1
|
Das P, Aballay A, Singh J. Calcineurin inhibition enhances Caenorhabditis elegans lifespan by defecation defects-mediated calorie restriction and nuclear hormone signaling. eLife 2024; 12:RP89572. [PMID: 39485281 PMCID: PMC11530235 DOI: 10.7554/elife.89572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Calcineurin is a highly conserved calcium/calmodulin-dependent serine/threonine protein phosphatase with diverse functions. Inhibition of calcineurin is known to enhance the lifespan of Caenorhabditis elegans through multiple signaling pathways. Aiming to study the role of calcineurin in regulating innate immunity, we discover that calcineurin is required for the rhythmic defecation motor program (DMP) in C. elegans. Calcineurin inhibition leads to defects in the DMP, resulting in intestinal bloating, rapid colonization of the gut by bacteria, and increased susceptibility to bacterial infection. We demonstrate that intestinal bloating caused by calcineurin inhibition mimics the effects of calorie restriction, resulting in enhanced lifespan. The TFEB ortholog, HLH-30, is required for lifespan extension mediated by calcineurin inhibition. Finally, we show that the nuclear hormone receptor, NHR-8, is upregulated by calcineurin inhibition and is necessary for the increased lifespan. Our studies uncover a role for calcineurin in the C. elegans DMP and provide a new mechanism for calcineurin inhibition-mediated longevity extension.
Collapse
Affiliation(s)
- Priyanka Das
- Department of Biological Sciences, Indian Institute of Science Education and ResearchMohaliIndia
| | - Alejandro Aballay
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Jogender Singh
- Department of Biological Sciences, Indian Institute of Science Education and ResearchMohaliIndia
| |
Collapse
|
2
|
Zheng LY, Da YX, Luo X, Zhang X, Sun ZJ, Dong DL. Sorafenib extends the lifespan of C. elegans through mitochondrial uncoupling mechanism. Free Radic Biol Med 2024; 214:101-113. [PMID: 38360276 DOI: 10.1016/j.freeradbiomed.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Sorafenib is a targeted anticancer drug in clinic. Low-dose sorafenib has been reported to activate AMPK through inducing mitochondrial uncoupling without detectable toxicities. AMPK activation has been the approach for extending lifespan, therefore, we investigated the effect of sorafenib on lifespan and physical activity of C. elegans and the underlying mechanisms. In the present study, we found that the effect of sorafenib on C. elegans lifespan was typically hermetic. Sorafenib treatment at higher concentrations (100 μM) was toxic but at lower concentrations (1, 2.5, 5 μM) was beneficial to C. elegans. Sorafenib (1 μM) treatment for whole-life period extended C. elegans lifespan and improved C. elegans physical activity as manifested by increasing pharyngeal pumping and body movement, preserving intestinal barrier integrity, muscle fibers organization and mitochondrial morphology. In addition, sorafenib (1 μM) treatment enhanced C. elegans stress resistance. Sorafenib activated AMPK through inducing mitochondrial uncoupling in C. elegans. Sorafenib treatment activated DAF-16, SKN-1, and increased SOD-3, HSP-16.2, GST-4 expression in C. elegans. Sorafenib treatment induced AMPK-dependent autophagy in C. elegans. We conclude that low-dose sorafenib protects C. elegans against aging through activating AMPK/DAF-16 dependent anti-oxidant pathways and stimulating autophagy responses. Low-dose sorafenib could be a strategy for treating aging and aging-related diseases.
Collapse
Affiliation(s)
- Lu-Yao Zheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yan-Xin Da
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiu Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
3
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Mohanty SK, Suchiang K. Baicalein mitigates oxidative stress and enhances lifespan through modulation of Wnt ligands and GATA factor: ELT-3 in Caenorhabditis elegans. Life Sci 2023; 329:121946. [PMID: 37463652 DOI: 10.1016/j.lfs.2023.121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
AIMS Age predispose individual to major diseases, and the biological processes contributing to aging are currently under intense investigation. Hence, plant-based natural compounds could be a potential target to counteract aging and age-associated diseases. So, the present study aims to investigate the antiaging properties of a natural compound Baicalein (BAI) on C. elegans and to elucidate the pathways or signaling molecules involved. METHODS Herein, we investigated the inhibitory effects of BAI on different Wnt ligands of C. elegans and its underlying mechanisms. Moreover, we monitored BAI's antiaging effect on the worms' lifespan and its different aging parameters. We employed different mutant and transgenic C. elegans strains to identify the pathways and transcription factors involved. KEY FINDINGS We first showed that BAI could downregulate different Wnt ligands mRNA expressions in C. elegans, resulting in enhanced expression of GATA transcription factor ELT-3 and antiaging gene Klotho. On further evaluation, it was observed that BAI could enhance the worm's lifespan via ELT-3 and SKN-1 transcription factors, whereas, for the protection of worms against external oxidative stress, both ELT-3 and DAF-16 transcription factors were involved. Moreover, sensitive aging parameters of worms, including lipofuscin and ROS accumulation, and the declined physiological and mechanical functions observed in aged worms were ameliorated by BAI. SIGNIFICANCE This study highlighted BAI as a promising antiaging compound. This study also revealed the Wnt inhibitory potential of BAI with future implications for pharmacological target of age-associated diseases with aberrant activation of the Wnt pathway.
Collapse
Affiliation(s)
- Saswat Kumar Mohanty
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry 605 014, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry 605 014, India.
| |
Collapse
|
5
|
Phan HD, Nguyen TTM, Lee S, Seo M, An YJ, de Guzman ACV. The metabolic contribution of SKN-1/Nrf2 to the lifespan of Caenorhabditis elegans. Metabolomics 2023; 19:58. [PMID: 37289273 DOI: 10.1007/s11306-023-02022-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS SKN-1, a C. elegans transcription factor analogous to the mammalian NF-E2-related factor (Nrf2), has been known to promote oxidative stress resistance aiding nematodes' longevity. Although SKN-1's functions suggest its implication in lifespan modulation through cellular metabolism, the actual mechanism of how metabolic rearrangements contribute to SKN-1's lifespan modulation has yet to be well characterized. Therefore, we performed the metabolomic profiling of the short-lived skn-1-knockdown C. elegans. METHODS We analyzed the metabolic profile of the skn-1-knockdown worms with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-tandem mass spectrometry (LC-MS/MS) and obtained distinctive metabolomic profiles compared to WT worms. We further extended our study with gene expression analysis to examine the expression level of genes encoding all metabolic enzymes. RESULTS A significant increase in the phosphocholine and AMP/ATP ratio, potential biomarkers of aging, was observed, accompanied by a decrease in the transsulfuration metabolites, NADPH/NADP+ ratio, and total glutathione (GSHt), which are known to be involved in oxidative stress defense. skn-1-RNAi worms also exhibited an impairment in the phase II detoxification system, confirmed by the lower conversion rate of paracetamol to paracetamol-glutathione. By further examining the transcriptomic profile, we found a decrease in the expression of cbl-1, gpx, T25B9.9, ugt, and gst, which are involved in GSHt and NADPH synthesis as well as in the phase II detoxification system. CONCLUSION Our multi-omics results consistently revealed that the cytoprotective mechanisms, including cellular redox reactions and xenobiotic detoxification system, contribute to the roles of SKN-1/Nrf2 in the lifespan of worms.
Collapse
Affiliation(s)
- Hong-Duc Phan
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea
| | - Tin Tin Manh Nguyen
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea
- Department of Pharmacy, Binh Duong University, Thu Dau Mot, 820000, Vietnam
| | - Sujin Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea
| | - Munjun Seo
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea
| | - Yong Jin An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea.
| | - Arvie Camille V de Guzman
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea.
| |
Collapse
|
6
|
Akanchise T, Angelova A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15051562. [PMID: 37242804 DOI: 10.3390/pharmaceutics15051562] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Coronavirus infections are neuroinvasive and can provoke injury to the central nervous system (CNS) and long-term illness consequences. They may be associated with inflammatory processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate neurological complications and brain tissue damage has attracted strong ongoing interest in the neurotherapeutic management of long COVID. Ginkgo biloba leaf extract (EGb) contains several bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A-C, kaempferol, isorhamnetin, and luteolin. They have various pharmacological and medicinal effects, including memory and cognitive improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities, impacts cognitive function and other illness conditions like those in long COVID. While preclinical research on the antioxidant therapies for neuroprotection has shown promising results, clinical translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life, instability, restricted delivery to target tissues, and poor antioxidant capacity). This review emphasizes the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these challenges. Various experimental techniques shed light on the molecular mechanisms underlying the oxidative stress response in the nervous system and help comprehend the pathophysiology of the neurological sequelae of SARS-CoV-2 infection. To develop novel therapeutic agents and drug delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g., lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of oxidative stress.
