1
|
Khan SS, Khatik GL, Datusalia AK. Strategies for Treatment of Disease-Associated Dementia Beyond Alzheimer's Disease: An Update. Curr Neuropharmacol 2023; 21:309-339. [PMID: 35410602 PMCID: PMC10190146 DOI: 10.2174/1570159x20666220411083922] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/27/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Memory, cognition, dementia, and neurodegeneration are complexly interlinked processes with various mechanistic pathways, leading to a range of clinical outcomes. They are strongly associated with pathological conditions like Alzheimer's disease, Parkinson's disease, schizophrenia, and stroke and are a growing concern for their timely diagnosis and management. Several cognitionenhancing interventions for management include non-pharmacological interventions like diet, exercise, and physical activity, while pharmacological interventions include medicinal agents, herbal agents, and nutritional supplements. This review critically analyzed and discussed the currently available agents under different drug development phases designed to target the molecular targets, including cholinergic receptor, glutamatergic system, GABAergic targets, glycine site, serotonergic targets, histamine receptors, etc. Understanding memory formation and pathways involved therein aids in opening the new gateways to treating cognitive disorders. However, clinical studies suggest that there is still a dearth of knowledge about the pathological mechanism involved in neurological conditions, making the dropouts of agents from the initial phases of the clinical trial. Hence, a better understanding of the disease biology, mode of drug action, and interlinked mechanistic pathways at a molecular level is required.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Ashok K. Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| |
Collapse
|
2
|
Wu Y, Berisha A, Borniger JC. Neuropeptides in Cancer: Friend and Foe? Adv Biol (Weinh) 2022; 6:e2200111. [PMID: 35775608 DOI: 10.1002/adbi.202200111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Indexed: 01/28/2023]
Abstract
Neuropeptides are small regulatory molecules found throughout the body, most notably in the nervous, cardiovascular, and gastrointestinal systems. They serve as neurotransmitters or hormones in the regulation of diverse physiological processes. Cancer cells escape normal growth control mechanisms by altering their expression of growth factors, receptors, or intracellular signals, and neuropeptides have recently been recognized as mitogens in cancer growth and development. Many neuropeptides and their receptors exist in multiple subtypes, coupling with different downstream signaling pathways and playing distinct roles in cancer progression. The consideration of neuropeptide/receptor systems as anticancer targets is already leading to new biological and diagnostic knowledge that has the potential to enhance the understanding and treatment of cancer. In this review, recent discoveries regarding neuropeptides in a wide range of cancers, emphasizing their mechanisms of action, signaling cascades, regulation, and therapeutic potential, are discussed. Current technologies used to manipulate and analyze neuropeptides/receptors are described. Applications of neuropeptide analogs and their receptor inhibitors in translational studies and radio-oncology are rapidly increasing, and the possibility for their integration into therapeutic trials and clinical treatment appears promising.
Collapse
Affiliation(s)
- Yue Wu
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
3
|
Brancato A, Castelli V, Lavanco G, Marino RAM, Cannizzaro C. In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? J Psychopharmacol 2020; 34:663-679. [PMID: 32338122 DOI: 10.1177/0269881120916135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cannabinoid consumption during pregnancy has been increasing on the wave of the broad-based legalisation of cannabis in Western countries, raising concern about the putative detrimental outcomes on foetal neurodevelopment. Indeed, since the endocannabinoid system regulates synaptic plasticity, emotional and cognitive processes from early stages of life interfering with it and other excitability endogenous modulators, such as neuropeptide Y (NPY), might contribute to the occurrence of a vulnerable phenotype later in life. AIMS This research investigated whether in utero exposure to Δ9-tetrahydrocannabinol (THC) may induce deficits in emotional/cognitive processes and alcohol vulnerability in adolescent offspring. NPY and excitatory postsynaptic density (PSD) machinery were measured as markers of neurobiological vulnerability. METHODS Following in utero THC exposure (2 mg/kg delivered subcutaneously), preadolescent male rat offspring were assessed for: behavioural reactivity in the open field test, neutral declarative memory and aversive limbic memory in the Novel Object and Emotional Object Recognition tests, immunofluorescence for NPY neurons and the PSD proteins Homer-1, 1b/c and 2 in the prefrontal cortex, amygdala and nucleus accumbens at adolescence (cohort 1); and instrumental learning, alcohol taking, relapse and conflict behaviour in the operant chamber throughout adolescence until early adulthood (cohort 2). RESULTS In utero THC-exposed adolescent rats showed: (a) increased locomotor activity; (b) no alteration in neutral declarative memory; (c) impaired aversive limbic memory; (d) decreased NPY-positive neurons in limbic regions; (e) region-specific variations in Homer-1, 1b/c and 2 immunoreactivity; (f) decreased instrumental learning and increased alcohol drinking, relapse and conflict behaviour in the operant chamber. CONCLUSION Gestational THC impaired the formation of memory traces when integration between environmental encoding and emotional/motivational processing was required and promoted the development of alcohol-addictive behaviours. The abnormalities in NPY signalling and PSD make-up may represent the common neurobiological background, suggesting new targets for future research.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Rosa Anna Maria Marino
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, USA
| | - Carla Cannizzaro
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
5
|
Petrella C, Di Certo MG, Barbato C, Gabanella F, Ralli M, Greco A, Possenti R, Severini C. Neuropeptides in Alzheimer’s Disease: An Update. Curr Alzheimer Res 2019; 16:544-558. [DOI: 10.2174/1567205016666190503152555] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
Neuropeptides are small proteins broadly expressed throughout the central nervous system, which act as neurotransmitters, neuromodulators and neuroregulators. Growing evidence has demonstrated the involvement of many neuropeptides in both neurophysiological functions and neuropathological conditions, among which is Alzheimer’s disease (AD). The role exerted by neuropeptides in AD is endorsed by the evidence that they are mainly neuroprotective and widely distributed in brain areas responsible for learning and memory processes. Confirming this point, it has been demonstrated that numerous neuropeptide-containing neurons are pathologically altered in brain areas of both AD patients and AD animal models. Furthermore, the levels of various neuropeptides have been found altered in both Cerebrospinal Fluid (CSF) and blood of AD patients, getting insights into their potential role in the pathophysiology of AD and offering the possibility to identify novel additional biomarkers for this pathology. We summarized the available information about brain distribution, neuroprotective and cognitive functions of some neuropeptides involved in AD. The main focus of the current review was directed towards the description of clinical data reporting alterations in neuropeptides content in both AD patients and AD pre-clinical animal models. In particular, we explored the involvement in the AD of Thyrotropin-Releasing Hormone (TRH), Cocaine- and Amphetamine-Regulated Transcript (CART), Cholecystokinin (CCK), bradykinin and chromogranin/secretogranin family, discussing their potential role as a biomarker or therapeutic target, leaving the dissertation of other neuropeptides to previous reviews.
Collapse
Affiliation(s)
- Carla Petrella
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Maria Grazia Di Certo
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Christian Barbato
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Gabanella
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Roberta Possenti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Severini
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
6
|
Zarif H, Petit-Paitel A, Heurteaux C, Chabry J, Guyon A. TRH modulates glutamatergic synaptic inputs on CA1 neurons of the mouse hippocampus in a biphasic manner. Neuropharmacology 2016; 110:69-81. [PMID: 27060411 DOI: 10.1016/j.neuropharm.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
Abstract
Thyrotropin Releasing Hormone (TRH) is a tripeptide that induces the release of Thyroid Stimulating Hormone (TSH) in the blood. Besides its role in the thyroid system, TRH has been shown to regulate several neuronal systems in the brain however its role in hippocampus remains controversial. Using electrophysiological recordings in acute mouse brain slices, we show that TRH depresses glutamate responses at the CA3-CA1 synapse through an action on NMDA receptors, which, as a consequence, decreases the ability of the synapse to establish a long term potentiation (LTP). TRH also induces a late increase in AMPA/kainate responses. Together, these results suggest that TRH plays an important role in the modulation of hippocampal neuronal activities, and they contribute to a better understanding of the mechanisms by which TRH impacts synaptic function underlying emotional states, learning and memory processes.
