288-7292. [PMID: 19650641 DOI: 10.1021/jf901405c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The biocontrol fungal species of Trichoderma, which colonizes plant roots, are well-known for their potential to control plant pathogens. Six anthraquinones, of which four have been identified for the first time from Trichoderma and two have already been reported in other strains, were purified from Trichoderma harzianum strain Th-R16 to evaluate their biological activities. The structures of the compounds were determined by one- and two-dimensional NMR. The compounds were shown to exhibit stronger antifungal activity than antibacterial activity. Low yield compounds, like 1,5-dihydroxy-3-hydroxymethyl-9,10-anthraquinone, were found to be more active against fungal pathogens than pachybasin and crysophanol, which were found to be the major extracellular metabolites. Test anthraquinones with higher oxidation numbers had better antifungal activity, and their activities were concentration-dependent.
Collapse
Affiliation(s)
- Shu-Ying Liu
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Exploring the anthelmintic properties of Australian native shrubs with respect to their potential role in livestock grazing systems. Parasitology 2009; 136:1065-80. [PMID: 19523255 DOI: 10.1017/s0031182009006386] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We measured in vitro anthelmintic activity in extracts from 85 species of Australian native shrub, with a view to identifying species able to provide a degree of worm control in grazing systems. Approximately 40% of the species showed significant activity in inhibiting development of Haemonchus contortus larvae. The most active extracts showed IC50 values of 60-300 microg/ml. Pre-incubation with polyvinylpolypyrrolidine removed the activity from some extracts, implicating tannins as the bioactive agent, while in other cases the pre-incubation had no effect, indicating the presence of other anthelmintic compounds. Plant reproductive maturity (onset of flowering or fruiting) was associated with increasing anthelmintic activity in some species. Variability was observed between plants of the same species growing in different environments, while variation between individual plants of the same species within a single field suggests the existence of distinct chemotypes. Significant activity against adult H. contortus worms in vitro was also demonstrated in a limited number of extracts tested against this life stage. Our study indicates that there is potential for Australian native shrubs to play an anthelmintic role in grazing systems, and highlights some plant biology factors which will need to be considered in order to maximize any anthelmintic effects.
Collapse
|
49
|
Australian plants with potential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids. Anim Feed Sci Technol 2008. [DOI: 10.1016/j.anifeedsci.2007.05.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Ramezani M, Behravan J, Arab M, Farzad SA. Antiviral Activity of Euphorbia helioscopia Extract. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/jbs.2008.809.813] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|