Collapse
Affiliation(s)
- Thelma Akanchise
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
7
|
Shaposhnikov MV, Gorbunova AA, Zemskaya NV, Ulyasheva NS, Pakshina NR, Yakovleva DV, Moskalev A. Simultaneous activation of the hydrogen sulfide biosynthesis genes (CBS and CSE) induces sex-specific geroprotective effects in Drosophila melanogaster. Biogerontology 2023; 24:275-292. [PMID: 36662374 DOI: 10.1007/s10522-023-10017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) is one of the most important gasotransmitters that affect lifespan and provide resistance to adverse environmental conditions. Here we investigated geroprotective effects of the individual and simultaneous overexpression of genes encoding key enzymes of H2S biosynthesis - cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) on D. melanogaster model. Simultaneous overexpression of CBS and CSE resulted in additive (in males) and synergistic (in females) beneficial effects on median lifespan. Individual overexpression of CBS was associated with increased thermotolerance and decreased transcription level of genes encoding stress-responsive transcription factors HIF1 and Hsf, while individual overexpression of CSE was associated with increased resistance to paraquat. Simultaneous overexpression of both genes increased resistance to hyperthermia in old females or paraquat in old males. The obtained results suggest sex-specific epistatic interaction of CBS and CSE overexpression effects on longevity and stress resistance.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalya R Pakshina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991.
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
8
|
Effects of Fisetin, a Plant-Derived Flavonoid, on Response to Oxidative Stress, Aging, and Age-Related Diseases in Caenorhabditis elegans. Pharmaceuticals (Basel) 2022; 15:ph15121528. [PMID: 36558979 PMCID: PMC9786162 DOI: 10.3390/ph15121528] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Fisetin (3,3',4',7-tetrahydroxyflavone), a flavonoid abundant in various fruits and vegetables, including apple, strawberry, and onion, shows several beneficial effects such as anti-oxidant, anti-inflammatory, and anti-tumor effects. The free radical theory of aging suggests that age-related accumulation of oxidative damage is the major cause of aging and that decreasing cellular oxidative stress can regulate aging. Here, we investigated the effects of dietary supplementation with fisetin on the stress response, aging, and age-related diseases. Fisetin reduced the cellular ROS levels and increased the resistance to oxidative stress. However, the response to UV irradiation was not affected by fisetin. Both the mean and maximum lifespans were significantly extended by fisetin; lifespan extension by fisetin was accompanied by reduced fertility as a trade-off. Age-related decline in motility was also delayed by supplementation with fisetin. Amyloid beta-induced toxicity was markedly decreased by fisetin, which required DAF-16 and SKN-1. Reduced motility induced by a high-glucose diet was completely recovered by supplementation with fisetin, which was dependent on SKN-1. Using a Parkinson's disease model, we showed that degeneration of dopaminergic neurons was significantly inhibited by treatment with fisetin. Genetic analysis revealed that lifespan extension by fisetin was mediated by DAF-16-induced stress response and autophagy. These findings support the free radical theory of aging and suggest that fisetin can be a strong candidate for use in novel anti-aging anti-oxidant nutraceuticals.
Collapse
|
9
|
Cornwell A, Llop JR, Salzman P, Rasmussen N, Thakar J, Samuelson AV. The Replica Set Method is a Robust, Accurate, and High-Throughput Approach for Assessing and Comparing Lifespan in C. elegans Experiments. FRONTIERS IN AGING 2022; 3:861701. [PMID: 35821830 PMCID: PMC9261357 DOI: 10.3389/fragi.2022.861701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
The advent of feeding based RNAi in Caenorhabditis elegans led to an era of gene discovery in aging research. Hundreds of gerogenes were discovered, and many are evolutionarily conserved, raising the exciting possibility that the underlying genetic basis for healthy aging in higher vertebrates could be quickly deciphered. Yet, the majority of putative gerogenes have still only been cursorily characterized, highlighting the need for high-throughput, quantitative assessments of changes in aging. A widely used surrogate measure of aging is lifespan. The traditional way to measure mortality in C. elegans tracks the deaths of individual animals over time within a relatively small population. This traditional method provides straightforward, direct measurements of median and maximum lifespan for the sampled population. However, this method is time consuming, often underpowered, and involves repeated handling of a set of animals over time, which in turn can introduce contamination or possibly damage increasingly fragile, aged animals. We have previously developed an alternative "Replica Set" methodology, which minimizes handling and increases throughput by at least an order of magnitude. The Replica Set method allows changes in lifespan to be measured for over one hundred feeding-based RNAi clones by one investigator in a single experiment- facilitating the generation of large quantitative phenotypic datasets, a prerequisite for development of biological models at a systems level. Here, we demonstrate through analysis of lifespan experiments simulated in silico that the Replica Set method is at least as precise and accurate as the traditional method in evaluating and estimating lifespan, and requires many fewer total animal observations across the course of an experiment. Furthermore, we show that the traditional approach to lifespan experiments is more vulnerable than the Replica Set method to experimental and measurement error. We find no compromise in statistical power for Replica Set experiments, even for moderate effect sizes, or when simulated experimental errors are introduced. We compare and contrast the statistical analysis of data generated by the two approaches, and highlight pitfalls common with the traditional methodology. Collectively, our analysis provides a standard of measure for each method across comparable parameters, which will be invaluable in both experimental design and evaluation of published data for lifespan studies.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Jesse R. Llop
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Peter Salzman
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Niels Rasmussen
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
10
|
Shaposhnikov MV, Zakluta AS, Zemskaya NV, Guvatova ZG, Shilova VY, Yakovleva DV, Gorbunova AA, Koval LA, Ulyasheva NS, Evgen'ev MB, Zatsepina OG, Moskalev AA. Deletions of the cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) genes, involved in the control of hydrogen sulfide biosynthesis, significantly affect lifespan and fitness components of Drosophila melanogaster. Mech Ageing Dev 2022; 203:111656. [PMID: 35247392 DOI: 10.1016/j.mad.2022.111656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
The gasotransmitter hydrogen sulfide (H2S) is an important biological mediator, playing an essential role in many physiological and pathological processes. It is produced by transsulfuration - an evolutionarily highly conserved pathway for the metabolism of sulfur-containing amino acids methionine and cysteine. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) enzymes play a central role in cysteine metabolism and H2S production. Here we investigated the fitness components (longevity, stress resistance, viability of preimaginal stages, and reproductive function parameters) in D. melanogaster lines containing deletions of the CBS and CSE genes. Surprisingly, in most tests, CSE deletion improved, and CBS worsened the fitness. Lines with deletion of both CBS and CSE demonstrated better stress resistance and longevity than lines with single CBS deletion. At the same time, deletion of both CBS and CSE genes causes more serious disturbances of reproductive function parameters than single CBS deletion. Thus, a complex interaction of H2S-producing pathways and cellular stress response in determining the lifespan and fitness components of the whole organism was revealed.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation; Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Alexey S Zakluta
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Zulfiya G Guvatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Victoria Y Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Daria V Yakovleva
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Liubov A Koval
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation.
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Olga G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation; Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation; Center for Precision Genome Editing and Genetic Technologies for Biomedicine Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|
11
|
van Raalte AA. What have we learned about mortality patterns over the past 25 years? Population Studies 2021; 75:105-132. [PMID: 34902283 DOI: 10.1080/00324728.2021.1967430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper, I examine progress in the field of mortality over the past 25 years. I argue that we have been most successful in taking advantage of an increasingly data-rich environment to improve aggregate mortality models and test pre-existing theories. Less progress has been made in relating our estimates of mortality risk at the individual level to broader mortality patterns at the population level while appropriately accounting for contextual differences and compositional change. Overall, I find that the field of mortality continues to be highly visible in demographic journals, including Population Studies. However much of what is published today in field journals could just as easily appear in neighbouring disciplinary journals, as disciplinary boundaries are shrinking.
Collapse
|
12
|
Tao M, Li R, Xu T, Zhang Z, Wu T, Pan S, Xu X. Flavonoids from the mung bean coat promote longevity and fitness in Caenorhabditis elegans. Food Funct 2021; 12:8196-8207. [PMID: 34296240 DOI: 10.1039/d1fo01322j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mung beans possess health benefits related to their bioactive ingredients, mainly flavonoids, which are highly concentrated in the coat. However, the anti-aging effects of mung beans are rarely reported. In this work, we found that mung bean coat extract (MBCE), rich in vitexin and isovitexin, extended the lifespan and promoted the health of Caenorhabditis elegans (C. elegans) without any disadvantages. Moreover, MBCE enhanced the resistance to heat and oxidation of C. elegans by reducing the accumulation of intracellular reactive oxygen species and up-regulating the expression of stress-resistant genes or proteins. Further studies demonstrated that MBCE improved longevity, stress-resistance and fitness by mediating the mitochondrial function, mimicking calorie restriction, and altering histone modification. These findings provide direct evidence for the anti-aging effects of mung beans and new insights into the innovations and applications of mung beans for the healthcare industry.