Collapse
Affiliation(s)
- Hadi Zarif
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Agnès Petit-Paitel
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Joëlle Chabry
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France.
| |
Collapse
|
7
|
Abstract
OBJECTIVE Bariatric surgery is associated with improved cognitive function, although the mechanisms are unclear. Elevated inflammation is common in obesity and associated with impaired cognition. Inflammation decreases after bariatric surgery, implicating it as a possible mechanism for cognitive improvement. The objective of this study was to examine whether reduced inflammation is a possible mechanism for postoperative cognitive improvement in bariatric surgery patients. METHODS Participants were 77 bariatric surgery patients who completed cognitive testing before surgery and 1 year postsurgery. Cognitive domains assessed were attention/executive function, language, and memory. High-sensitivity C-reactive protein (CRP) was assessed at both time points. RESULTS Patients exhibited preoperative cognitive impairment, although improvements 1 year postsurgery were seen in both attention/executive function (mean [M; standard deviation {SD}]baseline = 53.57 [8.68] versus M (SD)follow-up= 60.32 [8.19]) and memory (M [SD]baseline= 44.96 [7.98] versus M [SD]follow-up= 51.55 [8.25]). CRP was elevated at baseline and fell into the normative range postsurgery (M [SD]baseline= 0.9 [0.7] versus M [SD]follow-up= 0.2 [0.3] mg/dl). Preoperative CRP was not associated with baseline cognitive function (β values = -0.10 to 0.02) and changes in CRP also did not correspond to changes in cognition postsurgery (β values = 0.02-0.11; p values > .05 for all domains). A trend was detected for smaller improvements in memory among participants with elevated baseline CRP (>0.30 mg/dl) versus those with normal levels (group × time: p = .083). CONCLUSIONS Improvements in high-sensitivity CRP were not associated with postoperative cognitive benefits. Future studies are needed to explore other inflammatory markers and potential mechanisms of cognitive improvement after bariatric surgery, including improved glycemic control and neurohormone changes.
Collapse
|
8
|
Zhang J, Li P, Wang Y, Liu J, Zhang Z, Cheng W, Wang Y. Ameliorative effects of a combination of baicalin, jasminoidin and cholic acid on ibotenic acid-induced dementia model in rats. PLoS One 2013; 8:e56658. [PMID: 23437202 PMCID: PMC3577735 DOI: 10.1371/journal.pone.0056658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/12/2013] [Indexed: 11/19/2022] Open
Abstract
Aims To investigate the therapeutic effects and acting mechanism of a combination of Chinese herb active components, i.e., a combination of baicalin, jasminoidin and cholic acid (CBJC) on Alzheimer’s disease (AD). Methods Male rats were intracerebroventricularly injected with ibotenic acid (IBO), and CBJC was orally administered. Therapeutic effect was evaluated with the Morris water maze test, FDG-PET examination, and histological examination, and the acting mechanism was studied with DNA microarrays and western blotting. Results CBJC treatment significantly attenuated IBO-induced abnormalities in cognition, brain functional images, and brain histological morphology. Additionally, the expression levels of 19 genes in the forebrain were significantly influenced by CBJC; approximately 60% of these genes were related to neuroprotection and neurogenesis, whereas others were related to anti-oxidation, protein degradation, cholesterol metabolism, stress response, angiogenesis, and apoptosis. Expression of these genes was increased, except for the gene related to apoptosis. Changes in expression for 5 of these genes were confirmed by western blotting. Conclusion CBJC can ameliorate the IBO-induced dementia in rats and may be significant in the treatment of AD. The therapeutic mechanism may be related to CBJC’s modulation of a number of processes, mainly through promotion of neuroprotection and neurogenesis, with additional promotion of anti-oxidation, protein degradation, etc.
Collapse
Affiliation(s)
- Junying Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China
| | - Peng Li
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Yanping Wang
- The Institute of Basic Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jianxun Liu
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China
- * E-mail:
| | - Weidong Cheng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
- * E-mail:
| | - Yongyan Wang
- The Institute of Basic Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| |
Collapse
|
9
|
Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists. J Neurosci 2012; 32:9217-27. [PMID: 22764230 DOI: 10.1523/jneurosci.1673-12.2012] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive impairment in Down syndrome (DS) is characterized by deficient learning and memory. Mouse genetic models of DS exhibit impaired cognition in hippocampally mediated behavioral tasks and reduced synaptic plasticity of hippocampal pathways. Enhanced efficiency of GABAergic neurotransmission was implicated in those changes. We have recently shown that signaling through postsynaptic GABA(B) receptors is significantly increased in the dentate gyrus of Ts65Dn mice, a genetic model of DS. Here we examined a role for GABA(B) receptors in cognitive deficits in DS by defining the effect of selective GABA(B) receptor antagonists on behavior and synaptic plasticity of adult Ts65Dn mice. Treatment with the GABA(B) receptor antagonist CGP55845 restored memory of Ts65Dn mice in the novel place recognition, novel object recognition, and contextual fear conditioning tasks, but did not affect locomotion and performance in T-maze. The treatment increased hippocampal levels of brain-derived neurotrophic factor, equally in 2N and Ts65Dn mice. In hippocampal slices, treatment with the GABA(B) receptor antagonists CGP55845 or CGP52432 enhanced long-term potentiation (LTP) in the Ts65Dn DG. The enhancement of LTP was accompanied by an increase in the NMDA receptor-mediated component of the tetanus-evoked responses. These findings are evidence for a contribution of GABA(B) receptors to changes in hippocampal-based cognition in the Ts65Dn mouse. The ability to rescue cognitive performance through treatment with selective GABA(B) receptor antagonists motivates studies to further explore the therapeutic potential of these compounds in people with DS.
Collapse
|
10
|
Bartzokis G. Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology 2012; 62:2137-53. [PMID: 22306524 PMCID: PMC3586811 DOI: 10.1016/j.neuropharm.2012.01.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/20/2022]
Abstract
Current psychiatric diagnostic schema segregate symptom clusters into discrete entities, however, large proportions of patients suffer from comorbid conditions that fit neither diagnostic nor therapeutic schema. Similarly, psychotropic treatments ranging from lithium and antipsychotics to serotonin reuptake inhibitors (SSRIs) and acetylcholinesterase inhibitors have been shown to be efficacious in a wide spectrum of psychiatric disorders ranging from autism, schizophrenia (SZ), depression, and bipolar disorder (BD) to Alzheimer's disease (AD). This apparent lack of specificity suggests that psychiatric symptoms as well as treatments may share aspects of pathophysiology and mechanisms of action that defy current symptom-based diagnostic and neuron-based therapeutic schema. A myelin-centered model of human brain function can help integrate these incongruities and provide novel insights into disease etiologies and treatment mechanisms. Available data are integrated herein to suggest that widely used psychotropic treatments ranging from antipsychotics and antidepressants to lithium and electroconvulsive therapy share complex signaling pathways such as Akt and glycogen synthase kinase-3 (GSK3) that affect myelination, its plasticity, and repair. These signaling pathways respond to neurotransmitters, neurotrophins, hormones, and nutrition, underlie intricate neuroglial communications, and may substantially contribute to the mechanisms of action and wide spectra of efficacy of current therapeutics by promoting myelination. Imaging and genetic technologies make it possible to safely and non-invasively test these hypotheses directly in humans and can help guide clinical trial efforts designed to correct myelination abnormalities. Such efforts may provide insights into novel avenues for treatment and prevention of some of the most prevalent and devastating human diseases.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Cognitive enhancers: focus on modulatory signaling influencing memory consolidation. Pharmacol Biochem Behav 2011; 99:155-63. [PMID: 21236291 DOI: 10.1016/j.pbb.2010.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 12/24/2022]
Abstract
Biological research has unraveled many of the molecular and cellular mechanisms involved in the formation of long-lasting memory, providing new opportunities for the development of cognitive-enhancing drugs. Studies of drug enhancement of cognition have benefited from the use of pharmacological treatments given after learning, allowing the investigation of mechanisms regulating the consolidation phase of memory. Modulatory systems influencing consolidation processes include stress hormones and several neurotransmitter and neuropeptide systems. Here, we review some of the findings on memory enhancement by drug administration in animal models, and discuss their implications for the development of cognitive enhancers.
Collapse
|
12
|
Role of ethanolamine phosphate in the hippocampus of rats with acute experimental autoimmune encephalomyelitis. Neurochem Int 2011; 58:22-34. [DOI: 10.1016/j.neuint.2010.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/28/2010] [Accepted: 10/14/2010] [Indexed: 11/21/2022]
|
13
|
Dere E, Pause BM, Pietrowsky R. Emotion and episodic memory in neuropsychiatric disorders. Behav Brain Res 2010; 215:162-71. [DOI: 10.1016/j.bbr.2010.03.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/05/2010] [Indexed: 11/25/2022]
|
14
|
Christensen T, Bisgaard C, Nielsen H, Wiborg O. Transcriptome differentiation along the dorso–ventral axis in laser-captured microdissected rat hippocampal granular cell layer. Neuroscience 2010; 170:731-41. [DOI: 10.1016/j.neuroscience.2010.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 12/31/2022]
|
15
|
Lithium chloride regulation of the substance P encoding preprotachykinin a, Tac1 gene in rat hippocampal primary cells. J Mol Neurosci 2010; 45:94-100. [PMID: 20690045 DOI: 10.1007/s12031-010-9431-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/19/2010] [Indexed: 12/26/2022]
Abstract
In rat hippocampal cultures, the preprotachykinin A (PPTA/Tac1) gene, which encodes the neuropeptide substance P, is regulated by the action of lithium. We used reporter gene and expression constructs to demonstrate that this mechanism of action of lithium is mediated via a previously characterised cis-regulatory Ebox element in the proximal promoter, which binds members of the basic Helix-Loop-Helix family of transcription factors. Consistent with this, in hippocampal cells, both the expression of the endogenous gene and the function of this promoter element are differentially regulated by the basic Helix-Loop-Helix factors, upstream stimulatory factor 1 and 2 (USF1/2). In addition, the genes for USF1 and USF2 are differentially regulated by lithium in these cells. Our data implicate USF1 as a major regulator of the action of lithium on the proximal PPTA promoter.
Collapse
|
16
|
Peltonen I, Jalkanen AJ, Sinervä V, Puttonen KA, Männistö PT. Different effects of scopolamine and inhibition of prolyl oligopeptidase on mnemonic and motility functions of young and 8- to 9-month-old rats in the radial-arm maze. Basic Clin Pharmacol Toxicol 2009; 106:280-7. [PMID: 20041878 DOI: 10.1111/j.1742-7843.2009.00484.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prolyl oligopeptidase (POP) has been connected to memory and mood through regulation of the brain levels of its biologically active peptide substrates and phosphatidylinositol system. This is the first study in a radial-arm maze of the effects of a single dose of a novel potent prolyl oligopeptidase inhibitor, KYP-2047 (5 mg/kg, dissolved in 5% Tween 80), on memory and learning of scopolamine-treated (0.4 mg/kg, dissolved in saline) rats. Habituated (days 1 and 2) and trained (days 3-11) young (3 months) and old (8-9 months) male Wistar rats were given (i) saline + Tween, (ii) saline + KYP-2047, (iii) scopolamine + Tween or (iv) scopolamine + KYP-2047 30 min. prior to testing their memory. Food rewards located in four randomly chosen arms of the maze. The rat had 10 min. to find and eat the rewards. Time spent in the maze, visits to each arm and number of eaten rewards were measured. Old rats made generally more errors, spent more time and visited fewer arms per minute in the maze than young rats. The memory- and function-impairing effects of scopolamine were also seen more clearly in old than young rats. KYP-2047 had no or only a marginal effect on memory of either age group, but when given without scopolamine, it slightly increased the maze motility of young rats and decreased the motility of old rats. In a separate locomotor activity test, KYP-2047 enhanced the motility of young rats supporting a suggested role of POP in motor functions.
Collapse
Affiliation(s)
- Iida Peltonen
- Faculty of Pharmacy, Division of Pharmacology and Toxicology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
17
|
Rholam M, Fahy C. Processing of peptide and hormone precursors at the dibasic cleavage sites. Cell Mol Life Sci 2009; 66:2075-91. [PMID: 19300906 PMCID: PMC11115611 DOI: 10.1007/s00018-009-0007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/11/2009] [Accepted: 02/17/2009] [Indexed: 01/31/2023]
Abstract
Many functionally important cellular peptides and proteins, including hormones, neuropeptides, and growth factors, are synthesized as inactive precursor polypeptides, which require post-translational proteolytic processing to become biologically active polypeptides. This is achieved by the action of a relatively small number of proteases that belong to a family of seven subtilisin-like proprotein convertases (PCs) including furin. In view of this, this review focuses on the importance of privileged secondary structures and of given amino acid residues around basic cleavage sites in substrate recognition by these endoproteases. In addition to their participation in normal cell functions, PCs are crucial for the initiation and progress of many important diseases. Hence, these proteases constitute potential drug targets in medicine. Accordingly, this review also discusses the approaches used to shed light on the cleavage preference and the substrate specificity of the PCs, a prerequisite to select which PCs are promising drug targets in each disease.
Collapse
Affiliation(s)
- Mohamed Rholam
- Interfaces, Traitements, Organisation et Dynamique des Systrèmes, Université Paris Diderot (Paris 7), CNRS UMR 7086, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205, Paris Cedex 13, France.
| | | |
Collapse
|
18
|
Kozora E, Hanly JG, Lapteva L, Filley CM. Cognitive dysfunction in systemic lupus erythematosus: past, present, and future. ACTA ACUST UNITED AC 2009; 58:3286-98. [PMID: 18975345 DOI: 10.1002/art.23991] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elizabeth Kozora
- National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | |
Collapse
|
19
|
Dror N, Tveria L, Meniv I, Ben-Shmuel S, Filipovich T, Fleisher-Berkovich S. Inhibitory effect of somatostatin on prostaglandin E2 synthesis by primary neonatal rat glial cells. ACTA ACUST UNITED AC 2008; 150:21-5. [DOI: 10.1016/j.regpep.2008.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 05/23/2008] [Accepted: 06/15/2008] [Indexed: 10/21/2022]
|
20
|
Scalabrino GA, Hogan N, O'Boyle KM, Slator GR, Gregg DJ, Fitchett CM, Draper SM, Bennett GW, Hinkle PM, Bauer K, Williams CH, Tipton KF, Kelly JA. Discovery of a dual action first-in-class peptide that mimics and enhances CNS-mediated actions of thyrotropin-releasing hormone. Neuropharmacology 2007; 52:1472-81. [PMID: 17418282 DOI: 10.1016/j.neuropharm.2007.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Thyrotropin-releasing hormone (TRH) displays multiple CNS-mediated actions that have long been recognized to have therapeutic potential in treating a wide range of neurological disorders. Investigations of CNS functions and clinical use of TRH are hindered, however, due to its rapid degradation by TRH-degrading ectoenzyme (TRH-DE). We now report the discovery of a set of first-in-class compounds that display unique ability to both potently inhibit TRH-DE and bind to central TRH receptors with unparalleled affinity. This dual pharmacological activity within one molecular entity was found through selective manipulation of peptide stereochemistry. Notably, the lead compound of this set, L-pyroglutamyl-L-asparaginyl-L-prolyl-D-tyrosyl-D-tryptophan amide (Glp-Asn-Pro-D-Tyr-D-TrpNH(2)), is effective in vivo at producing and potentiating central actions of TRH without evoking release of thyroid-stimulating hormone (TSH). Specifically, this peptide displayed high plasma stability and combined potent inhibition of TRH-DE (K(i) 151 nM) with high affinity binding to central TRH receptors (K(i) 6.8 nM). Moreover, intraperitoneal injection of this peptide mimicked and augmented the effects of TRH on behavioural activity in rat. Analogous to TRH, it also antagonized pentobarbital-induced narcosis when administered intravenously. This discovery provides new opportunities for probing the role of TRH actions in the CNS and a basis for development of novel TRH-based neurotherapeutics.