Collapse
Affiliation(s)
- Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Supplementation with phosphatidylethanolamine confers anti-oxidant and anti-aging effects via hormesis and reduced insulin/IGF-1-like signaling in C. elegans. Mech Ageing Dev 2021; 197:111498. [PMID: 33974957 DOI: 10.1016/j.mad.2021.111498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023]
Abstract
Phosphatidylethanolamine is a major component of phospholipids with both structural and metabolic functions in cells. Previous studies have revealed that phosphatidylethanolamine can modulate autophagy with a protective effect against age-related diseases. We examined the effect of dietary supplementation with phosphatidylethanolamine on stress response and aging in Caenorhabditis elegans. Phosphatidylethanolamine increased resistance to oxidative stress without effect on heat stress or ultraviolet irradiation. Both mean and maximum lifespans were significantly increased by phosphatidylethanolamine while fertility was reduced as a trade-off. Age-related decline of muscle function was delayed in animals treated with phosphatidylethanolamine. Supplementation with phosphatidylethanolamine suppressed toxic effect of amyloid β and high-glucose diet. Increased ROS levels and induction of stress-responsive genes after dietary supplementation with phosphatidylethanolamine suggest that anti-oxidative stress and anti-aging effects of phosphatidylethanolamine might be though hormesis. Genetic analysis using long-lived mutants and knockdown by RNAi revealed that the lifespan-extending effect of phosphatidylethanolamine overlapped with that of reduced insulin/IGF-1-like signaling and required DAF-16, a downstream transcription factor known to regulate the expression of many stress-responsive genes. These findings indicate that phosphatidylethanolamine has anti-oxidative stress and anti-aging activities with its underlying mechanisms involving hormesis and reduced insulin/IGF-1-like signaling in C. elegans.
Collapse
|
14
|
Wu X, Al-Amin M, Zhao C, An F, Wang Y, Huang Q, Teng H, Song H. Catechinic acid, a natural polyphenol compound, extends the lifespan of Caenorhabditis elegans via mitophagy pathways. Food Funct 2021; 11:5621-5634. [PMID: 32530444 DOI: 10.1039/d0fo00694g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catechinic acid (CA), widely present in tea and fruits, has vital biological and pharmacological properties. CA plays an important role in the regulation of lifespan. However, the mechanism behind its anti-aging properties remains poorly characterized. In the present study, Caenorhabditis elegans (C. elegans) was used as a model organism. It was found that CA induced mitophagy which prevented the accumulation of dysfunctional mitochondria with age and profoundly extended lifespan. Notably, CA significantly improved the fitness of aging worms, particularly the treatment slowed age-related decline in observed spontaneous movements. Furthermore, CA was found to eliminate dysfunctional mitochondria in the gut and muscle cells, and demonstrated that the lifespan-prolonging effects of CA can be attributed to mitophagy along with the likely regulation of the genes bec-1 and pink-1. The results of this study indicated that pharmacologically induced mitophagy has a profound impact on aging, providing a novel therapeutic intervention against aging and age-related diseases.
Collapse
Affiliation(s)
- Xiaoqi Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Mohammad Al-Amin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China and Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yiwei Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Lind MI, Carlsson H, Duxbury EML, Ivimey-Cook E, Maklakov AA. Cost-free lifespan extension via optimization of gene expression in adulthood aligns with the developmental theory of ageing. Proc Biol Sci 2021; 288:20201728. [PMID: 33529563 PMCID: PMC7893226 DOI: 10.1098/rspb.2020.1728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Ageing evolves because the force of selection on traits declines with age but the proximate causes of ageing are incompletely understood. The 'disposable soma' theory of ageing (DST) upholds that competitive resource allocation between reproduction and somatic maintenance underpins the evolution of ageing and lifespan. In contrast, the developmental theory of ageing (DTA) suggests that organismal senescence is caused by suboptimal gene expression in adulthood. While the DST predicts the trade-off between reproduction and lifespan, the DTA predicts that age-specific optimization of gene expression can increase lifespan without reproduction costs. Here we investigated the consequences for lifespan, reproduction, egg size and individual fitness of early-life, adulthood and post-reproductive onset of RNAi knockdown of five 'longevity' genes involved in key biological processes in Caenorhabditis elegans. Downregulation of these genes in adulthood and/or during post-reproductive period increases lifespan, while we found limited evidence for a link between impaired reproduction and extended lifespan. Our findings demonstrate that suboptimal gene expression in adulthood often contributes to reduced lifespan directly rather than through competitive resource allocation between reproduction and somatic maintenance. Therefore, age-specific optimization of gene expression in evolutionarily conserved signalling pathways that regulate organismal life histories can increase lifespan without fitness costs.
Collapse
Affiliation(s)
- Martin I. Lind
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, SE-75236, Sweden
| | - Hanne Carlsson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Edward Ivimey-Cook
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alexei A. Maklakov
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
16
|
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Yakovleva DV, Ulyasheva NS, Gorbunova AA, Minnikhanova NR, Moskalev AA. Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster. Biogerontology 2021; 22:197-214. [PMID: 33544267 DOI: 10.1007/s10522-021-09911-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Endogenous hydrogen sulfide (H2S) is a gasotransmitter with a wide range of physiological functions. Aging is accompanied by disruption of H2S homeostasis, therefore, interventions to the processes of H2S metabolism to maintain its balance may have geroprotective potential. Here we demonstrated the additive geroprotective effect of combined genetic and pharmacological interventions to the hydrogen sulfide biosynthesis system by overexpression of cystathionine-β-synthase and cystathionine-γ-lyase genes and treatment with precursors of H2S synthesis cysteine (Cys) and N-acetyl-L-cysteine (NAC). The obtained results suggest that additive effects of genetic and pharmacological interventions to H2S metabolism may be associated with the complex interaction between beneficial action of H2S production and prevention of adverse effects of excess H2S production by Cys and NAC treatment.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation.,Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Liubov A Koval
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Eugenia V Schegoleva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Natalya R Minnikhanova
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation. .,Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation.
| |
Collapse
|
17
|
Decline in biological resilience as key manifestation of aging: Potential mechanisms and role in health and longevity. Mech Ageing Dev 2020; 194:111418. [PMID: 33340523 DOI: 10.1016/j.mad.2020.111418] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Decline in biological resilience (ability to recover) is a key manifestation of aging that contributes to increase in vulnerability to death with age eventually limiting longevity even in people without major chronic diseases. Understanding the mechanisms of this decline is essential for developing efficient anti-aging and pro-longevity interventions. In this paper we discuss: a) mechanisms of the decline in resilience with age, and aging components that contribute to this decline, including depletion of body reserves, imperfect repair mechanisms, and slowdown of physiological processes and responses with age; b) anti-aging interventions that may improve resilience or attenuate its decline; c) biomarkers of resilience available in human and experimental studies; and d) genetic factors that could influence resilience. There are open questions about optimal anti-aging interventions that would oppose the decline in resilience along with extending longevity limits. However, the area develops quickly, and prospects are exciting.
Collapse
|
18
|
Haidurov A, Budanov AV. Sestrin family - the stem controlling healthy ageing. Mech Ageing Dev 2020; 192:111379. [PMID: 33022334 DOI: 10.1016/j.mad.2020.111379] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/04/2020] [Accepted: 09/29/2020] [Indexed: 01/18/2023]
Abstract
Sestrins are a family of stress-responsive antioxidant proteins responsible for regulation of cell viability and metabolism. The best known Sestrin targets are mTORC1 and mTORC2 kinases that control different cellular processes including growth, viability, autophagy, and mitochondrial metabolism. Inactivation of the single Sestrin gene in invertebrates has an adverse impact on their healthspan and longevity, whereas each of the three Sestrin genes in mammals and other vertebrate organisms has a different impact on maintenance of a particular tissue, affecting its stress tolerance, function and regenerative capability. As a result, Sestrins attenuate ageing and suppress development of many age-related diseases including myocardial infarction, muscle atrophy, diabetes, and immune dysfunction, but exacerbate development of chronic obstructive pulmonary disease. Moreover, Sestrins play opposite roles in carcinogenesis in different tissues. Stem cells support tissue remodelling that influences ageing, and Sestrins might suppress ageing and age-related pathologies through control of stem cell biology. In this review, we will discuss the potential link between Sestrins, stem cells, and ageing.
Collapse
Affiliation(s)
- Alexander Haidurov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrei V Budanov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
19
|
Turner MJ, Cox JK, Spellman AC, Stahl C, Bavari S. Avoidance behavior independent of innate-immune signaling seen in Caenorhabditis elegans challenged with Bacillus anthracis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103453. [PMID: 31326564 DOI: 10.1016/j.dci.2019.103453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Small organisms, like the nematode C. elegans, are emerging as insightful models in which to study host/pathogen interactions and the evolving interplay between host defenses and microbial offenses. In C. elegans the innate immune response has been shown to be connected to the DAF-2 insulin/insulin-like growth factor 1 (IGF-1) signal pathway, a critical transduction pathway that mediates stress response in the worms via the DAF-16 FOXO/forkhead transcription factor. Our studies of the C. elegans' phenotypes that are associated with behavioral innate immune response (avoidance behavior) and IGF-1 signaling perturbations (lifespan effects) led us to question the cause of the avoidance behavior observed when C. elegans are challenged with B. anthracis. While worms indeed avoid B. anthracis, and this behavior seems to be partly tied to IGF-1 signaling, the bacteria have neither nematocidal nor visible pathogenic effects on the worms. In fact, worms fed B. anthracis alone exhibit extended lifespans. We demonstrate that the extended lifespan phenotype seen in worms fed B. anthracis is likely the result of calorie restriction, and that worms do not eat B. anthracis even when avoidance behaviors have been suppressed. We further demonstrate a large time lag between the onset of avoidance behavior (which occurs upon contact with B. anthracis), and the induction of IGF-1 signaling (which occurs much later) in worms fed B. anthracis. Taken together, our data demonstrate behavioral avoidance that does not appear to be linked to a measurable immune response. We propose that, in some situations, avoidance behaviors categorized as immunological might be more accurately described as broad foraging behaviors induced in worms presented with a non-preferred food choice, or with a food choice that is either difficult or impossible for the worms to ingest.