Collapse
Affiliation(s)
- Gaia A Scalabrino
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cáceda R, Kinkead B, Nemeroff CB. Involvement of neuropeptide systems in schizophrenia: human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 78:327-76. [PMID: 17349866 DOI: 10.1016/s0074-7742(06)78011-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neuropeptides are heterogeneously distributed throughout the digestive, circulatory, and nervous systems and serve as neurotransmitters, neuromodulators, and hormones. Neuropeptides are phylogenetically conserved and have been demonstrated to regulate numerous behaviors. They have been hypothesized to be pathologically involved in several psychiatric disorders, including schizophrenia. On the basis of preclinical data, numerous studies have sought to examine the role of neuropeptide systems in schizophrenia. This chapter reviews the clinical data, linking alterations in neuropeptide systems to the etiology, pathophysiology, and treatment of schizophrenia. Data for the following neuropeptide systems are included: arginine-vasopressin, cholecystokinin (CCK), corticotropin-releasing factor (CRF), interleukins, neuregulin 1 (NRG1), neurotensin (NT), neuropeptide Y (NPY), opioids, secretin, somatostatin, tachykinins, thyrotropin-releasing hormone (TRH), and vasoactive intestinal peptide (VIP). Data from cerebrospinal fluid (CSF), postmortem and genetic studies, as well as clinical trials are described. Despite the inherent difficulties associated with human studies (including small sample size, variable duration of illness, medication status, the presence of comorbid psychiatric disorders, and diagnostic heterogeneity), several findings are noteworthy. Postmortem studies support disease-related alterations in several neuropeptide systems in the frontal and temporal cortices. The strongest genetic evidence supporting a role for neuropeptides in schizophrenia are those studies linking polymorphisms in NRG1 and the CCKA receptor with schizophrenia. Finally, the only compounds that act directly on neuropeptide systems that have demonstrated therapeutic efficacy in schizophrenia are neurokinin receptor antagonists. Clearly, additional investigation into the role of neuropeptide systems in the etiology, pathophysiology, and treatment of schizophrenia is warranted.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
22
|
Jalkanen AJ, Puttonen KA, Venäläinen JI, Sinervä V, Mannila A, Ruotsalainen S, Jarho EM, Wallén EAA, Männistö PT. Beneficial Effect of Prolyl Oligopeptidase Inhibition on Spatial Memory in Young but Not in Old Scopolamine-Treated Rats. Basic Clin Pharmacol Toxicol 2006; 100:132-8. [PMID: 17244263 DOI: 10.1111/j.1742-7843.2006.00021.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of a novel prolyl oligopeptidase (POP) inhibitor KYP-2047 on spatial memory of young (3-month-old) and old (8- to 9-month-old) scopolamine-treated rats (0.4 mg/kg intraperitoneally) was investigated in the Morris water maze. In addition, the concentrations of promnesic neuropeptide substrates of POP, substance P and neurotensin in various brain areas after acute and chronic POP inhibition were measured in young rats. In addition, inositol-1,4,5-trisphosphate (IP(3)) levels were assayed in rat cortex and hippocampus after effective 2.5-day POP inhibition. KYP-2047 (1 or 5 mg/kg 30 min. before daily testing) dose-dependently improved the escape performance (i.e. latency to find the hidden platform and swimming path length) of the young but not the old rats in the water maze. POP inhibition had no consistent effect on substance P levels in cortex, hippocampus or hypothalamus, and only a modest increase in neurotensin concentration was observed in the hypothalamus after a single dose of KYP-2047. Moreover, IP(3) concentrations remained unaffected in cortex and hippocampus after POP inhibition. In conclusion, the behavioural data support the earlier findings of the promnesic action of POP inhibitors, but the mechanism of the memory-enhancing action remains unclear.
Collapse
Affiliation(s)
- Aaro J Jalkanen
- Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Bioregulators are naturally occurring organic compounds that regulate a multitude of biologic processes. Under natural circumstances, bioregulators are synthesized in minute quantities in a variety of living organisms and are essential for physiologic homeostasis. In the wrong hands, these compounds have the capability to be used as nontraditional threat agents that are covered by the prohibitions of the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. Unlike traditional biowarfare/bioterrorism agents that have a latency period of hours to days,the onset of action of bioregulators may occur within minutes after host exposure. Concerns regarding the potential misuse of bioregulators for nefarious purposes relate to the ability of these nontraditional agents to induce profound physiologic effects.
Collapse
Affiliation(s)
- Elliott Kagan
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| |
Collapse
|
24
|
Glorioso C, Sabatini M, Unger T, Hashimoto T, Monteggia LM, Lewis DA, Mirnics K. Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood. Mol Psychiatry 2006; 11:633-48. [PMID: 16702976 DOI: 10.1038/sj.mp.4001835] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been reported to be critical for the development of cortical inhibitory neurons. However, the effect of BDNF on the expression of transcripts whose protein products are involved in gamma amino butric acid (GABA) neurotransmission has not been assessed. In this study, gene expression profiling using oligonucleotide microarrays was performed in prefrontal cortical tissue from mice with inducible deletions of BDNF. Both embryonic and adulthood ablation of BDNF gave rise to many shared transcriptome changes. BDNF appeared to be required to maintain gene expression in the SST-NPY-TAC1 subclass of GABA neurons, although the absence of BDNF did not alter their general phenotype as inhibitory neurons. Furthermore, we observed expression alterations in genes encoding early-immediate genes (ARC, EGR1, EGR2, FOS, DUSP1, DUSP6) and critical cellular signaling systems (CDKN1c, CCND2, CAMK1g, RGS4). These BDNF-dependent gene expression changes may illuminate the biological basis for transcriptome changes observed in certain human brain disorders.
Collapse
Affiliation(s)
- C Glorioso
- Department of Psychiatry, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Hernández-Pinto AM, Puebla-Jiménez L, Arilla-Ferreiro E. A vitamin A-free diet results in impairment of the rat hippocampal somatostatinergic system. Neuroscience 2006; 141:851-861. [PMID: 16757122 DOI: 10.1016/j.neuroscience.2006.04.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 03/28/2006] [Accepted: 04/14/2006] [Indexed: 11/17/2022]
Abstract
Previous studies have revealed the presence of retinoid specific receptors in the hippocampus and have demonstrated that vitamin A deficiency produces a severe deficit in spatial learning and memory which are linked to a proper hippocampal functioning. It is also well known that the tetradecapeptide somatostatin binds to specific receptors in the hippocampus and, when injected into this brain area, facilitates the acquisition of spatial tasks. In addition, depletion of somatostatin by cysteamine impairs acquisition of these tasks. Taken together, these studies support the idea that the hippocampal somatostatinergic system might be regulated by vitamin A. Hence, we evaluated the effects of vitamin A deprivation and subsequent administration of vitamin A on the rat hippocampal somatostatinergic system. Rats fed a vitamin A-free diet exhibited a significant reduction of somatostatin-like immunoreactivity content in the hippocampus whereas the somatostatin mRNA levels were unaltered. Vitamin A deficiency increased the somatostatin receptor density and its dissociation constant. Functional Gi activity as well as the capacity of somatostatin to inhibit basal and forskolin-stimulated adenylyl cyclase activity was decreased in vitamin A deficiency rats as compared with the control animals. All these parameters were fully restored when vitamin A was replaced in the diet. Furthermore, we found that the Gialpha1, Gialpha2 and Gialpha3 protein levels were unaltered in hippocampal membranes from rats fed a vitamin A-free diet whereas subsequent vitamin A administration to these rats caused a significant increase in the levels of Gialpha1 and Gialpha2. Altogether, the present findings suggest that dietary vitamin A levels modulate the somatostatinergic system in the rat hippocampus.
Collapse
Affiliation(s)
- A M Hernández-Pinto
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Crta. Madrid-Barcelona Km. 33,6, Universidad de Alcalá de Henares, E-28871 Alcalá de Henares, Madrid, Spain
| | - L Puebla-Jiménez
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Crta. Madrid-Barcelona Km. 33,6, Universidad de Alcalá de Henares, E-28871 Alcalá de Henares, Madrid, Spain
| | - E Arilla-Ferreiro
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Crta. Madrid-Barcelona Km. 33,6, Universidad de Alcalá de Henares, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
26
|
Bellemère G, Vaudry H, Morain P, Jégou S. Effect of prolyl endopeptidase inhibition on arginine-vasopressin and thyrotrophin-releasing hormone catabolism in the rat brain. J Neuroendocrinol 2005; 17:306-13. [PMID: 15869566 DOI: 10.1111/j.1365-2826.2005.01308.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compound S 17092 is a potent and selective inhibitor of prolyl endopeptidase (EC 3.4.21.26, PEP) that may be of therapeutic value for the treatment of memory impairment associated with neurodegenerative diseases. In the present study, we investigated the effects of S 17092 on the catabolism of the promnesic neuropeptides thyrotrophin-releasing hormone (TRH) and arginine-vasopressin (AVP) in the rat brain. In vitro, bacterial PEP hydrolysed both TRH and AVP, and the breakdown of the two peptides was almost completely prevented by 10(-5) M S 17092. In vivo, a single oral administration of S 17092 provoked a significant increase in TRH-like immunoreactivity (TRH-LI) in the cerebral cortex (+63% for a 10 mg/kg dose and +72% for a 30 mg/kg dose), as well as AVP-LI in the hippocampus (+54% for a 30 mg/kg dose), but did not affect TRH-LI in the amygdala nor AVP-LI in the cerebral cortex. Chronic administration of S 17092 (10 or 30 mg/kg daily) lead to a significant increase in THR-LI in the cerebral cortex (+55% and +56%, respectively), but did not modify AVP-LI in the hippocampus, nor in the cerebral cortex. These results show that the selective PEP inhibitor S 17092 increases TRH and AVP content in discrete regions of the rat brain. The present data suggest that the promnesic and antiamnesic effects of S 17092 can be accounted for, at least in part, by blockage of AVP and TRH degradation by PEP.
Collapse
Affiliation(s)
- G Bellemère
- INSERM U413, European Institute for Peptide Research, Laboratory of Cellular and Molecular Neuroendocrinology, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
27
|
Urayama A, Yamada S, Ohmori Y, Deguchi Y, Uchida S, Kimura R. Blood-brain permeability of [3H]-(3-methyl-His2)thyrotropin-releasing hormone (MeTRH) in mice: effects of TRH and its analogues. Drug Metab Pharmacokinet 2005; 18:310-8. [PMID: 15618750 DOI: 10.2133/dmpk.18.310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to characterize the transport of (3-methyl-His(2)) thyrotropin-releasing hormone ([(3)H]MeTRH) across the blood-brain barrier in mice and the effects of thyrotropin-releasing hormone (TRH) and its analogues (taltirelin and montirelin) on the transport and brain distribution. Integration plot analysis was used to calculate the influx clearance (CL(in)) of [(3)H]MeTRH after intravenous (i.v.) injection in mice. Furthermore, the capillary depletion method was performed to determine whether [(3)H]MeTRH crossed the blood-brain barrier. The effects of TRH and its analogues on the brain distribution of [(3)H]MeTRH were also examined by co-injection with the radioligand. The brain distribution of [(3)H]MeTRH and [(14)C]sucrose increased with the time after i.v. injection in mice, and the level of [(3)H]MeTRH was significantly higher than that of [(14)C]sucrose 5 min after the injection. The CL(in) value of [(3)H]MeTRH was significantly higher than that of [(14)C]sucrose, and the value of [(3)H]MeTRH was reduced by co-injection with unlabeled MeTRH. Also, capillary depletion showed that [(3)H]MeTRH was distributed largely in the brain parenchyma and this distribution was significantly inhibited by co-injection of TRH and montirelin but not taltirelin. The present study indicates that the transport of [(3)H]MeTRH into the brain may be via a saturable process.
Collapse
Affiliation(s)
- Akihiko Urayama
- School of Pharmaceutical Sciences and COE21, University of Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Méndez-Díaz M, Irwin L, Gómez-Chavarín M, Jiménez-Anguiano A, Cabeza R, Murillo-Rodríguez E, Prospéro-García O. Cortistatin modulates memory evocation in rats. Eur J Pharmacol 2004; 507:21-8. [PMID: 15659290 DOI: 10.1016/j.ejphar.2004.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 10/18/2004] [Accepted: 10/28/2004] [Indexed: 11/24/2022]
Abstract
The neurochemical control of learning depends on several neurotransmitters, hormones, and neuropeptides. Cortistatin is a neuropeptide with sleep-modulating properties that regulates memory consolidation and evocation. Several reports have suggested that learning processes are expressed under diurnal variations; therefore, it seems that the efficiency to solve learning tasks is related to the arousal state. Although we know that cortistatin modulates learning, we do not know whether its effect is subjected to diurnal variations. Hence, we evaluated memory evocation and the sleep-waking cycle along the day. Additionally, we evaluated the effect of cortistatin on motor control and cyclic adenosine monophosphate (cAMP) concentration. Performance of rats was better at 01:00 h than at 13:00 h to solve the Barnes maze. Cortistatin impaired memory evocation, increased rapid-eye-movement (REM) sleep, and decreased wakefulness at 01:00 h, whereas increasing it at 13:00 h. Cortistatin blunts cAMP concentration and impairs motor control at 13:00 h. These results support further a cortistatin modulatory role in the memory process.
Collapse
Affiliation(s)
- Mónica Méndez-Díaz
- Depto. de Fisiología, Fac. de Medicina, Universidad Nacional Autónoma de México. Apdo. Postal 70-250, México, D.F. 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
29
|
Naftalin RJ, Cunningham P, Afzal-Ahmed I. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport. Br J Pharmacol 2004; 142:594-608. [PMID: 15148255 PMCID: PMC1574967 DOI: 10.1038/sj.bjp.0705798] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
1 Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide galanin in human erythrocytes in vitro. 2 The potencies of nootropic drugs in opposing scopolamine-induced memory loss correlate with their potencies in antagonising pentobarbital inhibition of erythrocyte glucose transport in vitro (P<0.01). Less potent nootropics, D-levetiracetam and D-pyroglutamate, have higher antagonist Ki's against pentobarbital inhibition of glucose transport than more potent L-stereoisomers (P<0.001). 3 Piracetam and TRH have no direct effects on net glucose transport, but competitively antagonise hypnotic drug inhibition of glucose transport. Other nootropics, like aniracetam and levetiracetam, while antagonising pentobarbital action, also inhibit glucose transport. Analeptics like bemigride and methamphetamine are more potent inhibitors of glucose transport than antagonists of hypnotic action on glucose transport. 4 There are similarities between amino-acid sequences in human glucose transport protein isoform 1 (GLUT1) and the benzodiazepine-binding domains of GABAA (gamma amino butyric acid) receptor subunits. Mapped on a 3D template of GLUT1, these homologies suggest that the site of diazepam and piracetam interaction is a pocket outside the central hydrophilic pore region. 5 Nootropic pyrrolidone antagonism of hypnotic drug inhibition of glucose transport in vitro may be an analogue of TRH antagonism of galanin-induced narcosis.
Collapse
Affiliation(s)
- Richard J Naftalin
- Physiology Division, Centre for Vascular Biology and Medicine, King's College London, Guy's Campus, New Hunt's House, London SE1 1UL.
| | | | | |
Collapse
|
30
|
Winsky-Sommerer R, Grouselle D, Rougeot C, Laurent V, David JP, Delacourte A, Dournaud P, Seidah NG, Lindberg I, Trottier S, Epelbaum J. The proprotein convertase PC2 is involved in the maturation of prosomatostatin to somatostatin-14 but not in the somatostatin deficit in Alzheimer's disease. Neuroscience 2004; 122:437-47. [PMID: 14614908 DOI: 10.1016/s0306-4522(03)00560-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A somatostatin deficit occurs in the cerebral cortex of Alzheimer's disease patients without a major loss in somatostatin-containing neurons. This deficit could be related to a reduction in the rate of proteolytic processing of peptide precursors. Since the two proprotein convertases (PC)1 and PC2 are responsible for the processing of neuropeptide precursors directed to the regulated secretory pathway, we examined whether they are involved first in the proteolytic processing of prosomatostatin in mouse and human brain and secondly in somatostatin defect associated with Alzheimer's disease. By size exclusion chromatography, the cleavage of prosomatostatin to somatostatin-14 is almost totally abolished in the cortex of PC2 null mice, while the proportions of prosomatostatin and somatostatin-28 are increased. By immunohistochemistry, PC1 and PC2 were localized in many neuronal elements in human frontal and temporal cortex. The convertases levels were quantified by Western blot, as well as the protein 7B2 which is required for the production of active PC2. No significant change in PC1 levels was observed in Alzheimer's disease. In contrast, a marked decrease in the ratio of the PC2 precursor to the total enzymatic pool was observed in the frontal cortex of Alzheimer patients. This decrease coincides with an increase in the binding protein 7B2. However, the content and enzymatic activity of the PC2 mature form were similar in Alzheimer patients and controls. Therefore, the cortical somatostatin defect is not due to convertase alteration occuring during Alzheimer's disease. Further studies will be needed to assess the mechanisms involved in somatostatin deficiency in Alzheimer's disease.
Collapse
Affiliation(s)
- R Winsky-Sommerer
- INSERM U549, IFR Broca-Sainte Anne, Centre Paul Broca, 2 ter rue d'Alésia, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Selkoe DJ, Schenk D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 2003; 43:545-84. [PMID: 12415125 DOI: 10.1146/annurev.pharmtox.43.100901.140248] [Citation(s) in RCA: 616] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Degenerative diseases of the brain were long considered among the most obscure and intractable of human maladies. However, recent advances in understanding their mechanisms have brought us to the verge of potential disease-modifying agents. This progress is perhaps best exemplified by the case of Alzheimer's disease. The application of molecular pathology and genetics has led to the recognition that the four genes implicated to date in familial Alzheimer's disease all chronically elevate cerebral levels of the amyloid beta-protein (Abeta). Accordingly, small molecule inhibitors of the beta- and gamma-secretases, the proteases that generate Abeta from its precursor, are under active development, and some have shown in vivo efficacy in mouse models. An alternative approach, active or passive immunization against Abeta, has received extensive pre-clinical validation in mice, but an effective preparation free of significant side effects in humans is still awaited. Several other potential therapies are also reviewed here. If one or more of these varied approaches is ultimately proven to slow or prevent dementia, Alzheimer's disease will become a salient example of the successful application of reductionist biology to the most complex of organs, the human cerebral cortex.