Collapse
Affiliation(s)
- Michael J Turner
- School of Natural Sciences and Mathematics, Department of Science, Mount St. Mary's University, 16300 Old Emmitsburg Rd, Emmitsburg, MD, 21727, USA; Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA.
| | - Justin K Cox
- School of Natural Sciences and Mathematics, Department of Science, Mount St. Mary's University, 16300 Old Emmitsburg Rd, Emmitsburg, MD, 21727, USA.
| | - Anthony C Spellman
- School of Natural Sciences and Mathematics, Department of Science, Mount St. Mary's University, 16300 Old Emmitsburg Rd, Emmitsburg, MD, 21727, USA.
| | - Craig Stahl
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA.
| | - Sina Bavari
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
20
|
Cypser JR, Chick WS, Fahy GM, Schumacher GJ, Johnson TE. Genetic suppression of cryoprotectant toxicity. Cryobiology 2019; 86:95-102. [PMID: 30458175 PMCID: PMC7001869 DOI: 10.1016/j.cryobiol.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
We report here a new, unbiased forward genetic method that uses transposon-mediated mutagenesis to enable the identification of mutations that confer cryoprotectant toxicity resistance (CTR). Our method is to select for resistance to the toxic effects of M22, a much-studied whole-organ vitrification solution. We report finding and characterizing six mutants that are resistant to M22. These mutants fall into six independent biochemical pathways not previously linked to cryoprotectant toxicity (CT). The genes associated with the mutations were Gm14005, Myh9, Nrg2, Pura, Fgd2, Pim1, Opa1, Hes1, Hsbp1, and Ywhag. The mechanisms of action of the mutations remain unknown, but two of the mutants involve MYC signaling, which was previously implicated in CT. Several of the mutants may up-regulate cellular stress defense pathways. Several of the M22-resistant mutants were also resistant to dimethyl sulfoxide (Me2SO), and many of the mutants showed significantly improved survival after freezing and thawing in 10% (v/v) Me2SO. This new approach to overcoming CT has many advantages over alternative methods such as transcriptomic profiling. Our method directly identifies specific genetic loci that unequivocally affect CT. More generally, our results provide the first direct evidence that CT can be reduced in mammalian cells by specific molecular interventions. Thus, this approach introduces remarkable new opportunities for pharmacological blockade of CT.
Collapse
Affiliation(s)
- James R Cypser
- Institute for Behavioral Genetics, University of Colorado Boulder, USA
| | - Wallace S Chick
- Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, CO, USA; Charles C. Gates Center for Regenerative Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | | | - Thomas E Johnson
- Institute for Behavioral Genetics, University of Colorado Boulder, USA; Department of Integrative Physiology, University of Colorado Boulder, USA.
| |
Collapse
|
21
|
Tedesco PM, Schumacher GJ, Johnson TE. Cryoprotectant toxicity in Caenorhabditis elegans. Cryobiology 2018; 86:71-76. [PMID: 30527584 DOI: 10.1016/j.cryobiol.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023]
Abstract
We have looked at the effects of the cryoprotectant M22 upon viability in the model organism C. elegans. M22 is a well-known vitrification solution which has been successfully used in the laboratory to preserve organs destined for transplantation. M22 reduces survival of C. elegans in a concentration-dependent manner. M22 at concentrations of 10% (v/v) or higher inhibits progeny production and development. A few mutants in the ILS (insulin-like signaling) pathway of C. elegans are more resistant to the toxic effect of M22 compared to wild-type worms. Afatinib, an anti-cancer drug, protects against M22 toxicity. Afatinib by itself does not increase longevity.
Collapse
Affiliation(s)
| | | | - Thomas E Johnson
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Department of Integrative Physiology, University of Colorado, Boulder, USA.
| |
Collapse
|
22
|
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Zhavoronkov A, Moskalev AA. Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging (Albany NY) 2018; 10:2428-2458. [PMID: 30243020 PMCID: PMC6188487 DOI: 10.18632/aging.101561] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/13/2018] [Indexed: 04/28/2023]
Abstract
N-acetyl-L-cysteine (NAC) is a derivative of the sulphur-containing amino acid L-cysteine with potential anti-aging properties. We studied 3 Drosophila species with contrast longevity differences (D. virilis is longest-lived, D. kikkawai is shortest-lived and D. melanogaster has moderate lifespan) to test the effects of NAC at 8 different concentrations (from 10 nM to 100 mM) on the lifespan, stress-resistance and locomotor activity. Except the adverse effects of highest (10 mM and 100 mM) concentrations NAC demonstrated sexually opposite and male-biased effects on Drosophila lifespan, stress-resistance and locomotor activity and not satisfied the criteria of a geroprotector in terms of the reproducibility of lifespan extending effects in different model organisms. The concentration- and sex-dependent changes in the relative expression levels of the antioxidant genes (Cat/CG6871 and Sod1/CG11793) and genes involved in hydrogen sulfide biosynthesis (Cbs/CG1753, Eip55E/CG5345 and Nfs1/CG12264) suggest the involvement of hormetic mechanisms in the geroprotective effects of NAC.
Collapse
Affiliation(s)
- Mikhail V. Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Nadezhda V. Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Liubov A. Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Eugenia V. Schegoleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, JHU, Rockville, MD 21218, USA
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
23
|
Bennett HL, Khoruzhik Y, Hayden D, Huang H, Sanders J, Walsh MB, Biron D, Hart AC. Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep. BMC Neurosci 2018; 19:10. [PMID: 29523076 PMCID: PMC5845181 DOI: 10.1186/s12868-018-0408-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/22/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sleep deprivation impairs learning, causes stress, and can lead to death. Notch and JNK-1 pathways impact C. elegans sleep in complex ways; these have been hypothesized to involve compensatory sleep. C. elegans DAF-16, a FoxO transcription factor, is required for homeostatic response to decreased sleep and DAF-16 loss decreases survival after sleep bout deprivation. Here, we investigate connections between these pathways and the requirement for sleep after mechanical stress. RESULTS Reduced function of Notch ligand LAG-2 or JNK-1 kinase resulted in increased time in sleep bouts during development. These animals were inappropriately easy to arouse using sensory stimulation, but only during sleep bouts. This constellation of defects suggested that poor quality sleep bouts in these animals might activate homeostatic mechanisms, driving compensatory increased sleep bouts. Testing this hypothesis, we found that DAF-16 FoxO function was required for increased sleep bouts in animals with defective lag-2 and jnk-1, as loss of daf-16 reduced sleep bouts back to normal levels. However, loss of daf-16 did not suppress arousal thresholds defects. Where DAF-16 function was required differed; in lag-2 and jnk-1 animals, daf-16 function was required in neurons or muscles, respectively, suggesting that disparate tissues can drive a coordinated response to sleep need. Sleep deprivation due to mechanical stimulation can cause death in many species, including C. elegans, suggesting that sleep is essential. We found that loss of sleep bouts in C. elegans due to genetic manipulation did not impact their survival, even in animals lacking DAF-16 function. However, we found that sleep bout deprivation was often fatal when combined with the concurrent stress of mechanical stimulation. CONCLUSIONS Together, these results in C. elegans confirm that Notch and JNK-1 signaling are required to achieve normal sleep depth, suggest that DAF-16 is required for increased sleep bouts when signaling decreases, and that failure to enter sleep bouts is not sufficient to cause death in C. elegans, unless paired with concurrent mechanical stress. These results suggest that mechanical stress may directly contribute to death observed in previous studies of sleep deprivation and/or that sleep bouts have a uniquely restorative role in C. elegans sleep.
Collapse
Affiliation(s)
- Heather L. Bennett
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Yulia Khoruzhik
- Department of Neuroscience, Brown University, 185 Meeting Street, Box GL-N, Providence, RI 02912 USA
| | - Dustin Hayden
- Department of Neuroscience, Brown University, 185 Meeting Street, Box GL-N, Providence, RI 02912 USA
| | - Huiyan Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Jarred Sanders
- Department of Physics, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 E. 57th St., Chicago, IL 60637 USA
| | - Melissa B. Walsh
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - David Biron
- Department of Physics, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 E. 57th St., Chicago, IL 60637 USA
| | - Anne C. Hart
- Department of Neuroscience, Brown University, 185 Meeting Street, Box GL-N, Providence, RI 02912 USA
| |
Collapse
|
24
|
Mendenhall A, Crane MM, Tedesco PM, Johnson TE, Brent R. Caenorhabditis elegans Genes Affecting Interindividual Variation in Life-span Biomarker Gene Expression. J Gerontol A Biol Sci Med Sci 2017; 72:1305-1310. [PMID: 28158434 DOI: 10.1093/gerona/glw349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/30/2016] [Indexed: 01/12/2023] Open
Abstract
Genetically identical organisms grown in homogenous environments differ in quantitative phenotypes. Differences in one such trait, expression of a single biomarker gene, can identify isogenic cells or organisms that later manifest different fates. For example, in isogenic populations of young adult Caenorhabditis elegans, differences in Green Fluorescent Protein (GFP) expressed from the hsp-16.2 promoter predict differences in life span. Thus, it is of interest to determine how interindividual differences in biomarker gene expression arise. Prior reports showed that the thermosensory neurons and insulin signaling systems controlled the magnitude of the heat shock response, including absolute expression of hsp-16.2. Here, we tested whether these regulatory signals might also influence variation in hsp-16.2 reporter expression. Genetic experiments showed that the action of AFD thermosensory neurons increases interindividual variation in biomarker expression. Further genetic experimentation showed the insulin signaling system acts to decrease interindividual variation in life-span biomarker expression; in other words, insulin signaling canalizes expression of the hsp-16.2-driven life-span biomarker. Our results show that specific signaling systems regulate not only expression level, but also the amount of interindividual expression variation for a life-span biomarker gene. They raise the possibility that manipulation of these systems might offer means to reduce heterogeneity in the aging process.
Collapse
Affiliation(s)
| | | | | | - Thomas E Johnson
- Institute for Behavioral Genetics.,Department of Integrative Physiology.,Biofrontiers Institute, University of Colorado, Boulder
| | - Roger Brent
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
25
|
Kim JS, Kim SH, Park SK. Selenocysteine modulates resistance to environmental stress and confers anti-aging effects in C. elegans. Clinics (Sao Paulo) 2017; 72:491-498. [PMID: 28954009 PMCID: PMC5579318 DOI: 10.6061/clinics/2017(08)07] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/30/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE: The free radical theory of aging suggests that cellular oxidative damage caused by free radicals is a leading cause of aging. In the present study, we examined the effects of a well-known anti-oxidant amino acid derivative, selenocysteine, in response to environmental stress and aging using Caenorhabditis elegans as a model system. METHOD: The response to oxidative stress induced by H2O2 or ultraviolet irradiation was compared between the untreated control and selenocysteine-treated groups. The effect of selenocysteine on lifespan and fertility was then determined. To examine the effect of selenocysteine on muscle aging, we monitored the change in motility with aging in both the untreated control and selenocysteine-treated groups. RESULTS: Dietary supplementation with selenocysteine significantly increased resistance to oxidative stress. Survival after ultraviolet irradiation was also increased by supplementation with selenocysteine. Treatment with selenocysteine confers a longevity phenotype without an accompanying reduction in fertility, which is frequently observed in lifespan-extending interventions as a trade-off in C. elegans. In addition, the age-related decline in motility was significantly delayed by supplementation of selenocysteine. CONCLUSION: These findings suggest that dietary supplementation of selenocysteine can modulate response to stressors and lead to lifespan extension, thus supporting the free radical theory of aging.
Collapse
Affiliation(s)
- Jun-Sung Kim
- Soonchunhyang University, College of Medical Sciences, Department of Medical Biotechnology, Asan, Chungnam, Republic of Korea
| | - So-Hyeon Kim
- Soonchunhyang University, College of Medical Sciences, Department of Medical Biotechnology, Asan, Chungnam, Republic of Korea
| | - Sang-Kyu Park
- Soonchunhyang University, College of Medical Sciences, Department of Medical Biotechnology, Asan, Chungnam, Republic of Korea
- *Corresponding author: E-mail:
| |
Collapse
|
26
|
Kim SJ, Beak SM, Park SK. Supplementation with Triptolide Increases Resistance to Environmental Stressors and Lifespan in C. elegans. J Food Sci 2017; 82:1484-1490. [PMID: 28471052 DOI: 10.1111/1750-3841.13720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 11/29/2022]
Abstract
Triptolide is a major active compound found in Tripterygium wilfordii., also known as Thunder God Vine. Triptolide has been shown to have anti-inflammatory and anticancer activities. In this study, we examined the effect of dietary supplementation with triptolide on response to environmental stressors and lifespan in vivo using Caenorhabditis elegans as a model system. Treatment with 50 mg/L of triptolide in the growth media increased resistance to oxidative stress and reduced the generation of intracellular reactive oxygen species. We also observed a lifespan-extending activity for triptolide. Both mean and maximum lifespans were significantly increased by supplementation with triptolide. Response to other environmental stressors was modulated by triptolide. The survival after heat shock or UV irradiation was markedly increased in worms treated with triptolide. Unlike many lifespan-extending genetic or nutritional interventions, the longevity phenotype conferred by triptolide did not have the trade-off of a reduction in fertility or a delay in the gravid period. The expressions of hsp-16.2 and sod-3, known to positively correlate with a long lifespan, were significantly upregulated by supplementation with triptolide. These findings suggest that triptolide can exhibit antistress and lifespan-extending effects in vivo, possibly through its antioxidant activity and support the free radical theory of aging, which emphasizes the causative role of oxidative stress in aging.
Collapse
Affiliation(s)
- Sung-Jin Kim
- Dept. of Medical Biotechnology, College of Medical Sciences, Soonchunhyang Univ., Asan, Chungnam, Republic of Korea
| | - Sun-Mi Beak
- Dept. of Medical Biotechnology, College of Medical Sciences, Soonchunhyang Univ., Asan, Chungnam, Republic of Korea
| | - Sang-Kyu Park
- Dept. of Medical Biotechnology, College of Medical Sciences, Soonchunhyang Univ., Asan, Chungnam, Republic of Korea
| |
Collapse
|
27
|
Wu M, Kang X, Wang Q, Zhou C, Mohan C, Peng A. Regulator of G protein signaling-1 modulates paraquat-induced oxidative stress and longevity via the insulin like signaling pathway in Caenorhabditis elegans. Toxicol Lett 2017; 273:97-105. [PMID: 28366735 DOI: 10.1016/j.toxlet.2017.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022]
Abstract
Insulin or insulin like signaling (IIS) pathway is a crucial pathway in Caenorhabditis elegans associated with mediating longevity, and stress resistance. Regulators of G protein signaling (RGS) also modulate stress resistance and longevity in multiple in vitro and in vivo models. However, the mechanism underlying RGS mediating stress resistance and longevity remains largely unclear. Here we report that rgs-1, an important member of rgs family, is a novel modulator of IIS pathway in C. elegans. We found that the loss of rgs-1 dramatically promoted paraquat resistance in C. elegans. Further genetic analyses demonstrated that rgs-1 acted downstream of daf-2 and upstream of age-1, pdk-1, daf-16. Instead of affecting those IIS-associated genes in transcriptional process, loss of rgs-1 promoted DAF-16's nucleus translocation and subset genes' expression in paraquat-induced oxidative status. By this way, rgs-1 mutant worms exhibited lower ROS damage and longer survival time than wild type worms when both exposed to paraquat. Other than paraquat exposure, rgs-1 mutant also promoted lifespan and cadmium resistance relying on daf-16. As rgs is evolutionarily conserved, our findings open a new insight into rgs family and its role in paraquat-induced oxidative stress and longevity in C. elegans or even mammals.
Collapse
Affiliation(s)
- Mingyu Wu
- Center for Nephrology and Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xin Kang
- Center for Nephrology and Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiang Wang
- Center for Nephrology and Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chunyu Zhou
- Center for Nephrology and Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chandra Mohan
- Center for Nephrology and Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.
| | - Ai Peng
- Center for Nephrology and Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
28
|
Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster. J Comp Physiol B 2017; 187:899-909. [PMID: 28261744 DOI: 10.1007/s00360-017-1061-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/05/2017] [Accepted: 01/18/2017] [Indexed: 02/08/2023]
Abstract
Gender differences in lifespan and aging are known across species. Sex differences in longevity within a species can be useful to understand sex-specific aging. Drosophila melanogaster is a good model to study the problem of sex differences in longevity since females are longer lived than males. There is evidence that stress resistance influences longevity. The objective of this study was to investigate if there is a relationship between sex differences in longevity and oxidative stress resistance in D. melanogaster. We observed a progressive age-dependent decrease in the activity of SOD and catalase, major antioxidant enzymes involved in defense mechanisms against oxidative stress in parallel to the increased ROS levels over time. Longer-lived females showed lower ROS levels and higher antioxidant enzymes than males as a function of age. Using ethanol as a stressor, we have shown differential susceptibility of the sexes to ethanol wherein females exhibited higher resistance to ethanol-induced mortality and locomotor behavior compared to males. Our results show strong correlation between sex differences in oxidative stress resistance, antioxidant defenses and longevity. The study suggests that higher antioxidant defenses in females may confer resistance to oxidative stress, which could be a factor that influences sex-specific aging in D. melanogaster.