Collapse
Affiliation(s)
- Dennis J Selkoe
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
32
|
Puebla L, Arilla-Ferreiro E. Modulation of somatostatin receptors, somatostatin content and Gi proteins by substance P in the rat frontoparietal cortex and hippocampus. J Neurochem 2003; 84:145-56. [PMID: 12485411 DOI: 10.1046/j.1471-4159.2003.01510.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Substance P (SP) and somatostatin (SRIF) are widely spread throughout the CNS where they play a role as neurotransmitters and/or neuromodulators. A colocalization of both neuropeptides has been demonstrated in several rat brain areas and SP receptors have been detected in rat cortical and hippocampal somatostatinergic cells. The present study was thus undertaken to determine whether SP could modulate SRIF signaling pathways in the rat frontoparietal cortex and hippocampus. A single intraperitoneal injection of SP (50, 250 or 500 micro g/kg) induced an increase in the density of SRIF receptors in membranes from the rat frontoparietal cortex at 24 h of its administration, with no change in the hippocampus. The functionality of the SRIF receptors was next investigated. Western blot analysis of Gi proteins demonstrated a significant decrease in Gialpha1 levels in frontoparietal cortical membranes from rats treated acutely (24 h) with 250 micro g/kg of SP, which correlated with a decrease in functional Gi activity, as assessed by use of the non-hydrolyzable GTP analog 5'-guanylylimidodiphosphate. SRIF-mediated inhibition of basal or forskolin-stimulated adenylyl cyclase activity was also significantly lower in the frontoparietal cortex of the SP-treated group, with no alterations in the catalytic subunit of the enzyme. SRIF-like immunoreactivity content was increased in the frontoparietal cortex after acute (24 h) SP administration (250 or 500 micro g/kg) as well as in the hippocampus in response to 7 days of SP (250 micro g/kg) administration. All these SP-mediated effects were prevented by pretreatment with the NK1 receptor antagonist RP-67580. Although the physiologic significance of these results are unknown, the increase in SRIF receptor density together with the desensitization of the SRIF inhibitory signaling pathway might be a mechanism to potentiate the stimulatory pathway of SRIF, inducing a preferential coupling of the receptors to PLC.
Collapse
Affiliation(s)
- Lilian Puebla
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
33
|
Schulz I, Gerhartz B, Neubauer A, Holloschi A, Heiser U, Hafner M, Demuth HU. Modulation of inositol 1,4,5-triphosphate concentration by prolyl endopeptidase inhibition. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5813-20. [PMID: 12444969 DOI: 10.1046/j.1432-1033.2002.03297.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prolyl endopeptidase (PEP) is a proline-specific oligopeptidase with a reported effect on learning and memory in different rat model systems. Using the astroglioma cell line U343, PEP expression was reduced by an antisense technique. Measuring different second-messenger concentrations revealed an inverse correlation between inositol 1,4,5-triphosphate [Ins(1,4,5)P3] concentration and PEP expression in the generated antisense cell lines. However, no effect on cAMP generation was observed. In addition, complete suppression of PEP activity by the specific inhibitor, Fmoc-Ala-Pyrr-CN (5 micro m) induced in U343 and other cell lines an enhanced, but delayed, increase in Ins(1,4,5)P3 concentration. This indicates that the proteolytic activity of PEP is responsible for the observed effect. Furthermore, the reduced PEP activity was found to amplify Substance P-mediated stimulation of Ins(1,4,5)P3. The effect of reduced PEP activity on second-messenger concentration indicates a novel intracellular function of this peptidase, which may have an impact on the reported cognitive enhancements due to PEP inhibition.
Collapse
Affiliation(s)
- Ingo Schulz
- Probiodrug AG, Halle, Germany; Department of Molecular Biology and Cell Culture Technology, Mannheim University of Applied Sciences, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Nonspatial and subdivision-specific working memory deficits after selective lesions of the avian prefrontal cortex. J Neurosci 2002. [PMID: 12417682 DOI: 10.1523/jneurosci.22-21-09573.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Association areas in the avian forebrain are shown to subserve higher cognitive functions, including working memory. One of these areas, the neostriatum caudolaterale (NCL) of pigeons, has been functionally compared with the mammalian prefrontal cortex (PFC) because of its prominent role in spatial delay and reversal tasks and its innervation by the dopaminergic system that modulates these functions. However, whereas the PFC maintains in working memory information of different domains, the essential role of the NCL in working memory has been demonstrated only for spatial tasks. To investigate whether the avian NCL is also crucial for nonspatial working memory functions, pigeons were tested in an object-related (color) delayed matching-to-sample (DMTS) task. Bilateral lesions were placed in the entire, dorsal, or ventral NCL to test for possible functional subdivisions that were proposed to exist on the basis of neurochemical and behavioral data. Pigeons with total, dorsal, and ventral NCL lesions showed significant deficits in their DMTS performance, whereas controls were not impaired. Thus, the avian NCL is critically involved in nonspatial working memory processes. Recovery from performance deficits was observed in animals with ventral or total NCL lesions, whereas animals with dorsal NCL lesions showed no improvement. Ventral NCL may mediate perseverative behavior, whereas dorsal NCL might be involved in active working memory. Differences in the connections of these subdivisions with striatal areas and other association areas in the frontomedial forebrain underline functional differences. The data indicate a possible segregation of functions in the avian NCL.
Collapse
|
35
|
Santucci AC, Perez S. Multiple injections of thyrotropin releasing hormone fail to reverse learning and memory deficits in rats with lesions of the nucleus basalis of meynert. Behav Brain Res 2002; 136:433-8. [PMID: 12429405 DOI: 10.1016/s0166-4328(02)00195-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The learning and memory enhancing effects of thyrotropin releasing hormone (TRH) was examined in an animal model of Alzheimer's disease. Adult rats were prepared with either sham surgeries or cholinergic lesions of the nucleus basalis of Meynert (nbM). Subjects were injected (ip) with one of three doses of TRH (0, 5, 10 mg/kg) starting on the day of surgery and continuing once every other day for a total of four injections. Performance (four trials/day for 4 days, 30 m inter-trial interval) in a Morris water maze was assessed one week after the last TRH injection (i.e., 2 weeks postoperatively). Latency to find the hidden platform served as the dependent variable. Results indicated that damage to the nbM impaired task performance in that animals with nbM lesions generally required more time to find the platform and showed less trial-to-trial improvement. Treatment with TRH failed to reverse this lesion-induced deficit. These results suggest that multiple injections of TRH do not provide residual protection against the deleterious effects on learning and memory produced by cholinergic lesions of the basal forebrain. Other doses and administration parameters, however, need to be studied in order to determine the generalizability of these findings.
Collapse
Affiliation(s)
- Anthony C Santucci
- Deptartment of Psychology, Manhattanville College, 2900 Purchase Street, Purchase, NY 10577, USA.
| | | |
Collapse
|
36
|
Dutar P, Vaillend C, Viollet C, Billard JM, Potier B, Carlo AS, Ungerer A, Epelbaum J. Spatial learning and synaptic hippocampal plasticity in type 2 somatostatin receptor knock-out mice. Neuroscience 2002; 112:455-66. [PMID: 12044463 DOI: 10.1016/s0306-4522(02)00074-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Somatostatin is implicated in a number of physiological functions in the CNS. These effects are elicited through the activation of at least five receptor subtypes. Among them, sst2 receptors appear the most widely expressed in the cortex and hippocampal region. However, the specific role of this somatostatin receptor subtype in these regions is largely undetermined. In this study, we investigated the role of the sst2 receptor in the hippocampus using mice invalidated for the sst2 gene (sst2 KO mice). Complementary experimental approaches were used. First, mice were tested in behavioral tests to explore the consequences of the gene deletion on learning and memory. Spatial discrimination learning in the radial maze was facilitated in sst2 KO mice, while operant learning of a bar-pressing task was slightly altered. Mice were then processed for electrophysiological study using the ex vivo hippocampal slice preparation. Extracellular recordings in the CA1 area showed an enhancement in glutamatergic (AMPA and NMDA) responses in sst2 KO mice which displayed an increase in the magnitude of the short-term potentiation and long-term depression. In contrast, long-term potentiation was not significantly altered. Taken together, these data demonstrate that somatostatin, acting via sst2 hippocampal receptors, may contribute to a global decrease in glutamate efficiency and consequently alter glutamate-dependent plasticity and spatial learning.
Collapse
Affiliation(s)
- P Dutar
- Neurobiologie de la Croissance et de la Sénescence, INSERM U 549, Centre Paul Broca, 2 ter rue d'Alésia, F-75014 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bodor N, Buchwald P. Barriers to remember: brain-targeting chemical delivery systems and Alzheimer's disease. Drug Discov Today 2002; 7:766-74. [PMID: 12547033 DOI: 10.1016/s1359-6446(02)02332-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Brain-targeted chemical delivery systems (CDSs) represent rational drug design attempts not only to deliver but also to target drugs to their site of action. Using a sequential metabolism approach, the special bidirectional properties of the blood-brain barrier can be exploited to smuggle the precursors of therapeutic compounds across the barrier and lock them inside the brain ready for sustained release of the active drugs. Many potential therapeutic applications can be envisioned for such CDSs; here, the potential of brain-targeted estradiol for the prevention and treatment of Alzheimer's disease is reviewed in detail.