Collapse
|
29
|
Sumaya NH, Aryal S, Vandenbossche B, Barg M, Doerfler V, Strauch O, Molina C, Ehlers RU. Phenotyping dauer juvenile oxidative stress tolerance, longevity and persistence within wild type and inbred lines of the entomopathogenic nematode Heterorhabditis bacteriophora. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The commercial use of the entomopathogenic nematodeHeterorhabditis bacteriophoraas a biocontrol agent against noxious insects is limited due to its relatively short shelf-life. Longevity of dauer juveniles (DJ) during storage and in transit to end users is considerably restricted by environmental stresses. As a derivative stress triggered by environmental factors, oxidative stress causes a strong internal metabolic imbalance leading to lifespan reduction. In this study, the relation between DJ oxidative stress tolerance and longevity inH. bacteriophorawas investigated at 25 and 7°C. A strong and significant correlation between DJ oxidative stress tolerance and longevity during storage in Ringer’s solution ( at 7°C; at 25°C) was recorded. Phenotyping of these traits was performed for 40H. bacteriophorawild type strain and inbred line collections. At 25°C, the mean time survived in Ringer’s by 50% of the DJ (MTS50) ranged from 21 to 57 days, whereas under oxidative stress, survival was from 3 to 22 days. At 7°C, a maximum MTS50of 94 days was assessed when DJ were stored in Ringer’s, while the maximum MTS50was only 25 days with oxidative stress induction. The heritability of DJ tolerance to oxidative stress, determined by using homozygous inbred lines, is high (), an indication of a high probability for successful selective breeding. In a subset of preselectedH. bacteriophorainbred lines, DJ oxidative stress tolerance correlated with the DJ survival (persistence) after application to sand (). The study provides fundamental data required for a genetic breeding programme to produce hybrids with improved stress tolerance and prolonged shelf-life and soil persistence.
Collapse
Affiliation(s)
- Nanette Hope Sumaya
- Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 4, 24118 Kiel, Germany
- e-nema GmbH, Klausdorfer Strasse 28-36, 24223 Schwentinental, Germany
| | - Sitaram Aryal
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | - Mike Barg
- e-nema GmbH, Klausdorfer Strasse 28-36, 24223 Schwentinental, Germany
| | - Verena Doerfler
- e-nema GmbH, Klausdorfer Strasse 28-36, 24223 Schwentinental, Germany
| | - Olaf Strauch
- e-nema GmbH, Klausdorfer Strasse 28-36, 24223 Schwentinental, Germany
| | - Carlos Molina
- e-nema GmbH, Klausdorfer Strasse 28-36, 24223 Schwentinental, Germany
| | - Ralf-Udo Ehlers
- Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 4, 24118 Kiel, Germany
- e-nema GmbH, Klausdorfer Strasse 28-36, 24223 Schwentinental, Germany
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
30
|
|
31
|
COUNTRY-LEVEL SOCIOECONOMIC INDICATORS ASSOCIATED WITH SURVIVAL PROBABILITY OF BECOMING A CENTENARIAN AMONG OLDER EUROPEAN ADULTS: GENDER INEQUALITY, MALE LABOUR FORCE PARTICIPATION AND PROPORTIONS OF WOMEN IN PARLIAMENTS. J Biosoc Sci 2016; 49:239-250. [PMID: 27071450 DOI: 10.1017/s0021932016000092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study confirms an association between survival probability of becoming a centenarian (SPBC) for those aged 65 to 69 and country-level socioeconomic indicators in Europe: the gender inequality index (GII), male labour force participation (MLP) rates and proportions of seats held by women in national parliaments (PWP). The analysis was based on SPBC data from 34 countries obtained from the United Nations (UN). Country-level socioeconomic indicator data were obtained from the UN and World Bank databases. The associations between socioeconomic indicators and SPBC were assessed using correlation coefficients and multivariate regression models. The findings show significant correlations between the SPBC for women and men aged 65 to 69 and country-level socioeconomic indicators: GII (r=-0.674, p=0.001), MLP (r=0.514, p=0.002) and PWP (r=0.498, p=0.003). The SPBC predictors for women and men were lower GIIs and higher MLP and PWP (R 2=0.508, p=0.001). Country-level socioeconomic indicators appear to have an important effect on the probability of becoming a centenarian in European adults aged 65 to 69. Country-level gender equality policies in European counties may decrease the risk of unhealthy old age and increase longevity in elders through greater national gender equality; disparities in GII and other country-level socioeconomic indicators impact longevity probability. National longevity strategies should target country-level gender inequality.
Collapse
|
32
|
Castillo-Quan JI, Kinghorn KJ, Bjedov I. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. ADVANCES IN GENETICS 2015; 90:1-101. [PMID: 26296933 DOI: 10.1016/bs.adgen.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J Kinghorn
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ivana Bjedov
- Cancer Institute, University College London, London, UK
| |
Collapse
|
33
|
Effects of the mitochondrial respiratory chain on longevity in C. elegans. Exp Gerontol 2014; 56:245-55. [DOI: 10.1016/j.exger.2014.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
|
34
|
Kumsta C, Ching TT, Nishimura M, Davis AE, Gelino S, Catan HH, Yu X, Chu CC, Ong B, Panowski SH, Baird N, Bodmer R, Hsu AL, Hansen M. Integrin-linked kinase modulates longevity and thermotolerance in C. elegans through neuronal control of HSF-1. Aging Cell 2014; 13:419-30. [PMID: 24314125 PMCID: PMC4059541 DOI: 10.1111/acel.12189] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 12/18/2022] Open
Abstract
Integrin-signaling complexes play important roles in cytoskeletal organization and cell adhesion in many species. Components of the integrin-signaling complex have been linked to aging in both Caenorhabditis elegans and Drosophila melanogaster, but the mechanism underlying this function is unknown. Here, we investigated the role of integrin-linked kinase (ILK), a key component of the integrin-signaling complex, in lifespan determination. We report that genetic reduction of ILK in both C. elegans and Drosophila increased resistance to heat stress, and led to lifespan extension in C. elegans without majorly affecting cytoskeletal integrity. In C. elegans, longevity and thermotolerance induced by ILK depletion was mediated by heat-shock factor-1 (HSF-1), a major transcriptional regulator of the heat-shock response (HSR). Reduction in ILK levels increased hsf-1 transcription and activation, and led to enhanced expression of a subset of genes with roles in the HSR. Moreover, induction of HSR-related genes, longevity and thermotolerance caused by ILK reduction required the thermosensory neurons AFD and interneurons AIY, which are known to play a critical role in the canonical HSR. Notably, ILK was expressed in neighboring neurons, but not in AFD or AIY, implying that ILK reduction initiates cell nonautonomous signaling through thermosensory neurons to elicit a noncanonical HSR. Our results thus identify HSF-1 as a novel effector of the organismal response to reduced ILK levels and show that ILK inhibition regulates HSF-1 in a cell nonautonomous fashion to enhance stress resistance and lifespan in C. elegans.
Collapse
Affiliation(s)
- Caroline Kumsta
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Tsui-Ting Ching
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Institute of Biopharmaceutical Sciences, National Yang-Ming UniversityTaipei, Taiwan
| | - Mayuko Nishimura
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Andrew E Davis
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Sara Gelino
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Hannah H Catan
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Xiaokun Yu
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Chu-Chiao Chu
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Binnan Ong
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Siler H Panowski
- The Glenn Center for Aging Research, The Salk Institute for Biological Studies, The Howard Hughes Medical InstituteLa Jolla, CA, USA
| | - Nathan Baird
- The Glenn Center for Aging Research, The Salk Institute for Biological Studies, The Howard Hughes Medical InstituteLa Jolla, CA, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Ao-Lin Hsu
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Malene Hansen
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| |
Collapse
|
35
|
Ristow M, Schmeisser K. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS). Dose Response 2014; 12:288-341. [PMID: 24910588 PMCID: PMC4036400 DOI: 10.2203/dose-response.13-035.ristow] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that reactive oxygen species (ROS), consisting of superoxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but rather may function as signaling molecules that promote health by preventing or delaying a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are generally accepted to cause cellular damage and to promote aging, low levels of these may rather improve systemic defense mechanisms by inducing an adaptive response. This concept has been named mitochondrial hormesis or mitohormesis. We here evaluate and summarize more than 500 publications from current literature regarding such ROS-mediated low-dose signaling events, including calorie restriction, hypoxia, temperature stress, and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors, AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culminate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance and stress resistance. Additionally, consequences of interfering with such ROS signals by pharmacological or natural compounds are being discussed, concluding that particularly antioxidants are useless or even harmful.
Collapse
Affiliation(s)
- Michael Ristow
- Energy Metabolism Laboratory, ETH Zürich (Swiss Federal Institute of Technology Zurich), Schwerzenbach/Zürich, CH 8603, Switzerland
- Dept. of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| | - Kathrin Schmeisser
- Dept. of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| |
Collapse
|
36
|
Zimmerman SM, Kim SK. The GATA transcription factor/MTA-1 homolog egr-1 promotes longevity and stress resistance in Caenorhabditis elegans. Aging Cell 2014; 13:329-39. [PMID: 24304470 PMCID: PMC4331783 DOI: 10.1111/acel.12179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 11/27/2022] Open
Abstract
Aging is associated with a large number of both phenotypic and molecular changes, but for most of these, it is not known whether these changes are detrimental, neutral, or protective. We have identified a conserved Caenorhabditis elegans GATA transcription factor/MTA-1 homolog egr-1 (lin-40) that extends lifespan and promotes resistance to heat and UV stress when overexpressed. Expression of egr-1 increases with age, suggesting that it may promote survival during normal aging. This increase in expression is dependent on the presence of the germline, raising the possibility that egr-1 expression is regulated by signals from the germline. In addition, loss of egr-1 suppresses the long lifespan of insulin receptor daf-2 mutants. The DAF-16 FOXO transcription factor is required for the increased stress resistance of egr-1 overexpression mutants, and egr-1 is necessary for the proper regulation of sod-3 (a reporter for DAF-16 activity). These results indicate that egr-1 acts within the insulin signaling pathway. egr-1 can also activate the expression of its paralog egl-27, another factor known to extend lifespan and increase stress resistance, suggesting that the two genes act in a common program to promote survival. These results identify egr-1 as part of a longevity-promoting circuit that changes with age in a manner that is beneficial for the lifespan of the organism.
Collapse
Affiliation(s)
| | - Stuart K. Kim
- Department of Genetics Stanford University Medical Center Stanford CA 94305USA
- Department of Developmental Biology Stanford University Medical Center Stanford CA 94305USA
| |
Collapse
|
37
|
Uncoupling reproduction from metabolism extends chronological lifespan in yeast. Proc Natl Acad Sci U S A 2014; 111:E1538-47. [PMID: 24706810 DOI: 10.1073/pnas.1323918111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Studies of replicative and chronological lifespan in Saccharomyces cerevisiae have advanced understanding of longevity in all eukaryotes. Chronological lifespan in this species is defined as the age-dependent viability of nondividing cells. To date this parameter has only been estimated under calorie restriction, mimicked by starvation. Because postmitotic cells in higher eukaryotes often do not starve, we developed a model yeast system to study cells as they age in the absence of calorie restriction. Yeast cells were encapsulated in a matrix consisting of calcium alginate to form ∼3 mm beads that were packed into bioreactors and fed ad libitum. Under these conditions cells ceased to divide, became heat shock and zymolyase resistant, yet retained high fermentative capacity. Over the course of 17 d, immobilized yeast cells maintained >95% viability, whereas the viability of starving, freely suspended (planktonic) cells decreased to <10%. Immobilized cells exhibited a stable pattern of gene expression that differed markedly from growing or starving planktonic cells, highly expressing genes in glycolysis, cell wall remodeling, and stress resistance, but decreasing transcription of genes in the tricarboxylic acid cycle, and genes that regulate the cell cycle, including master cyclins CDC28 and CLN1. Stress resistance transcription factor MSN4 and its upstream effector RIM15 are conspicuously up-regulated in the immobilized state, and an immobilized rim15 knockout strain fails to exhibit the long-lived, growth-arrested phenotype, suggesting that altered regulation of the Rim15-mediated nutrient-sensing pathway plays an important role in extending yeast chronological lifespan under calorie-unrestricted conditions.
Collapse
|
38
|
A cytoprotective perspective on longevity regulation. Trends Cell Biol 2013; 23:409-20. [PMID: 23726168 DOI: 10.1016/j.tcb.2013.04.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 02/07/2023]
Abstract
There are many mechanisms of lifespan extension, including the disruption of insulin/insulin-like growth factor 1 (IGF-1) signaling, metabolism, translation, and feeding. Despite the disparate functions of these pathways, inhibition of each induces responses that buffer stress and damage. Here, emphasizing data from genetic analyses in Caenorhabditis elegans, we explore the effectors and upstream regulatory components of numerous cytoprotective mechanisms activated as major elements of longevity programs, including detoxification, innate immunity, proteostasis, and oxidative stress response. We show that their induction underpins longevity extension across functionally diverse triggers and across species. Intertwined with the evolution of longevity, cytoprotective pathways are coupled to the surveillance of core cellular components, with important implications in normal and aberrant responses to drugs, chemicals, and pathogens.
Collapse
|
39
|
Cypser JR, Wu D, Park SK, Ishii T, Tedesco PM, Mendenhall AR, Johnson TE. Predicting longevity in C. elegans: fertility, mobility and gene expression. Mech Ageing Dev 2013; 134:291-7. [PMID: 23416266 DOI: 10.1016/j.mad.2013.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/08/2013] [Accepted: 02/02/2013] [Indexed: 11/29/2022]
Abstract
Expression level of an hsp-16.2::gfp transgene is a predictor of longevity in Caenorhabditis elegans. Here we examine fertility, movement and longevity, comparing high-expressing ("bright") and low-expressing ("dim") animals. There was no differential fertility between bright and dim individuals, suggesting that dim worms were not excessively frail. Worms with high hsp-16.2::gfp expression had improved mobility, consistent with improved health span. We predicted that the increased longevity of the bright worms would be associated with increased expression of protective genes such as those shown to be upregulated in Age mutants. However, few genes were differentially transcribed, although internal controls (hsp-16.2 and family members) were differentially expressed. Quite surprising was the observation that expression level of the transgenic reporter was inherited by the progeny: in seven experiments bright worms consistently produced progeny that were brighter. We tested and ruled out possible artifacts such as differential copy-number of the transgene as an explanation of this differential brightness. These results suggest that a robust physiological state does not depend heavily upon transcriptional differences for its establishment, consistent with proteostatic mechanisms underlying the differential longevity.
Collapse
Affiliation(s)
- James R Cypser
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Flies, worms and the Free Radical Theory of ageing. Ageing Res Rev 2013; 12:404-12. [PMID: 22504404 DOI: 10.1016/j.arr.2012.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/26/2012] [Accepted: 03/29/2012] [Indexed: 11/22/2022]
Abstract
Drosophila and Caenorhabditis elegans have provided the largest body of evidence addressing the Free Radical Theory of ageing, however the evidence has not been unequivocally supportive. Oxidative damage to DNA is probably not a major contributor, damage to lipids is assuming greater importance and damage to proteins probably the source of pathology. On balance the evidence does not support a primary role of oxidative damage in ageing in C. elegans, perhaps because of its particular energy metabolic and stress resistance profile. Evidence is more numerous, varied and consistent and hence more compelling for Drosophila, although not conclusive. However there is good evidence for a role of oxidative damage in later life pathology. Future work should: 1/ make more use of protein oxidative damage measurements; 2/ use inducible transgenic systems or pharmacotherapy to ensure genetic equivalence of controls and avoid confounding effects during development; 3/ to try to delay ageing, target interventions which reduce and/or repair protein oxidative damage.
Collapse
|
41
|
Xu X, Kim SK. The GATA transcription factor egl-27 delays aging by promoting stress resistance in Caenorhabditis elegans. PLoS Genet 2012; 8:e1003108. [PMID: 23271974 PMCID: PMC3521710 DOI: 10.1371/journal.pgen.1003108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
Stress is a fundamental aspect of aging, as accumulated damage from a lifetime of stress can limit lifespan and protective responses to stress can extend lifespan. In this study, we identify a conserved Caenorhabditis elegans GATA transcription factor, egl-27, that is involved in several stress responses and aging. We found that overexpression of egl-27 extends the lifespan of wild-type animals. Furthermore, egl-27 is required for the pro-longevity effects from impaired insulin/IGF-1 like signaling (IIS), as reduced egl-27 activity fully suppresses the longevity of worms that are mutant for the IIS receptor, daf-2. egl-27 expression is inhibited by daf-2 and activated by pro-longevity factors daf-16/FOXO and elt-3/GATA, suggesting that egl-27 acts at the intersection of IIS and GATA pathways to extend lifespan. Consistent with its role in IIS signaling, we found that egl-27 is involved in stress response pathways. egl-27 expression is induced in the presence of multiple stresses, its targets are significantly enriched for many types of stress genes, and altering levels of egl-27 itself affects survival to heat and oxidative stress. Finally, we found that egl-27 expression increases between young and old animals, suggesting that increased levels of egl-27 in aged animals may act to promote stress resistance. These results identify egl-27 as a novel factor that links stress and aging pathways.
Collapse
Affiliation(s)
- Xiao Xu
- Cancer Biology Program and Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stuart K. Kim
- Cancer Biology Program and Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Moskalev A, Plyusnina E, Shaposhnikov M, Shilova L, Kazachenok A, Zhavoronkov A. The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance. Cell Cycle 2012; 11:4222-41. [PMID: 23095639 PMCID: PMC3524218 DOI: 10.4161/cc.22545] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a relationship between various cellular stress factors and aging. In earlier studies, we demonstrated that overexpression of the D-GADD45 gene increases the life span of Drosophila melanogaster. In this study, we investigate the relationship between D-GADD45 activity and resistance to oxidative, genotoxic and thermal stresses as well as starvation. In most cases, flies with constitutive and conditional D-GADD45 overexpression in the nervous system were more stress-resistant than ones without overexpression. At the same time, most of the studied stress factors increased D-GADD45 expression in the wild-type strain. The lifespan-extending effect of D-GADD45 overexpression was also retained after exposure to chronic and acute gamma-irradiation, with doses of 40 сGy and 30 Gy, respectively. However, knocking out D-GADD45 resulted in a significant reduction in lifespan, lack of radiation hormesis and radioadaptive response. A dramatic decrease in the spontaneous level of D-GADD45 expression was observed in the nervous system as age progressed, which may be one of the causes of the age-related deterioration of organismal stress resistance. Thus, D-GADD45 expression is activated by most of the studied stress factors, and D-GADD45 overexpression resulted in an increase of stress resistance.