Collapse
Affiliation(s)
- Nicholas Bodor
- IVAX Research, 4400 Biscayne Boulevard, Miami, FL 33137, USA.
| | | |
Collapse
|
38
|
Morain P, Lestage P, De Nanteuil G, Jochemsen R, Robin JL, Guez D, Boyer PA. S 17092: a prolyl endopeptidase inhibitor as a potential therapeutic drug for memory impairment. Preclinical and clinical studies. CNS DRUG REVIEWS 2002; 8:31-52. [PMID: 12070525 PMCID: PMC6741683 DOI: 10.1111/j.1527-3458.2002.tb00214.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Any treatment that could positively modulate central neuropeptides levels would provide a promising therapeutic approach to the treatment of cognitive deficits associated with aging and/or neurodegenerative diseases. Therefore, based on the activity in rodents, S 17092 (2S,3aS,7aS)-1][(R,R)-2-phenylcyclopropyl]carbonyl]-2-[(thiazolidin-3-yl)carbonyl]octahydro-1H-indole) has been selected as a potent inhibitor of cerebral prolyl-endopeptidase (PEP). By retarding the degradation of neuroactive peptides, S 17092 was successfully used in a variety of memory tasks. These tasks explored short-term, long-term, reference and working memory in aged mice, as well as in rodents and monkeys with chemically induced amnesia or spontaneous memory deficits. S 17092 has also been safely administered to humans, and showed a clear peripheral expression of its mechanism of action through its inhibitory effect upon PEP activity in plasma. S 17092 exhibited central effects, as evidenced by EEG recording in healthy volunteers, and could improve a delayed verbal memory task. Collectively, the preclinical and clinical effects of S 17092 have suggested a promising role for this compound as an agent for the treatment of cognitive disorders associated with cerebral aging.
Collapse
Affiliation(s)
- Philippe Morain
- Institut de Recherches Internationales Servier, 6 Place des pleïades, 92415 Courbevoie, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
McLay RN, Pan W, Kastin AJ. Effects of peptides on animal and human behavior: a review of studies published in the first twenty years of the journal Peptides. Peptides 2001; 22:2181-255. [PMID: 11786208 DOI: 10.1016/s0196-9781(01)00550-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review catalogs effects of peptides on various aspects of animal and human behavior as published in the journal Peptides in its first twenty years. Topics covered include: activity levels, addiction behavior, ingestive behaviors, learning and memory-based behaviors, nociceptive behaviors, social and sexual behavior, and stereotyped and other behaviors. There are separate tables for these behaviors and a short introduction for each section.
Collapse
Affiliation(s)
- R N McLay
- Naval Medical Center San Diego, Department of Psychiatry, San Diego, CA, USA
| | | | | |
Collapse
|
40
|
|
41
|
Emre M, Qizilbash N. Experimental approaches and drugs in development for the treatment of dementia. Expert Opin Investig Drugs 2001; 10:607-17. [PMID: 11281812 DOI: 10.1517/13543784.10.4.607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Treatment of dementia can be divided as symptomatic treatment of cognitive or non-cognitive symptoms and the treatment of underlying pathology. In the last decade the thrust of symptomatic treatment of Alzheimer's disease (AD) has been enhancement of cholinergic transmission. Besides the acetycholinesterase inhibitors (AChE-I) currently in use, cholinergic agonists and enhancers are in development. Other therapeutic approaches directed towards neurotransmitter substitution or modulation include serotoninergic, noradrenergic substances, neuropeptides and those acting via excitatory amino acid receptors, such as ampakines or NMDA antagonists. Introduction of atypical neuroleptics represents the most recent development in the treatment of behavioural symptoms. Efforts to treat the underlying pathology are based on modulation of APP processing in order to decrease the accumulation of beta-amyloid, those to decrease tau hyperphosphorylation, use of nerve growth factors and those based on Apo-E modulation. Potential use of oestrogens and NSAIDs are also under investigation. Recently, vaccination with amyloid-beta peptide has been reported to be effective in an animal model of AD, this putative vaccine is now in clinical trials. Likewise, recent studies suggest that some statins may have a prophylactic effect.
Collapse
Affiliation(s)
- M Emre
- Istanbul Medical School, Department of Neirology, Capa/Istanbul, Turkey.
| | | |
Collapse
|
42
|
Poca MA, Mataró M, Sahuquillo J, Catalán R, Ibañez J, Galard R. Shunt related changes in somatostatin, neuropeptide Y, and corticotropin releasing factor concentrations in patients with normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 2001; 70:298-304. [PMID: 11181849 PMCID: PMC1737268 DOI: 10.1136/jnnp.70.3.298] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Recent data indicate that alterations in brain neuropeptides may play a pathogenic role in dementia. Neuropeptide Y (NPY), somastostatin (SOM), and corticotropin releasing factor (CRF) are neuropeptides involved in cognitive performance. Decreased SOM and NPY concentrations have been found in patients with normal pressure hydrocephalus and are probably the result of neuronal dysfunction, which could potentially be restored by shunting. The effects of shunt surgery on preoperative SOM, NPY, and CRF concentrations were studied. Any improvements in neuropeptide concentrations that could lead to clinically significant neuropsychological and functional changes were also investigated. METHODS A prospective study was performed in 14 patients with normal pressure hydrocephalus syndrome with a duration of symptoms between 3 months and 12 years. Diagnosis was based on intracranial pressure (ICP) monitoring and CSF dynamics. Concentrations of SOM, NPY, and CRF in lumbar CSF were determined before shunting and again 6-9 months after surgery. A battery of neuropsychological tests and several rating functional scales were also given to patients before and after shunting. RESULTS After shunting, SOM and CRF concentrations were significantly increased in all patients. Concentrations of NPY were increased in 12 of the 14 patients studied. The clinical condition of 13 of the 14 patients was significantly improved 6 months after surgery. This improvement was more pronounced in gait disturbances and sphincter dysfunction than in cognitive impairment. No significant differences in any of the neuropsychological tests were seen for the group of patients as a whole despite the increased neuropeptide concentrations. CONCLUSIONS Shunting can restore SOM, NPY, and CRF concentrations even in patients with longstanding normal pressure hydrocephalus. However, despite the biochemical and clinical improvement in some areas such as ambulation and daily life activities, cognitive performance did not significantly improve. The role of neuropeptides in the diagnosis and treatment of patients with normal pressure hydrocephalus syndrome is discussed.
Collapse
Affiliation(s)
- M A Poca
- Department of Neurosurgery, Vall d'Hebron University Hospitals, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Young (3 months old) and aging (18-21 months old) rats were infused intracerebroventricularly with beta-amyloid (1-40; 4.2 nmol) for 14 days. In both age groups, beta-amyloid led to deficits in water-maze and decreased choline acetyltransferase activity and somatostatin levels. Cortical substance P levels also decreased whereas neuropeptide Y levels remained unaltered. There were no significant age dependent differences among these neurochemicals except a decrease in hippocampal neuropeptide Y levels in the aging group. It is concluded that young and aging rat brains respond similarly to beta-amyloid infusion.
Collapse
Affiliation(s)
- S Nag
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, 5 Sassoon Road, Hong Kong, PR China
| | | |
Collapse
|
44
|
Wrenn CC, Crawley JN. Pharmacological evidence supporting a role for galanin in cognition and affect. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:283-99. [PMID: 11263757 DOI: 10.1016/s0278-5846(00)00156-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Galanin is localized in brain pathways involved in both cognition and affect. 2. Galanin has inhibitory actions on a variety of memory tasks including the Morris water maze, delayed nonmatching to position, T-maze delayed alternation, starburst maze, passive avoidance, active avoidance, and spontaneous alternation. 3. Galanin may inhibit learning and memory by inhibiting neurotransmitter release and neuronal firing rate. 4. Two signal transduction mechanisms through which galanin exerts its inhibitory actions are the inhibition of phosphatidyl inositol hydrolysis and the inhibition of adenylate cyclase. 5. Galanin released during periods of burst firing from noradrenergic locus coeruleus terminals in the ventral tegmental area (VTA) may lead to symptoms of depression through inhibition of dopaminergic VTA neurons. 6. Intraventricular galanin has anxiolytic effects in a punished drinking test. Intra-amygdala galanin has anxiogenic effects in a punished drinking test.
Collapse
Affiliation(s)
- C C Wrenn
- Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, Bethesda, MD 20892-1375, USA
| | | |
Collapse
|
45
|
Shapiro RA, Xu C, Dorsa DM. Differential transcriptional regulation of rat vasopressin gene expression by estrogen receptor alpha and beta. Endocrinology 2000; 141:4056-64. [PMID: 11089536 DOI: 10.1210/endo.141.11.7796] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuronal expression of vasopressin messenger RNA (mRNA) and peptide has been shown to be estrogen dependent. A 5.5-kb genomic DNA fragment, 5' of the AVP coding region, was used in luciferase reporter assays to measure transcriptional activation by either estrogen receptor alpha or beta in response to various treatments. ER alpha and ER beta displayed differential regulation of the AVP promoter. SK-N-SH cells transfected with ER alpha exhibited increased luciferase activity in response to estrogen, and the selective estrogen receptor modulators (SERMs), Tamoxifen, and ICI 182,780. Cells transfected with ER beta exhibited a high constitutive activity, which is unchanged by exposure to SERMs but can be inhibited by estrogen. Deletion of 1.5 kb from the 5' end or mutation of a single estrogen response element (ERE)-like sequence resulted in loss of estrogen-dependent induction by ER alpha and increased the ability of estrogen to inhibit the high constitutive activity of ER beta. The distal ERE-containing 1.5-kb fragment, when coupled to luciferase, is able to support both ER alpha and ER beta mediated activation of transcription by estrogen. These results suggest that a single ERE in the distal 1.5-kb portion of the 5.5-kb fragment contains the primary positive estrogen responsive sequences for ER alpha and ER beta. The data also suggest that sequences proximal to this element serve to inhibit transcription mediated by ER beta.
Collapse
Affiliation(s)
- R A Shapiro
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
46
|
Morain P, Robin JL, De Nanteuil G, Jochemsen R, Heidet V, Guez D. Pharmacodynamic and pharmacokinetic profile of S 17092, a new orally active prolyl endopeptidase inhibitor, in elderly healthy volunteers. A phase I study. Br J Clin Pharmacol 2000; 50:350-9. [PMID: 11012558 PMCID: PMC2014995 DOI: 10.1046/j.1365-2125.2000.00270.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS The aim of this study was to characterize the pharmacodynamics and the pharmacokinetics of S 17092, a new orally active prolyl endopeptidase inhibitor following single and repeated administration in elderly healthy volunteers. METHODS This was a double-blind, randomized, placebo-controlled, single and multiple dose study in elderly healthy male and female volunteers (n = 36). Four doses were investigated in sequential order: 100, 400, 800 and 1200 mg. Each dose was administered orally once a day in single administration and then, after a 1 week washout period, during 7 days. Pharmacodynamics were assessed by measurement of plasmatic prolyl endopeptidase (PEP) activity, quantitative electroencephalogram (EEG) and psychometric tests. S 17092 concentrations in plasma were quantified by high performance liquid chromatography with tandem mass spectrometric detection. RESULTS PEP activity in plasma was dose-dependently inhibited both after administration of a single dose and after repeated doses of S 17092. The mean maximal inhibition was obtained within 0.5-2 h after dosing, while inhibition lasted at least 12 h after dose administration. S 17092 appeared to be a centrally active substance as it induced statistically significant modifications in EEG compared with placebo. S 17092 at 100 mg exerted an acute increase in alpha band following single administration at 4 h and 8 h postdosing. When administered repeatedly over 7 days S 17092 did not appear to induce significant lasting central nervous system (CNS) effects. In psychometric tests, response times in the numeric working memory were significantly reduced compared with placebo, following the 800 mg dose. There were some beneficial residual effects of the 1200 mg dose on day 13: delayed word recall and word recognition sensitivity improved compared with the declines noted under placebo. Maximum measured concentration (Cmax) and area under the curve (AUC) parameters increased in proportion to the dose. The terminal half-life (t(1/2)) values ranged between 9 and 31 h on day 1 and between 7 and 18 h on day 14. A high interindividual variability was observed at all dose levels. S 17092 was well tolerated with no clinically significant changes in laboratory or physical parameters observed at any dose. CONCLUSIONS S 17092 had a potent, dose-dependent inhibitory effect on plasmatic PEP, increased alpha band EEG at the 100 mg dose and improved performance in two verbal memory tests at the 1200 mg dose while there were disruption to the vigilance task. The results obtained in elderly healthy subjects indicated that S 17092 is suitable for once-daily dosing without any serious adverse events.
Collapse
Affiliation(s)
- P Morain
- Institut de Recherches Internationales Servier, 6 place des Pléiades, 92415 Courbevoie, France.
| | | | | | | | | | | |
Collapse
|
47
|
Marighetto A, Touzani K, Etchamendy N, Torrea CC, De Nanteuil G, Guez D, Jaffard R, Morain P. Further evidence for a dissociation between different forms of mnemonic expressions in a mouse model of age-related cognitive decline: effects of tacrine and S 17092, a novel prolyl endopeptidase inhibitor. Learn Mem 2000; 7:159-69. [PMID: 10837505 PMCID: PMC311328 DOI: 10.1101/lm.7.3.159] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been demonstrated previously on the radial maze that the emergence of an age-related mnemonic impairment is critically dependent on the form which the discrimination problems took. Hence, when the arms were presented one by one (i.e., successive go-no-go discrimination), both adult and aged mice learned to distinguish between positive (baited) and negative (unbaited) arms readily, as evidenced by their increased readiness to enter positive relative to negative arms (i.e., by a differential in arm-entry latencies). A selective impairment in the aged mice was seen when these arms were presented subsequently as pairs, such that the mice were confronted with an explicit choice (i.e., simultaneous 2-choice discrimination). When discriminative performance was measured by the differential run speed between positive and negative arms, aged mice were also impaired. This was particularly pronounced in the 2-choice discrimination condition. We examined the effects of tacrine (3mg/kg, subcutaneously) or S 17092 (10mg/kg, orally) in aged mice on the three behavioral indices of this 2-stage spatial discrimination paradigm. The results indicated that: (1) Tacrine, but not S 17092, enhanced the acquisition of go-no-go discrimination as reflected in arm-entry latencies; (2) both drugs improved choice accuracy in simultaneous discrimination, although the effect of tacrine was less striking and, in particular, far from statistical significance in the very first 2-choice responses; and (3) neither drugs significantly affected run-speed performance. We conclude further that the specific patterns of drug effects on the three indices of discriminative performance might suggest that each index is associated with a distinct form of mnemonic expression relying on separate neural systems.
Collapse
Affiliation(s)
- A Marighetto
- CNRS - UMR-5106, Laboratoire Neurosciences Comportementales and Cognitives, 33405 Talence Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pickel VM, Douglas J, Chan J, Gamp PD, Bunnett NW. Neurokinin 1 receptor distribution in cholinergic neurons and targets of substance P terminals in the rat nucleus accumbens. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000731)423:3<500::aid-cne12>3.0.co;2-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Nag S, Yee BK, Tang F. Reduction in somatostatin and substance P levels and choline acetyltransferase activity in the cortex and hippocampus of the rat after chronic intracerebroventricular infusion of beta-amyloid (1-40). Brain Res Bull 1999; 50:251-62. [PMID: 10582523 DOI: 10.1016/s0361-9230(99)00196-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study investigated the neurochemical and behavioural sequelae following chronic intracerebroventricular infusion of beta-amyloid (1-40) in rats. beta-amyloid was either infused intermittently via implanted cannulae on the day of operation and subsequently on postsurgical days 4, 7, 10, and 13 (Experiment 1), or continuously using osmotic pumps for 14 days (Experiment 2). The same amount of beta-amyloid was delivered under both infusion regimes. In both experiments, beta-amyloid infusion led to severe deficits in the acquisition of a spatial reference memory task conducted on postoperative days 10 to 14. The animals were sacrificed on the postoperative day 15 for neurochemical analyses. These included radioenzymatic and radioimmunoassays, designed to determine choline acetyltransferase activity and the contents of neuropeptides (somatostatin, substance P, and neuropeptide Y), respectively. Experiment 2 also included solution-hybridisation-RNAase protection assay for preprosomatostatin mRNA quantification. There was a significant reduction in choline acetyltransferase activity and in the levels of substance P as well as somatostatin and preprosomatostatin mRNA in the cortical mantle of beta-amyloid-treated rats, compared to controls in both experiments. Appreciable reductions in choline acetyltransferase activity and somatostatin level were also apparent in the hippocampus. In contrast, beta-amyloid infusion did not significantly affect the brain level of neuropeptide Y. The present study demonstrated that chronic infusion of beta-amyloid can lead to a reduction in the levels of selected neuropeptides resembling the pattern seen in Alzheimer's disease patients.
Collapse
Affiliation(s)
- S Nag
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, China
| | | | | |
Collapse
|
50
|
Affiliation(s)
- E A Nillni
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital, Providence 02903, USA.
| | | |
Collapse
|