Collapse
Affiliation(s)
- Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia.
| | | | | | | | | | | |
Collapse
|
43
|
Tacutu R, Shore DE, Budovsky A, de Magalhães JP, Ruvkun G, Fraifeld VE, Curran SP. Prediction of C. elegans longevity genes by human and worm longevity networks. PLoS One 2012; 7:e48282. [PMID: 23144747 PMCID: PMC3483217 DOI: 10.1371/journal.pone.0048282] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
Intricate and interconnected pathways modulate longevity, but screens to identify the components of these pathways have not been saturating. Because biological processes are often executed by protein complexes and fine-tuned by regulatory factors, the first-order protein-protein interactors of known longevity genes are likely to participate in the regulation of longevity. Data-rich maps of protein interactions have been established for many cardinal organisms such as yeast, worms, and humans. We propose that these interaction maps could be mined for the identification of new putative regulators of longevity. For this purpose, we have constructed longevity networks in both humans and worms. We reasoned that the essential first-order interactors of known longevity-associated genes in these networks are more likely to have longevity phenotypes than randomly chosen genes. We have used C. elegans to determine whether post-developmental inactivation of these essential genes modulates lifespan. Our results suggest that the worm and human longevity networks are functionally relevant and possess a high predictive power for identifying new longevity regulators.
Collapse
Affiliation(s)
- Robi Tacutu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David E. Shore
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (VEF); (SPC)
| | - Sean P. Curran
- Division of Biogerontology, Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (VEF); (SPC)
| |
Collapse
|
44
|
Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways. PLoS Genet 2012; 8:e1002792. [PMID: 22829775 PMCID: PMC3400582 DOI: 10.1371/journal.pgen.1002792] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/11/2012] [Indexed: 11/19/2022] Open
Abstract
Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors. Many mutations that increase animal lifespan also confer stress tolerance, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of individual cytoprotective pathways is essential for lifespan extension, or merely correlated. To establish whether the regulatory pathways for the induction of cytoprotective responses are key in the extension of lifespan, we performed an RNAi screen for gene inactivations that decouple the activation of cytoprotective pathways from xenobiotic stimuli that normally induce them. The screen identified 29 genes that constitute the regulatory cascades of the unfolded protein response, oxidative stress response, and detoxification. These upstream regulatory genes are critical to stress tolerance and the extension of lifespan conferred by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, but have little effect on normal longevity.
Collapse
|
45
|
Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE. Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 2012; 11:51-66. [PMID: 21986581 PMCID: PMC3765067 DOI: 10.1016/j.arr.2011.09.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 12/12/2022]
Abstract
The Gadd45 proteins have been intensively studied, in view of their important role in key cellular processes. Indeed, the Gadd45 proteins stand at the crossroad of the cell fates by controlling the balance between cell (DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially dangerous cells (cell cycle arrest, cellular senescence), and maintaining the stem cell pool. However, the biogerontological aspects have not thus far received sufficient attention. Here we analyzed the pathways and modes of action by which Gadd45 members are involved in aging, longevity and age-related diseases. Because of their pleiotropic action, a decreased inducibility of Gadd45 members may have far-reaching consequences including genome instability, accumulation of DNA damage, and disorders in cellular homeostasis - all of which may eventually contribute to the aging process and age-related disorders (promotion of tumorigenesis, immune disorders, insulin resistance and reduced responsiveness to stress). Most recently, the dGadd45 gene has been identified as a longevity regulator in Drosophila. Although further wide-scale research is warranted, it is becoming increasingly clear that Gadd45s are highly relevant to aging, age-related diseases (ARDs) and to the control of life span, suggesting them as potential therapeutic targets in ARDs and pro-longevity interventions.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Group of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zanuncio JC, Jusselino-Filho P, Ribeiro RC, Zanuncio TV, Ramalho FDS, Serrão JE. Hormetic responses of a stinkbug predator to sublethal doses of pyrethroid. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 87:608-614. [PMID: 21947501 DOI: 10.1007/s00128-011-0405-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/02/2011] [Indexed: 05/31/2023]
Abstract
Stressors can affect reproduction and longevity by impacting endocrine and immune systems but they may increase life span and stimulate reproduction. The effects of sublethal doses of permethrin topically applied on third instar nymphs of Podisus distinctus (Heteroptera: Pentatomidae) was evaluated. The weight of females survival of nymph and adults, number of eggs and nymphs/females of P. distinctus were higher when exposed to lower doses of permethrin. On the other hand, the exposition to the 0.131, 1.315 and 13.15 ppb showed positive effects on the oviposition periods, number of egg masses and longevity of P. distinctus females.
Collapse
Affiliation(s)
- José C Zanuncio
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 35670-000, Brazil.
| | | | | | | | | | | |
Collapse
|
47
|
Zhang H, Li W, Li J, Fu W, Yao J, Duan D. Characterization and expression analysis of hsp70 gene from Ulva prolifera J. Agardh (Chlorophycophyta, Chlorophyceae). Mar Genomics 2011; 5:53-8. [PMID: 22325722 DOI: 10.1016/j.margen.2011.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/25/2011] [Accepted: 10/04/2011] [Indexed: 11/19/2022]
Abstract
In the Yellow Sea of China, large-scale green tides have broken out consecutively from 2007 to 2011. Ulva prolifera, the causative species of green tide, showed great ability to acclimate to adverse circumstance. To explore the mechanisms of rapid growth and stress resistance during the bloom, we characterized and analyzed hsp70 from U. prolifera. The results showed that hsp70 gene had 6 exons and 5 introns. The promoter-like region contained multiple cis-acting elements. The transcription of hsp70 was up-regulated by UV irradiation, heat treatment and salinities induction, but less influenced by desiccation. In vitro expression of HSP70 protein and western blot was also conducted, and the recombinant protein will be used in detecting the interaction between HSP70 and related functional proteins in the future. The study suggested that hsp70 could be used in prediction of stress tolerance in algae and monitoring environmental changes.
Collapse
Affiliation(s)
- Haining Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | |
Collapse
|
48
|
Seo PJ, Park CM. Signaling linkage between environmental stress resistance and leaf senescence in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2011; 6:1564-6. [PMID: 21921691 PMCID: PMC3256385 DOI: 10.4161/psb.6.10.17003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants possess versatile strategies that permit efficient use of limited nutrient resources during senescing process. This metabolic adjustment is critical for prevention of diverse cellular damage and thus for reproductive success and offspring production, particularly under environmental stress conditions. However, it is largely unknown how age-dependent resistance to cellular damages is established and how it is influenced by environmental stress signals during senescing process. We found that the VNI2 (VND-INTERACTING 2) transcription factor, which belongs to the NAC (NAM/ATAF1, 2/CUC2) transcription factor family, plays a role in the age-dependent induction of stress resistance. The VNI2 transcription factor is transcriptionally induced during senescing process and regulates COR/RD genes by binding directly to their promoters. The COR/RD proteins play a role in the protection from diverse cellular damages during senescing process. Notably, the transcriptional activation activity of VNI2 is further elevated under high salinity. These results indicate that plants increase environmental stress resistance by inducing the VNI2 gene to assure their reproductive success, supporting signaling crosstalk between stress resistance response and senescing process.
Collapse
Affiliation(s)
- Pil Joon Seo
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul, Korea
| | | |
Collapse
|
49
|
Wu Q, He K, Liu P, Li Y, Wang D. Association of oxidative stress with the formation of reproductive toxicity from mercury exposure on hermaphrodite nematode Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:175-184. [PMID: 21843797 DOI: 10.1016/j.etap.2011.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 04/10/2011] [Accepted: 04/27/2011] [Indexed: 05/31/2023]
Abstract
Here we selected HgCl(2) to investigate the mechanism of Hg toxicity on reproduction in hermaphrodite nematodes. Accompanied with decrease of brood size, Hg exposure caused severe deficits in egg number in uterus, egg laying and reproductive structures, including gonad arms and vulva, and formation of protruding phenotype for vulva. Meanwhile, Hg exposure induced severe stress response and oxidative damage in gonad and vulva. Pre-treatment with vitamin E, a potent antioxidant, at the L2-larval stage prevented the oxidative damage and formation of reproductive deficits in Hg exposed nematodes; however, pre-treatment with paraquat, a regent generating superoxide anions, induced more severe reproductive deficits in Hg exposed nematodes. Moreover, Hg exposure increased expression of clk-2 and isp-1 genes, whose mutations decrease ROS production, and decreased expression of mev-1 and gas-1 genes, whose mutations increase ROS production. Thus, oxidative stress may be essential for the induction of reproductive deficits in Hg exposed hermaphrodite nematodes.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | | | | | | | | |
Collapse
|
50
|
Yang CC, Chen D, Lee SS, Walter L. The dynamin-related protein DRP-1 and the insulin signaling pathway cooperate to modulate Caenorhabditis elegans longevity. Aging Cell 2011; 10:724-8. [PMID: 21463460 PMCID: PMC3135752 DOI: 10.1111/j.1474-9726.2011.00711.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Here, we report that inactivation of the Caenorhabditis elegans dynamin-related protein DRP-1, a key component responsible for mitochondrial fission and conserved from yeast to humans, dramatically enhanced the effect of reduced insulin signaling (IIS) to extend lifespan. This represents the first report of a beneficial impact of manipulating mitochondrial dynamics on animal lifespan and suggests that mitochondrial morphology and IIS cooperate to modulate aging.
Collapse
Affiliation(s)
- Christine C. Yang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Diana Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ludivine Walter
- Corresponding authors: Siu Sylvia Lee Phone: 1-607-255-8015 Fax: 1-607-255 6249, Ludivine Walter Phone: +33-4-72728663 Fax: +33-4-72728080
| |
Collapse
|